[go: up one dir, main page]

JP3243329B2 - Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading - Google Patents

Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading

Info

Publication number
JP3243329B2
JP3243329B2 JP09554593A JP9554593A JP3243329B2 JP 3243329 B2 JP3243329 B2 JP 3243329B2 JP 09554593 A JP09554593 A JP 09554593A JP 9554593 A JP9554593 A JP 9554593A JP 3243329 B2 JP3243329 B2 JP 3243329B2
Authority
JP
Japan
Prior art keywords
steel
heat treatment
bearing
life
repeated stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09554593A
Other languages
Japanese (ja)
Other versions
JPH06287689A (en
Inventor
聡 安本
俊幸 星野
明博 松崎
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP09554593A priority Critical patent/JP3243329B2/en
Publication of JPH06287689A publication Critical patent/JPH06287689A/en
Application granted granted Critical
Publication of JP3243329B2 publication Critical patent/JP3243329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rolling Contact Bearings (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ころ軸受あるいは玉軸
受といった転がり軸受の要素部材として用いられる軸受
鋼に関し、とくに熱処理時に起こる脱炭層の生成を抑制
する効果ならびに軸受使用環境の過酷化に伴って生ずる
特有の劣化, すなわち繰り返し応力負荷によって転動接
触面下に発生するミクロ組織変化(劣化)に対する遅延
特性とに優れた軸受鋼についての提案である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing steel used as an element member of a rolling bearing such as a roller bearing or a ball bearing, and more particularly to an effect of suppressing the formation of a decarburized layer which occurs during heat treatment and a severe use environment of the bearing. This is a proposal for a bearing steel with excellent delay characteristics against microstructure change (deterioration) generated under rolling contact surfaces due to specific deterioration caused by repeated stress loading.

【0002】[0002]

【従来の技術】自動車ならびに産業機械等で用いられる
ころがり軸受としては、従来、高炭素クロム軸受鋼(JI
S:SUJ 2)が最も多く使用されている。一般に軸受鋼と
いうのは、転動疲労寿命の長いことが重要な性質の1つ
であるが、この転動疲労寿命に与える要因としては、鋼
中非金属介在物の影響が最も大きいと考えられていた。
そのため、最近の研究の主流は、鋼中酸素量の低減を通
じて非金属介在物の量, 大きさを制御することによって
軸受寿命を向上させる方策がとられてきた。例えば、軸
受の転動疲労寿命の一層の向上を目指して開発されたも
のとしては、特開平1−306542号公報や特開平3−1268
39号公報などの提案があり、これらは、鋼中の酸化物系
非金属介在物の組成, 形状あるいは分布状態をコントロ
ールする技術である。しかしながら、非金属介在物の少
ない軸受鋼を製造するには、高価な溶製設備の設置ある
いは従来設備の大幅な改良が必要であり、経済的な負担
が大きいという問題があった。
2. Description of the Related Art Rolling bearings used in automobiles, industrial machines, and the like are conventionally known as high carbon chromium bearing steel (JI).
S: SUJ 2) is used the most. In general, bearing steel is one of the important properties to have a long rolling fatigue life, but it is considered that the factor affecting the rolling fatigue life is the largest effect of nonmetallic inclusions in steel. I was
Therefore, the mainstream of recent research has been to improve the bearing life by controlling the amount and size of nonmetallic inclusions by reducing the amount of oxygen in steel. For example, Japanese Unexamined Patent Publication Nos. Hei. 1-306542 and Hei. 3-1268 disclose developments aimed at further improving the rolling fatigue life of bearings.
There are proposals such as Japanese Patent Publication No. 39, which are techniques for controlling the composition, shape or distribution of oxide-based nonmetallic inclusions in steel. However, in order to produce bearing steel with a small amount of nonmetallic inclusions, it is necessary to install expensive smelting equipment or to significantly improve conventional equipment, resulting in a large economic burden.

【0003】また、上記高炭素軸受鋼(JIS-SUJ 2)の特
性改善を図るためのもう1つの動きは、加工性、特に熱
処理時の脱炭層の生成を抑制することの研究である。一
般に、上記JIS-SUJ 2 に規定された軸受鋼は、0.95〜1.
10wt%のCを含むことから、非常に硬質であり、それ故
に、球状化焼なましを行って加工性を向上させた後に成
形加工し、その後焼入れ, 焼もどし処理を施すことによ
って、転がり軸受に必要な強度と靱性を得ていた。とこ
ろが、このような特性改善のための熱処理が何回もかさ
なると、素材表面には、Cと雰囲気ガスとの反応によっ
て、脱炭層と呼ばれる“低C濃度領域”が発生すること
が知られている。この脱炭層は、転がり軸受の硬さ低下
のみならず転動疲労寿命劣化の原因となることから、切
削または研削加工により除去するのが普通であった。そ
のために材料歩留り、さらには生産性の低下を余儀なく
されていたのである。これに対して従来、上記脱炭層の
生成を防止する手段として、熱処理時における炉内の雰
囲気ガス中のカーボンポテンシャルをコントロールする
方法や、特開平2−54717 号公報に開示されている, 球
状化焼なましの初期段階に浸炭処理を施す方法などが提
案されている。しかし、上記の各方法はいずれも、熱処
理あるいはその前処理時の雰囲気清浄によるものである
ことから、熱処理コストが嵩むのみならず、材料の組成
や熱処理時間等に応じた適切なガス組成の設定といった
煩雑な操作を必要とするところに問題があった。
Another move to improve the characteristics of the high-carbon bearing steel (JIS-SUJ2) is a study of workability, particularly suppression of the formation of a decarburized layer during heat treatment. Generally, the bearing steel specified in JIS-SUJ2 above is 0.95-1.
Since it contains 10wt% of C, it is very hard. Therefore, it is subjected to spheroidizing annealing to improve workability, and then molded, then quenched and tempered to provide a rolling bearing. The required strength and toughness were obtained. However, when such heat treatment for improving the characteristics is repeated many times, it is known that a "low C concentration region" called a decarburized layer is generated on the surface of the material due to a reaction between C and the atmospheric gas. I have. This decarburized layer is not only reduced in hardness of the rolling bearing but also causes deterioration in rolling contact fatigue life. Therefore, the decarburized layer is usually removed by cutting or grinding. As a result, the material yield and the productivity had to be reduced. On the other hand, conventionally, as means for preventing the formation of the decarburized layer, a method of controlling the carbon potential in the atmosphere gas in the furnace during the heat treatment and a method disclosed in JP-A-2-54717, A method of performing a carburizing treatment at an early stage of annealing has been proposed. However, since each of the above methods is based on cleaning the atmosphere during heat treatment or pre-treatment, not only does the heat treatment cost increase, but also setting of an appropriate gas composition according to the material composition, heat treatment time, and the like. There is a problem where such complicated operations are required.

【0004】[0004]

【発明が解決しようとする課題】上述した従来技術につ
いて発明者らは最近、種々の研究を行った。その結果、
意外にも転動寿命を決めている要因としては、従来から
一般に論じられてきた上述した現象;すなわち、上述し
た“非金属介在物”の存在や熱処理時に生じる“脱炭
層”(低C濃度領域)の生成以外の要因があるというこ
とを突き止めた。というのは、従来技術の下で単に非金
属介在物や脱炭層を減少させても、軸受の転動疲労寿
命、特に、高負荷あるいは高温といった過酷な条件下で
の軸受寿命の向上に対しては大きな効果が得られないと
いうケースを多く経験したからである。このことから、
軸受寿命を律する他の要因の存在を確信したのである。
The present inventors have recently conducted various studies on the above-mentioned prior art. as a result,
Surprisingly, the factors that determine the rolling life are the above-described phenomena that have been generally discussed in the past; that is, the existence of the above-mentioned “non-metallic inclusions” and the “decarburized layer” (low C concentration region) generated during heat treatment. ) Was found to be due to factors other than generation. The reason is that simply reducing the amount of nonmetallic inclusions and decarburized layers under the conventional technology does not improve the rolling contact fatigue life of the bearing, especially under the severe conditions such as high load or high temperature. Has experienced many cases where significant effects cannot be obtained. From this,
He was convinced that there were other factors that govern the bearing life.

【0005】そこで、本発明者らは、最近の軸受使用環
境を考慮した上での軸受寿命、とくに転がり軸受の剥離
の発生原因についての調査を行った。その結果、軸受使
用環境の激化に伴って、軸受の内・外輪と転動体と転動
体との接触転動時に発生する剪断応力により、転動接触
面の下層部分(表層部)に、図1(a) の写真に示すよう
な、帯状の白色生成物と棒状の析出物からなるミクロ組
織変化層が発生することが判った。そして、このミクロ
組織変化層は転動回数を増すにつれて次第に成長し、終
いには、図1(b)に示すような, このミクロ組織変化部か
ら疲労剥離が生じて軸受寿命につながることがわかっ
た。さらに、軸受使用環境の過酷化すなわち, 高面圧化
(小型化), 使用温度の上昇は、これらミクロ組織変化
が発生するまでの時間を縮め、著しい軸受寿命の低下を
招くことになるということを突き止めた。すなわち、使
用環境の過酷化に伴う軸受寿命というのは、従来技術の
ような、単に脱炭層や非金属介在物を制御するだけでは
不十分である。例えば、単に非金属介在物を低減させた
だけでは、上述した転動接触面下で発生するミクロ組織
変化が発生するまでの時間を遅延させることはできな
い。その結果として、軸受寿命の今まで以上の向上は図
り得ないということを知見したのである。
Therefore, the present inventors have investigated the bearing life in consideration of the recent bearing operating environment, particularly the cause of peeling of the rolling bearing. As a result, the shear stress generated during the contact rolling between the inner and outer races of the bearing, the rolling elements, and the rolling elements in accordance with the intensified use environment of the bearings causes the lower layer (surface layer) of the rolling contact surface to be formed as shown in FIG. As shown in the photograph of (a), it was found that a microstructure-change layer consisting of a band-like white product and a rod-like precipitate was generated. This microstructure-changed layer gradually grows as the number of rollings increases, and eventually, as shown in FIG. all right. In addition, the harsh operating environment of the bearing, that is, high surface pressure (small size) and increase in operating temperature, shorten the time required for these microstructure changes to occur, resulting in a significant reduction in bearing life. Ascertained. In other words, the life of the bearing due to the severe use environment is not sufficient simply by controlling the decarburized layer and the nonmetallic inclusions as in the prior art. For example, simply reducing the amount of non-metallic inclusions cannot delay the time required for the above-described microstructural change to occur under the rolling contact surface. As a result, they found that the bearing life could not be further improved.

【0006】そこで、本発明の目的は、過酷な使用条件
の下での軸受使用中に発生が予想されるミクロ組織変化
を遅延させて軸受寿命の著しい向上をもたらすと共に、
熱処理時の脱炭層の形成を抑えて熱処理生産性( 加工除
去量を減少させることによる効果)の向上が得られる軸
受鋼を提供することにある。
Accordingly, an object of the present invention is to provide a remarkable improvement in the life of a bearing by delaying a change in microstructure which is expected to occur during use of the bearing under severe operating conditions, and
An object of the present invention is to provide a bearing steel capable of suppressing the formation of a decarburized layer during heat treatment and improving the heat treatment productivity (the effect of reducing the amount of processing removal).

【0007】[0007]

【課題を解決するための手段】さて、本発明者らは、上
述した知見に基づき軸受寿命として新たに“ミクロ組織
変化遅延特性”というものに着目し、これの向上を図る
には、当然そのための新たな合金設計(成分組成)が必
要であり、このことの実現なくして軸受のより一層の寿
命向上は図れないという認識に立ち、さらに、脱炭層の
形成を抑制することを併せ達成する種々の実験と検討と
を行った。その結果、意外にも、SiおよびSbを適正量複
合添加すれば、繰り返し応力負荷による転動接触面下に
生成する上述したミクロ組織変化を著しく遅延できると
同時に、熱処理時の脱炭層の発生抑制もできることを見
い出し、本発明軸受鋼を開発した。
On the basis of the above-mentioned findings, the present inventors have newly focused on a "microstructure change delay characteristic" as a bearing life, and to improve this, of course, It is recognized that a new alloy design (composition composition) is necessary, and further improvement in bearing life cannot be achieved without realizing this. In addition, various alloys that suppress formation of a decarburized layer are realized. Experiments and examinations were conducted. As a result, surprisingly, if the proper amount of Si and Sb is added in combination, the above-mentioned microstructure change generated below the rolling contact surface due to repeated stress loading can be significantly delayed, and at the same time, the generation of decarburized layers during heat treatment is suppressed And developed the bearing steel of the present invention.

【0008】すなわち、本発明軸受鋼は、以下の如き要
旨構成を有するものである。 (1) C: 0.5〜1.5 wt%, Si:0.5 超〜2.5 wt%, Al:0.005 〜0.07wt%,Sb:0.001 〜0.005 wt%未満, O:0.0020wt%以下 を含有し、残部がFe および不可避的不純物からなる熱
処理生産性ならびに繰り返し応力負荷によるミクロ組織
変化の遅延特性に優れた軸受鋼(第1発明)。 (2) C: 0.5〜1.5 wt%, Si:0.5 超〜2.5 wt%, Al:0.005 〜0.07wt%, Sb:0.001 〜0.005 wt%未
満, O:0.0020wt%以下 を含有し、さらに Mn:0.05〜2.0 wt%, Ni:0.05〜1.0 wt%, Mo:0.05〜0.5 wt%, Cu:0.05〜1.0 wt%, B:0.0005〜0.01wt%及びN:0.0005〜0.012 wt% のうちから選ばれるいずれか1種または2種以上を含
み、残部がFeおよび不可避的不純物からなる、熱処理生
産性ならびに繰り返し応力負荷によるミクロ組織変化の
遅延特性に優れた軸受鋼(第2発明)。 (3) C: 0.5〜1.5 wt%, Si:0.5 超〜2.5 wt%, Al:0.005 〜0.07wt%, Sb:0.001 〜0.005 wt%未
満, O:0.0020wt%以下 を含有し、さらに Zr:0.02〜0.5 wt%, Ta:0.02〜0.5 wt%, Hf:0.02〜0.5 wt%, Co:0.05〜1.5 wt% 及びN:0.012 超〜0.050 wt% のうちから選ばれるいずれか1種または2種以上を含
み、残部がFeおよび不可避的不純物からなる、熱処理生
産性ならびに繰り返し応力負荷によるミクロ組織変化の
遅延特性に優れた軸受鋼(第3発明)。 (4) C: 0.5〜1.5 wt%, Si:0.5 超〜2.5 wt%, Al:0.005 〜0.07wt%, Sb:0.001 〜0.005 wt%未
満, O:0.0020wt%以下 を含有し、さらに Mn:0.05〜2.0 wt%, Ni:0.05〜1.0 wt%, Mo:0.05〜0.5 wt%, Cu:0.05〜1.0 wt%, B:0.0005〜0.01wt% 及びN:0.0005〜0.012 wt% のうちから選ばれるいずれか1種または2種以上を含
み、さらにまた、 Zr:0.02〜0.5 wt%, Ta:0.02〜0.5 wt%, Hf:0.02〜0.5 wt%, Co:0.05〜1.5 wt% 及びN:0.012 超〜0.050 wt% のうちから選ばれるいずれか1種または2種以上を含
み、残部がFeおよび不可避的不純物からなる、熱処理生
産性ならびに繰り返し応力負荷によるミクロ組織変化の
遅延特性に優れた軸受鋼(第4発明)。
That is, the bearing steel of the present invention has the following gist configuration. (1) C: 0.5 to 1.5 wt%, Si: more than 0.5 to 2.5 wt%, Al: 0.005 to 0.07 wt%, Sb: 0.001 to less than 0.005 wt%, O: 0.0020 wt% or less, the balance being Fe A bearing steel excellent in heat treatment productivity including unavoidable impurities and in delaying microstructure change due to repeated stress load (first invention). (2) C: 0.5 to 1.5 wt%, Si: more than 0.5 to 2.5 wt%, Al: 0.005 to 0.07 wt%, Sb: 0.001 to less than 0.005 wt%, O: 0.0020 wt% or less, and Mn: 0.05-2.0 wt% , Ni: 0.05-1.0 wt% , Mo: 0.05-0.5 wt%, Cu: 0.05-1.0 wt%, B: 0.0005-0.01 wt% and N : 0.0005-0.012 wt% A bearing steel containing any one or more of the above, the balance being Fe and unavoidable impurities, and having excellent heat treatment productivity and excellent microstructure change delay characteristics due to repeated stress loading (second invention). (3) C: 0.5 to 1.5 wt%, Si: more than 0.5 to 2.5 wt%, Al: 0.005 to 0.07 wt%, Sb: 0.001 to less than 0.005 wt%, O: 0.0020 wt% or less, and Zr: 0.02 to 0.5 wt%, Ta: 0.02 to 0.5 wt%, Hf: 0.02 to 0.5 wt%, Co: 0.05 to 1.5 wt%, and N: any one or two selected from more than 0.012 to 0.050 wt% A bearing steel comprising the above, the balance being Fe and inevitable impurities, and having excellent heat treatment productivity and excellent microstructure change delay characteristics due to repeated stress loading (third invention). (4) C: 0.5 to 1.5 wt%, Si: more than 0.5 to 2.5 wt%, Al: 0.005 to 0.07 wt%, Sb: 0.001 to less than 0.005 wt%, O: 0.0020 wt% or less, and Mn: 0.05-2.0 wt% , Ni: 0.05-1.0 wt% , Mo: 0.05-0.5 wt%, Cu: 0.05-1.0 wt%, B: 0.0005-0.01 wt% , and N : 0.0005-0.012 wt% Zr: 0.02 to 0.5 wt%, Ta: 0.02 to 0.5 wt%, Hf: 0.02 to 0.5 wt%, Co: 0.05 to 1.5 wt%, and N: 0.012 Bearing steel containing one or more selected from super to 0.050 wt%, with the balance being Fe and unavoidable impurities, excellent in heat treatment productivity and excellent in microstructure change delay characteristics due to repeated stress loading (4th invention).

【0009】[0009]

【作用】以下に、上記合金設計になる本発明軸受鋼に想
到した背景につき、本発明者らが行った実験結果に基づ
いて説明する。まず、実験に当たり、 SUJ 2 ( C:1.02wt%, Si:0.25wt%, Mn:0.45wt
%, Cr:1.35wt%, N:0.0040wt%, O:0.0012wt%)
と、NiとSbとを添加した2種の材料 (C:1.00wt%, Si:0.75wt%, Al:0.042 wt%,
Mn:0.40wt%, Cr:1.33wt%, O:0.0009wt%, Sb:0.
0018wt%, N:0.0042wt%) (C:1.00wt%, , Si:1.58wt%, Al:0.048 wt
%, Mn:0.38wt%, Cr:1.30wt%, Ni:2.5 wt%, O:
0.0008wt%, Sb:0.0040wt%, N:0.0032wt%) についての供試鋼材を作製した。ついで、これらの供試
材を焼ならし、球状化焼ならし、焼入れ焼もどしの各処
理を施したのち、それぞれの供試材から15mmφ×22mmの
円筒型の試験片と、12mmφ×22mmの転動疲労試験用試験
片とを作製した。
The background that led to the bearing steel of the present invention having the above alloy design will be described below based on the results of experiments conducted by the present inventors. First, in the experiment, SUJ 2 (C: 1.02 wt%, Si: 0.25 wt%, Mn: 0.45 wt%
%, Cr: 1.35wt%, N: 0.0040wt%, O: 0.0012wt%)
And two materials to which Ni and Sb are added (C: 1.00 wt%, Si: 0.75 wt%, Al: 0.042 wt%,
Mn: 0.40 wt%, Cr: 1.33 wt%, O: 0.0009 wt%, Sb: 0.
0018 wt%, N: 0.0042 wt%) (C: 1.00 wt%,, Si: 1.58 wt%, Al: 0.048 wt
%, Mn: 0.38 wt%, Cr: 1.30 wt%, Ni: 2.5 wt%, O:
A test steel material (0.0008 wt%, Sb: 0.0040 wt%, N: 0.0032 wt%) was prepared. Next, after normalizing these test materials, spheroidizing normalizing, and performing each treatment of quenching and tempering, a cylindrical test piece of 15 mm φ × 22 mm and a 12 mm φ × 22 mm A test piece for a rolling fatigue test was prepared.

【0010】なお、転動疲労寿命試験は、上記転動疲労
用試験片をラジアルタイプ型の転動疲労寿命試験機を用
い、ヘルツ最大接触応力:60kgf/mm2 , 46500 cpm の負
荷条件の下で試験したものである。試験の結果は、ワイ
ブル分布確立紙上にプロットし, 材料強度の上昇による
転動疲労寿命の向上を示す数値と見られるB10(10%累
積破損確率) と高負荷転動時の繰り返し応力負荷による
ミクロ組織変化発生を遅延させることによる転動疲労寿
命の向上を示す数値と見られるB50(50%累積破損確
率)とを求めた。また、脱炭層の試験については、上記
の円筒状試験片を10mmの位置で高さ方向に垂直に切断
後、ナイタールにて腐食し、ミクロ組織変化による円周
上の全脱炭層の最大値( 以後、「最大脱炭層」という)
で評価した。
In the rolling fatigue life test, a rolling contact fatigue life tester of a radial type was used for the rolling fatigue test piece under a load condition of Hertz maximum contact stress: 60 kgf / mm 2 , 46500 cpm. It was tested in. The results of the tests are plotted on a Weibull distribution establishment paper, by repeated stress load at B 10 seen a numerical value indicating the improvement in rolling fatigue life due to an increase in the material strength (10% cumulative failure probability) a high load rolling microstructure changes seen a numerical value indicating the improvement in rolling fatigue life due to the occurrence to delaying B 50 (50% cumulative failure probability) and was determined. In addition, for the test of the decarburized layer, after cutting the above cylindrical test piece vertically at the position of 10 mm in the height direction, corroded with nital, the maximum value of all decarburized layers on the circumference due to microstructure change ( Hereinafter, it is referred to as the “maximum decarburized layer”)
Was evaluated.

【0011】その結果を表1に示す。この表1に示す結
果から判るように、SiとSbの複合添加材については、前
記B10値についての改善はそれほど大きくないが、B50
値については著しく高い数値を示し、軸受平均寿命はSU
J 2 に比べてB10値で約 倍、B50値で約 倍もの改
善を示すことが認められた。とくに、多量のSiとSbとの
複合添加は高負荷転動中に生成するミクロ組織変化の遅
延特性に対して顕著な効果を示し、その分破損(寿命)
を遅延させることが期待できる。また、最大脱炭層に関
しては、SUJ 2が0.10mmであったが、Sb:0.0018wt%含
むものでは0.03mm、Sb:0.0040wt%含むものでは0.01mm
と、適当なSbの含有が脱炭層の発生抑制に効果のあるこ
とも判った。
The results are shown in Table 1. As can be seen from the results shown in Table 1, the composite additive of Si and Sb, improvement for said B 10 value is not so large, B 50
Values are extremely high, and the average bearing life is SU
Compared to J 2 approximately doubled in B 10 value, to exhibit improved even about doubled in B 50 values were observed. In particular, a large amount of complex addition of Si and Sb has a remarkable effect on the delay characteristics of microstructure change generated during high-load rolling, and damage (life) correspondingly
Can be expected to be delayed. Regarding the maximum decarburized layer, SUJ2 was 0.10 mm, but 0.03 mm for those containing 0.0018 wt% of Sb and 0.01 mm for those containing 0.0040 wt% of Sb.
It was also found that the appropriate Sb content was effective in suppressing the generation of decarburized layers.

【0012】[0012]

【表1】 [Table 1]

【0013】また、図2は、上記軸受転動疲労寿命の実
験結果をまとめたものであって、非金属介在物に起因す
る軸受寿命とミクロ組織変化に起因する寿命の変化との
関係を示す模式図である。この図に明らかなように、累
積破損確率10%のB10値で示される軸受寿命(以下、こ
れを「B10転動疲労寿命」という)は、単にSiを多量に
添加しただけでは向上しないが、B50値でみると、この
Si多量添加の効果は極めて顕著なものとなっている。そ
こで発明者らは、こうした知見をもとに、累積破損確率
50%のB50値で示される軸受寿命(以下、これを「B50
高負荷転動疲労寿命」という)を向上させ、かつ熱処理
時の脱炭層の成長の抑制を図るには、どのような合金設
計が有効であるかという観点から、以下に説明するよう
な成分組成の範囲を決定した。
FIG. 2 summarizes the experimental results of the above-mentioned bearing rolling fatigue life, and shows the relationship between the bearing life caused by non-metallic inclusions and the life change caused by microstructural change. It is a schematic diagram. As is evident in this figure, the bearing life represented by the cumulative failure probability of 10% B 10 value (hereinafter referred to as "B 10 rolling contact fatigue life") does not merely improve by just adding a large amount of Si but, looking at the B 50 value, this
The effect of adding a large amount of Si is extremely remarkable. Therefore, based on such knowledge, the inventors have calculated the cumulative damage probability
Bearing life indicated by 50% B 50 value (hereinafter referred to as “B 50
In order to improve the “high-load rolling fatigue life” and to suppress the growth of the decarburized layer during heat treatment, from the viewpoint of what kind of alloy design is effective, Range was determined.

【0014】C: 0.5〜1.5 wt% Cは、基地に固溶してマルテンサイトの強化に有効に作
用する元素であり、焼入れ焼もどし後の強度確保とそれ
による転動疲労寿命を向上させるために含有させる。そ
の含有量が0.5 wt%未満ではこうした効果が得られな
い。一方、 1.5wt%超では被削性, 鍛造性が低下するの
で、 0.5〜1.5 wt%の範囲に限定する。
C: 0.5-1.5 wt% C is an element which forms a solid solution in the matrix and effectively acts to strengthen martensite. In order to secure strength after quenching and tempering and to improve the rolling fatigue life. To be contained. If the content is less than 0.5 wt%, such effects cannot be obtained. On the other hand, if the content exceeds 1.5 wt%, machinability and forgeability deteriorate, so the content is limited to the range of 0.5 to 1.5 wt%.

【0015】Si:0.5 超〜2.5 wt%以下 Siは、基本的には鋼の溶製時の脱酸剤として用いられる
他、基地に固溶して焼もどし軟化抵抗の増大により焼入
れ, 焼もどし後の強度を高めて転動疲労寿命を向上させ
る元素として有効である。しかしながら、本発明におい
ては、0.5 wt%超を添加すると、繰り返し応力負荷の下
でのミクロ組織変化の遅延をもたらして転動疲労寿命を
向上させる効果がある。しかし、その含有量が 2.5wt%
を超えると、その効果が飽和する一方で加工性や靱性を
低下させるので、ミクロ組織変化遅延特性のより一層の
向上のためには、 0.5超〜2.5 wt%を添加することが有
効である。
Si: more than 0.5 to 2.5 wt% or less Si is basically used as a deoxidizing agent when smelting steel, and is solid-dissolved in a matrix and tempered due to an increase in softening resistance. It is effective as an element that enhances the later strength and improves the rolling fatigue life. However, in the present invention, when more than 0.5 wt% is added, there is an effect of delaying microstructure change under repeated stress load and improving rolling fatigue life. However, its content is 2.5wt%
If it exceeds, the effect is saturated, but the workability and toughness are reduced. Therefore, in order to further improve the microstructure change delay characteristics, it is effective to add more than 0.5 to 2.5 wt%.

【0016】Mn:0.05〜2.0 wt% Mnは、鋼の溶製時に脱酸剤として作用し、鋼の低酸素化
に有効な元素である。また、鋼の焼入れ性を向上させる
ことにより基地マルテンサイトの靱性, 硬度を向上させ
て転動疲労寿命の向上に有効に作用する。これらの効果
は少なくとも0.05wt%の添加が必要であり、一方、2.0
wt%を超える添加は効果が飽和するので、Mnは0.05〜2.
0nwt%の範囲で添加する。
Mn: 0.05-2.0 wt% Mn is an element that acts as a deoxidizing agent during melting of steel and is effective in reducing oxygen in steel. In addition, by improving the hardenability of steel, the toughness and hardness of the base martensite are improved, which effectively affects the rolling fatigue life. These effects require at least 0.05 wt% addition, while 2.0%
Since the effect saturates if the addition exceeds wt%, Mn is 0.05 to 2.
Add in the range of 0 nwt%.

【0017】[0017]

【0018】Ni:0.05〜1.0 wt% Niは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め靱性を向上させると共に、転動疲労寿命を向上させ
る作用がある。この作用は、Ni:0.05wt%の添加で効果
があるが、1.0 wt%ではその効果が飽和するので、0.05
〜1.0 wt%の範囲と限定する。
Ni: 0.05 to 1.0 wt% Ni has the effect of increasing the hardenability, increasing the strength after quenching and tempering, improving the toughness, and improving the rolling fatigue life. This effect is effective when Ni: 0.05 wt% is added, but the effect is saturated at 1.0 wt%.
Limited to the range of ~ 1.0 wt%.

【0019】Mo:0.05〜0.5 wt% Moは、残留炭化物の安定化により耐摩耗性を向上させる
元素である。とくに0.05〜0.5 wt%を添加すると、焼入
れ性を増大して焼入れ焼もどし後の強度向上に寄与する
と共に、安定炭化物の析出により、耐摩耗性と転動疲労
寿命とを向上させる。
Mo: 0.05 to 0.5 wt% Mo is an element which improves wear resistance by stabilizing residual carbides. Particularly, when 0.05 to 0.5 wt% is added, hardenability is increased to contribute to improvement in strength after quenching and tempering, and precipitation of stable carbides improves wear resistance and rolling fatigue life.

【0020】Cu:0.05〜1.0 wt% Cuは、焼入れの増大により焼入れ焼もどし後の強度を高
め、転動疲労寿命を向上させるために添加する。この目
的のために添加するときは、0.05〜1.0 wt%の範囲で十
分である。
Cu: 0.05 to 1.0 wt% Cu is added to increase the strength after quenching and tempering by increasing the quenching and to improve the rolling fatigue life. When added for this purpose, a range of 0.05-1.0 wt% is sufficient.

【0021】Sb:0.001 〜0.005 wt%未満 このSbは、この発明においてAlとともに重要な役割を担
っている元素である。とくに、このSbは、熱処理時にお
いて、鋼材表層部のCと雰囲気ガスとの反応を抑制して
脱炭層の発生を阻止することによって、熱処理生産性向
上に寄与する。しかも、Alとの複合添加により、該脱炭
層の抑制にあわせてミクロ組織変化の遅延に対しても効
果を示すことから、積極的に添加する。このような2つ
の作用は、このSb含有量が0.001 wt%以上で顕著なもの
となるが、0.005 wt%を超えて添加してもその効果は飽
和することに加え、却って熱間加工性および靱性の劣化
を招くようになる。従って、Sbは 0.001〜0.005 wt%
の範囲で含有させることとした。
Sb: 0.001 to less than 0.005 wt% Sb is an element which plays an important role together with Al in the present invention. In particular, Sb contributes to an improvement in heat treatment productivity by suppressing the reaction between C in the surface layer of the steel material and the atmosphere gas to prevent the formation of a decarburized layer during the heat treatment. In addition, the addition of Al in combination with the suppression of the decarburized layer also has an effect on the delay of the change in microstructure, so that it is added positively. These two effects become remarkable when the Sb content is 0.001 wt% or more. However, even if added over 0.005 wt%, the effect is saturated, and in addition, hot workability and The toughness is deteriorated. Therefore, Sb is not 0.001~0.005 wt%
It was determined to be contained within the full range.

【0022】B:0.0005〜0.01wt% Bは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め、転動疲労寿命を向上させるので、0.0005wt%以上
を添加する。しかしながら、0.01wt%を超えて添加する
と加工性を劣化させるので、0.0005〜0.01wt%の範囲に
限定する。
B: 0.0005 to 0.01 wt% B is added in an amount of 0.0005 wt% or more because B increases the strength after quenching and tempering due to the increase in hardenability and improves the rolling fatigue life. However, if added in excess of 0.01 wt%, the workability is degraded, so the range is limited to 0.0005 to 0.01 wt%.

【0023】Al:0.005 〜0.07wt% Alは、鋼の溶製時の脱酸剤として用いられると同時に、
鋼中Nと結合して結晶粒を微細化して鋼の靱性向上に寄
与する。また、焼入れ焼もどし後の強度を高めることに
よる転動疲労寿命の向上にも有効に作用する。これらの
効果は、0.005wt%未満では得られない。一方、0.07wt
%を超える添加は、上記の作用・効果については飽和す
る。従って、Alは0.005 〜0.07wt%添加する。
Al: 0.005 to 0.07 wt% Al is used as a deoxidizing agent at the time of melting steel,
It combines with N in the steel to refine the crystal grains and contribute to improving the toughness of the steel. In addition, it effectively acts to improve the rolling fatigue life by increasing the strength after quenching and tempering. These effects cannot be obtained at less than 0.005 wt%. On the other hand, 0.07wt
%, The effects described above become saturated. Therefore, 0.005 to 0.07 wt% of Al is added.

【0024】N:0.0005〜0.012 wt%, 0.012 超〜0.05
wt% Nは、窒化物形成元素と結合して結晶粒を微細化すると
共に、基地に固溶して焼入れ焼もどし後の強度を高め、
転動疲労寿命を向上させる。この目的のためには0.0005
〜0.012 wt%の範囲内で添加する。また、このNは、0.
012 wt%を超えて添加した場合には、繰り返し応力によ
るミクロ組織変化を遅らせることにより転動疲労寿命を
向上させる。ただし、その量が0.05wt%を超えると、加
工性が低下するため、この目的のためには0.012 超〜0.
05wt%を添加する。
N: 0.0005 to 0.012 wt%, more than 0.012 to 0.05
wt% N combines with the nitride-forming element to refine the crystal grains, and dissolves in the matrix to increase the strength after quenching and tempering.
Improves rolling fatigue life. 0.0005 for this purpose
It is added within the range of ~ 0.012 wt%. This N is 0.
When added in excess of 012 wt%, rolling fatigue life is improved by delaying microstructural changes due to repeated stress. However, if the amount exceeds 0.05 wt%, the workability is reduced, and for this purpose, it exceeds 0.012 to 0.
Add 05 wt%.

【0025】P≦0.025 wt% Pは、鋼の靱性ならびに転動疲労寿命を低下させること
から可能なかぎり低いことが望ましく、その許容上限は
0.025 wt%である。
P ≦ 0.025 wt% P is desirably as low as possible from the viewpoint of lowering the toughness and rolling fatigue life of steel.
0.025 wt%.

【0026】S≦0.025 wt% Sは、Mnと結合してMnSを形成し、被削性を向上させ
る。しかし、多量に含有させると転動疲労寿命を低下さ
せることから、0.025 wt%を上限としなければならな
い。
S ≦ 0.025 wt% S combines with Mn to form MnS and improves machinability. However, if contained in a large amount, the rolling fatigue life is reduced, so the upper limit must be 0.025 wt%.

【0027】O:0.0020wt%以下 Oは、硬質な非金属介在物を形成するので、たとえ他の
成分の制御によって繰り返し応力負荷によるミクロ組織
変化の遅延が得られたとしても、転動疲労寿命の低下を
招くことがあるから、可能なかぎり低いことが望まし
い。しかし、0.0020wt%以下の含有量であれば許容でき
る。
O: 0.0020 wt% or less O forms hard non-metallic inclusions, so even if the control of other components delays the microstructure change due to repeated stress loading, the rolling fatigue life Therefore, it is desirable to be as low as possible. However, a content of 0.0020 wt% or less is acceptable.

【0028】以上、繰り返し応力負荷によるミクロ組織
変化を遅延させることによる転動疲労寿命を改善する成
分、強度の上昇を通じて転動疲労寿命を改善するための
成分、および脱炭層の生成を抑えて軸受の加工性と生産
性を向上させるための成分限定の理由について説明し
た。ところで、本発明ではさらに、Zr, Ta, HfおよびCo
のうちから選ばれるいずれか1種または2種以上を添加
して軸受寿命をさらに改善するようにしてもよい。上記
各元素の好適添加範囲と添加の目的、上限値、下限値限
定の理由につき、表2にまとめて示す。
As described above, the component for improving the rolling fatigue life by delaying the microstructure change due to the repeated stress load, the component for improving the rolling fatigue life by increasing the strength, and the formation of the decarburized layer to suppress the bearing The reason for limiting the components for improving the processability and productivity of the above has been described. Incidentally, in the present invention, Zr, Ta, Hf and Co
Any one or more selected from the above may be added to further improve the bearing life. Table 2 summarizes the preferable addition ranges of the above elements, the purpose of the addition, and the reasons for limiting the upper and lower limits.

【0029】[0029]

【表2】 [Table 2]

【0030】なお、本発明においては、被削性を改善す
るために、S,Se, Te, REM, Pb,Bi, Ca, Ti, Mg, P,
Sn, As等を添加しても、上述した本発明の目的である繰
り返し応力負荷によるミクロ組織変化による遅延特性を
阻害することはなく、しかも容易に被削性を改善するこ
とができるので、必要に応じて添加してもよい。
In the present invention, in order to improve machinability, S, Se, Te, REM, Pb, Bi, Ca, Ti, Mg, P,
Addition of Sn, As, etc. does not hinder the retardation characteristics due to microstructure change due to the repeated stress load, which is the object of the present invention, and can easily improve machinability. May be added according to

【0031】[0031]

【実施例】表3, 4に示す化学組成を有する鋼材を転炉
で溶製したのち連続鋳造し、得られた鋼材を1240℃で30
h の拡散焼鈍の後に65mmφの棒鋼に圧延した。次いで、
切削加工により棒鋼D/4部から15mmφ×20mmの円筒状
試験片ならびに転動疲労用試験片を採取した。その後、
これらの試験片について、雰囲気制御なしに( 大気雰囲
気中で) 、焼ならし・球状化焼なまし・焼入れ・焼もど
しの順で試験を行った。さらに、転動疲労用試験片は、
脱炭層を完全に除去する目的で1mm以上の研磨およびラ
ッピング仕上を行い、試験片寸法を12mmφ×22mmとし
た。熱処理後の脱炭層深さは、15mmφ×20mmの円筒状試
験片を10mmの位置で高さ方向と垂直に切断し、ナイター
ルにて腐食後、ミクロ組織観察による円周上の全脱炭層
の最大値 (以下、「最大脱炭層」と称する) で評価し
た。転動疲労寿命試験は、ラジアルタイプの転動疲労寿
命試験機によりヘルツ最大接触応力:600 kgf/mm2 , 繰
り返し応力数:約46500 cpm の条件で行ったものであ
る。試験結果は、ワイブル分布に従うものとして確率紙
上にまとめ、鋼材No.1の平均寿命 (累積破損確率:50%
における、剥離発生までの総負荷回数) を1として評価
した。その評価結果を、表3, 4にあわせて示す。
EXAMPLES Steel having the chemical composition shown in Tables 3 and 4 was melted in a converter and then continuously cast.
After the diffusion annealing of h, it was rolled into a 65 mmφ steel bar. Then
A cylindrical test piece of 15 mmφ × 20 mm and a test piece for rolling fatigue were collected from the D / 4 part of the steel bar by cutting. afterwards,
These test pieces were tested in the order of normalizing, spheroidizing annealing, quenching, and tempering without controlling the atmosphere (in the air atmosphere). Furthermore, the test piece for rolling fatigue
For the purpose of completely removing the decarburized layer, polishing and lapping of 1 mm or more were performed, and the test piece size was 12 mmφ × 22 mm. The depth of the decarburized layer after heat treatment was the maximum of all decarburized layers on the circumference by cutting a cylindrical test piece of 15 mm φ × 20 mm at a position of 10 mm perpendicular to the height direction, corroding with nital, and observing the microstructure. The value (hereinafter, referred to as “maximum decarburized layer”) was evaluated. The rolling fatigue life test was carried out using a radial type rolling fatigue life tester under the conditions of Hertz maximum contact stress: 600 kgf / mm 2 and repetitive stress number: about 46500 cpm. The test results are summarized on a probability paper assuming a Weibull distribution, and the average life of steel No. 1 (cumulative failure probability: 50%
, The total number of loads until peeling occurred) was set to 1. The evaluation results are shown in Tables 3 and 4.

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】表3, 4に示す結果から明らかなように、
鋼中C量が本発明範囲外である鋼材No.3, 鋼中Si量が本
発明鋼の範囲外である鋼材No. 4 ならびに鋼中O量が本
発明鋼範囲外である鋼材No.5は、最大脱炭層が0.01〜0.
02mmとNo.1従来鋼の0.12mmに比べて改善されているもの
の、軸受平均寿命は、いずれも従来鋼(鋼材No.1)に比
べて低い。一方、鋼中Sb量が本発明鋼範囲外である鋼材
No.2のB50平均寿命は、従来鋼 (鋼材No.1) の約4倍も
優れているものの、最大脱炭層は0.11mmと従来例(SUJ
2)と比較してそれほど改善されていない。また、本発明
鋼である鋼材No. 6,7のB50値で示す平均寿命は、従
来鋼(鋼材No.1) に比較して約5〜6倍も優れており、
Siの添加がミクロ組織変化を著しく遅延し、その結果転
動疲労寿命の向上に有効に作用したことが窺える。しか
も、最大脱炭層深さも0.02mmであり、従来鋼No.1に比べ
てはるかに少なく、Sbが本発明適正範囲を外れている鋼
No. 2 と比べても約1/6と改善効果が顕著である。
As apparent from the results shown in Tables 3 and 4,
Steel No. 3 in which C content in steel is out of the range of the present invention, Steel No. 4 in which Si content in steel is out of the range of the present invention steel, and steel material No. 5 in which O content in steel is out of the range of the present invention Has a maximum decarburized layer of 0.01 to 0.
The average life of the bearings is lower than that of the conventional steel (steel No. 1), though both have been improved compared to the conventional steel (No. 1). On the other hand, steel materials whose Sb content in the steel is out of the range of the present invention steel
No.2 in B 50 life expectancy, although conventional steels have excellent about four times (steel No.1), the maximum decarburized layer 0.11mm the conventional example (SUJ
Not much improved compared to 2). The average life span indicated by B 50 value of the steel No. 6, 7 are invention steels, also excellent about 5-6 times that of the conventional steel (steel No.1),
It can be seen that the addition of Si significantly delayed the microstructure change, and as a result, effectively acted to improve the rolling fatigue life. In addition, the maximum decarburized layer depth is 0.02 mm, which is far less than the conventional steel No. 1, and Sb is out of the proper range of the present invention.
Compared with No. 2, the improvement effect is remarkable, about 1/6.

【0035】また、SiとSbに加え、Mn, Mo, Cr, Cu, A
l, BおよびNのいずれか少なくとも1種以上を添加し
てなる鋼No. 8〜10、12〜14は、平均寿命を決めるB
50転動疲労寿命特性の改善のみならず、最大脱炭層深
さも0.02mm以下と著しく改善されていることが判った。
Further, in addition to Si and Sb, Mn, Mo, Cr, Cu, A
Steel Nos. 8 to 10 and 12 to 14 to which at least one of l, B and N are added
It was found that not only the 50 rolling contact fatigue life property was improved but also the maximum decarburized layer depth was remarkably improved to 0.02 mm or less.

【0036】さらに、このSiとSbに加え Zr, Ta, Hf, C
o およびNを所定の量以上を積極的に加えた鋼No. 24〜
28の場合には、熱処理生産性の向上にあわせ上記平均寿
命 (B50転動疲労寿命) もより一層向上することが確
かめられた。これは、本発明で推奨する上記各改善成分
のすべてを選択的に添加してなる鋼No. 30の場合も同様
であって、軸受鋼寿命および熱処理生産性の両方の改善
に効果のあることが判った。
Further, in addition to the Si and Sb, Zr, Ta, Hf, C
Steel No. 24 to which o and N are added more than the specified amount
In the case of 28, the average life (B 50 rolling fatigue life) fit to the improvement of the heat treatment productivity also it was confirmed that further improved. The same is true for steel No. 30 , which is obtained by selectively adding all of the above-mentioned respective improving components recommended in the present invention, and is effective in improving both bearing steel life and heat treatment productivity. I understood.

【0037】[0037]

【発明の効果】以上説明したとおり、本発明によれば、
基本的にはSbの添加と0.5超〜1.0 wt%の高Si複合添加
軸受鋼とすることにより、熱処理時の加工負荷を軽減で
き (Sbの添加効果) 、しかも、高負荷転動疲労寿命時の
繰り返し応力負荷に伴うミクロ組織変化の遅延をもたら
し (高Sl含有効果) 、所謂B50高負荷転動疲労寿命の
向上を達成して、高寿命の熱処理生産性の高い軸受用の
鋼を提供することができる。従って、従来技術の下では
不可欠とされていた、より一層の鋼中酸素量の低減ある
いは鋼中に存在する酸化物系非金属介在物の組成, 形
状, ならびにその分布状態をコントロールするために必
要となる製鋼設備の改良あるいは建設が不必要である。
また、本発明にかかる軸受鋼の開発によって、転がり軸
受の小型化ならびに軸受使用温度のより以上の上昇が可
能となる。
As described above, according to the present invention,
Basically, by adding Sb and using a high Si composite addition bearing steel of more than 0.5 to 1.0 wt%, the processing load during heat treatment can be reduced (Sb addition effect), and at the time of high load rolling fatigue life introduces a delay of microstructural changes due to repeated stress loads (high Sl containing effect), to achieve an improvement in the so-called B 50 high load rolling contact fatigue life, provide a steel for high heat treatment productivity of long life bearing can do. Therefore, it is necessary to further reduce the oxygen content in steel or control the composition, shape, and distribution of oxide-based nonmetallic inclusions present in steel, which were indispensable under the conventional technology. It is not necessary to improve or construct steelmaking equipment.
Further, the development of the bearing steel according to the present invention makes it possible to reduce the size of the rolling bearing and further increase the operating temperature of the bearing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a),(b)は、繰り返し応力負荷の下に発
生するミクロ組織変化のようすを示す金属組織の顕微鏡
写真。
1 (a) and 1 (b) are micrographs of a metal structure showing a change in microstructure generated under repeated stress loading.

【図2】非金属介在物に起因する軸受寿命とミクロ組織
変化に起因する軸受寿命とに及ぼすSi添加の影響を示す
説明図。
FIG. 2 is an explanatory diagram showing the effect of Si addition on bearing life caused by non-metallic inclusions and bearing life caused by microstructure change.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 天野 虔一 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究本部内 (56)参考文献 特開 昭63−57749(JP,A) 特開 平3−122255(JP,A) 特開 昭49−47212(JP,A) 特開 平2−30733(JP,A) 特開 平6−271977(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Kenichi Amano 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Engineering Co., Ltd. Technology Research Division (56) References JP-A-3-122255 (JP, A) JP-A-49-47212 (JP, A) JP-A-2-30733 (JP, A) JP-A-6-271977 (JP, A) (58) Fields investigated ( Int.Cl. 7 , DB name) C22C 38/00-38/60

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C: 0.5〜1.5 wt%, Si:0.5 超〜2.5
wt%,Al:0.005 〜0.07wt%, Sb:0.001 〜0.005 wt%
未満,O:0.0020wt%以下を含有し、残部がFe および
不可避的不純物からなる、熱処理生産性ならびに繰り返
し応力負荷によるミクロ組織変化の遅延特性に優れた軸
受鋼。
(1) C: 0.5 to 1.5 wt%, Si: more than 0.5 to 2.5
wt%, Al: 0.005 to 0.07 wt%, Sb: 0.001 to 0.005 wt%
Less than, O: Bearing steel containing 0.0020 wt% or less, with the balance being Fe and unavoidable impurities, and having excellent heat treatment productivity and excellent microstructure change delay characteristics due to repeated stress loading.
【請求項2】 C: 0.5〜1.5 wt%, Si:0.5 超〜2.5 wt%, Al:0.005 〜0.07wt%, Sb:0.001 〜0.005 wt%未
満, O:0.0020wt%以下 を含有し、さらに Mn:0.05〜2.0 wt%, Ni:0.05〜1.0 wt%, Mo:0.05〜0.5 wt%, Cu:0.05〜1.0 wt%, B:0.0005〜0.01wt%及びN:0.0005〜0.012 wt% のうちから選ばれるいずれか1種または2種以上を含
み、 残部がFeおよび不可避的不純物からなる、熱処理生産性
ならびに繰り返し応力負荷によるミクロ組織変化の遅延
特性に優れた軸受鋼。
2. C: 0.5 to 1.5 wt%, Si: more than 0.5 to 2.5 wt%, Al: 0.005 to 0.07 wt%, Sb: 0.001 to less than 0.005 wt%, O: 0.0020 wt% or less. Mn: 0.05~2.0 wt%, N i : 0.05~1.0 wt%, Mo: 0.05~0.5 wt%, Cu: 0.05~1.0 wt%, B: 0.0005~0.01wt% and N: 0.0005-.012 of wt% A bearing steel containing one or more selected from the group consisting of Fe and unavoidable impurities, and having excellent heat treatment productivity and excellent microstructure change delay characteristics due to repeated stress loading.
【請求項3】C: 0.5〜1.5 wt%, Si:0.5 超〜2.5
wt%,Al:0.005 〜0.07wt%, Sb:0.001 〜0.005 wt%
未満,O:0.0020wt%以下を含有し、さらにZr:0.02〜
0.5 wt%, Ta:0.02〜0.5 wt%,Hf:0.02〜0.5 wt%,
Co:0.05〜1.5 wt%及びN:0.012 超〜0.050 wt%
のうちから選ばれるいずれか1種または2種以上を含
み、残部がFeおよび不可避的不純物からなる、熱処理生
産性ならびに繰り返し応力負荷によるミクロ組織変化の
遅延特性に優れた軸受鋼。
3. C: 0.5-1.5 wt%, Si: more than 0.5-2.5
wt%, Al: 0.005 to 0.07 wt%, Sb: 0.001 to 0.005 wt%
, O: 0.0020 wt% or less, and Zr: 0.02-
0.5 wt%, Ta: 0.02-0.5 wt%, Hf: 0.02-0.5 wt%,
Co: 0.05-1.5 wt% and N: more than 0.012-0.050 wt%
A bearing steel containing at least one selected from the group consisting of Fe and the balance consisting of Fe and unavoidable impurities, and having excellent heat treatment productivity and excellent microstructure change delay characteristics due to repeated stress loading.
【請求項4】 C: 0.5〜1.5 wt%, Si:0.5 超〜2.5 wt%, Al:0.005 〜0.07wt%, Sb:0.001 〜0.005 wt%未
満, O:0.0020wt%以下 を含有し、さらに Mn:0.05〜2.0 wt%, Ni:0.05〜1.0 wt%, Mo:0.05〜0.5 wt%, Cu:0.05〜1.0 wt%, B:0.0005〜0.01wt%及びN:0.0005〜0.012 wt% のうちから選ばれるいずれか1種または2種以上を含
み、さらにまた Zr:0.02〜0.5 wt%, Ta:0.02〜0.5 wt%, Hf:0.02〜0.5 wt%, Co:0.05〜1.5 wt% 及びN:0.012 超〜0.050 wt% のうちから選ばれるいずれか1種または2種以上を含
み、 残部がFeおよび不可避的不純物からなる、熱処理生産性
ならびに繰り返し応力負荷によるミクロ組織変化の遅延
特性に優れた軸受鋼。
4. C: 0.5 to 1.5 wt%, Si: more than 0.5 to 2.5 wt%, Al: 0.005 to 0.07 wt%, Sb: 0.001 to less than 0.005 wt%, O: 0.0020 wt% or less. Mn: 0.05~2.0 wt%, N i : 0.05~1.0 wt%, Mo: 0.05~0.5 wt%, Cu: 0.05~1.0 wt%, B: 0.0005~0.01wt% and N: 0.0005-.012 of wt% And Zr: 0.02 to 0.5 wt%, Ta: 0.02 to 0.5 wt%, Hf: 0.02 to 0.5 wt%, Co: 0.05 to 1.5 wt%, and N: Bearings containing one or more selected from over 0.012 to 0.050 wt%, with the balance being Fe and unavoidable impurities, excellent in heat treatment productivity and excellent in microstructure change delay characteristics due to repeated stress loading steel.
JP09554593A 1993-03-30 1993-03-30 Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading Expired - Fee Related JP3243329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09554593A JP3243329B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09554593A JP3243329B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading

Publications (2)

Publication Number Publication Date
JPH06287689A JPH06287689A (en) 1994-10-11
JP3243329B2 true JP3243329B2 (en) 2002-01-07

Family

ID=14140545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09554593A Expired - Fee Related JP3243329B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading

Country Status (1)

Country Link
JP (1) JP3243329B2 (en)

Also Published As

Publication number Publication date
JPH06287689A (en) 1994-10-11

Similar Documents

Publication Publication Date Title
JP3411088B2 (en) Bearings with excellent microstructure change delay characteristics due to repeated stress loading
JP3243329B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3383347B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3411387B2 (en) Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load
JP3233726B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructural change due to repeated stress loading
JP3233792B2 (en) Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity
JP3411388B2 (en) Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load
JP3243330B2 (en) Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity
JP3233729B2 (en) Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity
JP3233728B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructural change due to repeated stress loading
JP3383345B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3379785B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3379786B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3243326B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3243372B2 (en) Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load
JP3379787B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3411085B2 (en) Bearings with excellent microstructure change delay characteristics due to repeated stress loading
JP3383346B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3420331B2 (en) Bearing steel and bearing members excellent in heat treatment productivity and delay characteristics of microstructure change due to repeated stress loading
JP3233718B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3411389B2 (en) Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load
JP3243322B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3411386B2 (en) Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load
JP3233778B2 (en) Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load
JP3411090B2 (en) Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees