JP3415817B2 - Solar cell - Google Patents
Solar cellInfo
- Publication number
- JP3415817B2 JP3415817B2 JP2000258210A JP2000258210A JP3415817B2 JP 3415817 B2 JP3415817 B2 JP 3415817B2 JP 2000258210 A JP2000258210 A JP 2000258210A JP 2000258210 A JP2000258210 A JP 2000258210A JP 3415817 B2 JP3415817 B2 JP 3415817B2
- Authority
- JP
- Japan
- Prior art keywords
- solar cell
- rod antenna
- rod
- dielectric
- cell according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 210000004027 cell Anatomy 0.000 claims description 66
- 230000035945 sensitivity Effects 0.000 claims description 22
- 210000005056 cell body Anatomy 0.000 claims description 16
- 239000003989 dielectric material Substances 0.000 claims description 6
- 238000000034 method Methods 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000010248 power generation Methods 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 229910021419 crystalline silicon Inorganic materials 0.000 description 3
- -1 Polypropylene Polymers 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Landscapes
- Photovoltaic Devices (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は太陽光線を効率よく
吸収する太陽電池に関する。TECHNICAL FIELD The present invention relates to a solar cell that efficiently absorbs sunlight.
【0002】[0002]
【従来の技術】太陽電池は、太陽から照射される光線で
ある可視光線を含む電磁波をいかに効率よく吸収できる
かが大切である。図1は太陽から照射される電磁波の地
表面における強度を示し、図2は結晶シリコン太陽電池
の分光感度特性を示している。図1に示すように、太陽
から放射される電磁波は紫外線領域から赤外線領域まで
広い範囲に分布している。太陽電池の吸収波長は可視光
線の範囲に止まらず赤外線の領域まで広く分布してい
る。太陽電池は、変換効率を高くするために、図1に示
す波長特性の電磁波をいかに効率よく吸収して発電に寄
与できるかが大切である。2. Description of the Related Art It is important for a solar cell to efficiently absorb electromagnetic waves including visible rays which are rays emitted from the sun. FIG. 1 shows the intensity of electromagnetic waves emitted from the sun on the ground surface, and FIG. 2 shows the spectral sensitivity characteristics of crystalline silicon solar cells. As shown in FIG. 1, the electromagnetic waves emitted from the sun are distributed over a wide range from the ultraviolet region to the infrared region. The absorption wavelength of the solar cell is not limited to the visible light range but is widely distributed to the infrared range. In order to increase conversion efficiency, it is important for a solar cell to efficiently absorb electromagnetic waves having wavelength characteristics shown in FIG. 1 and contribute to power generation.
【0003】太陽の電磁波をより効率よく吸収させる従
来技術は、以下の2種に大別できる。
太陽電池表面の反射率を低くする。
レンズで光線を集束して太陽電池に照射する。Conventional techniques for more efficiently absorbing the electromagnetic waves of the sun can be broadly classified into the following two types. Reduce the reflectance of the solar cell surface. The lens focuses the light rays and irradiates the solar cells.
【0004】の表面反射率を低くする技術として以下
の(1)〜(3)の技術が開発されている。
(1) 太陽電池表面のシリコンをエッチングして微細な
ピラミッドを多数に設けているテクスチュア表面とする
方法。
(2) 表面をスリット状に加工する方法。
(3) シリコン表面に酸化チタン等の薄膜を設けて、薄
膜の屈折率(n)と厚さ(d)とを調整して、以下の式
で示される波長(λ)の反射率を低減する方法。d=λ
/4nThe following techniques (1) to (3) have been developed as techniques for lowering the surface reflectance. (1) A method in which silicon on the surface of a solar cell is etched to form a textured surface having a large number of fine pyramids. (2) A method of processing the surface into a slit shape. (3) A thin film of titanium oxide or the like is provided on the silicon surface, and the refractive index (n) and thickness (d) of the thin film are adjusted to reduce the reflectance at the wavelength (λ) shown by the following formula. Method. d = λ
/ 4n
【0005】[0005]
【発明が解決しようとする課題】太陽電池の表面反射率
を低くする方法において、(1)のテクスチュア表面とす
る構造、あるいは(2)のスリット状に加工する方法は、
反射率を理想的な状態とすることが難しい。また、(3)
の薄膜の屈折率と厚さとで反射率を低くする構造は、広
い波長領域において小さい反射率とすることが難しい欠
点がある。さらに、のレンズで太陽光線を集束する方
法は、集束するほど太陽電池が加熱される欠点があり、
太陽が移動すると集束領域が変化して、太陽電池の表面
に集束できなくなるので、レンズと太陽電池とを常に太
陽の方向に向ける追随システムを必要とする欠点があ
る。In the method of lowering the surface reflectance of the solar cell, the structure having the texture surface of (1) or the method of processing into the slit shape of (2) is
It is difficult to make the reflectance ideal. Also, (3)
The structure in which the reflectance is lowered by the refractive index and the thickness of the thin film has a drawback that it is difficult to make the reflectance small in a wide wavelength range. In addition, the method of focusing the sun's rays with the lens has the drawback that the more the solar cells are heated,
When the sun moves, the focusing area changes, and it becomes impossible to focus on the surface of the solar cell. Therefore, there is a drawback in that a tracking system that always directs the lens and the solar cell toward the sun is required.
【0006】本発明は、従来の構造とは全く異なる原理
によって、太陽から照射される電磁波をより効率よく受
信して太陽電池本体に供給できる太陽電池を提供するこ
とを目的とする。An object of the present invention is to provide a solar cell capable of more efficiently receiving an electromagnetic wave emitted from the sun and supplying it to the solar cell main body by a completely different principle from the conventional structure.
【0007】[0007]
【課題を解決するための手段】本発明の太陽電池は、誘
電体でもって太陽電池本体1の表面側に無数のロッドア
ンテナ2を設けている。ロッドアンテナ2は、太陽電池
本体1の表面に対して垂直方向に延長して設けられ、そ
の高さ(T)を太陽電池本体1の最大感度波長λmaxの
0.5〜5倍とし、最小幅(D)を高さ(T)の0.5
〜2倍とし、かつ、隣接するロッドアンテナ2間の間隔
(L)を最大感度波長λmaxの0.5〜10倍としてい
る。本明細書において「最大感度波長λmax」とは、太
陽電池本体の分光感度が最大になる電磁波の波長を意味
するものとする。図2に示す分光感度の太陽電池は、最
大感度波長λmaxが約0.9μmである。In the solar cell of the present invention, an infinite number of rod antennas 2 are provided on the surface side of the solar cell main body 1 with a dielectric. The rod antenna 2 is provided so as to extend in a direction perpendicular to the surface of the solar cell main body 1, and its height (T) is set to 0.5 to 5 times the maximum sensitivity wavelength λmax of the solar cell main body 1 and has a minimum width. (D) 0.5 of height (T)
˜2 times, and the interval (L) between adjacent rod antennas 2 is set to 0.5 to 10 times the maximum sensitivity wavelength λmax. In the present specification, the “maximum sensitivity wavelength λmax” means the wavelength of an electromagnetic wave that maximizes the spectral sensitivity of the solar cell body. The solar cell having the spectral sensitivity shown in FIG. 2 has a maximum sensitivity wavelength λmax of about 0.9 μm.
【0008】ロッドアンテナ2の高さ(T)は、好まし
くは0.5〜5μmで、その形状は、多角柱状、円柱
状、楕円柱状等とすることができる。さらにロッドアン
テナ2は、平面形状を細長い長方形とする角柱状、ある
いは両端を円弧状とする細長い形状の柱状とすることも
できる。ロッドアンテナ2を形成している誘電体の誘電
率は、好ましくは2〜10である。誘電体の誘電率は、
低すぎるとロッドアンテナとしての効率が悪く、誘電率
が高すぎると太陽電池本体に供給する電磁波の波長領域
が狭くなる。さらに、本発明の太陽電池は、ロッドアン
テナ2を着色することができ、また、ロッドアンテナ2
の表面側を平滑面として、異物が付着して汚れるのを防
止できる。さらに、太陽電池は、ロッドアンテナ2と太
陽電池との間に電磁波の導波部3を設けることができ
る。この導波部3はロッドアンテナ2と誘電体で一体的
に成形することができる。The height (T) of the rod antenna 2 is preferably 0.5 to 5 μm, and its shape can be a polygonal column shape, a column shape, an elliptical column shape, or the like. Further, the rod antenna 2 may be in the form of a prism having a slender rectangular planar shape, or a slender pillar having arcuate ends. The dielectric constant of the dielectric material forming the rod antenna 2 is preferably 2 to 10. The dielectric constant of the dielectric is
If it is too low, the efficiency as a rod antenna is poor, and if the dielectric constant is too high, the wavelength range of the electromagnetic wave supplied to the solar cell body becomes narrow. Furthermore, the solar cell of the present invention can color the rod antenna 2, and the rod antenna 2 can be colored.
It is possible to prevent foreign matters from adhering and becoming soiled by making the surface side of the surface smooth. Furthermore, the solar cell can be provided with the electromagnetic wave waveguide 3 between the rod antenna 2 and the solar cell. The waveguide 3 can be integrally formed with the rod antenna 2 by a dielectric.
【0009】[0009]
【作用】本発明の太陽電池は、表面における電磁波の反
射率を低くして発電効率を高くするのではない。また、
レンズのように可視光線を一点に集束して発電効率を高
くするのでもない。太陽電池本体の表面に設けているロ
ッドアンテナが、太陽から放射される可視光線を含む電
磁波をアンテナとして受信し、受信した電磁波を太陽電
池本体に供給する。誘電体で構成される多数のロッドア
ンテナは、高い利得で太陽から放射される電磁波を受信
する。ロッドアンテナは先端の面積が小さいが、この先
端面に入射する電磁波のみを受信するのではない。アン
テナは先端面に入射する電磁波のみでなく、近傍を通過
する電磁波をも受信する。たとえば、誘電体で製作され
て、高さ(T)を1λ、一辺を1λとする平面形状を正
方形とする角柱状のロッドアンテナは、波長を0.5〜
3λとする電磁波における利得が約10dbと極めて高
くなる。このことは、ロッドアンテナが電磁波を極めて
効率よく受信することを意味する。The solar cell of the present invention does not increase the power generation efficiency by lowering the reflectance of electromagnetic waves on the surface. Also,
It does not focus visible light on one point like a lens to increase power generation efficiency. A rod antenna provided on the surface of the solar cell body receives an electromagnetic wave including visible light emitted from the sun as an antenna and supplies the received electromagnetic wave to the solar cell body. Many rod antennas made of a dielectric material receive electromagnetic waves emitted from the sun with high gain. Although the area of the tip of the rod antenna is small, it does not receive only electromagnetic waves incident on the tip surface. The antenna receives not only the electromagnetic wave incident on the tip face but also the electromagnetic wave passing through the vicinity. For example, a prismatic rod antenna, which is made of a dielectric material and has a height (T) of 1 λ and a side of 1 λ and a planar shape of a square, has a wavelength of 0.5 to
The gain for an electromagnetic wave of 3λ is extremely high at about 10 db. This means that the rod antenna receives electromagnetic waves extremely efficiently.
【0010】[0010]
【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。ただし、以下に示す実施例は、本発明
の技術思想を具体化するための太陽電池を例示するもの
であって、本発明は太陽電池を下記のものに特定しな
い。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. However, the following examples exemplify solar cells for embodying the technical idea of the present invention, and the present invention does not specify the solar cells as below.
【0011】さらに、この明細書は、特許請求の範囲を
理解し易いように、実施例に示される部材に対応する番
号を、「特許請求の範囲の欄」、および「課題を解決す
るための手段の欄」に示される部材に付記している。た
だ、特許請求の範囲に示される部材を、実施例の部材に
特定するものでは決してない。Further, in this specification, in order to make the claims easy to understand, the numbers corresponding to the members shown in the embodiments are referred to as "claims column" and "to solve the problems." It is added to the members shown in "Means column". However, the members shown in the claims are not limited to the members of the embodiment.
【0012】図3に示す太陽電池は、太陽電池本体1
と、この太陽電池本体1の表面側に設けている無数のロ
ッドアンテナ2からなる。太陽電池本体1は、ロッドア
ンテナ2から供給される電磁波を吸収して発電するもの
で、たとえば、結晶シリコン、アルモファスシリコン等
がある。The solar cell shown in FIG. 3 has a solar cell main body 1
And the innumerable rod antennas 2 provided on the front surface side of the solar cell body 1. The solar cell main body 1 absorbs electromagnetic waves supplied from the rod antenna 2 to generate electric power, and examples thereof include crystalline silicon and alumophus silicon.
【0013】ロッドアンテナ2は、太陽電池本体1の表
面に対して垂直方向に延長して設けられる。このロッド
アンテナ2は、太陽電池本体1の最大感度波長λmaxの
0.5〜5倍の高さ(T)で、最小幅(D)を高さ
(T)の0.5〜2倍とし、さらに、隣接するロッドア
ンテナ2間の間隔(L)を最大感度波長λmaxの0.5
〜10倍とする。さらに、好ましくは、かつ隣接するロ
ッドアンテナ2の間隔(L)は、ロッドアンテナの高さ
(T)の0.5〜10倍とする。The rod antenna 2 is provided so as to extend in a direction perpendicular to the surface of the solar cell body 1. The rod antenna 2 has a height (T) of 0.5 to 5 times the maximum sensitivity wavelength λmax of the solar cell body 1 and a minimum width (D) of 0.5 to 2 times the height (T), Further, the distance (L) between the adjacent rod antennas 2 is set to 0.5 of the maximum sensitivity wavelength λmax.
10 times. Furthermore, preferably, the interval (L) between the adjacent rod antennas 2 is 0.5 to 10 times the height (T) of the rod antennas.
【0014】ロッドアンテナ2の高さ(T)を最大感度
波長λmaxの0.5〜5倍とするのは、最大感度波長λm
axに比較して短すぎても、反対に長すぎても、電磁波を
受信する感度が低下するからである。また、ロッドアン
テナ2の最小幅(D)も、小さすぎても大きすぎても電
磁波の受信感度が低下し、さらに、隣接するロッドアン
テナ2の間隔(L)も、狭すぎても広すぎても受信感度
が低下する。図2に示す分光感度特性の太陽電池は、最
大感度波長λmaxが約0.9μmである。この太陽電池
は、高さ(T)を最大感度波長λmaxの0.5〜5倍と
する場合、ロッドアンテナの高さ(T)は0.45〜
4.5μmとなる。太陽電池の最大感度波長λmaxは、
太陽電池の材質等で変化する。ロッドアンテナの高さ
(T)の最適値は太陽電池の材質によって変化するが、
最大感度波長λmaxを約1μmとする太陽電池に使用す
るロッドアンテナは、高さ(T)を0.5〜5μmとす
る。The height (T) of the rod antenna 2 is set to 0.5 to 5 times the maximum sensitivity wavelength λmax because the maximum sensitivity wavelength λm.
This is because if it is too short or too long as compared with ax, the sensitivity for receiving electromagnetic waves will decrease. Also, if the minimum width (D) of the rod antennas 2 is too small or too large, the electromagnetic wave reception sensitivity decreases, and the interval (L) between adjacent rod antennas 2 is too narrow or too wide. Also reduces the reception sensitivity. The solar cell having the spectral sensitivity characteristic shown in FIG. 2 has a maximum sensitivity wavelength λmax of about 0.9 μm. In this solar cell, when the height (T) is 0.5 to 5 times the maximum sensitivity wavelength λmax, the height (T) of the rod antenna is 0.45.
It becomes 4.5 μm. The maximum sensitivity wavelength λmax of the solar cell is
It changes depending on the material of the solar cell. The optimum value of the height (T) of the rod antenna varies depending on the material of the solar cell,
The rod antenna used in the solar cell having the maximum sensitivity wavelength λmax of about 1 μm has a height (T) of 0.5 to 5 μm.
【0015】ロッドアンテナ2は、図3に示すように多
角柱とし、あるいは図4に示すように、円柱状とし、あ
るいはまた、図示しないが楕円柱状とすることもでき
る。さらに、図5と図6に示すように、ロッドアンテナ
2は、平面形状を細長い長方形とする角柱状とすること
もできる。また、図7に示すように、平面形状において
両端を円弧状とする細長い形状の柱状とすることもでき
る。さらに、以上の図のロッドアンテナ2は先端を平面
状としているが、図8の拡大断面図に示すように先端を
湾曲面とすることもできる。The rod antenna 2 may be a polygonal column as shown in FIG. 3, or a cylindrical column as shown in FIG. 4, or an elliptic column although not shown. Further, as shown in FIG. 5 and FIG. 6, the rod antenna 2 may be a prismatic shape whose planar shape is an elongated rectangle. Further, as shown in FIG. 7, it is also possible to form an elongated columnar shape having both ends in an arc shape in a plan view. Further, although the rod antenna 2 in the above figures has a flat tip, the tip may be a curved surface as shown in the enlarged sectional view of FIG.
【0016】ロッドアンテナ2は有機や無機の誘電体で
製作される。誘電体は、誘電率を2〜10とする材質が
適している。これより誘電率が低いとアンテナとして充
分に利得が実現されず、また、高すぎると受信できる電
磁波の波長領域が狭くなる。有機の誘電体として、ポリ
プロピレン、ポリエチレン、フッ素樹脂等が使用でき
る。無機の誘電体としてガラスが使用できる。The rod antenna 2 is made of an organic or inorganic dielectric material. A material having a dielectric constant of 2 to 10 is suitable for the dielectric. If the permittivity is lower than this, sufficient gain cannot be realized as an antenna, and if it is too high, the wavelength range of electromagnetic waves that can be received becomes narrow. Polypropylene, polyethylene, fluororesin, etc. can be used as the organic dielectric. Glass can be used as the inorganic dielectric.
【0017】誘電体は、エッチングしてロッドアンテナ
2を形成することができる。また、レーザー等でロッド
アンテナ2を形成することもできる。ロッドアンテナ2
は、太陽電池本体1の表面に直接に誘電体の薄膜を設
け、これをエッチングして無数のロッドアンテナ2を設
けることができる。また、図9に示すように厚い誘電体
の表面にロッドアンテナ2を設け、これを太陽電池本体
1に積層して設けることもできる。The dielectric can be etched to form the rod antenna 2. Alternatively, the rod antenna 2 can be formed with a laser or the like. Rod antenna 2
Can provide a dielectric thin film directly on the surface of the solar cell main body 1 and etch it to provide an infinite number of rod antennas 2. Alternatively, as shown in FIG. 9, the rod antenna 2 may be provided on the surface of a thick dielectric, and the rod antenna 2 may be laminated on the solar cell body 1.
【0018】図9の太陽電池は、ロッドアンテナ2と太
陽電池本体1との間にロッドアンテナ2で受信した電磁
波の導波部3を設けており、この導波部3とロッドアン
テナ2を同じ誘電体で一体的に成形している。導波部3
は太陽電池本体1に向かって次第に細くなっており、こ
こで電磁波が集束されて太陽電池本体1に供給される。
この太陽電池は、ロッドアンテナ2を設けている領域全
体の面積を太陽電池本体1の面積よりも大きくしてい
る。したがって、より広い領域で電磁波を受信して、太
陽電池本体1の発電出力を大きくできる。The solar cell of FIG. 9 is provided with a waveguide section 3 for electromagnetic waves received by the rod antenna 2 between the rod antenna 2 and the solar cell body 1. The waveguide section 3 and the rod antenna 2 are the same. It is integrally molded with a dielectric. Waveguide 3
Is gradually narrowed toward the solar cell body 1, where electromagnetic waves are focused and supplied to the solar cell body 1.
In this solar cell, the area of the entire region where the rod antenna 2 is provided is larger than the area of the solar cell main body 1. Therefore, the electromagnetic wave can be received in a wider area to increase the power generation output of the solar cell body 1.
【0019】ロッドアンテナ2を構成する誘電体は、顔
料や染料を添加して着色することができる。着色したロ
ッドアンテナを表面に備える太陽電池は、表面を美しい
色にできる特長がある。このことにより、本発明の太陽
電池は壁面や屋根に装置し建築材のごとく活用が可能で
ある。The dielectric material forming the rod antenna 2 can be colored by adding a pigment or a dye. A solar cell having a colored rod antenna on its surface has a feature that the surface can be colored beautifully. As a result, the solar cell of the present invention can be installed on a wall surface or a roof and used as a building material.
【0020】図10の太陽電池は、太陽電池本体1の表
面のシリコンに直接にロッドアンテナ2を設けている。
この太陽電池は、太陽電池表面のシリコンをエッチング
し、あるいはレーザー等で加工してロッドアンテナ2を
設ける。この構造は、反射率を低下させるためにシリコ
ンをエッチングしてテクスチュア表面とし、あるいはシ
リコンをスリット状に加工するのに代わってロッドアン
テナ2を設けて、電磁波を効率よく吸収できる。また、
ロッドアンテナ2を設けた凹凸面は反射率も低くなっ
て、電磁波を反射することなく効率よく吸収する効果も
ある。In the solar cell of FIG. 10, the rod antenna 2 is provided directly on the silicon on the surface of the solar cell body 1.
In this solar cell, the rod antenna 2 is provided by etching the silicon on the surface of the solar cell or processing it with a laser or the like. In this structure, in order to reduce the reflectance, silicon is etched to form a textured surface, or instead of processing the silicon into a slit shape, the rod antenna 2 is provided to efficiently absorb electromagnetic waves. Also,
The uneven surface provided with the rod antenna 2 has a low reflectance, and also has an effect of efficiently absorbing electromagnetic waves without reflecting them.
【0021】さらに、太陽電池は、図10に示すよう
に、ロッドアンテナ2の表面側を平滑面として、ロッド
アンテナ2の隙間に異物が付着して汚れるのを防止でき
る。表面側を平滑面とするには、図に示すように電磁波
を透過させる平面板4を配設し、あるいは図11に示す
ように、ロッドアンテナ2の間に誘電率が低い材料5を
充填する。誘電率の低い材料5としては、たとえば、四
フッ化エチレン樹脂、FRP等が使用できる。Further, as shown in FIG. 10, the solar cell can prevent foreign matters from adhering to and getting dirty in the gaps between the rod antennas 2 with the front surface side of the rod antennas 2 as a smooth surface. In order to make the surface side smooth, a flat plate 4 for transmitting electromagnetic waves is provided as shown in the figure, or a material 5 having a low dielectric constant is filled between the rod antennas 2 as shown in FIG. . As the material 5 having a low dielectric constant, for example, tetrafluoroethylene resin, FRP or the like can be used.
【0022】[0022]
【発明の効果】本発明の太陽電池は、太陽から照射され
る電磁波をより効率よく受信して太陽電池本体に供給で
きる特長がある。とくに、本発明の太陽電池は、反射率
を低くし、あるいはレンズで集束する従来の太陽電池と
は全く異なる原理、すなわち電磁波をロッドアンテナで
受信して効率よく太陽電池本体に供給するために、従来
のレンズのように追随機構を設けることなく、太陽から
放射される電磁波を効率よく受信して太陽電池本体の発
電に寄与できる特長がある。また、電磁波を高利得のロ
ッドアンテナで受信するので、たとえば、電磁波を集束
するレンズと組み合わせて使用することもできる。The solar cell of the present invention is characterized in that it can more efficiently receive the electromagnetic wave emitted from the sun and supply it to the solar cell main body. In particular, the solar cell of the present invention has a low reflectance, or a completely different principle from the conventional solar cell focusing with a lens, that is, in order to efficiently receive electromagnetic waves with a rod antenna and supply them to the solar cell main body, It has a feature that it can efficiently receive electromagnetic waves radiated from the sun and contribute to the power generation of the solar cell main body without providing a tracking mechanism like a conventional lens. Further, since the high-gain rod antenna receives the electromagnetic wave, it can be used in combination with, for example, a lens that focuses the electromagnetic wave.
【図1】太陽から照射される電磁波の海面における強度
を示すグラフFIG. 1 is a graph showing the intensity of electromagnetic waves emitted from the sun at the sea surface.
【図2】結晶シリコン太陽電池の分光感度特性を示すグ
ラフFIG. 2 is a graph showing the spectral sensitivity characteristics of crystalline silicon solar cells.
【図3】本発明の実施例の太陽電池の拡大断面斜視図FIG. 3 is an enlarged sectional perspective view of a solar cell according to an embodiment of the present invention.
【図4】ロッドアンテナの他の一例を示す拡大断面斜視
図FIG. 4 is an enlarged sectional perspective view showing another example of the rod antenna.
【図5】ロッドアンテナの他の一例を示す拡大斜視図FIG. 5 is an enlarged perspective view showing another example of the rod antenna.
【図6】ロッドアンテナの他の一例を示す拡大斜視図FIG. 6 is an enlarged perspective view showing another example of the rod antenna.
【図7】ロッドアンテナの他の一例を示す拡大斜視図FIG. 7 is an enlarged perspective view showing another example of the rod antenna.
【図8】ロッドアンテナの他の一例を示す拡大断面図FIG. 8 is an enlarged cross-sectional view showing another example of the rod antenna.
【図9】本発明の他の実施例の太陽電池の一部拡大断面
図FIG. 9 is a partially enlarged sectional view of a solar cell according to another embodiment of the present invention.
【図10】本発明の他の実施例の太陽電池の拡大断面図FIG. 10 is an enlarged sectional view of a solar cell according to another embodiment of the present invention.
【図11】本発明の他の実施例の太陽電池の拡大断面図FIG. 11 is an enlarged sectional view of a solar cell according to another embodiment of the present invention.
1…太陽電池本体 2…ロッドアンテナ 3…導波部 4…平面板 5…誘電率が低い材料 1 ... Solar cell body 2 ... Rod antenna 3 ... Waveguide 4 ... Flat plate 5 ... Material with low dielectric constant
フロントページの続き (56)参考文献 特開 昭64−93203(JP,A) 特開 昭64−72602(JP,A) 特開 昭64−19802(JP,A) 特開 昭63−288502(JP,A) 特開 昭63−283212(JP,A) 特開 昭63−269807(JP,A) 特開 昭63−224507(JP,A) 特開 昭62−276558(JP,A) 特開 昭61−97606(JP,A) 特開 昭56−32806(JP,A) 特開 平11−308039(JP,A) 特開 平11−122022(JP,A) 特開 平10−51226(JP,A) 特開 平10−341106(JP,A) 特開 平10−271031(JP,A) 特開 平10−190543(JP,A) 特開 平9−107225(JP,A) 特開 平8−316727(JP,A) 特開 平8−139515(JP,A) 特開 平7−297441(JP,A) 特開 平7−202558(JP,A) 特開 平7−7320(JP,A) 特開 平6−181332(JP,A) 特開 平6−6128(JP,A) 特開 平5−37003(JP,A) 特開 平5−29822(JP,A) 特開 平4−369905(JP,A) 特開 平2−165706(JP,A) 特開 平2−137406(JP,A) 特開 平1−137404(JP,A) 特開2002−368244(JP,A) 特開2002−365619(JP,A) 特開2001−127537(JP,A) 特開2000−278030(JP,A) 特開2000−209020(JP,A) 特開2000−165138(JP,A) 特開2000−156486(JP,A) 実開 平6−15325(JP,U) 実開 平2−150817(JP,U) 実開 平2−70513(JP,U) 実開 平1−167710(JP,U) 特表2001−506817(JP,A) 特表2000−501832(JP,A) 国際公開97/21250(WO,A1) aperture efficien cy and masimum gai n of a dielectric loaded antenna.(Ha nsen−Woodyard Cond ition),Technical R eport of Radiation Science Research, 日本,1998年 5月22日,RS98−3, 1−12 誘電体装荷高利得アンテナ,電子情報 通信学会創立70周年記念総合全国大会講 演論文集,1987年 3月15日,3,3− 120 experimental stud y of dielectiric l oaded planar anten na fed by waveguid e network,IEEE ant ennas and propagat ion international symposium,1994年,1,480 −483 誘電体装荷平面アンテナ,電子情報通 信学会論文誌,1992年 3月,92/3 J75−B−II,208−210 Circularly polari zed dielectric−loa ded planar antenn a,IEEE transations on broadcasting, 1997年 6月,43/2,205−212 (58)調査した分野(Int.Cl.7,DB名) H01L 31/042 Continuation of the front page (56) Reference JP-A 64-93203 (JP, A) JP-A 64-72602 (JP, A) JP-A 64-19802 (JP, A) JP-A 63-288502 (JP , A) JP 63-283212 (JP, A) JP 63-269807 (JP, A) JP 63-224507 (JP, A) JP 62-276558 (JP, A) JP 61-97606 (JP, A) JP-A-56-32806 (JP, A) JP-A-11-308039 (JP, A) JP-A-11-122022 (JP, A) JP-A-10-51226 (JP, A) A) JP-A-10-341106 (JP, A) JP-A-10-271031 (JP, A) JP-A-10-190543 (JP, A) JP-A-9-107225 (JP, A) JP-A-8 -316727 (JP, A) JP-A-8-139515 (JP, A) JP-A-7-297441 (JP, A) JP-A-7-202558 (JP, A) JP-A-7-7320 (JP, A) ) JP-A-6-181332 (JP, A) JP-A-6-6128 (JP, A) JP-A-5-37003 (JP, A) Japanese Patent Application Laid-Open No. 5-29822 (JP, A) Japanese Patent Application Laid-Open No. 4-369905 (JP, A) Japanese Patent Application Laid-Open No. 2-165706 (JP, A) Japanese Patent Application Laid-Open No. 2-137406 (JP, A) Japanese Patent Application Laid-Open No. 1-137404 (JP , A) JP 2002-368244 (JP, A) JP 2002-365619 (JP, A) JP 2001-127537 (JP, A) JP 2000-278030 (JP, A) JP 2000-209020 (JP , A) JP 2000-165138 (JP, A) JP 2000-156486 (JP, A) Actual flat 6-15325 (JP, U) Actual flat 2-150817 (JP, U) Actual flat 2- 70513 (JP, U) Actual Kaihei 1-167710 (JP, U) Special Table 2001-506817 (JP, A) Special Table 2000-501832 (JP, A) International Publication 97/21250 (WO, A1) Aperture Efficient Cy and massimium of a dielectric loaded antenna. (Hansen-Woodard Condition), Technical Report of Radiation Science Research, Japan, May 22, 1998, RS98-3, 1-12 Dielectric Loaded High Gain Antenna, 70th Anniversary of the Institute of Electronics, Information and Communication Engineers. Conference Proceedings, March 15, 1987, 3,3-120 experiential study of the directed planed ann nanfed by waving a punishment, 1994, EEEE antagonism. 483 Dielectric Loaded Planar Antenna, IEICE Transactions, March 1992, 92/3 J75-B-II, 208-210 Circular polari zed dielectric-loa ded planar antenn a, IEEE transations on broadcasting, 6 May 1997, 43 / 2,205-212 (58) investigated the field (Int.Cl. 7, DB name) H01L 31/042
Claims (9)
側に無数のロッドアンテナ(2)を設けており、このロッ
ドアンテナ(2)が太陽電池本体(1)の表面に対して垂直方
向に延長して設けられると共に、ロッドアンテナ(2)の
高さ(T)が太陽電池本体(1)の最大感度波長λmaxの0.
5〜5倍で、最小幅(D)が高さ(T)の0.5〜2倍である
太陽電池。 1. An infinite number of rod antennas (2) are provided on the surface side of the solar cell body (1) with a dielectric, and the rod antennas (2) are perpendicular to the surface of the solar cell body (1). The height (T) of the rod antenna (2) is set to the maximum sensitivity wavelength λmax of the solar cell main body (1) of 0.
In 5 to 5-fold, from 0.5 to 2 times the minimum width (D) the height (T)
Solar cells.
最大感度波長λmaxの0.5〜10倍である請求項1に
記載される太陽電池。 2. The distance (L) between adjacent rod antennas (2) is
It is 0.5 to 10 times the maximum sensitivity wavelength λmax.
The solar cell described.
5μmである請求項1に記載される太陽電池。3. The height (T) of the rod antenna (2) is 0.5 to
The solar cell according to claim 1, which has a thickness of 5 μm.
楕円柱状のいずれかである請求項1に記載される太陽電
池。4. The rod antenna (2) is a polygonal column, a column,
The solar cell according to claim 1, which is in the shape of an elliptic cylinder.
い長方形とする角柱状、あるいは平面形状において両端
を円弧状とする細長い形状の柱状とする請求項1に記載
される太陽電池。5. The solar cell according to claim 1, wherein the rod antenna (2) has a prismatic shape whose planar shape is an elongated rectangular shape, or an elongated columnar shape whose both ends have an arc shape in the planar shape.
体の誘電率が2〜10である請求項1に記載される太陽
電池。6. The solar cell according to claim 1, wherein the dielectric material forming the rod antenna (2) has a dielectric constant of 2 to 10.
項1に記載される太陽電池。7. The solar cell according to claim 1, wherein the rod antenna (2) is colored.
している請求項1に記載される太陽電池。8. The solar cell according to claim 1, wherein the surface side of the rod antenna (2) is a smooth surface.
電磁波の導波部(3)を設けており、この導波部(3)とロッ
ドアンテナ(2)とを誘電体で一体的に成形している請求
項1に記載される太陽電池。9. A waveguide (3) for electromagnetic waves is provided between the rod antenna (2) and the solar cell, and the waveguide (3) and the rod antenna (2) are integrated by a dielectric. The solar cell according to claim 1, which is molded into.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000258210A JP3415817B2 (en) | 2000-08-28 | 2000-08-28 | Solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000258210A JP3415817B2 (en) | 2000-08-28 | 2000-08-28 | Solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002076414A JP2002076414A (en) | 2002-03-15 |
JP3415817B2 true JP3415817B2 (en) | 2003-06-09 |
Family
ID=18746553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000258210A Expired - Fee Related JP3415817B2 (en) | 2000-08-28 | 2000-08-28 | Solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3415817B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005285948A (en) * | 2004-03-29 | 2005-10-13 | Sharp Corp | Solar cell module and manufacturing method thereof |
WO2012141141A1 (en) * | 2011-04-14 | 2012-10-18 | シャープ株式会社 | Solar cell, solar cell panel, and device which is provided with solar cell |
JP2012256691A (en) * | 2011-06-08 | 2012-12-27 | Sharp Corp | Photoelectric conversion device |
CN118174000B (en) * | 2024-05-14 | 2024-09-03 | 武汉日新科技股份有限公司 | Separable low-frequency-band photovoltaic antenna unit and array antenna |
Family Cites Families (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5632806A (en) * | 1979-06-28 | 1981-04-02 | Furuno Electric Co Ltd | Dielectric antenna and its manufacture |
JPS6197606A (en) * | 1984-10-18 | 1986-05-16 | Matsushita Electronics Corp | Optical semiconductor integrated circuit |
JPH0766196B2 (en) * | 1986-05-26 | 1995-07-19 | キヤノン株式会社 | Light receiving member |
JPS63224507A (en) * | 1987-03-13 | 1988-09-19 | Yoshihiko Sugio | Antenna for loading beam displacement high efficiency/ high gain dielectric or the like |
JPH0680971B2 (en) * | 1987-02-27 | 1994-10-12 | 嘉彦 杉尾 | Dielectric loaded antenna with reflector |
JPH0193203A (en) * | 1987-10-03 | 1989-04-12 | Yoshihiko Sugio | Phase controlled microstrip line antenna |
JPS63283212A (en) * | 1987-04-25 | 1988-11-21 | Yoshihiko Sugio | Phase controlled microstrip line antenna |
JP2508707B2 (en) * | 1987-04-28 | 1996-06-19 | 三菱電機株式会社 | Light control antenna device |
JPS63288502A (en) * | 1987-05-20 | 1988-11-25 | Toshio Makimoto | Inverted microstrip antenna |
JPS6472602A (en) * | 1987-09-12 | 1989-03-17 | Yoshihiko Sugio | Beam deflection high gain microstrip line antenna |
JPH01137404A (en) * | 1987-11-20 | 1989-05-30 | Sanyo Electric Co Ltd | Post-recording system for rotary head type tape recorder |
JPH01167710U (en) * | 1988-05-13 | 1989-11-27 | ||
JPH0270513U (en) * | 1988-11-15 | 1990-05-29 | ||
JPH02137406A (en) * | 1988-11-17 | 1990-05-25 | Murata Mfg Co Ltd | Dielectric antenna |
JPH02165706A (en) * | 1988-12-19 | 1990-06-26 | Murata Mfg Co Ltd | Dielectric antenna |
JPH0737367Y2 (en) * | 1989-05-22 | 1995-08-23 | 株式会社村田製作所 | Array antenna |
JP3195923B2 (en) * | 1991-06-18 | 2001-08-06 | 米山 務 | Circularly polarized dielectric antenna |
JP3096095B2 (en) * | 1991-07-19 | 2000-10-10 | 日本電信電話株式会社 | Portable radio |
JPH0537003A (en) * | 1991-07-23 | 1993-02-12 | Fujitsu Ltd | Infrared detector and method for manufacturing the same |
JPH066128A (en) * | 1992-06-19 | 1994-01-14 | Murata Mfg Co Ltd | Dielectric lens antenna and manufacture thereof |
JPH0615325U (en) * | 1992-07-24 | 1994-02-25 | 株式会社村田製作所 | Dielectric antenna |
JPH06181332A (en) * | 1992-12-14 | 1994-06-28 | Mitsubishi Electric Corp | Photoelectric conversion element |
JP3225490B2 (en) * | 1993-06-17 | 2001-11-05 | 本田技研工業株式会社 | Dielectric antenna |
JP3344802B2 (en) * | 1993-12-29 | 2002-11-18 | 利夫 牧本 | Planar antenna |
JPH07297441A (en) * | 1994-04-27 | 1995-11-10 | Nec Corp | Power generator |
JPH08139515A (en) * | 1994-11-11 | 1996-05-31 | Toko Inc | Dielectric vertical polarization antenna |
JP3042364B2 (en) * | 1995-05-19 | 2000-05-15 | 株式会社村田製作所 | Dielectric antenna |
JP2880435B2 (en) * | 1995-10-06 | 1999-04-12 | 社団法人関西電子工業振興センター | Circularly polarized waveguide antenna |
WO1997021250A1 (en) * | 1995-12-04 | 1997-06-12 | Lockheed-Martin Ir Imaging Systems, Inc. | Infrared radiation detector having a reduced active area |
JP3118693B2 (en) * | 1996-08-06 | 2000-12-18 | 株式会社トーキン | Dielectric antenna |
US6037908A (en) * | 1996-11-26 | 2000-03-14 | Thermotrex Corporation | Microwave antenna |
JPH10190543A (en) * | 1996-12-28 | 1998-07-21 | Casio Comput Co Ltd | Communication terminal device |
JP3304811B2 (en) * | 1997-03-26 | 2002-07-22 | 三菱電機株式会社 | Portable radio |
JPH10341106A (en) * | 1997-06-10 | 1998-12-22 | Tokin Corp | Dielectric antenna |
JPH11122022A (en) * | 1997-10-14 | 1999-04-30 | Hitachi Cable Ltd | Dielectric antenna |
JPH11308039A (en) * | 1998-04-23 | 1999-11-05 | Casio Comput Co Ltd | Dielectric resonator antenna device |
JP2000156486A (en) * | 1998-11-20 | 2000-06-06 | Matsushita Electric Ind Co Ltd | Manufacture of slid state image sensor |
JP3642204B2 (en) * | 1998-11-20 | 2005-04-27 | 日立電線株式会社 | Dielectric planar antenna |
DE19858790A1 (en) * | 1998-12-18 | 2000-06-21 | Philips Corp Intellectual Pty | Dielectric resonator antenna uses metallization of electric field symmetry planes to achieve reduced size |
JP4072280B2 (en) * | 1999-03-26 | 2008-04-09 | 嘉彦 杉尾 | Dielectric loaded antenna |
JP2001127537A (en) * | 1999-10-27 | 2001-05-11 | Mitsubishi Electric Corp | Lens antenna system |
JP2002365619A (en) * | 2001-06-11 | 2002-12-18 | Abel Systems Inc | Liquid crystal display |
JP4860836B2 (en) * | 2001-06-11 | 2012-01-25 | アーベル・システムズ株式会社 | Solar cell |
-
2000
- 2000-08-28 JP JP2000258210A patent/JP3415817B2/en not_active Expired - Fee Related
Non-Patent Citations (5)
Title |
---|
aperture efficiency and masimum gain of a dielectric loaded antenna.(Hansen−Woodyard Condition),Technical Report of Radiation Science Research,日本,1998年 5月22日,RS98−3,1−12 |
Circularly polarized dielectric−loaded planar antenna,IEEE transations on broadcasting,1997年 6月,43/2,205−212 |
experimental study of dielectiric loaded planar antenna fed by waveguide network,IEEE antennas and propagation international symposium,1994年,1,480−483 |
誘電体装荷平面アンテナ,電子情報通信学会論文誌,1992年 3月,92/3 J75−B−II,208−210 |
誘電体装荷高利得アンテナ,電子情報通信学会創立70周年記念総合全国大会講演論文集,1987年 3月15日,3,3−120 |
Also Published As
Publication number | Publication date |
---|---|
JP2002076414A (en) | 2002-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Carr | Photometric figures of merit for semiconductor luminescent sources operating in spontaneous mode | |
US8582935B2 (en) | Correction wedge for leaky solar array | |
WO2004034473A2 (en) | Device integrated antenna for use in resonant and non-resonant modes and method | |
JPH0661519A (en) | Photoelectric cell module provided with reflector | |
CN101675581A (en) | Single mirror solar concentrator with efficient electrical and thermal management | |
JP2012069973A (en) | Multi-junction solar cells with aplanatic imaging system and coupled non-imaging light concentrator | |
CN209626432U (en) | A light-modulated terahertz broadband absorber based on doped silicon | |
US8669460B2 (en) | System and methods for optimal light collection array | |
JP3415817B2 (en) | Solar cell | |
US9557480B2 (en) | Graphene coupled MIM rectifier especially for use in monolithic broadband infrared energy collector | |
US20080093529A1 (en) | Methods, materials, and devices for the conversion of radiation into electrical energy | |
JP4860836B2 (en) | Solar cell | |
CN210957258U (en) | Terahertz source device | |
US10797633B2 (en) | Thermal emitter for energy conversion technical field | |
EP3982424B1 (en) | Photoelectric conversion device for solar photovoltaic generation | |
JPH06511602A (en) | Optical device for photovoltaic cells | |
WO2018078659A1 (en) | Refined light trapping technique using 3-dimensional globule structured solar cell | |
Rivera-Lavado et al. | Arrays and new antenna topologies for increasing THz power generation using photomixers | |
US4782382A (en) | High quantum efficiency photodiode device | |
Choi et al. | Wavelength-selective thermal emitters based on micro-scaled photonic structures for thermophotovoltaic power generation | |
JPS60216605A (en) | Slot array antenna system | |
JP2002222962A (en) | Photodetector and lens | |
US20240387973A1 (en) | Waveguide, Wave Beam Adjusting Device, Wave Beam Adjusting Method and Manufacturing Method | |
Wang et al. | Improving the performance of the optical antenna for integrated LIDAR with optical phased arrays through high contrast grating structure on SOI substrate | |
JPH0846227A (en) | Light confinement structure of photovoltaic element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110404 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110404 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110404 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120404 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120404 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120404 Year of fee payment: 9 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120404 Year of fee payment: 9 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120404 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130404 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130404 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |