JP3404383B2 - Memory device - Google Patents
Memory deviceInfo
- Publication number
- JP3404383B2 JP3404383B2 JP2001031860A JP2001031860A JP3404383B2 JP 3404383 B2 JP3404383 B2 JP 3404383B2 JP 2001031860 A JP2001031860 A JP 2001031860A JP 2001031860 A JP2001031860 A JP 2001031860A JP 3404383 B2 JP3404383 B2 JP 3404383B2
- Authority
- JP
- Japan
- Prior art keywords
- bus
- data
- clock signal
- master
- access
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1051—Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
- G11C7/1066—Output synchronization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/006—Identification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/0215—Addressing or allocation; Relocation with look ahead addressing means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/06—Addressing a physical block of locations, e.g. base addressing, module addressing, memory dedication
- G06F12/0646—Configuration or reconfiguration
- G06F12/0653—Configuration or reconfiguration with centralised address assignment
- G06F12/0661—Configuration or reconfiguration with centralised address assignment and decentralised selection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/06—Addressing a physical block of locations, e.g. base addressing, module addressing, memory dedication
- G06F12/0646—Configuration or reconfiguration
- G06F12/0684—Configuration or reconfiguration with feedback, e.g. presence or absence of unit detected by addressing, overflow detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/14—Handling requests for interconnection or transfer
- G06F13/16—Handling requests for interconnection or transfer for access to memory bus
- G06F13/1605—Handling requests for interconnection or transfer for access to memory bus based on arbitration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/14—Handling requests for interconnection or transfer
- G06F13/16—Handling requests for interconnection or transfer for access to memory bus
- G06F13/1605—Handling requests for interconnection or transfer for access to memory bus based on arbitration
- G06F13/161—Handling requests for interconnection or transfer for access to memory bus based on arbitration with latency improvement
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/14—Handling requests for interconnection or transfer
- G06F13/16—Handling requests for interconnection or transfer for access to memory bus
- G06F13/1668—Details of memory controller
- G06F13/1678—Details of memory controller using bus width
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/14—Handling requests for interconnection or transfer
- G06F13/16—Handling requests for interconnection or transfer for access to memory bus
- G06F13/1668—Details of memory controller
- G06F13/1689—Synchronisation and timing concerns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/14—Handling requests for interconnection or transfer
- G06F13/16—Handling requests for interconnection or transfer for access to memory bus
- G06F13/1668—Details of memory controller
- G06F13/1694—Configuration of memory controller to different memory types
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/14—Handling requests for interconnection or transfer
- G06F13/36—Handling requests for interconnection or transfer for access to common bus or bus system
- G06F13/368—Handling requests for interconnection or transfer for access to common bus or bus system with decentralised access control
- G06F13/376—Handling requests for interconnection or transfer for access to common bus or bus system with decentralised access control using a contention resolving method, e.g. collision detection, collision avoidance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/38—Information transfer, e.g. on bus
- G06F13/42—Bus transfer protocol, e.g. handshake; Synchronisation
- G06F13/4204—Bus transfer protocol, e.g. handshake; Synchronisation on a parallel bus
- G06F13/4234—Bus transfer protocol, e.g. handshake; Synchronisation on a parallel bus being a memory bus
- G06F13/4239—Bus transfer protocol, e.g. handshake; Synchronisation on a parallel bus being a memory bus with asynchronous protocol
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/4076—Timing circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/409—Read-write [R-W] circuits
- G11C11/4096—Input/output [I/O] data management or control circuits, e.g. reading or writing circuits, I/O drivers or bit-line switches
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/70—Masking faults in memories by using spares or by reconfiguring
- G11C29/88—Masking faults in memories by using spares or by reconfiguring with partially good memories
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/02—Disposition of storage elements, e.g. in the form of a matrix array
- G11C5/04—Supports for storage elements, e.g. memory modules; Mounting or fixing of storage elements on such supports
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/06—Arrangements for interconnecting storage elements electrically, e.g. by wiring
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/06—Arrangements for interconnecting storage elements electrically, e.g. by wiring
- G11C5/063—Voltage and signal distribution in integrated semi-conductor memory access lines, e.g. word-line, bit-line, cross-over resistance, propagation delay
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/06—Arrangements for interconnecting storage elements electrically, e.g. by wiring
- G11C5/066—Means for reducing external access-lines for a semiconductor memory clip, e.g. by multiplexing at least address and data signals
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1006—Data managing, e.g. manipulating data before writing or reading out, data bus switches or control circuits therefor
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1006—Data managing, e.g. manipulating data before writing or reading out, data bus switches or control circuits therefor
- G11C7/1012—Data reordering during input/output, e.g. crossbars, layers of multiplexers, shifting or rotating
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1015—Read-write modes for single port memories, i.e. having either a random port or a serial port
- G11C7/1045—Read-write mode select circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1051—Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1051—Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
- G11C7/1057—Data output buffers, e.g. comprising level conversion circuits, circuits for adapting load
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1051—Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
- G11C7/1069—I/O lines read out arrangements
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1072—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers for memories with random access ports synchronised on clock signal pulse trains, e.g. synchronous memories, self timed memories
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1078—Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1078—Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
- G11C7/1084—Data input buffers, e.g. comprising level conversion circuits, circuits for adapting load
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/22—Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/22—Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management
- G11C7/222—Clock generating, synchronizing or distributing circuits within memory device
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/22—Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management
- G11C7/225—Clock input buffers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C8/00—Arrangements for selecting an address in a digital store
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/08—Error detection or correction by redundancy in data representation, e.g. by using checking codes
- G06F11/10—Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
- G06F11/1008—Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices
- G06F11/1048—Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices using arrangements adapted for a specific error detection or correction feature
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2207/00—Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
- G11C2207/10—Aspects relating to interfaces of memory device to external buses
- G11C2207/105—Aspects related to pads, pins or terminals
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2207/00—Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
- G11C2207/10—Aspects relating to interfaces of memory device to external buses
- G11C2207/108—Wide data ports
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Quality & Reliability (AREA)
- Databases & Information Systems (AREA)
- Dram (AREA)
- Memory System (AREA)
- Information Transfer Systems (AREA)
Description
【0001】[0001]
【発明の属する技術分野】データ・ブロックを、とくに
メモリ装置との間で、高速転送ができるようにし、電力
消費量が少なく、システムの信頼度が高い、コンピュー
タおよびビデオ装置用の集積回路バス・インターフェイ
スについて説明する。バス・アーキテクチャを実現する
新規な方法についても説明する。BACKGROUND OF THE INVENTION Integrated circuit buses for computers and video devices that enable high speed transfer of data blocks, especially to and from memory devices, consume less power, and have higher system reliability. Describe the interface. It also describes new ways to implement the bus architecture.
【0002】[0002]
【従来の技術】半導体コンピュータ・メモリは、任意の
個々のコンピュータ語の各ビット、または小さいビット
群に対して1つのメモリ装置を使用するために従来設計
され、構成されている。語のサイズはコンピュータの選
択により左右される。典型的な語サイズは4〜64ビッ
トの範囲である。各メモリ装置は一連のアドレス線へ並
列に接続され、かつ一連のデータバスの一つへ接続され
る。特定のメモリ場所から読出し、およびその場所へ書
込むことをコンピュータが求めると、アドレスがアドレ
ス線に置かれ、必要とする各装置のために別々の装置選
択線を用いてメモリ装置のいくつか、または全てが起動
される。各データ線へ1つまたは複数の装置を接続でき
るが、典型的には少数のデータ線だけが1つのメモリ装
置へ接続される。したがって、データ線0が装置0へ接
続され、データ線1が装置1へ接続される、等である。
したがって、データはメモリの各読出し動作、または各
書込み動作ごとに並列にアクセスされる、すなわち供給
される。システムが正しく動作するためには、あらゆる
メモリ内のあらゆる単一メモリビットを確実に正しく動
作させねばならない。BACKGROUND OF THE INVENTION Semiconductor computer memory is conventionally designed and configured to use one memory device for each bit, or small group of bits, of any individual computer word. The word size depends on the choice of computer. Typical word sizes range from 4 to 64 bits. Each memory device is connected in parallel to a series of address lines and to one of a series of data buses. When the computer asks to read from and write to a particular memory location, the address is placed on the address line, and some of the memory devices are used with a separate device select line for each device needed. Or all are activated. One or more devices can be connected to each data line, but typically only a few data lines are connected to one memory device. Thus, data line 0 is connected to device 0, data line 1 is connected to device 1, and so on.
Thus, data is accessed or provided in parallel for each read or write operation of the memory. In order for the system to work properly, every single memory bit in every memory must be guaranteed to work properly.
【0003】本発明の概念を理解するためには、従来の
メモリ装置のアーキテクチャを研究することが助けにな
る。ほぼあらゆる種類のメモリ装置(最も広く用いられ
ているダイナミック・ランダム・アクセス・メモリ(D
RAM)、スタチックRAM(SRAM)、および読出
し専用メモリ(ROM)装置を含めて)の内部では、シ
ステムがメモリサイクルを実行するたびに、多数のビッ
トが並列にアクセスされる。しかし、メモリ装置がサイ
クルさせられるたびに内部で利用できるアクセスされた
ビットの少ない部分だけが、外界までメモリ装置の境界
を横切る。To understand the concept of the present invention, it is helpful to study the architecture of conventional memory devices. Almost any type of memory device (the most widely used dynamic random access memory (D
RAM), static RAM (SRAM), and read-only memory (ROM) devices), many bits are accessed in parallel each time the system performs a memory cycle. However, each time the memory device is cycled, only a small portion of the accessed bits that are available internally cross the boundaries of the memory device to the outside world.
【0004】図1を参照して、最近のDRAM、SRA
MおよびROMの設計の全ては、メモリセルが二次元領
域1を埋めることができるように、行(語)線5と、列
(ビット)線6とを有する内部アーキテクチャを有す
る。特定の語線が使用可能にされると、対応するデータ
ビットの全てがビット線へ転送される。従来のDRAM
のあるものは、アドレスを送るために必要とするピンの
数を減少するために、この編成を利用する。与えられた
メモリセルのアドレスは行と列の2つのアドレスへ分け
られる。それら2つの各アドレスは、従来のメモリセル
・アドレスで要求された帯域幅の半分のバスで多重化で
きる。Referring to FIG. 1, recent DRAM and SRA
All M and ROM designs have an internal architecture with row (word) lines 5 and column (bit) lines 6 so that the memory cells can fill the two-dimensional area 1. When a particular word line is enabled, all of the corresponding data bits are transferred to the bit line. Conventional DRAM
Some utilize this organization to reduce the number of pins required to send an address. The address of a given memory cell is divided into two addresses, a row and a column. Each of these two addresses can be multiplexed on a bus with half the bandwidth required by conventional memory cell addresses.
【0005】<従来技術との比較>
従来のメモリ装置は、メモリを高速でアクセスした場合
に全てのアクセスが成功する訳ではないという問題を解
決しようとしていた。米国特許第3,821,715号
(ホッフ(Hoff)他)が最初の4ビット・マイクロ
プロセッサに対してインテル社(Intel Corp
oration)へ付与された。その特許は、1つの中
央処理装置(CPU)を多数のRAMおよびROMへ接
続するバスについて記載している。そのバスはアドレス
およびデータを4ビット・ワイドのバスで多重化し、特
定のRAMおよびROMを選択するために2地点間(ポ
イント・ツウ・ポイント)制御信号を用いる。アクセス
時間は固定され、ただ1つの処理要素だけが許される。
ブロックモード型動作は無く、最も重要なことに、装置
間の全てのインターフェイス信号がバスを介して送られ
るわけではない(ROM制御線とRAM制御線およびR
AM選択線は2地点間である)。<Comparison with Prior Art> The conventional memory device has attempted to solve the problem that not all accesses succeed when the memory is accessed at high speed. U.S. Pat. No. 3,821,715 (Hoff et al.) To Intel Corp. for the first 4-bit microprocessor.
ration). That patent describes a bus that connects one central processing unit (CPU) to multiple RAMs and ROMs. The bus multiplexes addresses and data on a 4-bit wide bus and uses point-to-point control signals to select specific RAMs and ROMs. The access time is fixed and only one processing element is allowed.
There is no block mode type operation and, most importantly, not all interface signals between devices are sent through the bus (ROM and RAM control lines and R
AM selection line is between the two points).
【0006】米国特許第4,315,308号(ジャク
ソン(Jackson))には、1つのCPUをバス・
インターフェイスへ接続するバスが記述されている。そ
の発明は多重化されたアドレスと、データと、制御情報
とを1つの16ビット・ワイド・バスを介して用いる。
ブロックモード動作が定められる。その長さのブロック
が制御シーケンスの部分として送られる。また、「スト
レッチ」サイクル信号を用いる可変アクセス時間動作が
行われる。多数の処理要素が無く、多数の顕著な要求に
対する適応性がなく、再び、必ずしも全てのインターフ
ェイス信号はバスにより送られない。In US Pat. No. 4,315,308 (Jackson), one CPU is
Describes the bus that connects to the interface. The invention uses multiplexed addresses, data and control information over one 16-bit wide bus.
Block mode operation is defined. A block of that length is sent as part of the control sequence. Also, a variable access time operation using a "stretch" cycle signal is performed. It lacks a large number of processing elements, is not adaptable to a large number of outstanding requirements, and again, not all interface signals are sent by the bus.
【0007】米国特許第4,449,207号(クン
(Kung)他)には、内部バスでアドレスとデータを
多重化するDRAMが記述されている。このDRAMに
対する外部インターフェイスは通常のものであって、制
御、アドレスおよびデータに対して別々の接続を有す
る。US Pat. No. 4,449,207 (Kung et al.) Describes a DRAM that multiplexes addresses and data on an internal bus. The external interface to this DRAM is conventional and has separate connections for control, address and data.
【0008】米国特許第4,764,846号および第
4,706,166号(ゴー(Go))には、1つの縁
部に沿って接続が行われる、スタックされたダイの3D
パッケージ構成が記載されている。通常のメモリ装置を
処理装置へ相互に接続するために必要とされる2地点間
配線のためにはそれらのパッケージは使用が困難であ
る。2つの特許はそれらの問題を解決するために複雑な
技術を延べている。インターフェイスを変更することに
より問題を解決する試みは行われていない。US Pat. Nos. 4,764,846 and 4,706,166 (Go) show stacked die 3D with connections along one edge.
The package structure is described. These packages are difficult to use due to the point-to-point wiring required to interconnect conventional memory devices to the processing unit. The two patents extend complex techniques to solve those problems. No attempt has been made to solve the problem by changing the interface.
【0009】米国特許第3,969,706号(プロー
ブスティング(Proebsting)他)には、現在
の技術的状態DRAMインターフェイスが記述されてい
る。アドレスは双方向に多重化され、データと制御のた
めに別々のピンがある(RAS,CAS,WE,C
S)。ピンの数はDRAMのサイズと共に多くなり、そ
のようなDRAMを用いるメモリ装置においては接続の
多くを2地点間で行わなければならない。US Pat. No. 3,969,706 (Proebsting et al.) Describes a state-of-the-art DRAM interface. Addresses are bidirectionally multiplexed and have separate pins for data and control (RAS, CAS, WE, C
S). The number of pins increases with the size of the DRAM, and in memory devices using such DRAMs many of the connections must be made between two points.
【0010】従来の技術には多くのバックプレインがあ
るが、述べられている組み合わせまたは本発明の諸特徴
を有するものはない。多くのバックプレイン・バスは1
つのバス(たとえば、NUバス)でアドレスとデータを
多重化する。ELSXIおよびその他の分割−トランザ
クション・バス(米国特許第4,595,923号およ
び第4,481,625号(ロバーツ(Robert
s)))を実現した。ELSXIは比較的低電圧の振れ
の電流モードECLドライバ(約1Vの振れ)も実現し
た。アドレス−スペース・レジスタが、ある態様のブロ
ック・モード動作のように、ほとんどのバックプレイン
・バスで実現される。There are many backplanes in the prior art, but none have the combinations or features of the invention described. Many backplane buses are 1
Address and data are multiplexed on one bus (for example, NU bus). ELSXI and other split-transaction buses (US Pat. Nos. 4,595,923 and 4,481,625 (Roberts
s))) was realized. ELSXI also realized a relatively low voltage swing current mode ECL driver (about 1V swing). Address-space registers are implemented on most backplane buses, as are certain modes of block mode operation.
【0011】ほとんど全てのバックプレイン・バスはあ
る種の仲裁スキームを実現するが、本明細書に開示され
る仲裁スキームはそれらの各々とは異なる。米国特許第
4,837,682号(キュラー(Culler))、
第4,818,985号4(イケダ)、第4,779,
089号(シーアス(Theus))、第4,745,
548号(ブラハット(Blahut))が従来のスキ
ームを述べている。全ては、Nを潜在的なバス要求者の
数としてlogN追加信号,(シーアス(Theu
s)、ブラハット(Blahut))、またはバスを制
御するための追加の遅延(イケダ、キュラー(Cull
er))のいずれかを含む。それらの特許またはその他
の文献に記載されているバスのいずれもバスによる接続
だけを用いるものではない。すべてはバックプレインの
上にいくつかの2地点間接続を含む。各データブロック
を1つの装置からフェッチする、または小型で低コスト
の3Dパッケージングのような本発明の他の面のいずれ
も、バックプレイン・バスへは適用されない。Although almost all backplane buses implement certain arbitration schemes, the arbitration schemes disclosed herein differ from each of them. US Pat. No. 4,837,682 (Culler),
No. 4,818,985 No. 4 (Ikeda), No. 4,779,
No. 089 (Theus), No. 4,745
No. 548 (Blahut) describes a conventional scheme. All log N additional signals, where N is the number of potential bus requesters, (Chias (Theu
s), Blahut), or additional delay to control the bus (Ikeda, Cull).
er)). None of the buses described in those patents or other documents use bus connections alone. All include some point-to-point connections on the backplane. None of the other aspects of the invention, such as fetching each data block from one device, or small, low cost 3D packaging, apply to the backplane bus.
【0012】この明細書において本発明とともに用いら
れるクロッキング・スキームは以前は用いられておら
ず、実際に、コネクタ・スタブによりひきおこされる信
号劣化のために、バックプレイン・バスで実現すること
は困難である。米国特許第4,247,817号(ヘラ
ー(Heller))は2つのクロック線を用いるクロ
ッキング・スキームを記述しているが、本明細書で用い
られる正常な立上がり時間信号とは対照的に、ランプ形
のクロック信号を利用している。The clocking scheme used with the present invention in this specification has not previously been used, and in fact it is not possible to implement it on a backplane bus due to the signal degradation caused by connector stubs. Have difficulty. U.S. Pat. No. 4,247,817 (Heller) describes a clocking scheme that uses two clock lines, but in contrast to the normal rise time signal used herein. It uses a ramp-shaped clock signal.
【0013】米国特許第4,646,279号(ボス
(Voss))には、DRAMの出力部に並列負荷、直
列出力シフトレジスタを実現するビデオRAMが記述さ
れている。これにより一般的に帯域幅を大幅に広くでき
る(および桁送りだしシフトアウト経路の幅が2倍、4
倍更にそれより広く拡張された)。DRAMに対するイ
ンターフェイスの残り(RAS,CAS、多重化された
アドレス、等)は従来のDRAMに対するものと同じま
まである。US Pat. No. 4,646,279 (Voss) describes a video RAM which implements a parallel load and serial output shift register at the output of the DRAM. This generally allows for significantly higher bandwidth (and doubles the width of the shift-out shift-out path).
Extended twice more than that). The rest of the interface to DRAM (RAS, CAS, multiplexed addresses, etc.) remains the same as for conventional DRAM.
【0014】[0014]
【発明が解決しようとする課題】本発明の目的は、デー
タの、マイクロプロセッサのような、外部ユーザーによ
る1つのメモリ装置からの大きいデータ・ブロックに対
する、効率的で、コスト効果的なやり方による高速アク
セスを支持するために、半導体装置に組み込まれた新規
なバス・インターフェイスを用いることである。SUMMARY OF THE INVENTION It is an object of the present invention to provide high speed data in a efficient and cost effective manner for large blocks of data from one memory device by an external user, such as a microprocessor. The use of a new bus interface built into the semiconductor device to support access.
【0015】本発明の別の目的は、クロックスキューを
含むクロック分配問題を軽減させるインターフェイス回
路を提供することにある。Another object of the present invention is to provide an interface circuit that alleviates a clock distribution problem including clock skew.
【0016】[0016]
【課題を解決するための手段】本発明によれば、メモリ
セルのアレイを有する同期式のメモリ装置であって次の
構成を備えるメモリ装置が提供される。すなわち、固定
周波数の外部クロック信号を受信するクロック・レシー
バ回路を備え、複数の入力受信器を含んでいて、外部ク
ロック信号に同期して読み取り動作要求を抽出する入力
受信器回路を備え、前記クロック・レシーバ回路に結合
されていて、前記外部クロック信号に同期してデータの
出力を行うための遅延ロック・ループ回路を備え、複数
の出力駆動器を含んでいて、読み取り動作中にデータを
外部バスへと出力する出力駆動回路を備え、この出力駆
動回路には、データの第1部分を、前記外部クロック信
号の立ち上がり縁に応じて出力する複数の出力駆動器
と、データの第2部分を、前記外部クロック信号の立ち
下がり縁に応じて出力する複数の出力駆動器とが含まれ
ている。このようなメモリ装置の詳細は、以下に記す実
施例の説明、特に、段落0022〜0030,0040
〜0044,0086〜0088,0095〜0103
並びにそれらに関する図に記載されている。このメモリ
装置によりクロック分配問題を軽減させることができ
る。According to the present invention, there is provided a synchronous memory device having an array of memory cells, the memory device having the following configuration. That is, the clock receiver circuit for receiving an external clock signal having a fixed frequency, the input receiver circuit including a plurality of input receivers for extracting a read operation request in synchronization with the external clock signal, A delay locked loop circuit coupled to the receiver circuit for outputting data in synchronization with the external clock signal, the output circuit including a plurality of output drivers for transferring the data to an external bus during a read operation. An output drive circuit for outputting to the output drive circuit, the output drive circuit including a plurality of output drivers for outputting a first portion of data in response to a rising edge of the external clock signal, and a second portion of the data. And a plurality of output drivers that output according to the falling edge of the external clock signal. Details of such a memory device will be described in the following embodiments, particularly in paragraphs 0022 to 0030 and 0040.
~ 0044, 0086 ~ 0088, 0095 ~ 0103
And the figures relating to them. This memory device can alleviate the clock distribution problem.
【0017】この明細書には、バスへ並列に接続されて
いる少なくとも1つのメモリ装置を含む少なくとも2つ
の半導体装置を備え、バスは、前記メモリ装置により必
要とされるアドレスと、データと、制御情報のほぼ全て
を伝えるための複数のバス線を含み、制御情報は装置選
択情報を含み、バスは1つのアドレス内のビットの数よ
り十分に少ないバス線を有し、バスは、個々の装置へ直
結される別々の装置選択線の必要なしに装置選択情報を
伝える、メモリ・サブシステムが開示される。そのメモ
リ・サブシステムでは図2のように、標準的なDRAM
13,14と、ROM(またはSRAM)12と、マイ
クロプロセッサCPU11と、I/O装置と、ディスク
制御器、または高速スイッチのようなその他の専用装置
の通常のものに用いられる、2地点間およびバスをベー
スとする配線の組み合わせではなくて、完全にバスをベ
ースとするインターフェイスを用いるために、それらの
装置は変更される。新規なバスはクロック信号と、電力
および多重化されたアドレスと、データ信号および制御
信号とを含む。好適な実現においては、8つのバス・デ
ータ線とAddressValidバス線がアドレス
と、データと、制御情報とを、40ビット・ワイドまで
のメモリ・アドレスへ送る。本発明の教示を実現するた
めに、16のバス・データ線または別の数のバス・デー
タ線を用いることができる。メモリや、周辺装置や、ス
イッチや、処理装置のような要素を接続するために新規
なバスが用いられる。The specification comprises at least two semiconductor devices including at least one memory device connected in parallel to a bus, the bus comprising the address, data and control required by said memory device. It includes a plurality of bus lines for carrying almost all of the information, the control information includes device selection information, the bus has bus lines well less than the number of bits in an address, and the buses are individual devices. A memory subsystem is disclosed that conveys device selection information without the need for a separate device selection line directly connected to. The memory subsystem has a standard DRAM, as shown in FIG.
13,14, ROM (or SRAM) 12, microprocessor CPU 11, I / O devices, disk controllers, or other specialized devices such as high speed switches, commonly used for point-to-point and The devices are modified to use a fully bus-based interface rather than a bus-based wiring combination. The new bus includes clock signals, power and multiplexed addresses, data signals and control signals. In the preferred implementation, eight bus data lines and AddressValid bus lines carry addresses, data, and control information to memory addresses up to 40 bits wide. Sixteen bus data lines or another number of bus data lines may be used to implement the teachings of the present invention. New buses are used to connect elements such as memory, peripherals, switches, and processing units.
【0018】DRAMおよびその他のメモリ装置はアド
レスおよびその他の情報をバスを介して受け、求められ
ているデータを同じバスを介して送り、または受けるこ
とも表示される。各メモリ装置はバス・インターフェイ
スを1つだけ含み、他の信号ピンは有しない。装置に含
むことができる別の装置はバス、および入力線/出力線
のような別の非バス線へ接続できる。バスは大きなデー
タ・ブロックの転送および分割トランザクションをサポ
ートして、ユーザーが高いバス利用度を達成できるよう
にする。It is also indicated that DRAMs and other memory devices receive addresses and other information over the bus and send or receive the required data over the same bus. Each memory device contains only one bus interface and no other signal pins. Other devices that can be included in the device can be connected to the bus and other non-bus lines such as input / output lines. The bus supports large data block transfers and split transactions, allowing the user to achieve high bus utilization.
【0019】このバスへ接続するDRAMはいくつかの
やり方で従来のDRAMとは異なる。制御情報、装置識
別、装置の型、および装置の各独立部分のためのアドレ
ス範囲のようなチップに対して適切なその他の情報を記
憶できるレジスタが設けられる。新しいバス・インター
フェイスを付加せねばならず、従来のDRAM装置の内
部は変更する必要はないから、それらはバスのピークデ
ータ速度でバスとの間でデータのやり取りができる。こ
れはDRAMにおける列アクセス回路を変更することを
要し、その場合に型の大きさの増大は最小である。バス
上の装置のための低スキュー内部装置クロックを発生す
る回路が設けられ、別の多重化解除入力信号と、多重化
出力信号とを供給する回路も用意されている。The DRAM connected to this bus differs from conventional DRAM in several ways. Registers are provided that can store other information appropriate to the chip, such as control information, device identification, device type, and address range for each independent part of the device. Since new bus interfaces must be added and the internals of conventional DRAM devices need not be modified, they can pass data to and from the bus at the peak data rate of the bus. This requires modification of the column access circuitry in the DRAM, where die size increase is minimal. A circuit is provided to generate a low skew internal device clock for devices on the bus, and a circuit is provided to provide another demultiplexing input signal and a multiplexing output signal.
【0020】バスを非常に高いクロック速度(数百MH
z)で動作させることにより広いバス帯域幅が達成され
る。この高いクロック速度はバスの制約された環境によ
り可能にされる。バス線はインピーダンスを制御され
て、二重終端させられた線である。500MHzのクロ
ック速度では、最長バス伝播時間は1nsよりも短い
(典型的なバスの長さは約10cmである)。また、用い
られるパッケージングのために、ピンのピッチをパッド
のピッチに非常に近づけることができる。個々の装置か
ら与えられるバスへのローティングは非常に小さい。好
適な実現においては、これはスタブの容量を1〜2p
F、インダクタンスを0.52nHに一般にできる。図
3に示されている各装置15,16,17は、一方の側
だけにピンを有し、それらのピンはバス18へ直結され
る。多数の装置をピン20を介して高次のバスへインタ
ーフェイスするためにトランシーバ装置19を含むこと
ができる。The bus has a very high clock speed (hundreds of MH
Wide bus bandwidth is achieved by operating in z). This high clock speed is enabled by the restricted environment of the bus. Bus lines are impedance controlled and doubly terminated lines. At a clock speed of 500 MHz, the longest bus transit time is less than 1 ns (typical bus length is about 10 cm). Also, due to the packaging used, the pin pitch can be very close to the pad pitch. The loading from the individual devices to the bus is very small. In the preferred implementation, this increases the stub capacity by 1-2p.
Generally, F and inductance can be set to 0.52 nH. Each device 15, 16, 17 shown in FIG. 3 has pins on only one side, which pins are directly connected to the bus 18. A transceiver device 19 may be included to interface a number of devices to higher order buses via pins 20.
【0021】この明細書に開示されるアーキテクチャの
主な結果はDRAMアクセスの帯域幅を広くすることで
ある。本発明は製作コストおよび製造コストを低減し、
電力消費量を減少し、パッキング密度およびシステムの
信頼度を高くすることである。The main result of the architecture disclosed in this specification is to increase the bandwidth of DRAM access. The present invention reduces manufacturing and manufacturing costs,
The goal is to reduce power consumption and increase packing density and system reliability.
【0022】[0022]
【発明の実施の形態】本発明は、処理装置と記憶装置間
の通信用の高速、多重バスを提供し、そのバスシステム
で使用する装置を提供することに寄与する。本発明はま
た、処理装置と入出力インターフェイスやディスク制御
装置といった他の装置を接続するのに用いることができ
る。バスはバス上の各々の装置に並列に接続した比較的
少数の回線(ライン)からなり、バスにより装置がバス
上の他の装置との通信するのに必要な実質的に全てのア
ドレス、データ、制御情報を搬送する。本発明を用いた
多くのシステムでは、バスは全システム内の全ての装置
間のほとんど全ての信号を搬送する。バス上の各々の装
置に対する装置選択情報はバスで搬送されるので、別の
装置選択回線を必要としない。またアドレスとデータ情
報は同一回線を通して送ることができるので、別のアド
レスおよびデータ回線も必要としていない。ここで説明
する機構を用いることで、非常に大きなアドレス(実施
例では40ビット)および大きなデータブロック(10
24バイト)を少数のバス回線(実施例では8プラス1
制御回線)で送ることができる。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a high speed, multiple bus for communication between a processor and a storage device, and contributes to providing a device for use in the bus system. The present invention can also be used to connect processing devices to other devices such as I / O interfaces and disk controllers. A bus consists of a relatively small number of lines connected in parallel to each device on the bus, and the bus allows virtually all the addresses and data that a device needs to communicate with other devices on the bus. , Carry control information. In many systems using the present invention, the bus carries almost all signals between all devices in the entire system. Device selection information for each device on the bus is carried on the bus and does not require a separate device selection line. Also, address and data information can be sent over the same line, eliminating the need for separate address and data lines. Using the mechanism described here, very large addresses (40 bits in the example) and large blocks of data (10
24 bytes for a small number of bus lines (8 plus 1 in the embodiment)
Control line).
【0023】事実上、コンピュータシステムで必要な全
ての信号をバスで送ることができる。当業者はCPUの
ような特定装置は、本発明のバス以外に、他の信号回線
および例えば独立したキャッシュメモリへのバスのよう
な独立したバスに接続できることが理解できよう。例え
ばクロスポイント・スイッチのような特定装置は、本発
明の複数の独立したバスに接続することができる。本実
施例では、ここに説明するバス接続以外には接続を有し
ない記憶装置を設け、本発明のバスをメモリおよびバス
上の他の装置への全面的でなくとも主要な接続として用
いるCPUを設ける。Virtually all signals required by a computer system can be bussed. Those skilled in the art will appreciate that a particular device, such as a CPU, can be connected to other signal lines besides the bus of the present invention and to a separate bus, such as a bus to a separate cache memory. Specific devices, such as crosspoint switches, can be connected to multiple independent buses of the present invention. In this embodiment, a memory device having no connection other than the bus connection described here is provided, and a CPU using the bus of the present invention as a main connection to the memory and other devices on the bus, if not entirely, is used. Set up.
【0024】全ての最近のDRAM、SRAM、ROM
設計は、2次元領域を効率的にタイル状に構成するた
め、行(語)と列(ビット)ラインの内部アーキテクチ
ャを有している。図1では、各々の語線5とビット線6
の交点に1ビットのデータが格納されている。特定の語
線が使用可能になると、全ての対応するデータビットが
ビット線に転送される。4MビットDRAM内で一時に
約4000ビットとなるこのデータは次に列の増幅器
(センスアンプ)3にロードされ、入出力回路で使用す
るために保持される。All modern DRAMs, SRAMs, ROMs
The design has an internal architecture of row (word) and column (bit) lines to efficiently tile the two-dimensional region. In FIG. 1, each word line 5 and bit line 6
1-bit data is stored at the intersection of. When a particular word line becomes available, all corresponding data bits are transferred to the bit line. This data, which is about 4000 bits at a time in a 4 Mbit DRAM, is then loaded into the column amplifier (sense amplifier) 3 and held for use in the I / O circuit.
【0025】ここに提示する発明では、センスアンプか
らのデータは、ほぼ125MHzで動作している内部装
置バスに一時に32ビットを乗せることが可能になる。
この内部装置バスはデータを装置の周辺に移動し、デー
タは約500MHzで動作する8ビットワイドの外部バ
スインターフェイスに多重化される。The invention presented here allows data from the sense amplifier to be loaded 32 bits at a time on an internal device bus operating at approximately 125 MHz.
This internal device bus moves data around the device and the data is multiplexed onto an 8-bit wide external bus interface operating at about 500 MHz.
【0026】本発明のバス・アーキテクチャでは、CP
U、直接記憶アクセス装置(DMA)ないし浮動小数点
装置(FPU)などのマスタ(バス制御装置)と、DR
AM、SRAM、ROM記憶装置などのスレーブ装置を
接続する。スレーブ装置は制御信号に応答し、マスタは
制御信号を送信する。当業者は操作モードおよびシステ
ムの状態により、一部の装置はときどきマスタおよびス
レーブとして作動することを理解できよう。例えば記憶
装置は一般にスレーブ機能だけしか有していないが、D
MA制御装置、ディスク制御装置、CPUはスレーブ、
マスタ機能を両方有することがある。入出力装置、ディ
スク制御装置や高速スイッチなどのその他の特殊目的装
置を初めとする他の多くの半導体装置は、本発明のバス
で使用するために改変することができる。In the bus architecture of the present invention, the CP
U, master (bus controller) such as direct memory access unit (DMA) or floating point unit (FPU), and DR
Connect slave devices such as AM, SRAM, ROM storage devices. The slave device responds to the control signal and the master sends the control signal. Those skilled in the art will appreciate that some devices sometimes operate as masters and slaves, depending on the mode of operation and the state of the system. For example, a storage device generally has only a slave function, but D
MA controller, disk controller, CPU is slave,
It may have both master functions. Many other semiconductor devices, including other special purpose devices such as I / O devices, disk controllers and high speed switches, can be modified for use with the buses of the present invention.
【0027】各々の半導体装置は、装置識別(装置I
D)レジスタ、装置タイプ記述レジスタ、制御レジス
タ、その他の装置のタイプに関連した情報を含むレジス
タを初めとする1組の内部レジスタを内蔵している。実
施例では、バスに接続された半導体装置には、その装置
内に含まれたメモリアドレスを特定するレジスタと装置
がデータを送信ないし受信できるまでの(ないしすべ
き)時間を示す1組の1つないし複数の遅延時間を記憶
するアクセス時間レジスタを内蔵している。Each semiconductor device has a device identification (device I
D) Contains a set of internal registers, including registers, device type description registers, control registers, and other registers containing information related to device type. In an embodiment, a semiconductor device connected to the bus has a set of 1's indicating a register for specifying a memory address included in the device and a time until (or should) the device can transmit or receive data. It has a built-in access time register that stores one or more delay times.
【0028】それらのレジスタの大部分は、システムを
起動した時、ないしリセットした時に生じる初期化シー
ケンスの一部として変更ないし設定することができる。
初期化シーケンス中、バス上の各々の装置は装置IDレ
ジスタに記憶された一意的な装置ID番号が割り当てら
れる。バスマスタはそこでそれらの装置ID番号を用い
てアクセスし、アクセス時間レジスタ、制御レジスタ、
メモリレジスタを初めとする他の装置内の適当なレジス
タを設定し、システムを構成することができる。各々の
スレーブは1つないしいくつかのアクセス時間レジスタ
(実施例では4)を持つことができる。実施例では、特
定の制御機能を容易にするために、各々のスレーブ内に
1つのアクセス時間レジスタが一定値で永久的ないし半
永久的にプログラムされている。初期化シーケンスの望
ましい実施例は以下に詳述する。Most of these registers can be modified or set as part of the initialization sequence that occurs when the system is booted or reset.
During the initialization sequence, each device on the bus is assigned a unique device ID number stored in the device ID register. The bus master then accesses using those device ID numbers to access the access time register, control register,
The system can be configured by setting appropriate registers in other devices, including memory registers. Each slave can have one or several access time registers (4 in the preferred embodiment). In one embodiment, one access time register is permanently or semi-permanently programmed with a constant value in each slave to facilitate certain control functions. A preferred embodiment of the initialization sequence is detailed below.
【0029】マスタ装置とスレーブ装置間で送られる全
ての情報は、例えば8ビットワイドの外部バスを通して
送られる。これはマイクロプロセッサのようなマスタ装
置が外部バスの排他的な制御を取得し(すなわちバスマ
スタとなる)、要求パケット(アドレスと制御情報から
なるバイトのシーケンス)をバス上の1つないし複数の
スレーブ装置に送ってトランザクションを起動するプロ
トコルを定義することにより行われる。本発明の教示で
は、アドレスは16から40ビットないしそれ以上で構
成することができる。バス上の各々のスレーブは要求パ
ケットを解読して、スレーブがそのパケットに応答する
必要があるかを見る。パケットが送られたスレーブはそ
こで、要求時に要求されたバス・トランザクションを行
うのに必要な内部プロセスを開始する。要求マスタはま
たバス・トランザクションが始まる前に一定の内部プロ
セスを実行する必要があることがある。指定されたアク
セス時間後、スレーブは1つないし複数バイト(8ビッ
ト)のデータを返答するかバスから得られた情報を記憶
して応答する。異なる時に異なる種類の応答がもたらす
ことができるように1度以上のアクセス時間を設けるこ
とができる。All information sent between the master and slave devices is sent, for example, through an 8-bit wide external bus. This is because a master device, such as a microprocessor, gains exclusive control of the external bus (ie becomes the bus master) and sends request packets (a sequence of bytes of address and control information) to one or more slaves on the bus. This is done by defining a protocol that sends to the device to initiate the transaction. In the teachings of the present invention, an address can consist of 16 to 40 bits or more. Each slave on the bus decodes the request packet to see if it needs to respond to that packet. The slave to which the packet is sent then initiates the internal processes required to perform the requested bus transaction on demand. The requesting master may also need to perform certain internal processes before the bus transaction begins. After the designated access time, the slave responds by returning one or more bytes (8 bits) of data or storing the information obtained from the bus. One or more access times can be provided so that different types of responses can result at different times.
【0030】要求パケットとその対応するバスアクセス
は、選択した数のバスサイクルで分離して、同一ないし
他のマスタが追加要求あるいは簡潔なバスアクセスをす
るために、分離した間に介在するバスサイクルでバスを
使用できるようにする。従って複数の独立したアクセス
が可能で、バスの利用を最大化して短いデータブロック
を転送することができる。長いデータブロックを転送す
る場合は、バスアドレス、制御、アクセス時間によるオ
ーバーヘッドはブロックの要求および転送の合計時間に
比べて小さいので、重複なしに効率的にバスを使用でき
る。The request packet and its corresponding bus access are separated by a selected number of bus cycles, and the same or another master makes an additional request or a simple bus access. To be able to use the bus at. Therefore, multiple independent accesses are possible, maximizing bus utilization and transferring short data blocks. When transferring a long data block, the overhead due to bus address, control, and access time is small compared to the total time of requesting and transferring the block, so that the bus can be used efficiently without duplication.
【0031】<装置アドレスのマッピング>
本発明の他のユニークな態様は、各々の記憶装置は、従
来のバックプレーン・バスコンピュータシステムのメモ
リ基板の全ての機能を有していて、独立したメモリサブ
システムであるということである。個々の記憶装置は単
一の記憶部分としたり、2以上の分離記憶部分に小区分
化することができる。記憶装置には各々の分離記憶部分
のメモリアドレス・レジスタを含める。故障した記憶装
置(あるいは装置の小部分でも)は、メモリの小さい小
部分のロスだけで「記録する」ことができ、事実上全シ
ステムの機能を維持することができる。故障した装置の
記録は、2つの方法で行うことができ、両方とも本発明
に適合している。<Device Address Mapping> Another unique aspect of the present invention is that each storage device has all the functions of the memory board of a conventional backplane bus computer system, and has independent memory subs. It is a system. Each storage device can be a single storage part or subdivided into two or more separate storage parts. The memory device includes a memory address register for each separate memory portion. A failed storage device (or even a small portion of the device) can be "recorded" with the loss of a small small portion of memory, effectively maintaining the functionality of the entire system. Recording a failed device can be done in two ways, both compatible with the present invention.
【0032】望ましい第1の方法では、各々の記憶装置
(ないしその独立した分離部分)内のアドレスレジスタ
を使用して、その記憶装置が応答するバスアドレスの範
囲を限定する情報を記憶する。これは従来のバックプレ
−ン・バスシステムのメモリ基板で使用された従来の方
式と同様である。アドレスレジスタには、通常既知のサ
イズのブロックを指す1つのポインタを含めるか、ある
いは1つのポインタと一定ないし可変のブロックサイズ
値を含めるか、あるいは一方が各々のメモリブロックの
先頭を指し他方が終端(すなわち「上部」と「下部」)
を指す2つのポインタを含めることができる。アドレス
レジスタを適切に設定することで、一連の機能的な記憶
装置ないし分散記憶部分を連続したアドレス範囲に対し
て応答するようにすることができ、システムアクセスを
良好なメモリの連続ブロックに行うことができる(おも
にバスに接続された良好な装置数により制限される)。
第1の記憶装置ないし記憶部分内のメモリブロックには
一定範囲のアドレスを割り当てることができるので、次
の記憶装置ないし記憶部分のメモリブロックには先のブ
ロックの最後のアドレスよりも1つ高い(ないしメモリ
構造により低い)アドレスで始まるアドレスを割り当て
ることができる。In a preferred first method, an address register within each storage device (or an independent separate portion thereof) is used to store information defining the range of bus addresses to which the storage device responds. This is similar to the conventional method used in the memory board of the conventional backplane bus system. The address register typically contains one pointer to a block of known size, or one pointer and a constant or variable block size value, or one at the beginning of each memory block and the other at the end. (Ie "upper" and "lower")
Two pointers to can be included. By properly setting the address register, a series of functional memory devices or distributed memory parts can be made to respond to a contiguous address range, and system access can be performed in contiguous blocks of memory. (Mostly limited by the number of good devices connected to the bus).
Since a range of addresses can be assigned to the memory blocks in the first memory device or memory part, the memory block of the next memory device or memory part is one higher than the last address of the previous block ( It is possible to assign addresses starting with the address (or lower in the memory structure).
【0033】本発明で使用する望ましい装置には、その
装置にはどれほどのメモリがあり、どの様な構成になっ
ているかを初めとしてチップタイプを特定する装置タイ
プレジスタ情報を含める。マスタは1つないし複数の選
択順序で各々のメモリセルを読取ったり書込んだりして
適切なメモリテストを行い、メモリの各々のアクセス可
能な分離部分の適切な機能をテストし(部分的に装置I
D番号や装置形式といった情報に基づいて)、装置のア
ドレススペース・レジスタにアドレス値(実施例では4
0ビットまで、1012バイト)を連続的に書込むことが
できる。非機能のないし損傷した記憶部分には、システ
ムがそのメモリを使用するのを避けると解釈できる特別
なアドレス値を割り当てることができる。The preferred device for use in the present invention includes device type register information that specifies the chip type, including how much memory the device has and how it is configured. The master performs appropriate memory tests by reading and writing each memory cell in one or more select orders to test the proper function of each accessible isolation portion of the memory (partially I
The address value (4 in the preferred embodiment) is stored in the address space register of the device based on information such as the D number and device type.
Up to 0 bit, 10 12 bytes) can be continuously written. Non-functional or damaged storage parts can be assigned special address values which can be interpreted to avoid the system from using its memory.
【0034】第2の方法は、不良の装置を避けるための
負担をシステムマスタないしマスタに課すものである。
CPUおよびDMA制御装置は一般に、仮想から物理的
(バス)アドレスにマップする何らかのアドレス変換バ
ッファ(TLB)を有している。TLBは比較的単純な
ソフトウェアでプログラムして、動作するメモリだけを
使用することができる(機能するメモリを記述するデー
タ構造は容易に生成され得る)。TLBを内蔵していな
いマスタに付いては(例えば画像表示生成器)、小さく
単純なRAMを用いて連続したアドレス範囲を機能記憶
装置のアドレスにマップすることができる。The second method is to impose a burden on the system master or the master to avoid a defective device.
CPUs and DMA controllers typically have some address translation buffer (TLB) that maps from virtual to physical (bus) addresses. The TLB can be programmed with relatively simple software to use only the working memory (the data structure describing the working memory can be easily generated). For masters that do not have a TLB built-in (eg, an image display generator), a small and simple RAM can be used to map a contiguous range of addresses to the addresses in the functional storage.
【0035】どちらの方法も作動し、それによりシステ
ムは非機能装置がかなりの割合でも、残ったメモリで作
動し続けることができる。本発明で構築したシステム
は、現場での故障が殆どないシステムを構築する能力を
含めて、既存のシステムに比べてはるかに改善された信
頼性を持つことを意味している。Both methods work, so that the system can continue to operate with a significant amount of non-functional devices on the remaining memory. The system constructed in accordance with the present invention is meant to have much improved reliability over existing systems, including the ability to build a system with few field failures.
【0036】<バス>
本発明の好ましいバス・アーキテクチャは、11の信号
(すなわちBusData「0:7」、AddrVal
id、Clk1、Clk2)に加えて各々の装置に並列
に接続された入力基準レベルおよび電源、接地回線を含
む。信号は通常のバスサイクル中にバスの乗せられる。
「信号[i:j]」という表記は、信号ないし回線の特
定の範囲を指し、例えばBusData[0:7]は、
BusData0,BusData1,・・・BusD
ata7という意味である。BusData「0:7」
信号に対するバス回線は、バイトワイドで多重化され
た、データないしアドレスないし制御のバスを形成す
る。AddrValidはバスが有効なアドレス要求を
保持している時を示し、スレーブに対して、バスデータ
をアドレスとして解読し、そしてアドレスがそのスレー
ブに含まれている場合は、懸案の要求に対処するように
指令する。2つのクロックは共に、バス上の全ての装置
に対して同期化した高速クロックを提供する。バスに乗
せた信号に加えて、各々の装置を直列に接続して初期化
中にシステム内の全ての装置に一意的な装置ID番号を
割り当てるのに用いる他の1つの回線(ResetIn
ResetOut)がある(後に詳述)。Bus: The preferred bus architecture of the present invention is 11 signals (ie BusData "0: 7", AddrVal).
id, Clk1, Clk2) as well as an input reference level and a power supply, ground line connected in parallel to each device. Signals are placed on the bus during normal bus cycles.
The notation “signal [i: j]” refers to a specific range of a signal or line, for example BusData [0: 7] is
BusData0, BusData1, ... BusD
It means ata7. BusData "0: 7"
The bus lines for signals form a byte-wide multiplexed data or address or control bus. AddrValid indicates when the bus holds a valid address request, decodes the bus data as an address to the slave, and handles the pending request if the address is contained in that slave. Command. Both clocks provide a synchronized high speed clock for all devices on the bus. In addition to the signals on the bus, one other line (ResetIn) is used to connect each device in series to assign a unique device ID number to every device in the system during initialization.
ResetOut) (detailed later).
【0037】内部のロジックのゲート遅延に比べてこの
外部バスの非常に早いデータ速度を可能とするため、バ
スサイクルを偶数ないし奇数サイクルのペアにグループ
化する。バスに接続した全ての装置は、バスサイクルの
同一の偶数ないし奇数ラベルを用い、偶数サイクルでオ
ペレーションを開始することに留意されたい。これはク
ロッキング方式で強制的に行う。Bus cycles are grouped into even or odd cycle pairs in order to allow a very high data rate of this external bus compared to the gate delay of the internal logic. It should be noted that all devices connected to the bus use the same even or odd label of the bus cycle and start operation on even cycles. This is done by the clocking method.
【0038】<プロトコルとバス・オペレーション>
バスはバス・トランザクションに、比較的単純で、同期
で、分割トランザクションのブロック指向プロトコルを
使用する。このシステムの1つの目的は、マスタに集中
した知能を保持し、それによりスレーブをできるだけ単
純に保つことである(一般にマスタよりもスレーブの方
が数が多いので)。スレーブの複雑性を削減するには、
スレーブが指定時刻に要求に応えられるように、引き続
くバスアクセス段階の前に行わなければならない内部活
動を含めて装置の内部段階をスレーブが十分開始あるい
は完了できるようにすべきである。このバスアクセス段
階の時刻はバス上の全ての装置に知られており、各々の
マスタはバスアクセスが始まる時にはバスが確実に空い
ているようにする責任がある。従ってスレーブはバスの
仲裁については決して懸念することはない。この方法に
より、単一マスタシステムでの仲裁をなくし、スレーブ
バス・インターフェイスを単純にすることができる。Protocols and Bus Operations The bus uses a relatively simple, synchronous, split transaction block-oriented protocol for bus transactions. One purpose of this system is to keep the centralized intelligence on the master, thus keeping the slaves as simple as possible (since there are generally more slaves than masters). To reduce slave complexity,
The slave should be able to fully initiate or complete internal stages of the device, including internal activities that must occur prior to the subsequent bus access stage, so that the slave can respond to requests at specified times. The time of this bus access phase is known to all devices on the bus, and each master is responsible for ensuring that the bus is free when bus access begins. Therefore, slaves never worry about bus arbitration. This approach eliminates arbitration in a single master system and simplifies the slave bus interface.
【0039】本発明の好ましい実施例では、バスに対し
てバス転送を始めるため、マスタはアドレスと制御情報
を含んだ連続した一連バイトの要求パケットを送る出
す。偶数バイトを含んだ要求パケットを使用するのが望
ましく、また各々のパケットを偶数バスサイクルで開始
するのが望ましい。In the preferred embodiment of the invention, to initiate a bus transfer to the bus, the master sends out a series of consecutive byte request packets containing address and control information. It is desirable to use request packets that contain an even number of bytes, and each packet should start with an even bus cycle.
【0040】装置選択機能は、バスデータ回線を用いて
対処する。全てのスレーブに対して、要求パケットアド
レスを解読し、要求アドレスを含んでいるかを判定し、
含んでいればデータブロック転送でマスタにデータを返
す(読取り要求の場合)か、あるいはマスタからのデー
タを受け入れる(書込み要求の場合)よう指令するAd
drValidを駆動する。マスタは要求パケットで装
置ID番号を送信することで特定装置を選択することも
できる。好ましい実施例では、特殊な装置ID番号を選
ぶことによりバス上の全ての装置がパケットを解釈すべ
きであるということを示す。これによりマスタはメッセ
ージを同報通信でき、例えば全ての装置の選択制御レジ
スタを同一値で設定することができる。The device selection function is handled by using the bus data line. For all slaves, decode the request packet address, determine whether it contains the request address,
If it contains, Ad that commands the data block transfer to return data to the master (for read request) or to accept data from the master (for write request)
Drive drValid. The master can also select a specific device by transmitting the device ID number in a request packet. The preferred embodiment indicates that all devices on the bus should interpret the packet by choosing a special device ID number. This allows the master to broadcast messages and, for example, set the selection control registers of all devices to the same value.
【0041】データブロック転送は、要求パケット制御
情報で指定した時刻に、偶数サイクルで始まるようにす
る。装置は、バスアクセス段階が始まる前にメモリアド
レス設定のような特定機能を開始していれば、装置内部
段階で殆ど直ちにデータブロック転送を始める。データ
ブロックをバス回線に乗せる時間は、スレーブのアクセ
ス時間レジスタ内に記憶された値から選択する。読取
り、書込みのためのデータのタイミングは同一とする。
唯一の違いは、どの装置がバスを駆動するかである。読
取りに付いてはスレーブがバスを駆動し、マスタはバス
からの値を受け取り、書込みに付いてはマスタがバスを
駆動し、選択されたスレーブはバスからの値を受け取
る。The data block transfer is started at an even cycle at the time designated by the request packet control information. If the device has started a specific function such as memory address setting before the start of the bus access stage, it will start the data block transfer almost immediately during the internal stage of the device. The time for loading the data block on the bus line is selected from the value stored in the access time register of the slave. The data timings for reading and writing are the same.
The only difference is which device drives the bus. For reading, the slave drives the bus, the master receives the value from the bus, for writing, the master drives the bus, and the selected slave receives the value from the bus.
【0042】図4に示す本発明の実施例では、要求パケ
ット22は6バイトのデータ、すなわち4.5のアドレ
スバイトと1.5の制御バイトを含んでいる。各々の要
求は、要求パケットの全ての6バイトのために9ビット
の多重化データ/アドレス回線(AddrValid2
3+BusData[0:7]24)を使用する。偶数
サイクルで23のAddrValid=1を設定するこ
とは(さもなくば未使用)、要求パケット(制御情報)
のスタートを示している。有効要求パケットではAdd
rValid27(最後のバイト)は0でなければなら
ない。最後のバイトでこの信号を表明することは、要求
パケットを無効化することになる。これは衝突検出の仲
裁ロジックに使用する(後に詳述)。バイト25−26
は第1の35のアドレスビット(アドレス[0:3
5])を含んでいる。最後のバイトは、AddrVal
id27(無効化スイッチ)と、残りのアドレスビット
(アドレス[36:39])と、ブロックサイズ[0:
3](制御情報)28を含んでいる。In the embodiment of the invention shown in FIG. 4, the request packet 22 contains 6 bytes of data, ie 4.5 address bytes and 1.5 control bytes. Each request is a 9-bit multiplexed data / address line (AddrValid2) for all 6 bytes of the request packet.
3 + BusData [0: 7] 24) is used. Setting an AddrValid = 1 of 23 in an even cycle (otherwise unused) would result in a request packet (control information)
Shows the start of. Add in the validity request packet
rValid27 (last byte) must be 0. Asserting this signal on the last byte will invalidate the request packet. This is used in the collision detection arbitration logic (detailed below). Byte 25-26
Is the first 35 address bits (address [0: 3
5]) is included. The last byte is AddrVal
id27 (invalidation switch), remaining address bits (address [36:39]), block size [0:
3] (control information) 28 is included.
【0043】第1のバイトは例えばアクセスのタイプを
指定するオペレーションコードであるAccessTy
pe[0:3]およびそのマスタID番号を含めるため
パケットを送るマスタのために予約された位置のMas
ter[0:3]の制御情報を含んだ2つの4ビットフ
ィールドを含んでいる。マスタ番号1から15が可能
で、マスタ番号0は特殊システムコマンドのために予約
されている。Master[0:3]=0のパケット
は、無効化特殊パケットで、そのごとくに扱われる。The first byte is AccessTy, which is an operation code that specifies the type of access, for example.
Mas at a position reserved for the master sending the packet to include pe [0: 3] and its master ID number
It contains two 4-bit fields containing control information for ter [0: 3]. Master numbers 1 to 15 are possible, master number 0 is reserved for special system commands. Packets with Master [0: 3] = 0 are invalidation special packets and are treated as such.
【0044】アクセスタイプフィールドは、要求された
オペレーションが読取りあるいは書込みか、およびアク
セスのタイプが例えばレジスタの制御あるいはメモリと
いった装置の他の部分の制御かを特定する。好ましい実
施例では、AccessType[0]は読取り/書込
みスイッチであり、これが1ならばオペレーションはス
レーブから読取りを要求し(スレーブが要求されたメモ
リブロックを読取り、メモリ内容をバスに乗せる)、0
ならばオペレーションはスレーブへの書込みを要求する
(スレーブはバスからデータを読取り、それをメモリに
書込む)。AccessType[1:3]はスレーブ
に対して8までの異なるアクセスタイプを提供し、Ac
cessType[1:2]は、アクセス時間レジスタ
のAccessRegNに格納された応答のタイミング
を示す。アクセス時間レジスタの選択は、それを登録す
る特定のオペレーションコードを得ることにより直接選
択にあるいは事前選択アクセス時間(後記の表を参照)
を有する選択したオペレーションコードに対応するスレ
ーブを得ることにより間接的に選択することができる。
残りのビットのAccessType[3]は、要求に
付いての追加情報をスレーブに送るのに用いることがで
きる。The access type field specifies whether the requested operation is a read or a write, and the type of access is a control of a register or other part of the device, such as memory. In the preferred embodiment, AccessType [0] is a read / write switch, and if it is 1, the operation requests a read from the slave (the slave reads the requested memory block and puts the memory contents on the bus) and 0.
Then the operation requires a write to the slave (the slave reads the data from the bus and writes it to memory). AccessType [1: 3] provides up to 8 different access types for slaves, and Ac
accessType [1: 2] indicates the timing of the response stored in AccessRegN of the access time register. Access time register selection can be direct selection or pre-selected access time by getting the specific opcode that registers it (see table below).
It can be indirectly selected by obtaining the slave corresponding to the selected operation code with.
The remaining bits, AccessType [3], can be used to send additional information to the slave about the request.
【0045】アクセスの1つの特殊なタイプとして制御
レジスタアクセスがあり、被選択スレーブの被選択レジ
スタへのアドレス動作が必要である。本発明の好ましい
実施では、ゼロに等しいAccessType[1:
3]は制御レジスタ要求を示し、パケットのアドレスフ
ィールドは所望の制御レジスタを示している。例えば最
上位の2バイトは(どのスレーブがアドレスされている
かを示す)装置ID番号であり、下位3バイトはレジス
タアドレスを指定することができ、またその制御レジス
タにロードするデータを示したり、含めることができ
る。制御レジスタアドレスはアクセス時間レジスタを初
期化するのに用いるので、(例えばアクセスレジスタ0
(AccessReg0)内の値であってできれば8サ
イクルの)プログラムできるあるいはハードワイヤでき
る固定応答時間を使用することが望ましい。制御レジス
タアクセスはまた、アドレスレジスタをを含めて他のレ
ジスタを初期化あるいは修正するのに用いることができ
る。One special type of access is control register access, which requires addressing the selected register of the selected slave. In the preferred implementation of the invention, AccessType [1: equal to zero.
3] indicates the control register request, and the address field of the packet indicates the desired control register. For example, the most significant 2 bytes are the device ID number (indicating which slave is addressed), the lower 3 bytes can specify the register address, and indicate or include the data to load into its control register. be able to. The control register address is used to initialize the access time register, so (for example, access register 0
It is desirable to use a programmable or hardwired fixed response time that is within (AccessReg0), preferably 8 cycles. Control register access can also be used to initialize or modify other registers, including address registers.
【0046】本発明の方式は、特にDRAMのアクセス
モード制御を備えている。そのようなアクセスモードの
1つは、アクセスがページモードあるいは通常のRAS
アクセスであるかどうかを判定する。通常モード(従来
のDRAMおよび本発明で)、DRAM列増幅器(すな
わちラッチ)は論理0および1の間の中間の値に事前チ
ャージ(すなわちプリチャージ)されている。このプリ
チャージにより、RAM内の行に対するアクセスが、入
力(書込み)あるいは出力(読取り)のどちらかのアク
セス要求を受け取り次第すぐに可能になり、列増幅器が
データを素早く感知できるようにする。ページモード
(従来および本発明の両方で)では、DRAMは以前の
読取りないし書込みオペレーションからのデータを列増
幅器ないしラッチに保持する。データにアクセスする引
き続きの要求が同一行に向けられた場合は、DRAMは
データが感知されるのを待つ必要はなく(それは既に感
知されている)、このデータに対するアクセス時間は通
常のアクセス時間よりもはるかに短くなる。ページモー
ドにより一般にデータに対してはるかに早いアクセスを
可能にするが、データのブロックは小さくなる(増幅器
の数に等しいデータ)。しかし要求データが被選択行に
ない場合は、要求は通常のモードアクセスを開始する前
にRAMがプリチャージされるのを待たなければならな
いので、アクセス時間は通常のアクセス時間よりも長く
なる。各々のDRAMの2つのアクセス時間レジスタに
は、それぞれ通常およびページモードアクセスで使用す
るアクセス時間を含めるようにする。The method of the present invention is particularly provided with access mode control of DRAM. One such access mode is page mode or normal RAS access.
Determine if it is an access. In normal mode (conventional DRAM and the present invention), the DRAM column amplifier (or latch) is precharged (or precharged) to an intermediate value between logic 0 and 1. This precharge allows access to the rows in the RAM as soon as either an input (write) or output (read) access request is received, allowing the column amplifier to sense the data quickly. In page mode (both conventional and invention), the DRAM holds data from previous read or write operations in column amplifiers or latches. If subsequent requests to access the data are directed to the same row, the DRAM does not have to wait for the data to be sensed (it has already been sensed) and the access time for this data is less than the normal access time. Is also much shorter. Page mode generally allows much faster access to data, but blocks of data are smaller (data equal to the number of amplifiers). However, if the requested data is not in the selected row, the request must wait for the RAM to be precharged before initiating the normal mode access, so the access time will be longer than the normal access time. The two access time registers of each DRAM contain the access times used in normal mode and page mode access, respectively.
【0047】アクセスモードはまたDRAMが増幅器を
プリチャージすべきか、あるいは増幅器の内容を後での
ページモードアクセスのために保管すべきかを判定す
る。一般的な設定は「通常アクセス後にプリチャージ」
し、「ページモードアクセス後に保管(セーブ)」であ
るが、「ページモードアクセス後にプリチャージ」ある
いは「通常アクセス後に保管」も可能な選択可能オペレ
ーションモードである。DRAMはまた、選択した期間
内にアクセスされない場合は、増幅器をプリチャージす
るために設定することもできる。The access mode also determines whether the DRAM should precharge the amplifier or save the amplifier contents for later page mode access. The general setting is "precharge after normal access"
However, although it is “save after page mode access”, “precharge after page mode access” or “save after normal access” is also a selectable operation mode. The DRAM can also be set to precharge the amplifier if it is not accessed within the selected time period.
【0048】ページモードでは、DRAM増幅器内に記
憶されたデータは、通常モードでデータを読取るのにか
かる時間よりもはるかに少ない時間でアクセスすること
ができる(10−20ナノ秒対40−100ナノ秒)。
このデータは長期間使用できるように保持することがで
きる。しかしそれらの増幅器(そして従ってビット回
線)がアクセス後にプリチャージされなければ、異なる
メモリ語(行)への後続のアクセスは、新しい値にラッ
チする前に増幅器がプリチャージされなければならない
ので約40−100ナノ秒のプリチャージ時間のペナル
ティが課せられることになる。In page mode, the data stored in the DRAM amplifier can be accessed in much less time than it takes to read the data in normal mode (10-20 nanoseconds vs 40-100 nanoseconds). Seconds).
This data can be retained for long term use. However, if those amplifiers (and thus the bit lines) are not precharged after the access, subsequent accesses to different memory words (rows) will be about 40 times because the amplifiers must be precharged before latching to the new value. A -100 nanosecond precharge time penalty will be imposed.
【0049】増幅器(センスアンプ)の内容はこのよう
に保持してキャッシュとして用いることができ、小さい
データブロックに対して早い反復的なアクセスが可能と
なる。DRAMベースのページモードキャッシュは、従
来のDRAM機構を用いて従来技術で試されてきたが、
コンピュータ毎にいくつかのチップが必要なので余り効
率的でない。そのような従来のページモードキャッシュ
は多くのビットを含んでいるが(例えば32チップ×4
Kビット)、独立した記憶項目(エントリイ)は殆ど有
していない。言い替えればある所与の時点で、増幅器は
ほんのわずかな異なるブロックないしメモリ「局所領
域」しか保持していないことになる(上記の例では4K
語の単一ブロック)。シミュレーションでは、各々のブ
ロックのサイズに関わりなく高いヒット率(90%以上
の要求がキャッシュメモリ内に要求データを見つけられ
る)を達成するには、100以上のブロックが必要なこ
とが分かっている。例としてアナント・アガーワル他に
よる「分析的キャッシュモデル」『コンピュータシステ
ム上のACMトランザクション』7(2)号、pp.1
84−215(1989年5月)を参照のこと。The contents of the amplifier (sense amplifier) can be held in this way and used as a cache, and small data blocks can be accessed quickly and repeatedly. DRAM-based page mode caches have been tried in the prior art using conventional DRAM mechanisms,
Not very efficient as each computer requires several chips. Such conventional page mode caches contain many bits (eg 32 chips x 4).
It has almost no K-bit) independent storage item (entry). In other words, at any given time, the amplifier holds only a few different blocks or memory "local areas" (4K in the example above).
A single block of words). Simulations have shown that 100 or more blocks are required to achieve a high hit rate (90% or more requests can find the requested data in cache memory) regardless of the size of each block. As an example, "Analytic Cache Model" by Anant Agarwal et al., "ACM Transactions on Computer Systems," 7 (2), pp. 1
84-215 (May 1989).
【0050】本発明のメモリの機構により、各々のDR
AMは1つないし複数の(4MビットDRAMに対して
4の)別々にアドレスされる独立的なデータブロックを
保持することができる。100のそのようなDRAM
(すなわち400のブロックないし場)を有するパーソ
ナルコンピュータないしワークステーションは、従来の
形で構成したDRAMを用いた低く(50−80%)多
様に変化するヒット率に比べて非常に高く、非常に反復
可能なヒット率(平均98−99%)を達成することが
できる。更にページモード・キャッシュの「ミス」のた
めに据え置かれたプリチャージに伴う時間ペナルティ故
に、従来のでDRAMベースのページモード・キャッシ
ュは一般に、全くキャッシュがない時よりもうまく作動
しないことが分かっている。By the mechanism of the memory of the present invention, each DR
The AM can hold one to more than one (4 for 4 Mbit DRAM) separately addressed independent data blocks. 100 such DRAMs
Personal computers or workstations (i.e., 400 blocks or fields) are very high and highly repetitive compared to low (50-80%) variably hit rates using conventionally configured DRAMs. Possible hit rates (average 98-99%) can be achieved. Furthermore, because of the time penalty associated with deferring precharge due to page mode cache "misses," traditional DRAM-based page mode caches have generally been found to perform less well than without any cache. .
【0051】DRAMスレーブアクセスについて、アク
セスタイプは一般に以下のようにして用いる。
アクセス
タイプ 用途 アクセス時間
[1:3]
―――――――――――――――――――――――――――――――――――
0 制御レジスタアクセス 固定、8[アクセスレシ゛スタ0]
1 未使用 固定、8[アクセスレシ゛スタ0]
2−3 未使用 アクセスレジスタ1
4−5 ページモードDRAMアクセス アクセスレジスタ2
6−7 通常DRAMアクセス アクセスレジスタ3For DRAM slave access, the access type is generally used as follows. Access type Application Access time [1: 3] ――――――――――――――――――――――――――――――――――― 0 Control register access Fixed , 8 [access register 0] 1 unused fixed, 8 [access register 0] 2-3 unused access register 1 4-5 page mode DRAM access access register 2 6-7 normal DRAM access access register 3
【0052】当業者には、一連の利用可能なビットは、
それらのアクセスモードを制御するスイッチとして指定
できることが理解されよう。例えば、
AccessType[2]=ページモード/通常スイッチ
AccessType[3]=プリチャージ/データ保管スイッチFor those skilled in the art, the sequence of available bits is
It will be appreciated that they can be designated as switches that control their access modes. For example, AccessType [2] = page mode / normal switch AccessType [3] = precharge / data storage switch
【0053】ブロックサイズ[0:3]は、データブロ
ックの転送のサイズを指定する。ブロックサイズ[0]
が0ならば、残りのビットはブロックサイズ(0−7)
のバイナリ表示である。ブロックサイズ[0]が1なら
ば、残りのビットはブロックサイズを8から1024の
2のバイナリ累乗として与える。ゼロ長のブロックは、
例えばデータをもたらすことなくDRAMを再生、ある
いはDRAMをページモードから通常アクセスモードに
変更あるいはその逆を行う特殊コマンドと解釈すること
ができる。
ブロックサイズ[0:2] ブロック内のバイト数
――――――――――――――――――――――――――
0−7 それぞれ0−7
8 8
9 16
10 32
11 64
12 128
13 256
14 512
15 1024
当業者は他のブロックサイズコード化方式あるいは値を
用いることができることを理解できよう。The block size [0: 3] specifies the transfer size of the data block. Block size [0]
Is 0, the remaining bits are the block size (0-7)
Is a binary display of. If the block size [0] is 1, the remaining bits give the block size as a binary power of 2 from 8 to 1024. Zero-length blocks are
For example, it can be interpreted as a special command for reproducing the DRAM without bringing data or changing the DRAM from the page mode to the normal access mode and vice versa. Block size [0: 2] Number of bytes in block ―――――――――――――――――――――――――― 0-7 Respectively 0-7 8 8 9 16 10 32 11 64 12 128 13 256 56 14 512 15 1024 One of ordinary skill in the art will appreciate that other block size encoding schemes or values may be used.
【0054】大方の場合、スレーブはバス回線バスデー
タ[0:7]を通してバスからのデータを読取ることに
よりあるいはバスにデータを書込むことにより選択した
アクセス時間に応答し、AddrValidは論理0と
なる。実施例では、事実上各々のメモリアクセスには1
つだけの記憶装置しか必要なく、すなわち1つのブロッ
クを1つの記憶装置から読取ったり、書込むことにな
る。In most cases, the slave responds to the selected access time by reading data from the bus through the bus line bus data [0: 7] or writing data to the bus, and AddrValid will be a logical zero. . In the preferred embodiment, effectively 1 for each memory access.
Only one storage device is needed, ie one block will be read from or written to one storage device.
【0055】<リトライフォーマット>
一部の場合にスレーブは要求、例えば読取りあるいは書
込み要求に正確に応答できないことがある。そのような
状況ではスレーブは時どきN(o)ACK(nowle
dge)ないしリトライメッセージと呼ばれるエラーメ
ッセージを応答する。リトライメッセージには、リトラ
イを必要とする条件に付いての情報を含めることができ
るが、これはスレーブおよびマスタの両方の回路に対し
システム要件を増加することになる。エラーが生じたこ
とだけを示す単純なメッセージは余り複雑でないスレー
ブを見越しており、マスタはエラーの原因を理解し、補
正するのに必要な措置を取ることができる。Retry Format In some cases the slave may not be able to correctly respond to a request, eg a read or write request. In such a situation, the slave will sometimes receive N (o) ACK (nowle
dge) or an error message called a retry message. The retry message can include information about the conditions that require a retry, but this will increase system requirements for both slave and master circuits. Simple messages that only indicate that an error has occurred allow for less complex slaves, and the master can take the necessary steps to understand the cause of the error and correct it.
【0056】例えば特定条件下で、スレーブは要求され
たデータを供給できないことがある。ページモード・ア
クセス中、被選択DRAMはページモード内になければ
ならず、被要求アドレスは増幅器ないしラッチに保持さ
れたデータのアドレスと合致しなければならない。各々
のDRAMはページモードアクセス中にこの合致をチェ
ックすることができる。合致が認められなければ、DR
AMはプリチャージを開始し、データブロックの最初の
サイクル中にリトライメッセージをマスタに返答する
(返答されたブロックの残りは無視される)。マスタは
そこでプリチャージ時間を待ち(これは特殊レジスタの
プリチャージレジスタに記憶された問題のスレーブのタ
イプに対応するように設定される)、次に要求を通常の
DRAMアクセス(アクセスタイプ=6または7)とし
て再び送る。Under certain conditions, for example, a slave may not be able to supply the requested data. During page mode access, the selected DRAM must be in page mode and the requested address must match the address of the data held in the amplifier or latch. Each DRAM can check this match during page mode access. If no match is found, DR
The AM begins precharging and sends a retry message back to the master during the first cycle of the data block (the rest of the replied block is ignored). The master then waits for the precharge time (which is set to correspond to the type of slave in question stored in the precharge register of the special register) and then requests the normal DRAM access (access type = 6 or Send again as 7).
【0057】本発明の望ましい形態では、スレーブがデ
ータの読取りないし書込みを開始すると思われた時間に
厳密にAddrValidを真に駆動することにより、
スレーブはリトライを通知する。そのスレーブに書込む
ことを予期していたマスタは書込み中にAddrVal
idをモニタし、リトライメッセージを検出した場合に
は必要な補正措置を取らなければならない。図5はリト
ライメッセージ28のフォーマットを例示したものであ
る。これは読取り要求に有用で、最初の(偶数)サイク
ルは23のAddrValid=1とMaster
[0:3]=0からなっている。AddrValidは
通常データブロック転送に対しては0であり、マスタ0
はない(1から15だけが可能)ことに留意されたい。
全てのDRAMとマスタはそのようなパケットを無効要
求パケットであり、従ってリトライメッセージであると
容易に理解することができる。この種のバス・トランザ
クションでは、上記の実施例では内容は未定義である
が、Master[0:3]とAddrValid23
を除く全てのフィールドは情報フィールドとして使用で
きる。当業者はリトライメッセージを示す別の方法とし
て、バスにデータ無効回線と信号を付け加えることがあ
ることを理解できう。この信号はNACKの場合に表明
することができる。In a preferred form of the invention, by driving AddrValid to be true at exactly the time the slave was supposed to begin reading or writing data,
The slave notifies the retry. The master, which was expecting to write to the slave, is adding AddVal during writing.
You must monitor the id and take the necessary corrective action if a retry message is detected. FIG. 5 illustrates the format of the retry message 28. This is useful for read requests, the first (even) cycle is 23 AddrValid = 1 and Master
It consists of [0: 3] = 0. AddrValid is 0 for normal data block transfer, and master 0
Note that there is no (only 1 to 15 possible).
All DRAMs and masters can easily understand such packets as invalidation request packets and thus retry messages. In this type of bus transaction, although the contents are undefined in the above embodiment, Master [0: 3] and AddrValid23
All fields except can be used as information fields. Those skilled in the art will appreciate that another way to indicate a retry message is to add a data invalid line and signal to the bus. This signal can be asserted in case of NACK.
【0058】<バス仲裁>
単一マスタの場合は、定義上仲裁問題は生じない。マス
タは要求パケットを送り、そのパケットに応えてバスが
使用中(ビジー)になる期間の記録を取る。マスタは対
応するデータブロック転送が重複しないように複数要求
を予定(スケジュール)することができる。<Bus Arbitration> In the case of a single master, the arbitration problem does not occur by definition. The master sends a request packet and keeps track of how long the bus is busy in response to the packet. The master can schedule multiple requests so that the corresponding data block transfers do not overlap.
【0059】本発明のバス・アーキテクチャは、複数マ
スタ構成でも有用である。2ないしそれ以上のマスタが
同一バス上にある時、各々のマスタは全ての未完了のト
ランザクションの記録を取らなければならず、従って各
々のマスタはいつ要求パケットを送り、対応するデータ
ブロック転送にアクセスできるかを知っている。しかし
2つないしそれ以上のマスタが要求パケットをほぼ同時
に送り、複数要求を検出し、何等かのバス仲裁に頼らな
ければならない場合が生じることがある。The bus architecture of the present invention is also useful in multiple master configurations. When two or more masters are on the same bus, each master must keep track of all outstanding transactions, so when each master sends a request packet and sends it to the corresponding data block transfer. I know if I can access it. However, it may happen that two or more masters must send request packets at about the same time, detect multiple requests, and resort to some bus arbitration.
【0060】各々のマスタがバスがいつ使用中(ビジ
ー)になるか記録する方法は多くある。簡単な方法は、
各々のマスタが、例えば(一方がバスが使用中になる将
来のもっとも近い点を示し、他方がバスがフリーになる
将来のもっとも近い点、すなわち最新の未完了のデータ
ブロック転送の終わりを示す)2つのポインタを維持す
ることで、バスビジー(使用中)データ構成を維持する
ことである。この情報を使用することで、各々のマスタ
は、他のデータブロック転送で使用中になる前に要求パ
ケット(上述したプロトコル下で)を送るに十分な時間
があるか、そしていつその時間があるかを判定でき、対
応するデータブロック転送が懸案のバス・トランザクシ
ョンを妨害するかどうかを判定できる。従って各々のマ
スタは全ての要求パケットを読取り、そのバスビジー
(使用中)データ構造を更新して何時バスがフリーにな
るかについての情報を維持しなければならない。There are many ways for each master to record when the bus is busy. The easy way is
Each master, for example, (one indicating the closest future point when the bus will be busy and the other the future future point when the bus will be free, ie the end of the most recent incomplete data block transfer) Maintaining the two pointers is to maintain the bus busy data structure. Using this information, each master has enough time to send a request packet (under the protocol described above) before it is busy with another data block transfer, and when. And whether the corresponding data block transfer interferes with the pending bus transaction. Therefore, each master must read all request packets and update its bus busy data structure to maintain information about when the bus is free.
【0061】2以上のマスタがバス上にあると、マスタ
はしばしば同一バスサイクル中に独立した要求パケット
を送ることがある。それらの複数の要求は、そのような
各々のマスタが異なる情報でバスを同時に駆動すると衝
突し、無秩序な要求情報が生じ、所望のデータブロック
転送は行われない。本発明の望ましい形態では、論理1
をバスデータないしAddrValid回線に書込もう
としている、バス上の各装置は、システムの高論理値よ
りも大きな電圧あるいは等しい電圧を十分維持できる電
流で、その回線を駆動する。しかし、装置は論理0を持
つ回線は駆動しない。すなわちそれらの回線は単に低論
理値に対応する電圧に維持される。各々のマスタは、少
なくとも一部、あるいは全てのバスデータおよびAdd
rValid回線上の電圧をテストするので、当該マス
タは所与のバスサイクルでは駆動しないが、他のマスタ
が駆動した回線上では予期レベルが「0」であるのに論
理「1」を検出できる。When more than one master is on the bus, the masters often send independent request packets during the same bus cycle. These multiple requests collide when each such master simultaneously drives the bus with different information, resulting in chaotic request information and the desired data block transfer does not occur. In the preferred form of the invention, a logical 1
To the bus data or AddValid line, each device on the bus drives that line with a current greater than or equal to the high logic value of the system. However, the device does not drive a line with a logic zero. That is, the lines are simply maintained at the voltage corresponding to the low logic value. Each master has at least some or all of the bus data and Add.
Because it tests the voltage on the rValid line, the master does not drive on a given bus cycle, but it can detect a logic "1" on the lines driven by other masters even though the expected level is "0".
【0062】衝突を検出する他の方法は、衝突通知用に
1つないし複数のバス回線を選択することである。要求
を送っている各々のマスタはその回線を駆動し、1つ以
上のマスタによる要求を示す通常以上の駆動電流(ある
いは「>1」の論理値)についてモニタする。当業者に
は、これはBusDataとAddrValid回線を
含むプロトコルにより実施できる、あるいは追加バス回
線を用いて実施できることが理解されよう。Another way to detect collisions is to select one or more bus lines for collision notification. Each requesting master drives its line and monitors for above normal drive currents (or ">1" logic values) indicating requests by one or more masters. Those skilled in the art will appreciate that this can be done by protocols including BusData and AddrValid lines, or by using additional bus lines.
【0063】本発明の好ましい形態では、各々のマスタ
は、自己が駆動しない回線をモニタして別のマスタがそ
れらの回線を駆動しているのかどうかを見ることにより
衝突を検出する。図4では要求パケットの最初のバイト
にはバスを使用しようとしている各々のマスタの番号が
含まれている(Master[0:3])。2つのマス
タが時間的に同一点から始まってパケット要求を送る場
合、マスタ番号は少なくともそれらのマスタと共に論理
「OR操作」をされ、従ってマスタの1つないし両方は
バス上のデータをモニタし、自己が送ったものと比較す
ることにより、衝突を検出することができる。例えばマ
スタ番号2(0010)と5(0101)による要求が
衝突する場合、バスは、Master[0:3]=7
(0010+0101=0111)の値で駆動される。
マスタ番号5は信号Master[2]=1であること
を検出し、マスタ2はMaster[1]およびMas
ter[3]=1であることを検出し、両マスタは衝突
の発生を知ることになる。別の例はマスタ2と11で、
それに対しバスはMaster[0:3]=11(00
10+1011=1011)の値で駆動されるが、マス
タ11は容易にこの衝突を検出できないが、マスタ2は
できる。衝突が検出されれば、衝突を検出している各々
のマスタは要求パケット22のバイト5のAddrVa
lid27の値を1に駆動するが、これは上記の第2の
例のマスタ11を含めて全てのマスタにて検出され、下
記のバス仲裁サイクルを強制する。In the preferred form of the invention, each master detects collisions by monitoring the lines it does not drive to see if another master is driving them. In FIG. 4, the first byte of the request packet contains the number of each master attempting to use the bus (Master [0: 3]). When two masters send packet requests starting at the same point in time, the master number is logically "OR'ed" with them so that one or both of the masters monitor the data on the bus, Collisions can be detected by comparing with what they have sent. For example, when the requests by the master numbers 2 (0010) and 5 (0101) collide, the bus is Master [0: 3] = 7.
It is driven by the value of (0010 + 0101 = 0111).
Master number 5 detects that the signal Master [2] = 1 and master 2 has Master [1] and Mas [1].
Detecting that ter [3] = 1, both masters will know that a collision has occurred. Another example is Masters 2 and 11,
On the other hand, the bus has Master [0: 3] = 11 (00
10 + 1011 = 1011), the master 11 cannot easily detect this collision, but the master 2 can. If a collision is detected, each master detecting the collision will add byte 5 AddrVa of request packet 22.
It drives the value of lid27 to 1, which is detected by all masters, including master 11 in the second example above, and forces the following bus arbitration cycle.
【0064】別の衝突条件は、マスタAがサイクル0で
要求パケットを送り、マスタBが1番目の要求パケット
のサイクル2から始まる要求パケットを送ろうとし、そ
れにより1番目の要求パケットと重複する場合に生じる
ことがある。これはバスは高速度で作動し、従って2番
目に始動するマスタ内のロジックが、1番目のマスタに
よりサイクル0で開始された要求を十分早く検出して、
それ自身の要求を遅らせて素早く反応できないのでしば
しば生じる。マスタBは最終的に要求パケットを送ろう
とすべきでなかったことに気づくが(そしてその結果マ
スタAが送ろうとしていたアドレスをほぼ確実に破壊す
るが)、上記の同時衝突のように、第1の要求パケット
27のバイト5中にAddrValid上の1を駆動し
て仲裁を強制する。望ましい実施例でのロジックは十分
早く、マスタは他のマスタによる要求パケットを第1の
要求パケットのサイクル3までに検出するので、いずれ
のマスタもサイクル2以降は衝突する可能性のある要求
パケットを送信しそうにない。Another collision condition is that master A sends a request packet in cycle 0 and master B tries to send a request packet beginning with cycle 2 of the first request packet, thereby overlapping the first request packet. This may happen in some cases. This is because the bus operates at high speed, so the logic in the second starting master detects the request initiated in cycle 0 by the first master fast enough,
It often occurs because it delays its own demands and cannot react quickly. Master B finally realizes that it shouldn't have sent the request packet (and thus almost certainly destroys the address Master A was trying to send), but like the simultaneous collision above, Drive 1 on AddrValid in byte 5 of request packet 27 of 1 to force arbitration. The logic in the preferred embodiment is fast enough that the master will detect request packets by other masters by cycle 3 of the first request packet, so that any master will receive request packets that may collide after cycle 2. Not likely to send.
【0065】スレーブ装置は衝突を直接検出する必要は
ないが、パケットが有効であることを確認するため最後
のバイト(バイト5)が読取られるまで待って、回復不
可能なことをしないようにしなければならない。0(リ
トライ信号)に等しいMaster[0:3]を有する
要求パケットは無視され、衝突を生じさせない。そのよ
うなパケットでは引き続きのバイトも無視される。The slave device does not have to detect the collision directly, but must wait until the last byte (byte 5) has been read to make sure the packet is valid to avoid doing anything unrecoverable. I have to. Request packets with Master [0: 3] equal to 0 (retry signal) are ignored and do not cause a collision. Subsequent bytes are also ignored in such packets.
【0066】衝突後に仲裁を始めるには、放棄した要求
パケット後に事前選択数のサイクル(好ましい実施例で
は4サイクル)を待ち、そして次のフリーなサイクルを
バスの仲裁に使用する(好ましい実施例では次に利用可
能な偶数サイクルを使用する)。衝突しているマスタそ
れぞれは他の全ての衝突マスタに、それが要求パケット
を送ろうとしており、各々の衝突マスタには優先順位が
割り当てられており、各々のマスタはその要求をその優
先順位で行うことができるということを通知する。To initiate arbitration after a collision, wait a preselected number of cycles (4 cycles in the preferred embodiment) after the abandoned request packet, and use the next free cycle for bus arbitration (in the preferred embodiment). Use the next available even cycle). Each colliding master is sending a request packet to all other colliding masters, each colliding master has been assigned a priority, and each master has its request at that priority. Notify that you can do it.
【0067】図6はこの仲裁を実施する1つの好ましい
方法を例示したものである。各々の衝突マスタは要求パ
ケットを送るというその意図を、その割り当てられたマ
スタ番号(本例では1−15)に対応した単一バスサイ
クル中に単一バスデータ回線を駆動することにより通知
する。2バイト仲裁サイクル29中、バイト0がマスタ
1−7からの要求1−7にそれぞれ割り当てられており
(ビット0は未使用)、バイト1がマスタ8−15から
の要求8−15に割り当てられる。少なくとも1つの装
置およびそれぞれの衝突マスタは、仲裁サイクル中にバ
ス上のその値を読取り、どのマスタがバスの使用を望ん
でいるかを判定し、記憶する。当業者は、システムがマ
スタよりも多くのバス回線を含んでいるならば、仲裁要
求に対して単一バイトを割り当てることができることを
理解できよう。FIG. 6 illustrates one preferred method of performing this arbitration. Each conflicting master announces its intent to send a request packet by driving the single bus data line during the single bus cycle corresponding to its assigned master number (1-15 in this example). In the 2-byte arbitration cycle 29, byte 0 is assigned to request 1-7 from master 1-7 (bit 0 is unused) and byte 1 is assigned to request 8-15 from master 8-15. . At least one device and each conflicting master read its value on the bus during the arbitration cycle to determine and store which master wants to use the bus. Those skilled in the art will appreciate that a single byte can be allocated for an arbitration request if the system contains more bus lines than the master.
【0068】固定優先方式(マスタ番号を用いて、最初
に最低番号を選択して)を次に用いて優先順位を決め、
少なくとも1つの装置により維持されているバス仲裁待
ち行列(キュー)で要求を順番に配列する。それらの要
求はバスビジー(使用中)データ構造各々のマスタによ
り待機(キューイング)をさせられ、バス仲裁待ち行列
がクリアされるまでは要求は許されない。当業者は、各
々のマスタの物理的位置にしたがって優先順位を割り当
てることを始め、他の優先方式を使用できることを理解
できよう。The fixed priority method (using the master number, first selecting the lowest number) is then used to determine the priority,
Order the requests in a bus arbitration queue maintained by at least one device. These requests are queued by the master of each bus busy data structure and are not allowed until the bus arbitration queue is cleared. One of ordinary skill in the art will appreciate that other priority schemes can be used, starting with assigning priorities according to the physical location of each master.
【0069】<システム構成/リセット>
本発明のバスをベースとするシステムでは、バス上の各
々の装置に、システムにより望まれるあるいは必要な
(パワーアップ後ないしその他の)条件下で、一意的な
装置識別子(装置ID)を与えるメカニズムを設ける。
そこでマスタはこの装置IDを用いて特定装置にアクセ
ス可能であり、特に制御レジスタおよびアドレスレジス
タを含む特定装置のレジスタを設定、修正することがで
きる。実施例では、1つのマスタが、全システム構成過
程を行うように指定される。マスタはバスシステムに接
続された各々の装置に対しての一連の一意的な装置ID
番号を与える。実施例では、バスに接続された各々の装
置は、例えばCPU、4Mビットメモリ、64Mビット
メモリないしディスク制御装置といった装置の種類を特
定する特殊な装置タイプレジスタを内蔵している。構成
マスタは、各々の装置をチェックし、装置タイプを判定
し、アクセス時間レジスタを含む適切な制御レジスタを
設定し、各々の記憶装置をチェックして、全ての適切な
メモリアドレス・レジスタを設定する。System Configuration / Reset In the bus-based system of the present invention, each device on the bus is unique under the conditions (after power-up or otherwise) desired or required by the system. A mechanism for providing a device identifier (device ID) is provided.
The master can then use this device ID to access the particular device, and in particular to set and modify the registers of the particular device, including the control registers and address registers. In one embodiment, one master is designated to perform the entire system configuration process. The master is a set of unique device IDs for each device connected to the bus system.
Give a number. In the preferred embodiment, each device connected to the bus contains a special device type register that identifies the device type, eg, CPU, 4 Mbit memory, 64 Mbit memory or disk controller. The configuration master checks each device, determines the device type, sets the appropriate control registers including access time registers, checks each storage device, and sets all appropriate memory address registers. .
【0070】一意的な装置ID番号を設定する1つの手
段は、各々の装置に装置ID番号を順番に選択させ、そ
の値を内部の装置IDレジスタに記憶させることであ
る。例えばマスタは一連の装置の各々にシフトレジスタ
を通して順番の装置ID番号を手渡すか、装置から装置
へトークンを手渡し、それによりそのトークンを有する
装置が他の回線から装置ID情報を読取るようにするこ
とができる。実施例では、装置ID番号は、例えばバス
に沿った順番といった物理的関係にしたがって装置に割
り当てる。One means of setting a unique device ID number is to have each device select the device ID number in turn and store that value in an internal device ID register. For example, the master may hand each device in the sequence a serial device ID number through a shift register or hand a token from device to device so that the device with the token may read device ID information from another line. You can In an embodiment, device ID numbers are assigned to devices according to physical relationships, such as order along the bus.
【0071】本発明の実施例では、装置ID設定は、各
々の装置上の1対のピンのリセット入力(ResetI
n)とリセット出力(ResetOut)を用いて行
う。それらのピンは通常の論理信号を扱い、装置ID構
成(コンフィギュレーション)中にだけ使用される。ク
ロックの各々の立ち上がりで、各々の装置はリセット入
力(入力)を4段階のリセットシフトレジスタに複製す
る。リセットシフトレジスタの出力はリセット出力に接
続され、それはまた、次に順番に接続された装置のリセ
ット入力に接続される。バス上の実質的に全ての装置は
それにより、共にデージーチェーン化される。例えば第
1のリセット信号は、ある装置でのリセット入力が論理
1の間ないしリセットシフトレジスタの選択ビットがゼ
ロから非ゼロになる時にその装置に、例えば全ての内部
レジスタをクリアし全ての状態機械をリセットすること
でハードリセットさせる。外部バス上の変更可能な値と
組み合わされて(リセット入力の立ち下がりである)第
2のリセット信号は、その装置に外部バスの内容を内部
装置IDレジスタ(Device[0:7])にラッチ
させる。In the preferred embodiment of the present invention, the device ID setting is a reset input (ResetI) of a pair of pins on each device.
n) and reset output (ResetOut). These pins handle normal logic signals and are used only during device ID configuration. On each rising edge of the clock, each device replicates the reset input (input) into a four stage reset shift register. The output of the reset shift register is connected to the reset output, which in turn is connected to the reset input of the next sequentially connected device. Virtually all devices on the bus are thereby daisy chained together. For example, the first reset signal may cause the device to clear all internal registers, eg, clear all internal registers, while the reset input at a device is at a logical one or when the select bit of the reset shift register goes from zero to non-zero. Hard reset by resetting. A second reset signal (which is the falling edge of the reset input) in combination with a changeable value on the external bus causes the device to latch the contents of the external bus into the internal device ID register (Device [0: 7]). Let
【0072】あるバス上の全ての装置をリセットするに
は、マスタは第1の装置のリセット入力回線を「1」に
十分な時間に設定して、バス上の全ての装置がリセット
されることを確実にする(4サイクルかける装置数の時
間に設定−望ましいバス構成上での装置の最大数は25
6(8ビット)であり、従って1024サイクルが常に
全装置をリセットするのに十分な時間である)。次にリ
セット入力を「0」に低下させ、BusData回線に
第1のそして後続の装置ID番号が駆動され、4サイク
ルパルス毎に変化する。後続の装置はそれらのID番号
を、リセット入力の立ち下がりがデージーチェーン装置
のシフトレジスタを通して伝ぱんすると、対応する装置
IDレジスタに設定する。図14には、マスタが第1の
装置IDをバスデータ回線バスデータ[0:3]に駆動
する時に低くなる第1の装置のリセット入力を示してい
る。第1の装置は次にその第1の装置IDをラッチす
る。4クロックサイクル後、マスタはバスデータ[0:
3]を次の装置IDに変更し、第1の装置のリセット出
力は低くなり、それは次のデージーチェーン装置のリセ
ット入力を低くし、次の装置が次の装置ID番号をバス
データ[0:3]からラッチできるようにする。実施例
では、1つのマスタが装置ID0を割り当てられ、リセ
ット入力回線の制御と、後続の装置ID番号を適切な時
にバス駆動することとはそのマスタの責任となる。実施
例では、各々の装置は、装置ID番号をバスデータ
[0:3]からラッチする前においてリセット入力が低
くなった後2クロックサイクルだけ待機する。To reset all devices on a bus, the master must set the reset input line of the first device to "1" long enough to reset all devices on the bus. (Set the time to the number of devices taking 4 cycles-the maximum number of devices on the desired bus configuration is 25)
6 (8 bits), so 1024 cycles are always sufficient time to reset the entire device). The reset input is then dropped to "0" and the BusData line is driven with the first and subsequent device ID numbers, which change every four cycle pulses. Subsequent devices set their ID number in the corresponding device ID register as the falling edge of the reset input propagates through the shift register of the daisy chain device. FIG. 14 shows the reset input of the first device going low when the master drives the first device ID to the bus data line bus data [0: 3]. The first device then latches its first device ID. After 4 clock cycles, the master outputs the bus data [0:
3] to the next device ID, the reset output of the first device goes low, which causes the reset input of the next daisy chain device to go low, and the next device sends the next device ID number to the bus data [0: 3] to enable latching. In one embodiment, one master is assigned device ID 0 and it is that master's responsibility to control the reset input line and bus drive subsequent device ID numbers at the appropriate times. In the preferred embodiment, each device waits two clock cycles after the reset input goes low before latching the device ID number from the bus data [0: 3].
【0073】当業者は、各々の装置にバスからの複数バ
イトを読取り、値を装置IDレジスタにラッチさせるこ
とにより長いID番号を装置に分配できることを理解で
きよう。当業者はまた、独自的な装置に装置ID番号を
獲得する別の方法があることを理解しよう。例えば一連
の連続番号をリセット入力回線に沿ってクロッキング
し、特定の時に各々の装置に指示して現在リセットシフ
トレジスタ値を装置IDレジスタにラッチすることがで
きる。Those skilled in the art will appreciate that a long ID number can be distributed to the devices by having each device read multiple bytes from the bus and have the value latched in the device ID register. Those skilled in the art will also appreciate that there are other ways to get a device ID number for a unique device. For example, a series of serial numbers can be clocked along the reset input line to instruct each device at a particular time to latch the current reset shift register value into the device ID register.
【0074】構成マスタは、各々のスレーブ内の各々の
アクセス時間レジスタ内のアクセス時間を、スレーブが
実際の所望のメモリアクセスを行うことができるように
十分に長い期間に選択、設定する。例えば通常のDRA
Mアクセスに付いては、この時間は行アドレスストロー
ブ(RAS)アクセス時間よりも長くなければならな
い。この条件を満たさなければ、スレーブは正確なデー
タを伝達することはできない。スレーブのアクセス時間
レジスタ内に記憶される値は、要求に応えてバスを使用
する前にスレーブ装置が待つべきバスサイクル数の半分
とする。それにより「1」のアクセス時間値は、要求パ
ケットの最後のバイトが受信された後少なくとも2サイ
クルまでは、スレーブはバスにアクセスすべきでないこ
とを示す。アクセスレジスタ0の値は、制御レジスタへ
のアクセスを容易にするため8(サイクル)に固定する
ようにする。The configuration master selects and sets the access time in each access time register in each slave for a period long enough to allow the slave to make the actual desired memory access. For example, normal DRA
For M accesses, this time must be longer than the row address strobe (RAS) access time. If this condition is not met, the slave will not be able to transmit accurate data. The value stored in the slave's access time register should be half the number of bus cycles the slave device should wait before using the bus in response to a request. An access time value of "1" thereby indicates that the slave should not access the bus until at least two cycles after the last byte of the request packet has been received. The value of the access register 0 is fixed to 8 (cycle) to facilitate access to the control register.
【0075】本発明のバス・アーキテクチャでは2以上
のマスタ装置を含めることができる。リセットないし初
期化シーケンスにも、バス上に複数のマスタがあるのか
の判定を含め、そうであれば各々に一意的なマスタID
番号を割り当てるようにする。当業者は、これを行う方
法は多くあることを理解できよう。例えばマスタは各々
の装置をポーリングして、特殊レジスタを読取ることに
より例えばそれがどのような装置かを判定し、そして各
々のマスタ装置に対して次に得られるマスタID番号を
特殊レジスタに書込むことができる。More than one master device can be included in the bus architecture of the present invention. The reset or initialization sequence also includes determining if there are multiple masters on the bus, and if so, a unique master ID for each.
Try to assign a number. Those skilled in the art will appreciate that there are many ways to do this. For example, the master polls each device, determines, for example, what device it is by reading the special register, and writes the next available master ID number to the special register for each master device. be able to.
【0076】<ECC>
従来技術でよく知られているエラー検出・補正([EC
C])方法をこのシステムで実施することができる。E
CC情報は一般にデータのブロックが最初にメモリに書
込まれる時にそのデータのブロックに対して計算され
る。データブロックは通常規定バイナリサイズ(例:2
56ビット)を有しており、ECC情報はかなり少ない
ビットしか使用しない。従来方式の各々のバイナリデー
タブロックは一般にECCビットを加えて記憶され、規
定バイナリ・パワーでないブロックサイズが生じるとい
う潜在的な問題が生じる。<ECC> Error detection and correction ([ECC
C]) method can be implemented in this system. E
CC information is generally calculated for a block of data when the block of data is first written to memory. Data block is usually defined binary size (eg: 2
56 bits) and the ECC information uses significantly fewer bits. Each conventional binary data block is typically stored with the addition of ECC bits, creating the potential problem of producing a block size that is not a defined binary power.
【0077】本発明の実施例では、ECC情報は対応す
るデータから別々に記憶され、それは次に規定バイナリ
サイズを有するブロックに記憶される。ECC情報およ
び対応するデータは例えば別々のDRAM装置に記憶す
ることができる。データは単一の要求パケットを用いて
ECCなしに読取ることができるが、エラー補正データ
の書込みないし読取りには、1つのデータ用、そしても
う1つは対応するECC情報用に2つの要求パケットを
必要とする。ECC情報は常に常備的に記憶されるとは
限らず、場合によってはECC情報を要求パケットを送
らずにあるいはバスデータブロック転送なしに得ること
ができる。In an embodiment of the invention, ECC information is stored separately from the corresponding data, which in turn is stored in blocks having a defined binary size. The ECC information and corresponding data can be stored in separate DRAM devices, for example. The data can be read without ECC using a single request packet, but to write or read the error correction data, two request packets are used, one for the data and the other for the corresponding ECC information. I need. ECC information is not always stored permanently, and in some cases ECC information can be obtained without sending request packets or without bus data block transfers.
【0078】実施例では、標準データブロックサイズを
ECCで使用するために選択することができ、ECC方
法は、対応するECCブロック内の情報の必要なビット
数を判定する。ECC情報を含むRAMをプログラムし
て、(1) 通常RAM(データを含む)のアクセス時間に
加えられた標準データブロックにアクセスする時間から
要求パケット(6バイト)を送る時間を引いたものに等
しいアクセス時間、ないし、(2) 通常RAMのアクセス
時間から標準ECCブロックにアクセスする時間を引
き、要求パケットを送る時間を引いたものに等しいアク
セス時間を記憶することができる。データブロックと対
応するECCブロックを読取るため、マスタは単にEC
Cブロックに対する要求のすぐ後にそのデータに対する
要求を発する。ECC・RAMは選択されたアクセス時
間を待ち、そのデータを(上記の(1) の場合)データR
AMがデータブロックを追い出した直後、バスに乗せ
る。当業者は、上記の(2 )の場合で説明したアクセス時
間は、データがバス回線に乗せられる前にECCを乗せ
るのに使用することができることを理解し、データ書込
みは読取りに付いて説明した方法と相似的に行うことが
できることを理解できよう。またそれらの対になったE
CC要求に適合させるため、バスビジー(使用中)構造
および要求パケット仲裁方法で行わなければならない調
整を理解できよう。In an embodiment, a standard data block size can be selected for use with the ECC and the ECC method determines the required number of bits of information in the corresponding ECC block. Program the RAM containing ECC information to be equal to (1) the time to access the standard data block plus the access time to the normal RAM (including data) minus the time to send the request packet (6 bytes). The access time or (2) the access time equal to the access time of the normal RAM minus the time to access the standard ECC block minus the time to send the request packet can be stored. The master simply reads the EC to read the ECC block that corresponds to the data block.
A request for that data is issued immediately after the request for the C block. The ECC / RAM waits for the selected access time, and transfers that data (in the case of (1) above) to data R
Immediately after the AM ejects the data block, the bus is placed on the bus. Those skilled in the art will understand that the access time described in the case of (2) above can be used to load the ECC before the data is loaded on the bus line, and the data write is explained for the read. It will be appreciated that the method can be done analogously. Also those paired E
Understand the bus busy structure and the adjustments that must be made in the request packet arbitration method to meet CC requirements.
【0079】このシステムはきわめて柔軟性があるの
で、システム設計者は、本発明の記憶装置を用いてデー
タブロックのサイズおよびECCビット数を選択するこ
とができる。バス上のデータストリームは、様々な形で
解釈できることに留意する。例えばシーケンスは2m E
CCバイトが続く2n データバイト(あるいはその
逆)、あるいはシーケンスは8データバイトプラス1E
CCバイトの2k 反復とすることもできる。ディレクト
リ・ベースのキャッシュコヒーレンス方式により用いら
れる情報のような他の情報もこのようにして管理するこ
とができる。例えばアナント・アガーワル他による「キ
ャッシュ一致性用の基準化可能ディレクトリ方式」第1
5回国際コンピュータアーキテクチャ・シンポジウム、
1988年pp.280−289を参照のこと。当業者
は、本発明の教示内にあるECCを実施する別の方法を
理解できよう。The flexibility of this system allows the system designer to select the size of the data block and the number of ECC bits using the storage device of the present invention. Note that the data stream on the bus can be interpreted in various ways. For example, the sequence is 2 m E
2 n data bytes followed by CC bytes (or vice versa), or sequence is 8 data bytes plus 1E
It can also be 2 k iterations of CC bytes. Other information, such as the information used by directory-based cache coherence schemes, can also be managed in this way. For example, Anant Agarwal et al., "Canonicalizable Directory Scheme for Cache Consistency," 1st
5th International Computer Architecture Symposium,
1988 pp. See 280-289. One of ordinary skill in the art will appreciate other ways of implementing ECC within the teachings of the present invention.
【0080】<低電源3−Dパッケージ化>
本発明の他の主要な利点は、記憶システムの電力消費量
を大幅に削減することである。従来のDRAMで消費さ
れる電力のほぼ全ては、ロー(行)アクセスを行う際に
消失する。単一のRAMで単一のローアクセスを使用し
てブロック要求に対する全てのビットを供給することで
(従来の記憶システムの複数RAMの各々内のローアク
セスと比較して)、ビット当たりの電力は非常に小さく
することができる。本発明を用いた記憶装置により消失
する電力はかなり削減されるので、従来の設計よりも装
置を近づけて配置できる可能性がある。<Low Power Supply 3-D Packaging> Another major advantage of the present invention is that it significantly reduces the power consumption of the storage system. Almost all of the power consumed in a conventional DRAM is lost during row (row) access. By using a single row access in a single RAM to supply all bits for a block request (compared to row access in each of the multiple RAMs of a conventional storage system), the power per bit is Can be very small. Since the power lost by the storage device using the present invention is significantly reduced, it may be possible to place the device closer than in conventional designs.
【0081】本発明のバス・アーキテクチャにより、革
新的な3−Dパッケージ化技術が可能になる。狭い多重
化をした(時間的共用)バスを用いることで、任意の大
きな記憶装置に対するピン数を20ピンの水準に非常に
小さく保つことができる。更に、このピン数はDRAM
密度の1世代から次の世代に一定に保つことができる。
電力の消失が低いことで、ピンのピッチ(ICピンの間
のスペース)を狭くして各々のパッケージを小さくする
ことができる。20ミルほどの低いピン・ピッチを支持
する現在の表面取り付け技術で、全ての装置外の接続は
記憶装置の1つの端部で実施することができる。本発明
に有用な半導体ダイは、そのダイの1端部に沿った接続
ないしパッドを有し、配線することができ、さもなくば
同様の長さのワイヤでパッケージ・ピンに接続される。
このジオメトリにより、場合により4mm以下の有効リー
ド長の非常に短いリード線が可能になる。更に、本発明
はバス化した相互接続のみを使用し、各々の装置上の各
々のパッドはそれぞれ他の装置の対応するパッドにバス
により接続される。The bus architecture of the present invention enables innovative 3-D packaging techniques. By using a narrowly multiplexed (temporally shared) bus, the pin count for any large storage device can be kept very small at the 20 pin level. Furthermore, this pin count is DRAM
The density can be kept constant from one generation to the next.
The low dissipation of power allows the pin pitch (the space between the IC pins) to be narrowed to make each package smaller. With current surface mount technology that supports pin pitches as low as 20 mils, all off-device connections can be made at one end of the storage device. Semiconductor dies useful in the present invention have connections or pads along one end of the die and can be routed or otherwise connected to package pins with wires of similar length.
This geometry allows for very short leads with an effective lead length of 4 mm or less in some cases. Further, the present invention uses only bused interconnects, with each pad on each device being connected by a bus to a corresponding pad on another device.
【0082】少ないピン数と端部接続バスを使用するこ
とで、単純な3−Dパッケージが可能になり、それによ
り装置をスタックし、バスを、スタックした1つの端部
に沿って接続することができる。全ての信号がバスに乗
せられるという事実は、単純な3−D構造を実施するた
めに重要である。これなしには「バックプレーン」の複
雑性は、現在の技術で費用効果的にするには困難すぎ
る。本発明のスタック内の個々の装置は、全記憶システ
ムの電力の消失が低いので非常に厳密にパックすること
ができ、装置を突き合わせてあるいは上下にスタックす
ることができる。従来のプラスチック射出成形の小さい
外形の(SO)パッケージは約2.5mm(100ミル)
のピッチで使用することができるが、最終的な限度は装
置ダイの厚さで、現在のウエハ技術を用いて0.2−
0.5mmの小さいサイズ水準となる。The use of low pin counts and end connection buses allows for a simple 3-D package, which allows devices to be stacked and the buses to be connected along one end of the stack. You can The fact that all signals are on the bus is important for implementing a simple 3-D structure. Without this, the complexity of the "backplane" would be too difficult to be cost effective with current technology. The individual devices in the stack of the present invention can be very tightly packed due to the low power dissipation of the entire storage system, allowing the devices to be stacked side-by-side or one above the other. Conventional plastic injection molding small outline (SO) package is about 2.5 mm (100 mil)
, But the final limit is the device die thickness, which is 0.2- using current wafer technology.
Small size level of 0.5 mm.
【0083】<バスの電気的記述>
非常に電力消費が少なく物理的に密着してパックした装
置を用いることで、バスを非常に短くでき、それにより
一方で短い伝播時間と高いデータ速度が可能になる。本
発明の実施例のバスは、500MHz(2ナノ秒サイク
ル)のデータ速度まで作動できる1組の抵抗終端で制御
されたインピーダンス伝送回路からなる。伝送回線の特
性は、バスに取り付けられたDRAM(ないし他のスレ
ーブ)に起因する負荷により強く影響される。それらの
装置は、回線のインピーダンスを低下させ、伝送速度を
減少させる集中容量を回線に加える。負荷された環境で
は、バス・インピーダンスは25オームの水準にあり、
伝播速度は約c/4(c=光の速度)ないし7・5cm/
nsとなることが多い。2nsデータ速度で作動するに
は、バス上での通過時間は、1ns以下とし、1nsを
入力受信器(以下に説明)の設定と保持時間およびクロ
ックのずれ(スキュー)のために残すようにすべきであ
る。従ってバス回線は、最大性能を得るために約8cm以
下の非常に短いものとすべきである。性能の低いシステ
ムははるかに長い回線、例えば4nsバスは24cm回線
(3ns通過時間、1ns設定、保持時間)を持つこと
ができる。<Electrical description of the bus> By using a device that is very power consuming and physically closely packed, the bus can be made very short, which in turn allows for short propagation times and high data rates. become. The bus of an embodiment of the present invention consists of a set of resistive termination controlled impedance transmission circuits capable of operating up to a data rate of 500 MHz (2 nanosecond cycle). The characteristics of the transmission line are strongly influenced by the load caused by the DRAM (or other slave) attached to the bus. These devices add lumped capacity to the line that lowers the impedance of the line and reduces the transmission rate. In the loaded environment, the bus impedance is on the order of 25 ohms,
Propagation speed is about c / 4 (c = speed of light) to 7.5 cm /
It is often ns. To operate at a 2 ns data rate, transit time on the bus should be less than 1 ns, leaving 1 ns for setting and holding time of input receivers (described below) and clock drift (skew). Should be. Therefore, the bus line should be very short, about 8 cm or less for maximum performance. Low performance systems can have much longer lines, eg a 4 ns bus can have a 24 cm line (3 ns transit time, 1 ns setting, hold time).
【0084】実施例では、バスは、前述(段落006
1)の通り電流で駆動され、電流駆動器(励振器)を使
用する。各々の出力は約500mVないしそれ以上の出
力スイングをもたらす50mAをシンクできなければな
らない。本発明の実施例では、バスはアクティブローで
ある。非表明状態(高値)は、論理ゼロと見なし、従っ
て表明値(低状態)は論理1となる。当業者には、本発
明の方法は、電圧に対して反対の論理関係を用いても実
施できることが理解されよう。非表明状態の値は、終端
抵抗の電圧により設定され、電力の消失を少なくするた
めにできるだけ少なくしながらも出力が電流源として作
動できるように十分高くすべきである。それらの制約に
より好ましい実施では接地上で約2Vの終端電圧をもた
らす。電流源駆動器により、出力電圧はバスを駆動(励
振)している電源の和に比例する。In the embodiment, the bus is the same as described above (paragraph 006).
It is driven by current as in 1) and uses a current driver (exciter). Each output must be capable of sinking 50 mA resulting in an output swing of about 500 mV or more. In the preferred embodiment of the invention, the bus is active low. The non-asserted state (high value) is considered a logical zero, so the asserted value (low state) is a logical one. Those skilled in the art will appreciate that the method of the present invention can also be implemented with opposite logical relationships to voltage. The value of the deasserted state is set by the voltage across the terminating resistor and should be high enough to allow the output to operate as a current source with as little as possible to reduce power dissipation. These constraints result in a termination voltage of about 2V above ground in the preferred implementation. With the current source driver, the output voltage is proportional to the sum of the power supplies driving (exciting) the bus.
【0085】図7では、2つの装置がバスを同時に駆動
して安定した状態にはないが、ワイヤ上の伝播遅延故
に、装置B42(既にバス上で論理1を表明)によりバ
スが依然駆動されている間に、装置A41がそのバス部
分44の駆動を開始できるという状態が生じることがあ
る。電流源駆動器を用いたシステムでは、B42がバス
を(時間46前に)駆動している時、点44と点45で
の値は論理1である。B42が、A41のスイッチオン
の時点46でスイッチオフすると、A41による追加駆
動により、A41の出力点44での電圧は一時的に通常
値以下に低下する。電圧はその通常値に、B42のオフ
の効果が検出される時点47で戻る。時点45での電圧
は、装置B42がオフになると論理0となり、装置A4
1のオンの効果が検出される時点47で低下する。装置
A41からの電流により駆動された論理1はバス上の以
前の値に関係なく伝ぱんされるので、バス上の値は、1
回のフライト(tf) 遅延(すなわち信号がバスの一端
から他端まで伝播するのにかかる時間)後に確実に整定
される。電圧励振を使用した場合(ECL配線OR化
(ワイヤードオア)でのように)、バス上の論理1(先
に駆動された装置B42に由来)は、装置A41により
発せられ且つシステムの最も離れた部分(例:装置4
3)により検出される遷移を、装置B42からのターン
オフ波形が装置A41に到着してから1回のフライト遅
延後まで阻止し、フライト遅延の時間の2倍と言う最悪
ケースの整定時間をもたらす。In FIG. 7, the two devices are driving the bus at the same time and are not in a stable state, but because of the propagation delay on the wire, device B42 (already asserting a logic 1 on the bus) still drives the bus. During this time, a situation may arise in which device A41 can start driving its bus portion 44. In a system with a current source driver, the values at points 44 and 45 are a logical one when B42 is driving the bus (prior to time 46). When B42 is switched off at the time point 46 when A41 is switched on, the voltage at the output point 44 of A41 temporarily falls below the normal value due to the additional drive by A41. The voltage returns to its normal value at time 47 when the effect of turning off B42 is detected. The voltage at time point 45 becomes a logic 0 when device B42 is turned off and device A4
It falls at time 47 when the effect of turning on one is detected. The value on the bus is 1 because the logic 1 driven by the current from device A41 propagates regardless of the previous value on the bus.
It is reliably settled after a number of flight (t f ) delays (ie the time it takes for the signal to propagate from one end of the bus to the other). When using voltage excitation (as in ECL wiring OR (wired-or)), a logical 1 on the bus (from device B42 previously driven) is emitted by device A41 and the furthest away from the system. Part (eg device 4)
The transition detected by 3) is blocked until after one flight delay after the turn-off waveform from device B42 arrives at device A41, resulting in a worst case settling time of twice the flight delay time.
【0086】<クロッキング>
伝播遅延によりエラーをもたらすことなく正確に高速バ
スをクロックすることは、各々の装置に2つのバスクロ
ック信号をモニタさせ、真のシステムクロックとなる装
置クロック(内部クロックとも言う)を内的に導出する
ことで行うことができる。バスクロック情報を1つない
し2つの回線に送って、各々のバス接続された装置が他
の全ての装置クロックに関してゼロ・スキューの内部装
置クロックを生成するメカニズムを設けることができ
る。図8の好ましい実施例では、バスの一端のバスクロ
ック生成器50は例えば回線53上で左から右にバスの
遠端までバスに沿って1方向に先行バスクロック信号を
伝播する。次に同一クロック信号が第2の回線54への
直接接続を通して送られ、右から左に伝播して遠端から
出発点までバスに沿って後着バスクロック信号として戻
る。単一バスクロック回線もバスの遠端で終端処理をさ
れないまま残っている場合はそれを使用することがで
き、先行バスクロック信号は後着バスクロック信号とし
て同一回線に沿って反映することができる。<Clocking> Accurately clocking a high-speed bus without causing an error due to propagation delay causes each device to monitor two bus clock signals and becomes a true system clock. Can be done internally. A mechanism may be provided to send the bus clock information on one or two lines so that each bus-connected device produces a zero skew internal device clock with respect to all other device clocks. In the preferred embodiment of FIG. 8, bus clock generator 50 at one end of the bus propagates the preceding bus clock signal in one direction along the bus, eg, on line 53 from left to right to the far end of the bus. The same clock signal is then sent through a direct connection to the second line 54 and propagates from right to left returning along the bus from the far end to the starting point as a late arrival bus clock signal. A single bus clock line can also be used if it remains unterminated at the far end of the bus, and the leading bus clock signal can be reflected along the same line as the terminating bus clock signal. .
【0087】図8bは、各々の装置51,52が異なる
時点(ワイヤに沿った伝播遅延故に)で受信する2つの
バスクロック信号は、バスに沿って、2つのバスクロッ
クの間に一定した中間時点を持つことを例示したもので
ある。各々の装置51,52では、クロック1(53)
の立ち上がり55の後にはクロック2(54)の立ち上
がり56が来る。同様に、クロック1(53)の立ち下
がり57の後にはクロック2(54)の立ち下がり58
が来る。この波形関係は、バス上の他の全ての装置で見
られる。クロック生成器に近い装置では、クロックパル
スがバスを通過し、回線54に沿って戻るのに長い時間
がかかる故に、生成器から遠い装置に比べてクロック1
とクロック2の間の分離が大きいが、対応する立ち上が
りないし立ち下がりの間の中間時点59,60はいずれ
の装置でも、バスの遠端とその装置の間の各々のクロッ
ク回線の長さは等しいので固定されている。各々の装置
は2つのバスクロックを抽出し、その2つの中間点でそ
れ自身の装置クロック(内部クロック)を生成しなけれ
ばならない。FIG. 8b shows that the two bus clock signals received by each device 51, 52 at different times (due to the propagation delay along the wire) have a constant intermediate value along the bus between the two bus clocks. This is an example of having a time point. In each of the devices 51 and 52, the clock 1 (53)
The rising edge 56 of the clock 2 (54) comes after the rising edge 55 of. Similarly, the falling edge 57 of the clock 1 (53) is followed by the falling edge 58 of the clock 2 (54).
Is coming. This waveform relationship is found in all other devices on the bus. Devices closer to the clock generator may take longer clock 1 than devices farther from the generator because the clock pulses take longer to travel through the bus and back along line 54.
Although the separation between clock and clock 2 is large, the corresponding intermediate time points 59, 60 between the rising and falling edges of any device are of equal length on each clock line between the far end of the bus and that device. So it is fixed. Each device must extract two bus clocks and generate its own device clock (internal clock) at the midpoint between the two.
【0088】クロック分配問題は、2で割ったバスサイ
クルデータ速度に等しいバスクロックと装置クロック速
度(すなわちバスクロック周期はバスサイクル周期の2
倍)を用いることにより更に削減することができる。従
って500MHzバスは250MHzクロック速度を用
いるようにする。周波数のこの削減により、2つの利点
がもたらされる。第1にバス上の全ての信号に同一の最
悪ケースのデータ速度をもたせることになる(500M
Hzバス上のデータは、2ns毎にしか変更できな
い)。第2にバスサイクルデータ速度の半分の刻時によ
り、例えば偶数サイクルを内部装置クロックが0の時の
ものと定義し、奇数サイクルを内部装置クロックが1の
時のものと定義することにより、奇数および偶数バスサ
イクルのラベル付けを必要ないものとできる。The clock distribution problem is that the bus clock and device clock speed equal to the bus cycle data rate divided by 2 (ie, bus clock period is 2 bus cycle periods).
It can be further reduced by using Therefore, the 500 MHz bus should use a 250 MHz clock rate. This reduction in frequency offers two advantages. First, all signals on the bus will have the same worst case data rate (500M
The data on the Hz bus can only be changed every 2ns). Second, by clocking at half the bus cycle data rate, for example, defining an even cycle as one when the internal device clock is 0 and an odd cycle as one when the internal device clock is 1, And even bus cycle labeling can be eliminated.
【0089】<多重バス>
上記のバス長の限界により、単一バス上に配置できる装
置の合計数が制約される。装置間に2.5mmのスペース
を用いることで、単一の8cmバスは約32の装置を保持
する。当業者はバス上の全体的なデータ速度は適切であ
るが、記憶ないし処理にははるかに多くの装置(32よ
り更に多くの)を必要とする本発明の特定アプリケーシ
ョンを理解できよう。大きなシステムは、本発明の教示
を用いて1つないし複数のメモリ・サブシステム(一般
に32ないしバス設計により可能な最大近くの、トラン
シーバ装置に接続された2つないしそれ以上の装置から
なる1次バスユニット)を使用することで容易に構築す
ることができる。<Multiple Bus> The above bus length limitation limits the total number of devices that can be placed on a single bus. With a 2.5 mm space between the devices, a single 8 cm bath holds about 32 devices. One of ordinary skill in the art will appreciate the particular application of the present invention where the overall data rate on the bus is adequate but requires much more equipment (more than 32) for storage or processing. Larger systems use one or more memory subsystems (generally 32 or near the maximum possible with a bus design, a primary of two or more devices connected to a transceiver device) using the teachings of the present invention. It can be easily constructed by using a bus unit).
【0090】図9では、各々の1次バスユニットは時ど
きメモリ・ステックと呼ばれる単一回路基板66に取り
付けることができる。各々のトランシーバ装置19はま
た、上記で長く説明した1次バス18と電気的および他
の側面で類似ないし同一のトランシーバ・バス65に接
続している。好ましい実施例では、全てのマスタはトラ
ンシーバ・バスにあるのでマスタ間ではトランシーバ遅
延はなく、全ての記憶装置は全てのメモリアクセスが等
価のトランシーバ遅延を経験するように1次バスユニッ
ト上にあるが、当業者はマスタが1つ以上のバスユニッ
ト上にあり記憶装置がトランシーバ・バス並びに1次バ
スユニット上にあるシステムを実施する方法を理解でき
よう。一般に、記憶装置に付いて述べた本発明の各々の
教示は、取り付けた1次バスユニット上のトランシーバ
装置と1つないし複数の記憶装置を用いて実施すること
ができる。ディスク制御装置、映像制御装置、入出力装
置を含む総称的に周辺装置と呼ばれる他の装置も所望に
よりトランシーバ・バスあるいは1次バスユニットに取
り付けることができる。当業者は特定のシステム設計で
トランシーバ・バスで必要な単一の1次バスユニットな
いし複数1次バスユニットを使用する方法を理解できよ
う。In FIG. 9, each primary bus unit can be mounted on a single circuit board 66, sometimes referred to as a memory stick. Each transceiver device 19 also connects to a transceiver bus 65 that is electrically and otherwise similar or identical to the primary bus 18 described above. In the preferred embodiment, there is no transceiver delay between masters because all masters are on the transceiver bus, and all storage is on the primary bus unit so that all memory accesses experience equivalent transceiver delays. Those skilled in the art will understand how to implement a system in which the master is on one or more bus units and the storage is on the transceiver bus as well as the primary bus unit. In general, the teachings of each of the inventions described with respect to storage devices can be implemented with one or more storage devices and transceiver devices on an attached primary bus unit. Other devices, generically referred to as peripherals, including disk controllers, video controllers, and I / O devices, can be attached to the transceiver bus or primary bus unit as desired. Those skilled in the art will understand how to use a single primary bus unit or multiple primary bus units as required by a transceiver bus in a particular system design.
【0091】トランシーバは機能的に非常に単純であ
る。それらはトランシーバ・バス上の要求パケットを検
出し、それらをその1次バスユニットに送信する。要求
パケットがトランシーバの1次バスユニット上の装置に
書込みを要求する場合は、そのトランシーバはアクセス
時間とブロックサイズの記録を取り、トランシーバ・バ
スからの全てのデータをその時間中に1次バスユニット
に送る。トランシーバはまたその1次バスユニットを監
視し、そこに出て来るデータをトランシーバ・バスに送
る。バスが高速度であるということは、トランシーバを
パイプライン化する必要があるということであり、デー
タをトランシーバをを通してどちらかの方向に通過させ
るのに1ないし2サイクルの追加遅延が必要となる。ト
ランシーバ・バス上のマスタに記憶されたアクセス時間
を増加してトランシーバ遅延を考慮する必要があるが、
1次バスユニット上のスレーブに記憶されたアクセス時
間は変更すべきではない。The transceiver is functionally very simple. They detect request packets on the transceiver bus and send them to their primary bus unit. If the request packet requires a write to a device on the transceiver's primary bus unit, that transceiver keeps a record of the access time and block size and takes all data from the transceiver bus during that time. Send to. The transceiver also monitors its primary bus unit and sends any data that exits it to the transceiver bus. The high speed of the bus means that the transceiver must be pipelined, requiring an additional delay of one or two cycles to pass data through the transceiver in either direction. It is necessary to increase the access time stored in the master on the transceiver bus to account for transceiver delay,
The access time stored in the slave on the primary bus unit should not be changed.
【0092】当業者にはより高度なトランシーバで1次
バスユニットとの送信を制御できることが理解されよ
う。追加制御回線TrncvrRWは、その回線をAd
drValid回線と共に使用してトランシーバ・バス
上の全ての装置に対してデータ回線上の情報は 1)要求
パケット、2)スレーブへの有効データ、3)スレーブから
の有効データ、ないし4)無効データ(ないし遊びバス)
であることを示せるように、トランシーバ・バス上の全
ての装置に対してバス化することができる。この追加制
御回線を用いることで、いつデータをその1次バスから
トランシーバ・バスに送る必要があるかトランシーバが
記録を取る必要はなくなり、制御信号が上記の 2) の条
件を示す時はいつでも全てのトランシーバは全てのデー
タをその1次バスからトランシーババスに送る。本発明
の好ましい実施例では、AddrValidとTrnc
vrRWの両方とも低い場合は、バス活動はなくトラン
シーバは遊び状態に留まる。要求パケットを送っている
制御装置はAddrValidを高く駆動し、トランシ
ーバ・バス上の全ての装置に各々のトランシーバがその
1次バスユニットに送るべき要求パケットが送信されて
いるということを示す。スレーブに書込もうとしている
各々の制御装置は、AddrValidとTrncvr
RWの両方を高く駆動して、スレーブに対する有効なデ
ータがデータ回線上にあることを示す。各々のトランシ
ーバ装置はそこでトランシーバ・バス回線からの全ての
データを各々の1次バスユニットに送信する。スレーブ
からの情報を受け取ることを予期している制御装置もT
rncvrRW回線を高く駆動するがAddrVali
dは駆動すべきではなく、それにより各々のトランシー
バにスレーブからその1次ローカル・バスに来るデータ
をトランシーバ・バスに送信するように示す。更に高度
なトランシーバはその1次バスユニットに宛てられたな
いしそこから来る信号を理解し、要求時にのみ信号を送
信する。Those skilled in the art will appreciate that more sophisticated transceivers can control transmissions to and from the primary bus unit. The additional control line TrncvrRW sets the line to Ad
The information on the data line for all devices on the transceiver bus when used with the drValid line is 1) request packet, 2) valid data to slave, 3) valid data from slave, or 4) invalid data ( Or play bus)
Can be bussed to all devices on the transceiver bus. By using this additional control line, the transceiver does not have to keep track of when data needs to be sent from its primary bus to the transceiver bus, and whenever the control signal indicates condition 2) above Transceivers send all data from their primary bus to the transceiver bus. In the preferred embodiment of the present invention, AddrValid and Trnc
If both vrRW are low, there is no bus activity and the transceiver remains idle. The controller sending the request packet drives AddValid high, indicating to all devices on the transceiver bus that each transceiver is sending a request packet to be sent to its primary bus unit. Each controller attempting to write to the slave has AddrValid and Trncvr
Drive both RW high to indicate that valid data for the slave is on the data line. Each transceiver device then transmits all the data from the transceiver bus line to its respective primary bus unit. Controllers expecting to receive information from slaves also
Drives the rncvrRW line high, but AddrVali
d should not be driven, thereby indicating to each transceiver to send data coming from the slave to its primary local bus to the transceiver bus. More advanced transceivers understand signals destined for or coming from their primary bus unit and only send signals on demand.
【0093】図9はトランシーバの物理的な取り付け例
を示したものである。この物理的な構造の1つの重要な
特徴は、各々のトランシーバ19のバスを1次バスユニ
ット66上のDRAMないし他の装置15,16,17
のオリジナルのバスと統合することである。トランシー
バ19は2つの側面にピンを有しており、第1の組みの
ピンを1次バス18に接続して1次バスユニット上に平
らに取り付けられている。第2の組みのトランシーバピ
ン20は第1の組みのピンとは直角で、DRAMが1次
バスユニットに取り付けられるのと殆ど同様にトランシ
ーバ19がトランシーバ・バス65に取り付けられる方
向を向いている。トランシーバ・バスは一般に平坦にす
ることができ、異なる面で各々の1次バスユニットの面
に対して直角とする。トランシーバ・バスはまた一般に
1次バスユニットに垂直でかつ接線方向に取り付けて円
状とすることができる。FIG. 9 shows an example of physical installation of the transceiver. One important feature of this physical structure is that the bus of each transceiver 19 is a DRAM or other device 15, 16, 17 on the primary bus unit 66.
Is to integrate with the original bus of. The transceiver 19 has pins on two sides and is mounted flat on the primary bus unit with the pins of the first set connected to the primary bus 18. The second set of transceiver pins 20 are at right angles to the first set of pins and are oriented to attach transceiver 19 to transceiver bus 65 much like DRAMs are attached to the primary bus unit. Transceiver buses can generally be flat and at different planes at right angles to the plane of each primary bus unit. The transceiver bus can also be generally circular and mounted tangentially perpendicular to the primary bus unit.
【0094】この2レベル方式を使用することで、50
0以上のスレーブ(各々の32DRAMの16バス)を
含むシステムを容易に構築することができる。当業者は
上記の装置ID方式を変更して、例えば長い装置IDな
いし追加レジスタを使用して装置IDの一部を保持する
ことで256装置以上に対応することができることを理
解できよう。この方式を更に3次元に拡張して、トラン
シーバ・バスユニットを並列および各々の上に配列し、
対応する信号回線を適切なトランシーバを通してバスに
乗せることにより複数トランシーバ・バスを接続し、2
次トランシーバ・バスを作ることができる。そのような
2次トランシーバ・バスを使用すると、何千ものスレー
ブ装置を単一のバスに効果的に接続することができる。By using this two-level method, 50
A system including zero or more slaves (16 buses of 32 DRAMs each) can be easily constructed. Those skilled in the art will understand that the above device ID scheme can be modified to accommodate more than 256 devices, for example by using a long device ID or using an additional register to hold a portion of the device ID. Extending this scheme to three dimensions, transceiver bus units are arranged in parallel and on each,
Multiple transceiver buses can be connected by placing the corresponding signal lines on the bus through the appropriate transceivers.
Next you can build a transceiver bus. With such a secondary transceiver bus, thousands of slave devices can be effectively connected to a single bus.
【0095】<<装置インターフェイス>>
高速バスへの装置インターフェイスは、3つの主要部分
に分割することができる。第1の部分は電気的インター
フェイスである。この部分には入力受信器、バス駆動
器、クロック生成回路が含まれる。第2の部分にはアド
レス比較回路とタイミングレジスタが含まれる。この部
分は入力要求パケットを受け取り、要求がその装置に対
するものであるかどうかを判定し、そうであれば内部ア
クセスを開始し、正確な時にピンにデータを送る。最後
に特にDRAMなどの記憶装置用の部分は、DRAMコ
ラム(列)アクセス経路である。この部分は従来のDR
AMにより与えられる帯域幅よりも大きな帯域幅をDR
AM増幅器に与えまた取り出す必要がある。電気インタ
ーフェイスとDRAMコラムアクセス経路の実現は、以
下の節でより詳細に説明する。当業者は、本発明を実施
するための従来のアドレス比較回路と従来のレジスタ回
路を修正する方法を理解できよう。<< Device Interface >> The device interface to the high speed bus can be divided into three main parts. The first part is the electrical interface. This part includes the input receiver, bus driver, and clock generation circuit. The second part includes an address comparison circuit and a timing register. This part receives the incoming request packet, determines if the request is for that device, and if so, initiates an internal access and sends the data to the pin at the correct time. Lastly, the portion for memory devices such as DRAM is a DRAM column access path. This part is the conventional DR
DR a bandwidth larger than the bandwidth given by AM
It needs to be fed to and taken out from the AM amplifier. The implementation of the electrical interface and DRAM column access path is described in more detail in the following sections. Those skilled in the art will understand how to modify conventional address compare circuits and conventional register circuits to implement the present invention.
【0096】<電気インターフェイス−入出力回路>
図10にアドレス/データ/制御回線のための望ましい
入出力回路のブロック図を示す。この回路は特にDRA
M装置で使用するのに適しているが、当業者には本発明
のバスに接続された他の装置で使用するために使用ある
いは変更することができよう。これは1組の入力受信器
71,72と、入出力回線69とパッド75に接続され
た出力駆動器76と、内部クロック73および内部クロ
ックの相補信号74を含む。クロッキングされた入力受
信器は、バスの同期的な性質を利用する。装置入力受信
器の性能要件を更に緩和するため、各々の装置ピンおよ
び従って各々のバス回線は、一方で偶数サイクル入力を
抽出し、他方で奇数サイクル入力を抽出するため、2つ
のクロッキングされた受信器に接続される。このように
入力70をピンでデマルチプレクサ操作(非多重化)を
することにより、各々のクロッキングされたアンプ(入
力受信器)には完全な2nsサイクルが与えられ、バス
低電圧振れ信号を全値CMOS論理信号に増幅する。当
業者は本発明の教示内で追加のクロッキングされた入力
受信器を使用できることを理解できよう。例えば4つの
入力受信器を各々の装置ピンに接続して修正内部装置ク
ロックによりクロッキングして順次ビットをバスから内
部装置回路に転送でき、更に早い外部バス速度あるいは
更に長い整定時間によりバス低電圧振れ信号を全値CM
OS論理信号へ増幅することができる。<Electrical Interface-I / O Circuit> FIG. 10 shows a block diagram of a desirable I / O circuit for address / data / control lines. This circuit is especially
Although suitable for use with M devices, those skilled in the art could use or modify it for use with other devices connected to the bus of the present invention. It includes a set of input receivers 71, 72, an output driver 76 connected to the input / output line 69 and pad 75, an internal clock 73 and a complementary signal 74 of the internal clock. The clocked input receiver takes advantage of the synchronous nature of the bus. To further relax the performance requirements of the device input receiver, each device pin, and thus each bus line, is clocked in two to extract even cycle inputs on the one hand and odd cycle inputs on the other hand. Connected to the receiver. By pin demultiplexing (demultiplexing) the input 70 in this way, each clocked amplifier (input receiver) is given a complete 2 ns cycle to fully accommodate the bus low voltage swing signal. Amplify to value CMOS logic signal. Those skilled in the art will appreciate that additional clocked input receivers can be used within the teachings of the present invention. For example, four input receivers can be connected to each device pin and clocked by a modified internal device clock to transfer bits sequentially from the bus to the internal device circuitry, with faster external bus speeds or longer settling times for bus low voltage. All values of shake signal CM
It can be amplified to an OS logic signal.
【0097】出力駆動器は非常に単純で、単一のNMO
Sプルダウン・トランジスタ76からなる。このトラン
ジスタは、最悪ケースの条件下で更に、バスにより求め
られる50mAをシンクすることができる大きさとなっ
ている。0.8ミクロンCMOS技術に付いては、トラ
ンジスタは約200ミクロン長である必要がある。全体
的なバス性能は、出力トランジスタ電流を制御するフィ
ードバック手法を用いて装置を流れる電流が全ての操作
条件下でほぼ50mAであるようにすることで改善する
ことができる(ただしこれは適切なバス操作に絶対的に
必要ではない)。電流を制御するためフィードバック手
法を用いるため当業者には周知の多くの方法の1つの例
が、ハンス・シューマッハ他による「CMOSナノ秒以
下の真のECL出力バッファ」J.ソリッドステート回
路、25巻(1),pp.150−154(1990年2
月)に説明されている。この電流の制御により性能は向
上し、電力の消失を削減できる。500MHzで作動で
きるこの出力駆動器はまた、他の内部チップ回路に接続
された2つないしそれ以上の(できれば4)の入力を有
する適切なマルチプレクサにより制御される(これらは
全て、周知の従来技術にしたがって設計することができ
る)。The output driver is very simple and has a single NMO
It consists of an S pull-down transistor 76. This transistor is also sized to sink 50 mA required by the bus under worst case conditions. For 0.8 micron CMOS technology, the transistors need to be about 200 microns long. Overall bus performance can be improved by using a feedback technique to control the output transistor current so that the current through the device is approximately 50 mA under all operating conditions (although this is a suitable bus). Not absolutely necessary for operation). One example of many methods known to those skilled in the art for using feedback techniques to control current is given in Hans Schumacher et al. Solid State Circuit, Volume 25 (1), pp.150-154 (1990 1990)
Month). Controlling this current improves performance and reduces power dissipation. This output driver, which can operate at 500 MHz, is also controlled by a suitable multiplexer with two or more (preferably 4) inputs connected to other internal chip circuitry (all of which are well known in the prior art). Can be designed according to).
【0098】全てのスレーブの入力受信器は全てのサイ
クル中に作動して、バス上の信号が有効な要求パケット
であるかどうかを判定できなければならない。この要件
は、入力回路に対するいくつかの制約につながる。小さ
な取得および分解遅延が必要なことに加えて、回路は微
小ないし皆無のDC電力と微小のAC電力を取得し、非
常に小さな電流を入力ないし基準回線に注入し直さなけ
ればならない。図11に示す標準クロッキングDRAM
増幅器は、定入力電流の必要性を除いてこれらの要件を
全て満たす。この増幅器が検出から抽出に行くとき、図
11の内部ノード83,84の容量は、それぞれ基準回
線68と入力69を通して放電される。この特定電流は
小さいが、全ての装置に対して合計した全ての入力から
基準回線のそのような電流の和はかなり大きくすること
ができる。The input receivers of all slaves must be able to operate during every cycle to determine if the signal on the bus is a valid request packet. This requirement leads to some constraints on the input circuit. In addition to requiring small acquisition and decomposition delays, the circuit must acquire very little or no DC power and very little AC power and re-inject very little current into the input or reference line. Standard clocking DRAM shown in FIG.
The amplifier meets all these requirements except the need for constant input current. As this amplifier goes from detection to extraction, the capacitances of internal nodes 83 and 84 of FIG. 11 are discharged through reference line 68 and input 69, respectively. Although this particular current is small, the sum of such currents in the reference line from all inputs summed for all devices can be quite large.
【0099】電流の符号は以前に受信したデータに依存
するという事実は問題を更に悪化させる。この問題を解
決する1つの方法は、抽出期間を2段階に分けることで
ある。第1の段階中、入力を(オフセットを持つであろ
う)基準レベルのバッファしたバージョンに短絡する。
第2の段階中、入力を真の入力に接続する。この方式で
は入力は依然ノード83,84を基準値から電流入力値
に充電しなければならないので、入力電流を完全に取り
除きはしないが、必要な合計電荷を約10の係数で削減
する(2.5Vの変化でなくも0.25Vの変化しか必
要としない)。当業者は、非常に低い入力電流で作動す
るクロッキングアンプをもたらすために更に多くの方法
を用いることができることを理解できよう。The fact that the sign of the current depends on the previously received data exacerbates the problem. One way to solve this problem is to divide the extraction period into two stages. During the first stage, the inputs are shorted to a buffered version of the reference level (which will have an offset).
During the second stage, connect the input to the true input. In this scheme, the input must still charge nodes 83, 84 from the reference value to the current input value, so the input current is not completely removed, but the total charge required is reduced by a factor of about 10 (2. Only a 0.25V change is needed, not a 5V change). Those skilled in the art will appreciate that many more methods can be used to provide a clocking amplifier that operates at very low input currents.
【0100】入出力回路の1つの重要な部分は、先行お
よび後着バスクロックに基づいて内部装置クロックを生
成する。クロックスキュー(装置間のクロックタイミン
グの差異)の制御は、2nsサイクルで走行しているシ
ステムでは重要であり、従って内部装置クロックを生成
して入力サンプリング回路と出力駆動器が2つのバスク
ロック間の中間にできるだけ時間的に近い時点で作動す
るようにする。One important part of the I / O circuit generates the internal device clock based on the leading and trailing bus clocks. Controlling clock skew (difference in clock timing between devices) is important in a system running at 2 ns cycle, so that the internal device clock is generated so that the input sampling circuit and the output driver are between the two bus clocks. Try to operate as close to time as possible in the middle.
【0101】内部装置クロック生成回路のブロック図を
図12に示し、対応するタイミング図を図13に示す。
この回路の背後の基本的な考えは、比較的単純なもので
ある。DC増幅器102を用いて小さな振れバスクロッ
クを全振れCMOS信号に変換する。この信号は次に可
変遅延線103に供給する。遅延線103の出力は、3
つの追加遅延回路、すなわち固定遅延(t0)を有する
104と、同一の固定遅延(t0)と第2の可変遅延
(X)を有する105と、同一固定遅延(t0)と第2
の可変遅延の半分(X/2)を有する106に供給され
る。遅延線104,105の出力107,108は、そ
れぞれ先行および後着バスクロック入力100,110
に接続されたクロックされる入力レシーバ(受信器)1
01,111を駆動する。それらの入力レシーバ10
1,111は、上述し、図11に示す受信器と同一設計
を有している。可変遅延線103,105は、レシーバ
101,111がバスクロックをその遷移時点で抽出す
るように、フィードバック線116,115を通して調
整される。遅延線103,105は、出力107の立ち
下がり120が先行バスクロックのクロック1(53)
の立ち下がり121に、(入力サンプリング回路101
内の遅延に等しい)時間128だけ先立つように調整さ
れる。遅延線105は同様に、立ち下がり122が後着
バスクロックのクロック2(54)の立ち下がり123
に入力サンプリング回路111の遅延128だけ先立つ
ように調整される。A block diagram of the internal device clock generation circuit is shown in FIG. 12, and a corresponding timing diagram is shown in FIG.
The basic idea behind this circuit is relatively simple. The DC swing amplifier 102 is used to convert the small swing bus clock into a full swing CMOS signal. This signal is then supplied to the variable delay line 103. The output of the delay line 103 is 3
One of the additional delay circuit, i.e. a 104 with a fixed delay (t 0), the same fixed delay and (t 0) and 105 having a second variable delay (X), the same fixed delay (t 0) and the second
Is provided to 106 having half the variable delay (X / 2) of. The outputs 107 and 108 of the delay lines 104 and 105 are connected to the leading and trailing bus clock inputs 100 and 110, respectively.
Clocked input receiver (receiver) connected to
01 and 111 are driven. Those input receivers 10
1, 111 has the same design as the receiver described above and shown in FIG. The variable delay lines 103, 105 are adjusted through the feedback lines 116, 115 so that the receivers 101, 111 extract the bus clock at their transitions. In the delay lines 103 and 105, the trailing edge 120 of the output 107 is the clock 1 (53) of the preceding bus clock.
At the falling edge 121 of (the input sampling circuit 101
It is adjusted to precede by a time 128 (equal to the delay in). Similarly, in the delay line 105, the trailing edge 122 is the trailing edge 123 of the clock 2 (54) of the last arrival bus clock.
Is adjusted so that it is preceded by the delay 128 of the input sampling circuit 111.
【0102】出力107,108は2つのバスクロック
と同期化され、最後に遅延線106の出力73は出力1
07,108間の中間にあるので、すなわち出力73は
出力107に、出力73が出力108に先立つ時間12
9と同じ時間量だけ後に続くので、出力73はバスクロ
ックの中間の内部装置クロック(すなわち内部クロッ
ク)となる。内部装置クロック73の立ち下がり124
は1サンプル動作分の遅延だけ実際の入力サンプリング
125の時間に先立つ。この回路構成では、出力10
7,108の調節で、バスクロックは入力受信器10
1,111によりバスクロックの遷移時に抽出されるの
で、実質的に全ての装置入力受信器71,72(図1
0)の遅延を自動的にバランスを取ることができる。Outputs 107 and 108 are synchronized with the two bus clocks, and finally output 73 of delay line 106 is output 1
Since the output 73 is in the middle between 07 and 108, that is, the output 73 is at the output 107 and the output 73 is at the time 12 before the output 108.
Since it follows by the same amount of time as 9, output 73 becomes the internal device clock (ie internal clock) intermediate the bus clock. Falling of internal device clock 73 124
Precedes the actual input sampling 125 time by a delay of one sample operation. In this circuit configuration, the output 10
By adjusting 7, 108, the bus clock is the input receiver 10
1,111 is extracted at the transition of the bus clock, so that substantially all device input receivers 71 and 72 (see FIG.
0) delay can be automatically balanced.
【0103】実施例では、一方で内部装置クロック73
の真の値を生成するため、他方でインバータ遅延を付け
加えることなく相補信号74を生成するために、2組の
遅延線を使用する。二重の回路により、スキューが非常
に小さい真に相補的なクロックの生成が可能になる。相
補の内部装置クロックは時点127で抽出をするため
「偶数」の入力受信器をクロッキングするために用い、
真の内部装置クロックは時点125で抽出するため「奇
数」の入力受信器をクロッキングするのに用いる。真お
よび相補的な内部装置クロックは、どのデータを出力駆
動器に駆動するかを選択するのにも使用する。内部装置
クロックとバスを駆動する出力回路との間のゲート遅延
は、入力回路での対応する遅延よりもわずかに大きく、
それは旧いデータが抽出されたわずか後に新しいデータ
が常にバス上に乗せられるということを意味する。In the embodiment, on the other hand, the internal device clock 73
2 sets of delay lines are used to produce the true value of the other, and on the other hand to produce the complementary signal 74 without adding an inverter delay. The dual circuit allows the generation of truly complementary clocks with very low skew. The complementary internal device clocks are used to clock the "even" input receivers for sampling at time 127,
The true internal device clock is used to clock the "odd" input receiver for extraction at time 125. The true and complementary internal device clocks are also used to select which data to drive to the output driver. The gate delay between the internal device clock and the output circuit driving the bus is slightly greater than the corresponding delay in the input circuit,
That means new data is always put on the bus shortly after the old data is extracted.
【0104】<DRAMコラムアクセス修正>
図15は従来の4MビットDRAM130のブロック図
を示す。DRAMメモリアレイはいくつかのサブアレイ
例えば150−157の8個に分割されている。各々の
サブアレイはメモリセルのアレイ148,149に分割
されている。行アドレス選択は、復号器146により行
われる。列増幅器を含む列復号器147A,147B
は、各々のサブアレイの中心を貫通している、それらの
列増幅器を設定して、さきに詳述したように最も最近に
記憶された値をプリチャージないしラッチすることがで
きる。内部入出力回線は対応する列復号器によりゲート
された各々の増幅器のセットを最終的に装置ピンに接続
された入力、出力回路に接続する。それらの入出力回線
は、データを選択したビット回線からデータピン(ピン
131−145の一部)に駆動するため、あるいはピン
からデータを受け取り選択ビット回線に書込むために用
いる。従来この制約により構成されたそのような列アク
セス経路は、高速度バスにインターフェイスする十分な
帯域幅を有していない。本発明の方法では、列アクセス
で使用される全体的な方法を変更する必要はないが、実
施の細部を変更する。それら細部の多くは特定の高速記
憶装置で選別的に実施されてきたが、本発明のバス・ア
ーキテクチャで実施されたことはなかった。<Modification of DRAM Column Access> FIG. 15 shows a block diagram of a conventional 4 Mbit DRAM 130. The DRAM memory array is divided into eight subarrays, for example 150-157. Each sub-array is divided into an array of memory cells 148,149. Row address selection is performed by the decoder 146. Column decoders 147A and 147B including column amplifiers
Can set their column amplifiers through the center of each sub-array to precharge or latch the most recently stored value as detailed above. Internal I / O lines connect each set of amplifiers gated by the corresponding column decoder to the input and output circuits ultimately connected to the device pins. These I / O lines are used to drive data from selected bit lines to data pins (part of pins 131-145) or to receive data from the pins and write to selected bit lines. Conventionally, such column access paths constructed with this constraint do not have sufficient bandwidth to interface to high speed buses. The method of the present invention does not require changes to the overall method used for column access, but changes implementation details. Many of these details have been selectively implemented in certain high speed storage devices, but never in the bus architecture of the present invention.
【0105】内部入出力回線を従来の方法で高いバスサ
イクル速度で走行(ラン)させるのは不可能である。好
ましい方法では、いくつかの(できれば4)バイトを各
々のサイクル中に読取り、書込みを行い、列アクセス経
路を低い速度で走行(ラン)するように変更する(サイ
クル毎にアクセスされるバイト数の逆数、できればバス
サイクル速度の1/4)。必要な追加内部入出力回線を
設け、データをその速度でメモリセルに供給するために
3つの方法を用いる。第1は列復号器147を通る各々
のサブアレイ内の入出力ビット回線の数を例えば列増幅
器の2つの列の各々に対して8つの16とし、各々のサ
イクル中に列復号器はサブアレイ150の「上」半分1
48からの1組の列と「下」半分149からの1組の列
を選択する(ここで列復号器は入出力ビット回線毎に1
つの列増幅器を選択する)。第2は、各々の列入出力回
線を半分に分割し、各々のサブアレイの左半分147A
と右半分147B(各々のサブアレイを4象限に分割し
て)からの別々の内部入出力回線上を別個にデータを搬
送し、列復号器はサブアレイの右と左半分の各々から増
幅器を選択し、各々のサイクルで得ることができるビッ
ト数を倍増する。従って各々の列解読選択はnの列増幅
器をオンにする(ここでnは各々のサブアレイ象限に対
してバス内の入出力回線の数の4倍(左上、と左上、左
下と右下)に等しい(好ましい実施例ではそれぞれ8回
線×4=32回線)。最後に、各々のRASサイクル
中、2つの異なるサブアレイ、例えば157,153に
アクセスする。これによりまた、データを含んだ利用可
能な入出力回線の数を倍増する。これらの変化を共に考
慮すると、内部入出力帯幅を少なくとも8の係数増加す
る。4つの内部バスをそれらの内部入出力回線のルート
づけに使用する。入出力回線の数を増大し、それらの中
間で分割することで、各々の内部入出力回線の容量を大
きく減少させ、それによりまた列アクセス時間を減少さ
せ、列アクセス帯幅を更に増大させる。It is impossible to run (run) the internal input / output line at a high bus cycle speed by the conventional method. The preferred method reads and writes some (preferably 4) bytes during each cycle and modifies the column access path to run (run) at a slower rate (the number of bytes accessed per cycle). Inverse number, preferably 1/4 of bus cycle speed). Three methods are used to provide the necessary additional internal I / O lines and to supply data to the memory cells at that rate. First, the number of I / O bit lines in each sub-array through column decoder 147 is, for example, eight 16 for each of the two columns of column amplifiers, and during each cycle the column decoder is "Upper" half 1
Select a set of columns from 48 and a set of columns from the "bottom" half 149 (where the column decoder is 1 per I / O bit line).
Choose two column amplifiers). Second, each column I / O line is divided in half and the left half 147A of each sub-array is divided.
And the right half 147B (each subarray divided into four quadrants) carries data separately on separate internal I / O lines, and the column decoder selects amplifiers from each of the right and left halves of the subarray. , Double the number of bits that can be obtained in each cycle. Therefore, each column decode selection turns on n column amplifiers, where n is four times the number of I / O lines in the bus for each subarray quadrant (upper left, upper left, lower left and lower right). Equal (8 lines x 4 = 32 lines each in the preferred embodiment) Finally, during each RAS cycle, two different sub-arrays, eg 157, 153, are accessed, which also makes available input containing data. Double the number of output lines, taking into account these changes together, increases the internal I / O bandwidth by a factor of at least 8. Four internal buses are used to route those internal I / O lines. By increasing the number of partitions and dividing them in between, greatly reducing the capacity of each internal I / O line, thereby also reducing the column access time and further increasing the column access bandwidth.
【0106】上記の多重にされ、ゲート機能を持つ入力
受信器により、装置ピンから内部入出力回線そして最終
的にメモリへの高速入力が可能になる。上述の多重化出
力駆動器を用いて、上記手法を用いて得ることのできる
データフローを維持する。装置ピンの情報はアドレスと
して扱うべきかどうかそして従って解読すべきか、ある
いは内部入出力回線へ乗せる入力データないしそこから
読取る出力データかを選択する制御手段が設けられてい
る。The multiplexed, gated input receiver described above enables high speed input from the device pins to the internal I / O lines and finally to the memory. The multiplexed output driver described above is used to maintain the data flow that can be obtained using the above approach. Control means are provided to select whether the device pin information should be treated as an address and therefore be decoded, or whether the input data to be placed on the internal I / O line or the output data to be read therefrom.
【0107】各々のサブアレイはサイクル毎に、左サブ
アレイから16ビット、右サブアレイから16ビットの
32ビットにアクセスすることができる。増幅器列毎に
8つの入出力回線があり、一時に2つのサブアレイにア
クセスすることで、DRAMはサイクル毎に64ビット
を提供することができる。この余分の入出力帯域幅は読
取りには必要でない(そして恐らく使用されない)が、
書込みには必要になることがある。書込み帯域幅の利用
可能性は、増幅器内で値を重ね書きするのは遅いオペレ
ーションであり、増幅器がビット回線にどの様に接続さ
れているかに依存するので、読取り帯域幅よりも困難な
問題である。内部入出力回線の余分なセットで書込み操
作に対していくらかの帯域幅のゆとりが与えられること
になる。Each sub-array can access 32 bits, 16 bits from the left sub-array and 16 bits from the right sub-array, every cycle. There are eight I / O lines per amplifier row, with two sub-arrays accessed at a time, the DRAM can provide 64 bits per cycle. This extra I / O bandwidth is not needed for reading (and is probably not used),
It may be necessary for writing. Write bandwidth availability is a more difficult problem than read bandwidth because overwriting values in the amplifier is a slow operation and depends on how the amplifier is connected to the bit line. is there. The extra set of internal I / O lines will provide some bandwidth margin for write operations.
【0108】当業者には、本発明の教示の様々な変形を
本発明の特許請求項の範囲内で更に実施できることが理
解されよう。Those skilled in the art will appreciate that various modifications of the teachings of the present invention can be further implemented within the scope of the claims of the present invention.
【図1】 メモリ装置の基本的な2D編成を示す線図で
ある。FIG. 1 is a diagram showing a basic 2D organization of a memory device.
【図2】 装置内部の各装置への全てのバスと直列リセ
ット線の並列接続を示す概略ブロック図である。FIG. 2 is a schematic block diagram showing parallel connection of all buses and serial reset lines to each device inside the device.
【図3】 主バスにおける半導体装置の3Dパッケージ
ングを示す本発明の装置の斜視図である。FIG. 3 is a perspective view of the device of the present invention showing the 3D packaging of the semiconductor device on the main bus.
【図4】 要求パケットのフォーマットを示す。FIG. 4 shows a format of a request packet.
【図5】 スレイブからの再試行応答のフォーマットを
示す。FIG. 5 shows the format of a retry response from a slave.
【図6】 スで要求パケットの衝突が起きた後のバス・
サイクルと仲裁がどのようにして取り扱われるかを示
す。[Fig. 6] Bus after a request packet collision occurs at the bus
Show how cycles and arbitration are handled.
【図7】 2つの装置からの信号が一時的に重複してバ
スを同時に駆動するようなタイミングを示す図である。FIG. 7 is a diagram showing a timing at which signals from two devices are temporarily overlapped and simultaneously drive a bus.
【図8】 バスクロックとバス上の装置との間の接続お
よびタイミングを示す。FIG. 8 shows connections and timing between a bus clock and devices on the bus.
【図9】 いくつかのバス・ユニットをトランシーバ・
バスへ接続するためにトランシーバをどのようにして使
用できるかを示す斜視図である。FIG. 9 shows a transceiver with several bus units.
FIG. 5 is a perspective view showing how a transceiver can be used to connect to a bus.
【図10】 装置をバスへ接続するために用いられる入
力回路/出力回路のブロック図および回路図である。FIG. 10 is a block diagram and schematic of input / output circuits used to connect a device to a bus.
【図11】 バス入力レシーバとして用いられるクロッ
クされるセンス増幅器の回路図である。FIG. 11 is a circuit diagram of a clocked sense amplifier used as a bus input receiver.
【図12】 調整可能な遅延線を用いて2つのバス・ク
ロック信号から内部装置クロックをどのようにして発生
されるかを示すブロック図である。FIG. 12 is a block diagram showing how an internal device clock is generated from two bus clock signals using an adjustable delay line.
【図13】 図12のブロック図における信号の関係を
示すタイミング図である。FIG. 13 is a timing diagram showing the relationship of signals in the block diagram of FIG.
【図14】 本発明のリセット手続きを実現する好適な
手段のタイミング図である。FIG. 14 is a timing diagram of the preferred means for implementing the reset procedure of the present invention.
【図15】 8つのサブアレイへ分割された4Mビット
DRAMの全体的な編成を示す線図である。FIG. 15 is a diagram showing the overall organization of a 4M bit DRAM divided into eight sub-arrays.
15,16,17………メモリ装置、 18……
…(一次)バス、
19………トランシーバ装置、 20……
…ピン、
22………要求パケット、 41……
…装置A、
42………装置B、 50……
…バスクロック生成器、
51,52………メモリ装置、 53,5
4………クロック線、
65………トランシーバ・バス、 66……
…回路基板
71,72………入力受信器、 73,7
4………クロック、
76………出力駆動器、
100………早着バスクロック入力
101,111………クロックド・レシーバ
103………可変遅延線 104…
……固定遅延線(t0)
105………可変の遅延線(t0+X)
106………可変の遅延線(t0+X/2)
110………後着バスクロック入力。15, 16, 17 ......... Memory device, 18 ...
… (Primary) bus, 19 ……… Transceiver device, 20 ……
... Pin, 22 ......... Request packet, 41 ...
... Device A, 42 ... ... Device B, 50 ...
... Bus clock generator, 51, 52 ... ... memory device, 53, 5
4 ......... Clock line, 65 ......... Transceiver bus, 66 ...
... Circuit boards 71, 72 ..... Input receivers, 73,7
4 ... Clock, 76 ... Output driver, 100 ... Early arrival bus clock input 101, 111 ... Clocked receiver 103 ... Variable delay line 104 ...
... fixed delay line (t 0 ) 105 ... variable delay line (t 0 + X) 106 ... variable delay line (t 0 + X / 2) 110 ... late arrival bus clock input.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI G06F 1/04 330Z (56)参考文献 特開 平2−8950(JP,A) (58)調査した分野(Int.Cl.7,DB名) G11C 11/40 - 11/419 G06F 12/00 G06F 1/10 H03K 5/26 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI G06F 1/04 330Z (56) Reference JP-A-2-8950 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G11C 11/40-11/419 G06F 12/00 G06F 1/10 H03K 5/26
Claims (6)
モリ装置であって、 固定周波数の外部クロック信号を受信するクロック・レ
シーバ回路を備え、 複数の入力受信器を含んでいて、外部クロック信号に同
期して読み取り動作要求を抽出する入力受信器回路を備
え、 前記クロック・レシーバ回路に結合されていて、前記外
部クロック信号に同期してデータの出力を行うための遅
延ロック・ループ回路を備え、 複数の出力駆動器を含んでいて、読み取り動作中にデー
タを外部バスへと出力する出力駆動回路を備え、前記複
数の出力駆動器は、データの第1部分を前記外部クロッ
ク信号の立ち上がり縁に応じて出力し、且つ、データの
第2部分を前記外部クロック信号の立ち下がり縁に応じ
て出力することを特徴とするメモリ装置。1. A synchronous memory device having an array of memory cells, comprising a clock receiver circuit for receiving a fixed frequency external clock signal, comprising a plurality of input receivers, wherein An input receiver circuit for synchronously extracting a read operation request, and a delay locked loop circuit coupled to the clock receiver circuit for outputting data in synchronization with the external clock signal, An output driver circuit is provided that includes a plurality of output drivers and outputs data to an external bus during a read operation, the plurality of output drivers having a first portion of data on a rising edge of the external clock signal. And a second portion of data according to the falling edge of the external clock signal.
に同期した第1の内部クロック信号を生成し、 前記複数の出力駆動器は、前記第1の内部クロック信号
の立ち上がり縁に応じてデータの第1部分を出力する、
ことを特徴とするメモリ装置。2. The memory device according to claim 1, wherein the delay lock loop circuit generates a first internal clock signal in synchronization with the external clock signal, and the plurality of output drivers include the output driver. Outputting a first portion of data in response to a rising edge of the first internal clock signal,
A memory device characterized by the above.
に同期した第2の内部クロック信号を生成し、 前記複数の出力駆動器は、前記第2の内部クロック信号
の立ち上がり縁に応じてデータの第2部分を出力するこ
とを特徴とするメモリ装置。3. The memory device according to claim 2, wherein the delay lock loop circuit generates a second internal clock signal synchronized with the external clock signal, and the plurality of output drivers include the second internal clock signal. A memory device which outputs a second portion of data in response to a rising edge of a second internal clock signal.
記入力受信器回路には、 前記第1の内部クロック信号に応動して動作し、前記第
1の内部クロック信号の遷移に応じて第1データをラッ
チする第1の入力ラッチと、 前記第2の内部クロック信号に応動して動作し、前記第
2の内部クロック信号の遷移に応じて第2データをラッ
チする第2の入力ラッチとが含まれている、ことを特徴
とするメモリ装置。4. The memory device according to claim 3, wherein the input receiver circuit operates in response to the first internal clock signal and is responsive to a transition of the first internal clock signal. A first input latch that latches first data; and a second input latch that operates in response to the second internal clock signal and latches second data in response to a transition of the second internal clock signal. A memory device comprising: and.
モリ装置であって、 第1および第2の外部クロック信号を受信するクロック
・レシーバ回路を備え、 前記クロック・レシーバ回路に結合されていて、前記第
1および第2の外部クロック信号にそれぞれ同期した第
1および第2の内部クロック信号を生じる遅延ロック・
ループ回路を備え、 前記第1および第2の外部クロック信号に同期して読み
取り動作要求を抽出する入力受信器回路を備え、この入
力受信器回路には、データを前記第1および第2の外部
クロック信号に同期してラッチする複数の入力受信器が
含まれ、 複数の出力駆動器を含んでいて、読み取り動作中にデー
タを外部バスへと出力する出力駆動回路を備え、前記複
数の出力駆動器は、データの第1部分を前記第1の内部
クロック信号の遷移に応じて出力し、且つ、データの第
2部分を前記第2の内部クロック信号の遷移に応じて出
力することを特徴とするメモリ装置。5. A synchronous memory device having an array of memory cells, comprising a clock receiver circuit for receiving first and second external clock signals, the clock receiver circuit being coupled to the clock receiver circuit. A delay lock for producing first and second internal clock signals respectively synchronized with the first and second external clock signals.
An input receiver circuit is provided that includes a loop circuit and that extracts a read operation request in synchronization with the first and second external clock signals. A plurality of input receivers that latch in synchronization with a clock signal are included, a plurality of output drivers are included, and an output driving circuit that outputs data to an external bus during a read operation is provided And a second portion of the data in response to the transition of the first internal clock signal and a second portion of the data in response to the transition of the second internal clock signal. Memory device.
記入力受信器回路には、 前記第1の内部クロック信号に応動して動作し、前記第
1の内部クロック信号の遷移に応じて第1データをラッ
チする第1の入力ラッチと、 前記第2の内部クロック信号に応動して動作し、前記第
2の内部クロック信号の遷移に応じて第2データをラッ
チする第2の入力ラッチとが含まれている、ことを特徴
とするメモリ装置。6. The memory device according to claim 5, wherein the input receiver circuit operates in response to the first internal clock signal and is responsive to a transition of the first internal clock signal. A first input latch that latches first data; and a second input latch that operates in response to the second internal clock signal and latches second data in response to a transition of the second internal clock signal A memory device comprising: and.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US51089890A | 1990-04-18 | 1990-04-18 | |
US510,898 | 1990-04-18 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP50805091A Division JP3414393B2 (en) | 1990-04-18 | 1991-04-16 | Semiconductor memory device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001273765A JP2001273765A (en) | 2001-10-05 |
JP3404383B2 true JP3404383B2 (en) | 2003-05-06 |
Family
ID=24032637
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP50805091A Expired - Lifetime JP3414393B2 (en) | 1990-04-18 | 1991-04-16 | Semiconductor memory device |
JP2001031860A Expired - Fee Related JP3404383B2 (en) | 1990-04-18 | 2001-02-08 | Memory device |
JP2003026111A Expired - Lifetime JP3550143B2 (en) | 1990-04-18 | 2003-02-03 | Semiconductor memory device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP50805091A Expired - Lifetime JP3414393B2 (en) | 1990-04-18 | 1991-04-16 | Semiconductor memory device |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003026111A Expired - Lifetime JP3550143B2 (en) | 1990-04-18 | 2003-02-03 | Semiconductor memory device |
Country Status (7)
Country | Link |
---|---|
US (47) | US5473575A (en) |
EP (7) | EP1830241B1 (en) |
JP (3) | JP3414393B2 (en) |
KR (1) | KR100201057B1 (en) |
DE (15) | DE69133611D1 (en) |
IL (4) | IL96808A (en) |
WO (1) | WO1991016680A1 (en) |
Families Citing this family (745)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR960003526B1 (en) * | 1992-10-02 | 1996-03-14 | 삼성전자주식회사 | Semiconductor memory device |
US5587962A (en) * | 1987-12-23 | 1996-12-24 | Texas Instruments Incorporated | Memory circuit accommodating both serial and random access including an alternate address buffer register |
US5093807A (en) | 1987-12-23 | 1992-03-03 | Texas Instruments Incorporated | Video frame storage system |
GB9007791D0 (en) * | 1990-04-06 | 1990-06-06 | Foss Richard C | High voltage boosted wordline supply charge pump and regulator for dram |
GB9007790D0 (en) * | 1990-04-06 | 1990-06-06 | Lines Valerie L | Dynamic memory wordline driver scheme |
USRE40552E1 (en) | 1990-04-06 | 2008-10-28 | Mosaid Technologies, Inc. | Dynamic random access memory using imperfect isolating transistors |
IL96808A (en) | 1990-04-18 | 1996-03-31 | Rambus Inc | Integrated circuit i/o using a high performance bus interface |
EP1004956B2 (en) | 1990-04-18 | 2009-02-11 | Rambus Inc. | Method of operating a synchronous memory having a variable data output length |
US6324120B2 (en) * | 1990-04-18 | 2001-11-27 | Rambus Inc. | Memory device having a variable data output length |
US6751696B2 (en) * | 1990-04-18 | 2004-06-15 | Rambus Inc. | Memory device having a programmable register |
US6249481B1 (en) | 1991-10-15 | 2001-06-19 | Kabushiki Kaisha Toshiba | Semiconductor memory device |
US6223264B1 (en) * | 1991-10-24 | 2001-04-24 | Texas Instruments Incorporated | Synchronous dynamic random access memory and data processing system using an address select signal |
US5498990A (en) * | 1991-11-05 | 1996-03-12 | Monolithic System Technology, Inc. | Reduced CMOS-swing clamping circuit for bus lines |
US5471632A (en) * | 1992-01-10 | 1995-11-28 | Digital Equipment Corporation | System for transferring data between a processor and a system bus including a device which packs, unpacks, or buffers data blocks being transferred |
US5715407A (en) * | 1992-03-06 | 1998-02-03 | Rambus, Inc. | Process and apparatus for collision detection on a parallel bus by monitoring a first line of the bus during even bus cycles for indications of overlapping packets |
DE4345604B3 (en) * | 1992-03-06 | 2012-07-12 | Rambus Inc. | Device for communication with a DRAM |
USRE39879E1 (en) * | 1992-03-06 | 2007-10-09 | Rambus, Inc. | Method of transferring data by transmitting lower order and upper order memory address bits in separate words with respective op codes and start information |
JP2868141B2 (en) * | 1992-03-16 | 1999-03-10 | 株式会社日立製作所 | Disk array device |
US5254883A (en) * | 1992-04-22 | 1993-10-19 | Rambus, Inc. | Electrical current source circuitry for a bus |
USRE38482E1 (en) * | 1992-05-28 | 2004-03-30 | Rambus Inc. | Delay stage circuitry for a ring oscillator |
US5485490A (en) * | 1992-05-28 | 1996-01-16 | Rambus, Inc. | Method and circuitry for clock synchronization |
EP0654168B1 (en) * | 1992-08-10 | 2001-10-31 | Monolithic System Technology, Inc. | Fault-tolerant hierarchical bus system |
DE69333319T2 (en) | 1992-09-18 | 2004-09-16 | Hitachi, Ltd. | Data processing system with synchronous, dynamic memory in integrated circuit technology |
US6279116B1 (en) | 1992-10-02 | 2001-08-21 | Samsung Electronics Co., Ltd. | Synchronous dynamic random access memory devices that utilize clock masking signals to control internal clock signal generation |
US5511024A (en) * | 1993-06-02 | 1996-04-23 | Rambus, Inc. | Dynamic random access memory system |
US5420987A (en) * | 1993-07-19 | 1995-05-30 | 3 Com Corporation | Method and apparatus for configuring a selected adapter unit on a common bus in the presence of other adapter units |
JP3579461B2 (en) | 1993-10-15 | 2004-10-20 | 株式会社ルネサステクノロジ | Data processing system and data processing device |
US5469435A (en) * | 1994-01-25 | 1995-11-21 | Apple Computer, Inc. | Bus deadlock avoidance during master split-transactions |
US5631734A (en) | 1994-02-10 | 1997-05-20 | Affymetrix, Inc. | Method and apparatus for detection of fluorescently labeled materials |
EP0675478B1 (en) | 1994-03-16 | 2000-09-13 | Brooktree Corporation | Multimedia graphics systems with continuous high clock rate |
GB9406477D0 (en) * | 1994-03-31 | 1994-05-25 | D2B Systems Co Ltd | Interconnection of local communication bus systems |
US5655113A (en) * | 1994-07-05 | 1997-08-05 | Monolithic System Technology, Inc. | Resynchronization circuit for a memory system and method of operating same |
US5508968A (en) * | 1994-08-12 | 1996-04-16 | International Business Machines Corporation | Dynamic random access memory persistent page implemented as processor register sets |
US5796673A (en) * | 1994-10-06 | 1998-08-18 | Mosaid Technologies Incorporated | Delay locked loop implementation in a synchronous dynamic random access memory |
US5568651A (en) * | 1994-11-03 | 1996-10-22 | Digital Equipment Corporation | Method for detection of configuration types and addressing modes of a dynamic RAM |
US5715437A (en) | 1994-11-10 | 1998-02-03 | Brooktree Corporation | System for, and method of, processing in hardware commands received from software without polling of the hardware by the software |
JPH08278916A (en) * | 1994-11-30 | 1996-10-22 | Hitachi Ltd | Multi-channel memory system, transfer information synchronization method and signal transfer circuit |
US5606710A (en) * | 1994-12-20 | 1997-02-25 | National Semiconductor Corporation | Multiple chip package processor having feed through paths on one die |
US5717931A (en) * | 1994-12-20 | 1998-02-10 | Motorola, Inc. | Method and apparatus for communicating between master and slave electronic devices where the slave device may be hazardous |
US5699516A (en) * | 1994-12-22 | 1997-12-16 | Motorola, Inc. | Method and apparatus for implementing a in-order termination bus protocol within a data processing system |
US5889698A (en) * | 1995-01-31 | 1999-03-30 | Hitachi, Ltd. | Nonvolatile memory device and refreshing method |
JP4341043B2 (en) * | 1995-03-06 | 2009-10-07 | 真彦 久野 | I / O expansion device, external storage device, method and apparatus for accessing this external storage device |
US5592123A (en) * | 1995-03-07 | 1997-01-07 | Linfinity Microelectronics, Inc. | Frequency stability bootstrapped current mirror |
US5737748A (en) * | 1995-03-15 | 1998-04-07 | Texas Instruments Incorporated | Microprocessor unit having a first level write-through cache memory and a smaller second-level write-back cache memory |
DE69622079T2 (en) * | 1995-03-31 | 2002-10-31 | Sun Microsystems, Inc. | Method and device for the rapid initiation of memory accesses in a cache-coherent multiprocessor system |
US5822341A (en) * | 1995-04-06 | 1998-10-13 | Advanced Hardware Architectures, Inc. | Multiport RAM for use within a viterbi decoder |
US5608312A (en) * | 1995-04-17 | 1997-03-04 | Linfinity Microelectronics, Inc. | Source and sink voltage regulator for terminators |
US5635852A (en) * | 1995-04-17 | 1997-06-03 | Linfinity Microelectronics, Inc. | Controllable actice terminator for a computer bus |
US5787267A (en) * | 1995-06-07 | 1998-07-28 | Monolithic System Technology, Inc. | Caching method and circuit for a memory system with circuit module architecture |
JP2630311B2 (en) * | 1995-06-15 | 1997-07-16 | 日本電気株式会社 | Semiconductor integrated circuit device |
US5748920A (en) * | 1995-06-23 | 1998-05-05 | Cirrus Logic, Inc. | Transaction queue in a graphics controller chip |
EP0752666A3 (en) | 1995-07-06 | 2004-04-28 | Sun Microsystems, Inc. | Method and apparatus for fast-forwarding slave requests in a packet-switched computer system |
US5742840A (en) * | 1995-08-16 | 1998-04-21 | Microunity Systems Engineering, Inc. | General purpose, multiple precision parallel operation, programmable media processor |
US5752076A (en) * | 1995-08-31 | 1998-05-12 | Intel Corporation | Dynamic programming of bus master channels by intelligent peripheral devices using communication packets |
US5537353A (en) * | 1995-08-31 | 1996-07-16 | Cirrus Logic, Inc. | Low pin count-wide memory devices and systems and methods using the same |
US6025840A (en) * | 1995-09-27 | 2000-02-15 | Cirrus Logic, Inc. | Circuits, systems and methods for memory mapping and display control systems using the same |
US5895480A (en) * | 1995-10-10 | 1999-04-20 | Holtek Microelectronics, Inc. | Method of and means for accessing an address by respectively substracting base addresses of memory integrated circuits from an access address |
US6470405B2 (en) | 1995-10-19 | 2002-10-22 | Rambus Inc. | Protocol for communication with dynamic memory |
US5748914A (en) † | 1995-10-19 | 1998-05-05 | Rambus, Inc. | Protocol for communication with dynamic memory |
US6035369A (en) | 1995-10-19 | 2000-03-07 | Rambus Inc. | Method and apparatus for providing a memory with write enable information |
US6810449B1 (en) | 1995-10-19 | 2004-10-26 | Rambus, Inc. | Protocol for communication with dynamic memory |
US5636174A (en) * | 1996-01-11 | 1997-06-03 | Cirrus Logic, Inc. | Fast cycle time-low latency dynamic random access memories and systems and methods using the same |
US5944807A (en) | 1996-02-06 | 1999-08-31 | Opti Inc. | Compact ISA-bus interface |
US5815673A (en) * | 1996-03-01 | 1998-09-29 | Samsung Electronics Co., Ltd. | Method and apparatus for reducing latency time on an interface by overlapping transmitted packets |
DE69625327D1 (en) * | 1996-03-20 | 2003-01-23 | St Microelectronics Srl | Time-allocating internal bus, especially for non-volatile memories |
US6317803B1 (en) | 1996-03-29 | 2001-11-13 | Intel Corporation | High-throughput interconnect having pipelined and non-pipelined bus transaction modes |
US5911051A (en) * | 1996-03-29 | 1999-06-08 | Intel Corporation | High-throughput interconnect allowing bus transactions based on partial access requests |
US5872940A (en) * | 1996-04-01 | 1999-02-16 | Motorola, Inc. | Programmable read/write access signal and method therefor |
US5906003A (en) * | 1996-04-17 | 1999-05-18 | Cirrus Logic, Inc. | Memory device with an externally selectable-width I/O port and systems and methods using the same |
US5838631A (en) | 1996-04-19 | 1998-11-17 | Integrated Device Technology, Inc. | Fully synchronous pipelined ram |
US5835965A (en) * | 1996-04-24 | 1998-11-10 | Cirrus Logic, Inc. | Memory system with multiplexed input-output port and memory mapping capability |
US5829016A (en) * | 1996-04-24 | 1998-10-27 | Cirrus Logic, Inc. | Memory system with multiplexed input-output port and systems and methods using the same |
US6209071B1 (en) | 1996-05-07 | 2001-03-27 | Rambus Inc. | Asynchronous request/synchronous data dynamic random access memory |
US6009487A (en) * | 1996-05-31 | 1999-12-28 | Rambus Inc. | Method and apparatus for setting a current of an output driver for the high speed bus |
US5857083A (en) * | 1996-06-07 | 1999-01-05 | Yamaha Corporation | Bus interfacing device for interfacing a secondary peripheral bus with a system having a host CPU and a primary peripheral bus |
US5815456A (en) * | 1996-06-19 | 1998-09-29 | Cirrus Logic, Inc. | Multibank -- multiport memories and systems and methods using the same |
US5845098A (en) * | 1996-06-24 | 1998-12-01 | Motorola Inc. | Address lines load reduction |
US5901293A (en) * | 1996-06-25 | 1999-05-04 | Claxton; Daniel Dean | Bus interface controller for serially-accessed variable-access-time memory device |
US5734661A (en) * | 1996-09-20 | 1998-03-31 | Micron Technology, Inc. | Method and apparatus for providing external access to internal integrated circuit test circuits |
US5870616A (en) * | 1996-10-04 | 1999-02-09 | International Business Machines Corporation | System and method for reducing power consumption in an electronic circuit |
DE19758675B4 (en) * | 1996-10-09 | 2007-05-16 | Fujitsu Ltd | Semiconductor memory device using a signal transmission system |
US5872736A (en) * | 1996-10-28 | 1999-02-16 | Micron Technology, Inc. | High speed input buffer |
US5917758A (en) * | 1996-11-04 | 1999-06-29 | Micron Technology, Inc. | Adjustable output driver circuit |
US5774135A (en) * | 1996-11-05 | 1998-06-30 | Vlsi, Technology, Inc. | Non-contiguous memory location addressing scheme |
US6076127A (en) * | 1996-11-06 | 2000-06-13 | International Business Machines Corporation | Configuration of a single point bus arbitration scheme using on-chip arbiters |
US5915102A (en) * | 1996-11-06 | 1999-06-22 | International Business Machines Corporation | Common arbiter interface device with arbitration configuration for centralized common bus arbitration |
US5949254A (en) * | 1996-11-26 | 1999-09-07 | Micron Technology, Inc. | Adjustable output driver circuit |
US6115318A (en) * | 1996-12-03 | 2000-09-05 | Micron Technology, Inc. | Clock vernier adjustment |
JP3177464B2 (en) * | 1996-12-12 | 2001-06-18 | 株式会社日立製作所 | Input / output circuit cell and semiconductor integrated circuit device |
US5838177A (en) * | 1997-01-06 | 1998-11-17 | Micron Technology, Inc. | Adjustable output driver circuit having parallel pull-up and pull-down elements |
US5894586A (en) * | 1997-01-23 | 1999-04-13 | Xionics Document Technologies, Inc. | System for providing access to memory in which a second processing unit is allowed to access memory during a time slot assigned to a first processing unit |
US6125157A (en) * | 1997-02-06 | 2000-09-26 | Rambus, Inc. | Delay-locked loop circuitry for clock delay adjustment |
US5953263A (en) * | 1997-02-10 | 1999-09-14 | Rambus Inc. | Synchronous memory device having a programmable register and method of controlling same |
US5940608A (en) * | 1997-02-11 | 1999-08-17 | Micron Technology, Inc. | Method and apparatus for generating an internal clock signal that is synchronized to an external clock signal |
US6230245B1 (en) | 1997-02-11 | 2001-05-08 | Micron Technology, Inc. | Method and apparatus for generating a variable sequence of memory device command signals |
US6912680B1 (en) | 1997-02-11 | 2005-06-28 | Micron Technology, Inc. | Memory system with dynamic timing correction |
US5920518A (en) * | 1997-02-11 | 1999-07-06 | Micron Technology, Inc. | Synchronous clock generator including delay-locked loop |
US6104209A (en) | 1998-08-27 | 2000-08-15 | Micron Technology, Inc. | Low skew differential receiver with disable feature |
US5987576A (en) * | 1997-02-27 | 1999-11-16 | Hewlett-Packard Company | Method and apparatus for generating and distributing clock signals with minimal skew |
US5977798A (en) * | 1997-02-28 | 1999-11-02 | Rambus Incorporated | Low-latency small-swing clocked receiver |
US5946244A (en) | 1997-03-05 | 1999-08-31 | Micron Technology, Inc. | Delay-locked loop with binary-coupled capacitor |
US5956502A (en) * | 1997-03-05 | 1999-09-21 | Micron Technology, Inc. | Method and circuit for producing high-speed counts |
US6175894B1 (en) | 1997-03-05 | 2001-01-16 | Micron Technology, Inc. | Memory device command buffer apparatus and method and memory devices and computer systems using same |
US5898638A (en) * | 1997-03-11 | 1999-04-27 | Micron Technology, Inc. | Latching wordline driver for multi-bank memory |
US5870347A (en) | 1997-03-11 | 1999-02-09 | Micron Technology, Inc. | Multi-bank memory input/output line selection |
US6088761A (en) * | 1997-03-31 | 2000-07-11 | Sun Microsystems, Inc. | Reduced pin system interface |
US5831929A (en) * | 1997-04-04 | 1998-11-03 | Micron Technology, Inc. | Memory device with staggered data paths |
US5896404A (en) * | 1997-04-04 | 1999-04-20 | International Business Machines Corporation | Programmable burst length DRAM |
JP3189727B2 (en) | 1997-04-15 | 2001-07-16 | 日本電気株式会社 | Packet-type memory LSI with built-in coprocessor, memory system using the same, and control method therefor |
KR100554112B1 (en) | 1997-05-30 | 2006-02-20 | 미크론 테크놀로지,인코포레이티드 | 256 mega dynamic random access memory |
TW378330B (en) | 1997-06-03 | 2000-01-01 | Fujitsu Ltd | Semiconductor memory device |
US6215192B1 (en) | 1997-06-12 | 2001-04-10 | Matsushita Electric Industrial Co., Ltd. | Integrated circuit package and integrated circuit package control system |
US6014759A (en) * | 1997-06-13 | 2000-01-11 | Micron Technology, Inc. | Method and apparatus for transferring test data from a memory array |
US5996043A (en) | 1997-06-13 | 1999-11-30 | Micron Technology, Inc. | Two step memory device command buffer apparatus and method and memory devices and computer systems using same |
US5987614A (en) * | 1997-06-17 | 1999-11-16 | Vadem | Distributed power management system and method for computer |
US6115823A (en) * | 1997-06-17 | 2000-09-05 | Amphus, Inc. | System and method for task performance based dynamic distributed power management in a computer system and design method therefor |
US6484244B1 (en) | 1997-06-17 | 2002-11-19 | Micron Technology, Inc. | Method and system for storing and processing multiple memory commands |
US6266379B1 (en) * | 1997-06-20 | 2001-07-24 | Massachusetts Institute Of Technology | Digital transmitter with equalization |
US6173432B1 (en) | 1997-06-20 | 2001-01-09 | Micron Technology, Inc. | Method and apparatus for generating a sequence of clock signals |
KR100213241B1 (en) * | 1997-06-23 | 1999-08-02 | 윤종용 | Data input output circuit and method |
US6286062B1 (en) | 1997-07-01 | 2001-09-04 | Micron Technology, Inc. | Pipelined packet-oriented memory system having a unidirectional command and address bus and a bidirectional data bus |
US5953284A (en) * | 1997-07-09 | 1999-09-14 | Micron Technology, Inc. | Method and apparatus for adaptively adjusting the timing of a clock signal used to latch digital signals, and memory device using same |
US6044429A (en) | 1997-07-10 | 2000-03-28 | Micron Technology, Inc. | Method and apparatus for collision-free data transfers in a memory device with selectable data or address paths |
US5978869A (en) * | 1997-07-21 | 1999-11-02 | International Business Machines Corporation | Enhanced dual speed bus computer system |
US6011732A (en) * | 1997-08-20 | 2000-01-04 | Micron Technology, Inc. | Synchronous clock generator including a compound delay-locked loop |
US6044413A (en) * | 1997-08-22 | 2000-03-28 | Hewlett-Packard Company | Method of concurrent bus operation for bus controlled devices operating in different contexts |
US5926047A (en) * | 1997-08-29 | 1999-07-20 | Micron Technology, Inc. | Synchronous clock generator including a delay-locked loop signal loss detector |
US5940609A (en) * | 1997-08-29 | 1999-08-17 | Micorn Technology, Inc. | Synchronous clock generator including a false lock detector |
US6101197A (en) * | 1997-09-18 | 2000-08-08 | Micron Technology, Inc. | Method and apparatus for adjusting the timing of signals over fine and coarse ranges |
US6119189A (en) * | 1997-09-24 | 2000-09-12 | Intel Corporation | Bus master transactions on a low pin count bus |
US6157970A (en) * | 1997-09-24 | 2000-12-05 | Intel Corporation | Direct memory access system using time-multiplexing for transferring address, data, and control and a separate control line for serially transmitting encoded DMA channel number |
US5991841A (en) * | 1997-09-24 | 1999-11-23 | Intel Corporation | Memory transactions on a low pin count bus |
US6131127A (en) * | 1997-09-24 | 2000-10-10 | Intel Corporation | I/O transactions on a low pin count bus |
US6067594A (en) * | 1997-09-26 | 2000-05-23 | Rambus, Inc. | High frequency bus system |
US9092595B2 (en) | 1997-10-08 | 2015-07-28 | Pact Xpp Technologies Ag | Multiprocessor having associated RAM units |
US6513103B1 (en) * | 1997-10-10 | 2003-01-28 | Rambus Inc. | Method and apparatus for adjusting the performance of a synchronous memory system |
WO1999019805A1 (en) | 1997-10-10 | 1999-04-22 | Rambus Incorporated | Method and apparatus for two step memory write operations |
US6133773A (en) * | 1997-10-10 | 2000-10-17 | Rambus Inc | Variable delay element |
US6401167B1 (en) * | 1997-10-10 | 2002-06-04 | Rambus Incorporated | High performance cost optimized memory |
US6347354B1 (en) | 1997-10-10 | 2002-02-12 | Rambus Incorporated | Apparatus and method for maximizing information transfers over limited interconnect resources |
DE69816464T2 (en) | 1997-10-10 | 2004-04-15 | Rambus Inc., Los Altos | DEVICE AND METHOD FOR COMPENSATING TIME DELAYS OF FACILITIES |
AU9693398A (en) * | 1997-10-10 | 1999-05-03 | Rambus Incorporated | Apparatus and method for pipelined memory operations |
US6009488A (en) * | 1997-11-07 | 1999-12-28 | Microlinc, Llc | Computer having packet-based interconnect channel |
KR100278650B1 (en) * | 1997-11-07 | 2001-03-02 | 윤종용 | Semiconductor memory device using a packet command |
US6098114A (en) | 1997-11-14 | 2000-08-01 | 3Ware | Disk array system for processing and tracking the completion of I/O requests |
US6138176A (en) * | 1997-11-14 | 2000-10-24 | 3Ware | Disk array controller with automated processor which routes I/O data according to addresses and commands received from disk drive controllers |
US6134630A (en) | 1997-11-14 | 2000-10-17 | 3Ware | High-performance bus architecture for disk array system |
US6965974B1 (en) * | 1997-11-14 | 2005-11-15 | Agere Systems Inc. | Dynamic partitioning of memory banks among multiple agents |
US6078891A (en) * | 1997-11-24 | 2000-06-20 | Riordan; John | Method and system for collecting and processing marketing data |
CA2223119A1 (en) * | 1997-11-28 | 1999-05-28 | Mosaid Technologies Incorporated | Address counter cell |
KR100261218B1 (en) * | 1997-12-08 | 2000-07-01 | 윤종용 | Pin assignment method of semiconductor memory device & semiconductor memory device inputing packet signal |
US6202119B1 (en) | 1997-12-19 | 2001-03-13 | Micron Technology, Inc. | Method and system for processing pipelined memory commands |
KR100252057B1 (en) * | 1997-12-30 | 2000-05-01 | 윤종용 | Semiconductor memory device usable in SDR and DDR |
GB9801654D0 (en) * | 1998-01-26 | 1998-03-25 | Memory Corp Plc | Memory system |
KR100272503B1 (en) | 1998-01-26 | 2000-11-15 | 김영환 | Rambus asic having high speed testing function and testing method thereof |
US6047346A (en) * | 1998-02-02 | 2000-04-04 | Rambus Inc. | System for adjusting slew rate on an output of a drive circuit by enabling a plurality of pre-drivers and a plurality of output drivers |
US5936877A (en) | 1998-02-13 | 1999-08-10 | Micron Technology, Inc. | Die architecture accommodating high-speed semiconductor devices |
US5923594A (en) * | 1998-02-17 | 1999-07-13 | Micron Technology, Inc. | Method and apparatus for coupling data from a memory device using a single ended read data path |
US6115320A (en) | 1998-02-23 | 2000-09-05 | Integrated Device Technology, Inc. | Separate byte control on fully synchronous pipelined SRAM |
JP2001522501A (en) * | 1998-02-25 | 2001-11-13 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Method for interfacing peripheral devices to a bus via a slave group interface device |
US6269451B1 (en) | 1998-02-27 | 2001-07-31 | Micron Technology, Inc. | Method and apparatus for adjusting data timing by delaying clock signal |
US6314527B1 (en) | 1998-03-05 | 2001-11-06 | Micron Technology, Inc. | Recovery of useful areas of partially defective synchronous memory components |
US6212482B1 (en) | 1998-03-06 | 2001-04-03 | Micron Technology, Inc. | Circuit and method for specifying performance parameters in integrated circuits |
US6154821A (en) * | 1998-03-10 | 2000-11-28 | Rambus Inc. | Method and apparatus for initializing dynamic random access memory (DRAM) devices by levelizing a read domain |
IL138411A (en) | 1998-03-16 | 2005-11-20 | Jazio Inc | High speed bus system and method for using voltageand timing oscillating references for signal detection |
US6160423A (en) * | 1998-03-16 | 2000-12-12 | Jazio, Inc. | High speed source synchronous signaling for interfacing VLSI CMOS circuits to transmission lines |
US6327205B1 (en) | 1998-03-16 | 2001-12-04 | Jazio, Inc. | Signal latching of high bandwidth DRAM arrays when skew between different components is higher than signal rate |
JP3259679B2 (en) * | 1998-03-23 | 2002-02-25 | 日本電気株式会社 | Semiconductor memory burn-in test circuit |
US6122698A (en) * | 1998-04-16 | 2000-09-19 | Samsung Electronics Co., Ltd | Data bus having conducting lines driven at multiple adjustable current levels to transfer multiple-bit data on each conducting line |
US6456628B1 (en) * | 1998-04-17 | 2002-09-24 | Intelect Communications, Inc. | DSP intercommunication network |
US6381708B1 (en) | 1998-04-28 | 2002-04-30 | Micron Technology, Inc. | Method for decoding addresses for a defective memory array |
US6381707B1 (en) | 1998-04-28 | 2002-04-30 | Micron Technology, Inc. | System for decoding addresses for a defective memory array |
US6216185B1 (en) | 1998-05-01 | 2001-04-10 | Acqis Technology, Inc. | Personal computer peripheral console with attached computer module |
JPH11316617A (en) | 1998-05-01 | 1999-11-16 | Mitsubishi Electric Corp | Semiconductor circuit device |
US6345330B2 (en) | 1998-05-01 | 2002-02-05 | Acqis Technology, Inc. | Communication channel and interface devices for bridging computer interface buses |
US6275782B1 (en) * | 1998-05-05 | 2001-08-14 | Advanced Micro Devices, Inc. | Non-intrusive performance monitoring |
JP3727778B2 (en) | 1998-05-07 | 2005-12-14 | 株式会社東芝 | Data high-speed transfer synchronization system and data high-speed transfer synchronization method |
JP4226686B2 (en) * | 1998-05-07 | 2009-02-18 | 株式会社東芝 | Semiconductor memory system, semiconductor memory access control method, and semiconductor memory |
US6016282A (en) * | 1998-05-28 | 2000-01-18 | Micron Technology, Inc. | Clock vernier adjustment |
US6496945B2 (en) * | 1998-06-04 | 2002-12-17 | Compaq Information Technologies Group, L.P. | Computer system implementing fault detection and isolation using unique identification codes stored in non-volatile memory |
US6405280B1 (en) | 1998-06-05 | 2002-06-11 | Micron Technology, Inc. | Packet-oriented synchronous DRAM interface supporting a plurality of orderings for data block transfers within a burst sequence |
US6453377B1 (en) | 1998-06-16 | 2002-09-17 | Micron Technology, Inc. | Computer including optical interconnect, memory unit, and method of assembling a computer |
US6615189B1 (en) * | 1998-06-22 | 2003-09-02 | Bank One, Delaware, National Association | Debit purchasing of stored value card for use by and/or delivery to others |
US6505276B1 (en) | 1998-06-26 | 2003-01-07 | Nec Corporation | Processing-function-provided packet-type memory system and method for controlling the same |
KR100292625B1 (en) * | 1998-06-29 | 2001-07-12 | 박종섭 | High speed interface device |
US20010026533A1 (en) * | 1998-07-06 | 2001-10-04 | Andreas Schwager | Method to perform a scheduled action of network devices |
US6510503B2 (en) * | 1998-07-27 | 2003-01-21 | Mosaid Technologies Incorporated | High bandwidth memory interface |
US6175905B1 (en) | 1998-07-30 | 2001-01-16 | Micron Technology, Inc. | Method and system for bypassing pipelines in a pipelined memory command generator |
KR100306965B1 (en) * | 1998-08-07 | 2001-11-30 | 윤종용 | Data Transmission Circuit of Synchronous Semiconductor Memory Device |
US6282210B1 (en) | 1998-08-12 | 2001-08-28 | Staktek Group L.P. | Clock driver with instantaneously selectable phase and method for use in data communication systems |
KR100295051B1 (en) * | 1998-08-20 | 2001-07-12 | 윤종용 | Input buffer for semiconductor memory device and input buffring method |
US6285962B1 (en) * | 1998-08-26 | 2001-09-04 | Tanisys Technology, Inc. | Method and system for testing rambus memory modules |
US6338127B1 (en) | 1998-08-28 | 2002-01-08 | Micron Technology, Inc. | Method and apparatus for resynchronizing a plurality of clock signals used to latch respective digital signals, and memory device using same |
US6586835B1 (en) * | 1998-08-31 | 2003-07-01 | Micron Technology, Inc. | Compact system module with built-in thermoelectric cooling |
US6281042B1 (en) | 1998-08-31 | 2001-08-28 | Micron Technology, Inc. | Structure and method for a high performance electronic packaging assembly |
US6219237B1 (en) | 1998-08-31 | 2001-04-17 | Micron Technology, Inc. | Structure and method for an electronic assembly |
US6392296B1 (en) | 1998-08-31 | 2002-05-21 | Micron Technology, Inc. | Silicon interposer with optical connections |
US6424034B1 (en) | 1998-08-31 | 2002-07-23 | Micron Technology, Inc. | High performance packaging for microprocessors and DRAM chips which minimizes timing skews |
US6279090B1 (en) | 1998-09-03 | 2001-08-21 | Micron Technology, Inc. | Method and apparatus for resynchronizing a plurality of clock signals used in latching respective digital signals applied to a packetized memory device |
US6374376B1 (en) * | 1998-09-03 | 2002-04-16 | Micron Technology, Inc. | Circuit, system and method for arranging data output by semiconductor testers to packet-based devices under test |
US6349399B1 (en) | 1998-09-03 | 2002-02-19 | Micron Technology, Inc. | Method and apparatus for generating expect data from a captured bit pattern, and memory device using same |
US6029250A (en) * | 1998-09-09 | 2000-02-22 | Micron Technology, Inc. | Method and apparatus for adaptively adjusting the timing offset between a clock signal and digital signals transmitted coincident with that clock signal, and memory device and system using same |
US6633947B1 (en) * | 1998-09-16 | 2003-10-14 | Intel Corporation | Memory expansion channel for propagation of control and request packets |
US6587912B2 (en) * | 1998-09-30 | 2003-07-01 | Intel Corporation | Method and apparatus for implementing multiple memory buses on a memory module |
US6321335B1 (en) | 1998-10-30 | 2001-11-20 | Acqis Technology, Inc. | Password protected modular computer method and device |
KR100275751B1 (en) * | 1998-11-09 | 2000-12-15 | 윤종용 | Semiconductor memory device having simple architecture |
US6430696B1 (en) | 1998-11-30 | 2002-08-06 | Micron Technology, Inc. | Method and apparatus for high speed data capture utilizing bit-to-bit timing correction, and memory device using same |
US6041016A (en) * | 1998-12-04 | 2000-03-21 | Intel Corporation | Optimizing page size in mixed memory array using address multiplexing |
US6374360B1 (en) | 1998-12-11 | 2002-04-16 | Micron Technology, Inc. | Method and apparatus for bit-to-bit timing correction of a high speed memory bus |
KR100327330B1 (en) | 1998-12-17 | 2002-05-09 | 윤종용 | Rambus DRAM semiconductor device |
US6496876B1 (en) | 1998-12-21 | 2002-12-17 | Micron Technology, Inc. | System and method for storing a tag to identify a functional storage location in a memory device |
US6347350B1 (en) | 1998-12-22 | 2002-02-12 | Intel Corporation | Driving the last inbound signal on a line in a bus with a termination |
US6738844B2 (en) * | 1998-12-23 | 2004-05-18 | Intel Corporation | Implementing termination with a default signal on a bus line |
US6463494B1 (en) * | 1998-12-30 | 2002-10-08 | Intel Corporation | Method and system for implementing control signals on a low pin count bus |
US6457094B2 (en) * | 1999-01-22 | 2002-09-24 | Winbond Electronics Corporation | Memory array architecture supporting block write operation |
US6078532A (en) * | 1999-02-01 | 2000-06-20 | Cisco Technology Inc. | Method and apparatus for improving performance of DRAM subsystems with SRAM overlays |
US6255852B1 (en) | 1999-02-09 | 2001-07-03 | Micron Technology, Inc. | Current mode signal interconnects and CMOS amplifier |
GB2346990B (en) | 1999-02-20 | 2003-07-09 | Ibm | Client/server transaction data processing system with automatic distributed coordinator set up into a linear chain for use of linear commit optimization |
US6470060B1 (en) | 1999-03-01 | 2002-10-22 | Micron Technology, Inc. | Method and apparatus for generating a phase dependent control signal |
US6334163B1 (en) * | 1999-03-05 | 2001-12-25 | International Business Machines Corp. | Elastic interface apparatus and method therefor |
US6330635B1 (en) * | 1999-04-16 | 2001-12-11 | Intel Corporation | Multiple user interfaces for an integrated flash device |
US6381684B1 (en) | 1999-04-26 | 2002-04-30 | Integrated Device Technology, Inc. | Quad data rate RAM |
EP1093126B1 (en) * | 1999-04-27 | 2006-07-12 | Seiko Epson Corporation | Integrated circuit |
US6426984B1 (en) * | 1999-05-07 | 2002-07-30 | Rambus Incorporated | Apparatus and method for reducing clock signal phase skew in a master-slave system with multiple latent clock cycles |
KR100594198B1 (en) * | 1999-05-14 | 2006-07-03 | 삼성전자주식회사 | Multichannel Rambus System |
US6718415B1 (en) | 1999-05-14 | 2004-04-06 | Acqis Technology, Inc. | Computer system and method including console housing multiple computer modules having independent processing units, mass storage devices, and graphics controllers |
US6643777B1 (en) | 1999-05-14 | 2003-11-04 | Acquis Technology, Inc. | Data security method and device for computer modules |
GB9912129D0 (en) * | 1999-05-26 | 1999-07-28 | 3Com Corp | Communication device with forwarding database having having a trie search facility |
US6150845A (en) * | 1999-06-01 | 2000-11-21 | Fairchild Semiconductor Corp. | Bus hold circuit with overvoltage tolerance |
US6433786B1 (en) * | 1999-06-10 | 2002-08-13 | Intel Corporation | Memory architecture for video graphics environment |
JP2003505753A (en) | 1999-06-10 | 2003-02-12 | ペーアーツェーテー インフォルマツィオーンステヒノロギー ゲゼルシャフト ミット ベシュレンクテル ハフツング | Sequence division method in cell structure |
US6211698B1 (en) | 1999-06-29 | 2001-04-03 | Hyundai Electronics Industries Co., Ltd. | High speed interface apparatus |
US7069406B2 (en) | 1999-07-02 | 2006-06-27 | Integrated Device Technology, Inc. | Double data rate synchronous SRAM with 100% bus utilization |
US6442636B1 (en) * | 1999-07-09 | 2002-08-27 | Princeton Technology Corporation | Parallel bus system capable of expanding peripheral devices |
KR100304707B1 (en) | 1999-07-13 | 2001-11-01 | 윤종용 | Reference voltage regulator capable of compensating drop of reference voltage and semiconductor memory device including the same |
KR100297735B1 (en) | 1999-07-13 | 2001-11-01 | 윤종용 | Semiconductor memory device having effective arrangement of fuction blocks |
US6839393B1 (en) * | 1999-07-14 | 2005-01-04 | Rambus Inc. | Apparatus and method for controlling a master/slave system via master device synchronization |
US6370668B1 (en) * | 1999-07-23 | 2002-04-09 | Rambus Inc | High speed memory system capable of selectively operating in non-chip-kill and chip-kill modes |
US6813251B1 (en) * | 1999-07-27 | 2004-11-02 | Intel Corporation | Split Transaction protocol for a bus system |
US7554829B2 (en) | 1999-07-30 | 2009-06-30 | Micron Technology, Inc. | Transmission lines for CMOS integrated circuits |
US6477592B1 (en) | 1999-08-06 | 2002-11-05 | Integrated Memory Logic, Inc. | System for I/O interfacing for semiconductor chip utilizing addition of reference element to each data element in first data stream and interpret to recover data elements of second data stream |
US6467013B1 (en) | 1999-09-30 | 2002-10-15 | Intel Corporation | Memory transceiver to couple an additional memory channel to an existing memory channel |
US6851047B1 (en) | 1999-10-15 | 2005-02-01 | Xilinx, Inc. | Configuration in a configurable system on a chip |
US7269212B1 (en) | 2000-09-05 | 2007-09-11 | Rambus Inc. | Low-latency equalization in multi-level, multi-line communication systems |
US6396329B1 (en) * | 1999-10-19 | 2002-05-28 | Rambus, Inc | Method and apparatus for receiving high speed signals with low latency |
US6643787B1 (en) * | 1999-10-19 | 2003-11-04 | Rambus Inc. | Bus system optimization |
US7124221B1 (en) * | 1999-10-19 | 2006-10-17 | Rambus Inc. | Low latency multi-level communication interface |
US7161513B2 (en) * | 1999-10-19 | 2007-01-09 | Rambus Inc. | Apparatus and method for improving resolution of a current mode driver |
US6646953B1 (en) * | 2000-07-06 | 2003-11-11 | Rambus Inc. | Single-clock, strobeless signaling system |
US6842789B1 (en) * | 1999-10-21 | 2005-01-11 | Sun Microsystems, Inc. | Method and apparatus for assigning unique device identifiers across a distributed computing system |
US7039047B1 (en) * | 1999-11-03 | 2006-05-02 | Intel Corporation | Virtual wire signaling |
US6643752B1 (en) * | 1999-12-09 | 2003-11-04 | Rambus Inc. | Transceiver with latency alignment circuitry |
US6557065B1 (en) | 1999-12-20 | 2003-04-29 | Intel Corporation | CPU expandability bus |
US6404660B1 (en) | 1999-12-23 | 2002-06-11 | Rambus, Inc. | Semiconductor package with a controlled impedance bus and method of forming same |
KR100316719B1 (en) * | 1999-12-29 | 2001-12-13 | 윤종용 | Output driver preventing degradation of channel bus line and memory module mounted semiconductor devices having thereof |
US6516384B1 (en) * | 1999-12-30 | 2003-02-04 | Intel Corporation | Method and apparatus to perform a round robin and locking cache replacement scheme |
US6910146B2 (en) * | 1999-12-31 | 2005-06-21 | Intel Corporation | Method and apparatus for improving timing margin in an integrated circuit as determined from recorded pass/fail indications for relative phase settings |
US6647507B1 (en) | 1999-12-31 | 2003-11-11 | Intel Corporation | Method for improving a timing margin in an integrated circuit by setting a relative phase of receive/transmit and distributed clock signals |
US7404032B2 (en) * | 2000-01-05 | 2008-07-22 | Rambus Inc. | Configurable width buffered module having switch elements |
US7017002B2 (en) * | 2000-01-05 | 2006-03-21 | Rambus, Inc. | System featuring a master device, a buffer device and a plurality of integrated circuit memory devices |
US7266634B2 (en) * | 2000-01-05 | 2007-09-04 | Rambus Inc. | Configurable width buffered module having flyby elements |
US20050010737A1 (en) * | 2000-01-05 | 2005-01-13 | Fred Ware | Configurable width buffered module having splitter elements |
US7356639B2 (en) * | 2000-01-05 | 2008-04-08 | Rambus Inc. | Configurable width buffered module having a bypass circuit |
US6502161B1 (en) * | 2000-01-05 | 2002-12-31 | Rambus Inc. | Memory system including a point-to-point linked memory subsystem |
US7363422B2 (en) * | 2000-01-05 | 2008-04-22 | Rambus Inc. | Configurable width buffered module |
DE10002130A1 (en) | 2000-01-19 | 2001-08-02 | Infineon Technologies Ag | Method and device for alternately operating a read-write memory in the one-memory operating mode and in the entangled multi-memory operating mode |
US6600959B1 (en) * | 2000-02-04 | 2003-07-29 | International Business Machines Corporation | Method and apparatus for implementing microprocessor control logic using dynamic programmable logic arrays |
US6987823B1 (en) * | 2000-02-07 | 2006-01-17 | Rambus Inc. | System and method for aligning internal transmit and receive clocks |
US6778561B1 (en) | 2000-02-23 | 2004-08-17 | Cypress Semiconductor Corp. | Hybrid data transport scheme over optical networks |
US6999479B1 (en) | 2000-02-23 | 2006-02-14 | Cypress Semiconductor Corp. | Hybrid data transport scheme over optical networks |
US6973084B1 (en) | 2000-02-23 | 2005-12-06 | Cypress Semiconductor Corp. | Hybrid data transport scheme over optical networks |
US7006525B1 (en) | 2000-02-23 | 2006-02-28 | Cypress Semiconductor Corp. | Hybrid data transport scheme over optical networks |
US6847644B1 (en) | 2000-02-23 | 2005-01-25 | Cypress Semiconductor Corp. | Hybrid data transport scheme over optical networks |
JP3663106B2 (en) * | 2000-02-28 | 2005-06-22 | 東芝機械株式会社 | Data input / output device |
US6198666B1 (en) * | 2000-02-29 | 2001-03-06 | International Business Machines Corporation | Control input timing-independent dynamic multiplexer circuit |
EP1130516A1 (en) * | 2000-03-01 | 2001-09-05 | Hewlett-Packard Company, A Delaware Corporation | Address mapping in solid state storage device |
US6578157B1 (en) | 2000-03-06 | 2003-06-10 | Micron Technology, Inc. | Method and apparatus for recovery of useful areas of partially defective direct rambus rimm components |
JP3980807B2 (en) * | 2000-03-27 | 2007-09-26 | 株式会社東芝 | Semiconductor device and semiconductor module |
US6980314B1 (en) * | 2000-04-03 | 2005-12-27 | Hewlett-Packard Development Company, L.P. | Method and device for improving utilization of a bus |
US7269765B1 (en) * | 2000-04-13 | 2007-09-11 | Micron Technology, Inc. | Method and apparatus for storing failing part locations in a module |
US6556952B1 (en) | 2000-05-04 | 2003-04-29 | Advanced Micro Devices, Inc. | Performance monitoring and optimizing of controller parameters |
US6606041B1 (en) | 2000-05-10 | 2003-08-12 | Micron Technology, Inc. | Predictive timing calibration for memory devices |
US6889357B1 (en) | 2000-05-10 | 2005-05-03 | Micron Technology, Inc. | Timing calibration pattern for SLDRAM |
US6434081B1 (en) | 2000-05-12 | 2002-08-13 | Micron Technology, Inc. | Calibration technique for memory devices |
US6369652B1 (en) | 2000-05-15 | 2002-04-09 | Rambus Inc. | Differential amplifiers with current and resistance compensation elements for balanced output |
US6535966B1 (en) * | 2000-05-17 | 2003-03-18 | Sun Microsystems, Inc. | System and method for using a page tracking buffer to reduce main memory latency in a computer system |
US6791555B1 (en) * | 2000-06-23 | 2004-09-14 | Micron Technology, Inc. | Apparatus and method for distributed memory control in a graphics processing system |
US6937664B1 (en) | 2000-07-18 | 2005-08-30 | Integrated Memory Logic, Inc. | System and method for multi-symbol interfacing |
DE10036643B4 (en) | 2000-07-26 | 2005-12-22 | Robert Bosch Gmbh | Method and device for selecting peripheral elements |
US6587804B1 (en) | 2000-08-14 | 2003-07-01 | Micron Technology, Inc. | Method and apparatus providing improved data path calibration for memory devices |
US6535450B1 (en) * | 2000-08-18 | 2003-03-18 | Micron Technology, Inc. | Method for selecting one or a bank of memory devices |
KR100389916B1 (en) * | 2000-08-28 | 2003-07-04 | 삼성전자주식회사 | Memory module and memory controller |
US6704881B1 (en) * | 2000-08-31 | 2004-03-09 | Micron Technology, Inc. | Method and apparatus for providing symmetrical output data for a double data rate DRAM |
US6530006B1 (en) | 2000-09-18 | 2003-03-04 | Intel Corporation | System and method for providing reliable transmission in a buffered memory system |
US6862653B1 (en) | 2000-09-18 | 2005-03-01 | Intel Corporation | System and method for controlling data flow direction in a memory system |
US6625685B1 (en) | 2000-09-20 | 2003-09-23 | Broadcom Corporation | Memory controller with programmable configuration |
US6553449B1 (en) | 2000-09-29 | 2003-04-22 | Intel Corporation | System and method for providing concurrent row and column commands |
US6385094B1 (en) | 2000-09-29 | 2002-05-07 | Intel Corporation | Method and apparatus for achieving efficient memory subsystem write-to-read turnaround through read posting |
US6772352B1 (en) | 2000-09-29 | 2004-08-03 | Intel Corporation | Method and apparatus for reducing the rate of commands being issued if the rate exceeds a threshold which is based upon a temperature curve |
US6735709B1 (en) | 2000-11-09 | 2004-05-11 | Micron Technology, Inc. | Method of timing calibration using slower data rate pattern |
US20020107943A1 (en) * | 2000-11-10 | 2002-08-08 | Heath Chester A. | Reset control in modular network computers |
US6628528B2 (en) | 2000-11-30 | 2003-09-30 | Theodore Zale Schoenborn | Current sharing in memory packages |
US6580619B2 (en) | 2000-11-30 | 2003-06-17 | Intel Corporation | Multilayer reference plane in package devices |
JPWO2002050910A1 (en) * | 2000-12-01 | 2004-04-22 | 株式会社日立製作所 | Method for identifying semiconductor integrated circuit device, method for manufacturing semiconductor integrated circuit device, and semiconductor integrated circuit device |
US6925086B2 (en) * | 2000-12-12 | 2005-08-02 | International Business Machines Corporation | Packet memory system |
FR2818774B1 (en) * | 2000-12-22 | 2003-03-21 | Wany Engineering Sas | PARALLEL ELECTRONIC ARCHITECTURE CONTAINING A PLURALITY OF PROCESSING UNITS CONNECTED TO A COMMUNICATION BUS, AND ADDRESSABLE BY THEIR FUNCTIONALITIES |
GB2382899B (en) * | 2000-12-29 | 2003-12-17 | Zarlink Semiconductor Ltd | A data queue system |
US6889336B2 (en) * | 2001-01-05 | 2005-05-03 | Micron Technology, Inc. | Apparatus for improving output skew for synchronous integrate circuits has delay circuit for generating unique clock signal by applying programmable delay to delayed clock signal |
DE10101553C1 (en) * | 2001-01-15 | 2002-07-25 | Infineon Technologies Ag | Semiconductor memory with delay control loop |
US6700827B2 (en) | 2001-02-08 | 2004-03-02 | Integrated Device Technology, Inc. | Cam circuit with error correction |
US6587936B1 (en) | 2001-02-21 | 2003-07-01 | Cisco Technology, Inc. | Multi-bank memory access method and apparatus |
US7123660B2 (en) * | 2001-02-27 | 2006-10-17 | Jazio, Inc. | Method and system for deskewing parallel bus channels to increase data transfer rates |
US6889304B2 (en) | 2001-02-28 | 2005-05-03 | Rambus Inc. | Memory device supporting a dynamically configurable core organization |
US6788593B2 (en) * | 2001-02-28 | 2004-09-07 | Rambus, Inc. | Asynchronous, high-bandwidth memory component using calibrated timing elements |
US7610447B2 (en) | 2001-02-28 | 2009-10-27 | Rambus Inc. | Upgradable memory system with reconfigurable interconnect |
US9250908B2 (en) | 2001-03-05 | 2016-02-02 | Pact Xpp Technologies Ag | Multi-processor bus and cache interconnection system |
US9037807B2 (en) | 2001-03-05 | 2015-05-19 | Pact Xpp Technologies Ag | Processor arrangement on a chip including data processing, memory, and interface elements |
US9141390B2 (en) | 2001-03-05 | 2015-09-22 | Pact Xpp Technologies Ag | Method of processing data with an array of data processors according to application ID |
US7444531B2 (en) | 2001-03-05 | 2008-10-28 | Pact Xpp Technologies Ag | Methods and devices for treating and processing data |
US9436631B2 (en) | 2001-03-05 | 2016-09-06 | Pact Xpp Technologies Ag | Chip including memory element storing higher level memory data on a page by page basis |
US9552047B2 (en) | 2001-03-05 | 2017-01-24 | Pact Xpp Technologies Ag | Multiprocessor having runtime adjustable clock and clock dependent power supply |
NZ528578A (en) * | 2001-03-23 | 2006-06-30 | Advanced Bionutrition | Microbial feeds for aquaculture and agriculture using microbes containing bioactive proteins |
US6934823B2 (en) * | 2001-03-29 | 2005-08-23 | Intel Corporation | Method and apparatus for handling memory read return data from different time domains |
US7500075B1 (en) | 2001-04-17 | 2009-03-03 | Rambus Inc. | Mechanism for enabling full data bus utilization without increasing data granularity |
US7263148B2 (en) * | 2001-04-20 | 2007-08-28 | Mastek International | Source synchronous CDMA bus interface |
US6675272B2 (en) | 2001-04-24 | 2004-01-06 | Rambus Inc. | Method and apparatus for coordinating memory operations among diversely-located memory components |
US8391039B2 (en) * | 2001-04-24 | 2013-03-05 | Rambus Inc. | Memory module with termination component |
KR100412130B1 (en) | 2001-05-25 | 2003-12-31 | 주식회사 하이닉스반도체 | Circuit for control output current of rambus dram |
US6532162B2 (en) | 2001-05-26 | 2003-03-11 | Intel Corporation | Reference plane of integrated circuit packages |
ITMI20011150A1 (en) * | 2001-05-30 | 2002-11-30 | St Microelectronics Srl | COLUMN MULTIPLATOR FOR SEMICONDUCTOR MEMORIES |
KR100434270B1 (en) | 2001-05-30 | 2004-06-04 | 엘지전자 주식회사 | Control System for Home Appliance Network |
DE10126610B4 (en) * | 2001-05-31 | 2007-11-29 | Infineon Technologies Ag | Memory module and method for testing a semiconductor chip |
US20020194363A1 (en) * | 2001-06-14 | 2002-12-19 | Cypress Semiconductor Corp. | Programmable protocol processing engine for network packet devices |
US20020191621A1 (en) * | 2001-06-14 | 2002-12-19 | Cypress Semiconductor Corp. | Programmable protocol processing engine for network packet devices |
US10031733B2 (en) | 2001-06-20 | 2018-07-24 | Scientia Sol Mentis Ag | Method for processing data |
US20030023492A1 (en) * | 2001-06-20 | 2003-01-30 | John Riordan | Method and system for collecting and processing marketing data |
US6801989B2 (en) | 2001-06-28 | 2004-10-05 | Micron Technology, Inc. | Method and system for adjusting the timing offset between a clock signal and respective digital signals transmitted along with that clock signal, and memory device and computer system using same |
US6710616B1 (en) * | 2001-07-30 | 2004-03-23 | Lsi Logic Corporation | Wafer level dynamic burn-in |
KR100422585B1 (en) * | 2001-08-08 | 2004-03-12 | 주식회사 하이닉스반도체 | Ring - register controlled DLL and its method |
US6806728B2 (en) * | 2001-08-15 | 2004-10-19 | Rambus, Inc. | Circuit and method for interfacing to a bus channel |
US7941056B2 (en) | 2001-08-30 | 2011-05-10 | Micron Technology, Inc. | Optical interconnect in high-speed memory systems |
US6724665B2 (en) | 2001-08-31 | 2004-04-20 | Matrix Semiconductor, Inc. | Memory device and method for selectable sub-array activation |
US6735546B2 (en) | 2001-08-31 | 2004-05-11 | Matrix Semiconductor, Inc. | Memory device and method for temperature-based control over write and/or read operations |
US7107374B1 (en) | 2001-09-05 | 2006-09-12 | Xilinx, Inc. | Method for bus mastering for devices resident in configurable system logic |
JP4000028B2 (en) * | 2001-09-18 | 2007-10-31 | 株式会社東芝 | Synchronous semiconductor memory device |
DE10147138B4 (en) * | 2001-09-25 | 2009-01-22 | Qimonda Ag | Method for integrating imperfect semiconductor memory devices in data processing devices |
JP3959264B2 (en) * | 2001-09-29 | 2007-08-15 | 株式会社東芝 | Multilayer semiconductor device |
JP4308461B2 (en) * | 2001-10-05 | 2009-08-05 | ラムバス・インコーポレーテッド | Semiconductor memory device |
US20030074434A1 (en) * | 2001-10-11 | 2003-04-17 | Jason James L. | Determination of message source in network communications |
WO2003036445A1 (en) | 2001-10-22 | 2003-05-01 | Rambus Inc. | Timing calibration apparatus and method for a memory device signaling system |
US6542416B1 (en) | 2001-11-02 | 2003-04-01 | Rambus Inc. | Methods and arrangements for conditionally enforcing CAS latencies in memory devices |
US20030101312A1 (en) * | 2001-11-26 | 2003-05-29 | Doan Trung T. | Machine state storage apparatus and method |
US6838712B2 (en) * | 2001-11-26 | 2005-01-04 | Micron Technology, Inc. | Per-bit set-up and hold time adjustment for double-data rate synchronous DRAM |
KR100557550B1 (en) | 2001-12-21 | 2006-03-03 | 주식회사 하이닉스반도체 | Clock synchronization circuit |
JP4204226B2 (en) * | 2001-12-28 | 2009-01-07 | 日本テキサス・インスツルメンツ株式会社 | Device identification method, data transmission method, device identifier assigning apparatus, and device |
US7099922B2 (en) * | 2002-01-23 | 2006-08-29 | International Business Machines Corporation | Method and system for simultaneous management of multiple tokens on a communication ring |
US7101770B2 (en) | 2002-01-30 | 2006-09-05 | Micron Technology, Inc. | Capacitive techniques to reduce noise in high speed interconnections |
US7698230B1 (en) * | 2002-02-15 | 2010-04-13 | ContractPal, Inc. | Transaction architecture utilizing transaction policy statements |
KR100412142B1 (en) * | 2002-02-26 | 2003-12-31 | 주식회사 하이닉스반도체 | Circuit for implementing a special mode in a semiconductor memory device of packet transmission method |
US7174401B2 (en) | 2002-02-28 | 2007-02-06 | Lsi Logic Corporation | Look ahead split release for a data bus |
TWI235919B (en) * | 2002-03-05 | 2005-07-11 | Via Tech Inc | Data-transmission control method |
US6751113B2 (en) | 2002-03-07 | 2004-06-15 | Netlist, Inc. | Arrangement of integrated circuits in a memory module |
US7235457B2 (en) | 2002-03-13 | 2007-06-26 | Micron Technology, Inc. | High permeability layered films to reduce noise in high speed interconnects |
ATE467115T1 (en) * | 2002-03-15 | 2010-05-15 | Affymetrix Inc | SYSTEM AND METHOD FOR SCANNING BIOLOGICAL MATERIALS |
US9170812B2 (en) | 2002-03-21 | 2015-10-27 | Pact Xpp Technologies Ag | Data processing system having integrated pipelined array data processor |
US6922091B2 (en) | 2002-09-03 | 2005-07-26 | Rambus Inc. | Locked loop circuit with clock hold function |
US6911853B2 (en) * | 2002-03-22 | 2005-06-28 | Rambus Inc. | Locked loop with dual rail regulation |
US6952123B2 (en) | 2002-03-22 | 2005-10-04 | Rambus Inc. | System with dual rail regulated locked loop |
US7135903B2 (en) * | 2002-09-03 | 2006-11-14 | Rambus Inc. | Phase jumping locked loop circuit |
US6759881B2 (en) | 2002-03-22 | 2004-07-06 | Rambus Inc. | System with phase jumping locked loop circuit |
FR2838006B1 (en) * | 2002-04-02 | 2004-11-12 | St Microelectronics Sa | DEVICE AND METHOD FOR SYNCHRONIZING A DATA EXCHANGE WITH A REMOTE MEMBER |
US6563730B1 (en) | 2002-04-09 | 2003-05-13 | National Semiconductor Corporation | Low power static RAM architecture |
US6762961B2 (en) * | 2002-04-16 | 2004-07-13 | Sun Microsystems, Inc. | Variable delay compensation for data-dependent mismatch in characteristic of opposing devices of a sense amplifier |
US7231306B1 (en) * | 2002-04-30 | 2007-06-12 | Rambus Inc. | Method and apparatus for calibrating static timing offsets across multiple outputs |
US6948019B2 (en) * | 2002-04-30 | 2005-09-20 | Lsi Logic Corporation | Apparatus for arbitrating non-queued split master devices on a data bus |
US7020208B1 (en) | 2002-05-03 | 2006-03-28 | Pericom Semiconductor Corp. | Differential clock signals encoded with data |
US7133972B2 (en) * | 2002-06-07 | 2006-11-07 | Micron Technology, Inc. | Memory hub with internal cache and/or memory access prediction |
KR100437467B1 (en) * | 2002-07-03 | 2004-06-23 | 삼성전자주식회사 | Multi-chip system having continuous burst read mode of operation |
US6944091B2 (en) * | 2002-07-10 | 2005-09-13 | Samsung Electronics Co., Ltd. | Latency control circuit and method of latency control |
KR100486250B1 (en) * | 2002-07-10 | 2005-05-03 | 삼성전자주식회사 | Latency control circuit and Method there-of for high frequency operation in synchronous semiconductor device |
US7149824B2 (en) * | 2002-07-10 | 2006-12-12 | Micron Technology, Inc. | Dynamically setting burst length of memory device by applying signal to at least one external pin during a read or write transaction |
US7298667B2 (en) * | 2002-07-10 | 2007-11-20 | Samsung Electronic Co., Ltd. | Latency control circuit and method of latency control |
US7292629B2 (en) | 2002-07-12 | 2007-11-06 | Rambus Inc. | Selectable-tap equalizer |
US8861667B1 (en) | 2002-07-12 | 2014-10-14 | Rambus Inc. | Clock data recovery circuit with equalizer clock calibration |
US7362800B1 (en) | 2002-07-12 | 2008-04-22 | Rambus Inc. | Auto-configured equalizer |
US7200024B2 (en) * | 2002-08-02 | 2007-04-03 | Micron Technology, Inc. | System and method for optically interconnecting memory devices |
US7117316B2 (en) * | 2002-08-05 | 2006-10-03 | Micron Technology, Inc. | Memory hub and access method having internal row caching |
US7254331B2 (en) * | 2002-08-09 | 2007-08-07 | Micron Technology, Inc. | System and method for multiple bit optical data transmission in memory systems |
US7149874B2 (en) * | 2002-08-16 | 2006-12-12 | Micron Technology, Inc. | Memory hub bypass circuit and method |
US7124260B2 (en) * | 2002-08-26 | 2006-10-17 | Micron Technology, Inc. | Modified persistent auto precharge command protocol system and method for memory devices |
US7081896B1 (en) * | 2002-08-27 | 2006-07-25 | Nvidia Corporation | Memory request timing randomizer |
US6820181B2 (en) | 2002-08-29 | 2004-11-16 | Micron Technology, Inc. | Method and system for controlling memory accesses to memory modules having a memory hub architecture |
US7836252B2 (en) | 2002-08-29 | 2010-11-16 | Micron Technology, Inc. | System and method for optimizing interconnections of memory devices in a multichip module |
US6711051B1 (en) | 2002-09-05 | 2004-03-23 | National Semiconductor Corporation | Static RAM architecture with bit line partitioning |
US7394284B2 (en) | 2002-09-06 | 2008-07-01 | Pact Xpp Technologies Ag | Reconfigurable sequencer structure |
US7102907B2 (en) * | 2002-09-09 | 2006-09-05 | Micron Technology, Inc. | Wavelength division multiplexed memory module, memory system and method |
US20040054864A1 (en) * | 2002-09-13 | 2004-03-18 | Jameson Neil Andrew | Memory controller |
US20040064686A1 (en) * | 2002-09-30 | 2004-04-01 | Miller Gregory L. | Method and apparatus for marking current memory configuration |
US6859434B2 (en) | 2002-10-01 | 2005-02-22 | Comsys Communication & Signal Processing Ltd. | Data transfer scheme in a communications system incorporating multiple processing elements |
US6982926B2 (en) * | 2002-10-04 | 2006-01-03 | Pgs Americas, Inc. | Apparatus and method for bubble shielding towed marine cable |
US20040081179A1 (en) * | 2002-10-23 | 2004-04-29 | Gregorcyk Arthur J. | Method and system for selecting between serial storage buses using data signals of the buses |
JP3773195B2 (en) * | 2002-10-25 | 2006-05-10 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Memory module, information processing apparatus, initial setting method for memory module, and program |
US6879526B2 (en) * | 2002-10-31 | 2005-04-12 | Ring Technology Enterprises Llc | Methods and apparatus for improved memory access |
US7197662B2 (en) * | 2002-10-31 | 2007-03-27 | Ring Technology Enterprises, Llc | Methods and systems for a storage system |
US7707351B2 (en) * | 2002-10-31 | 2010-04-27 | Ring Technology Enterprises Of Texas, Llc | Methods and systems for an identifier-based memory section |
US7415565B2 (en) * | 2002-10-31 | 2008-08-19 | Ring Technology Enterprises, Llc | Methods and systems for a storage system with a program-controlled switch for routing data |
US6954394B2 (en) * | 2002-11-27 | 2005-10-11 | Matrix Semiconductor, Inc. | Integrated circuit and method for selecting a set of memory-cell-layer-dependent or temperature-dependent operating conditions |
US7051229B2 (en) * | 2002-12-03 | 2006-05-23 | Alcatel Canada Inc. | Logical bus overlay for increasing the existing system bus data rate |
KR100506062B1 (en) * | 2002-12-18 | 2005-08-05 | 주식회사 하이닉스반도체 | Composite Memory Device |
KR100506448B1 (en) * | 2002-12-27 | 2005-08-08 | 주식회사 하이닉스반도체 | Device for controlling interleave using non-volatile ferroelectric memory |
US7362697B2 (en) * | 2003-01-09 | 2008-04-22 | International Business Machines Corporation | Self-healing chip-to-chip interface |
WO2004063906A2 (en) * | 2003-01-13 | 2004-07-29 | Rambus Inc. | Coded write masking |
US7313639B2 (en) * | 2003-01-13 | 2007-12-25 | Rambus Inc. | Memory system and device with serialized data transfer |
DE10302128B3 (en) * | 2003-01-21 | 2004-09-09 | Infineon Technologies Ag | Buffer amplifier system for buffer storage of signals runs several DRAM chips in parallel and has two output buffer amplifiers in parallel feeding reference and signal networks with capacitors and DRAMs |
KR100507367B1 (en) * | 2003-01-24 | 2005-08-05 | 주식회사 하이닉스반도체 | Device for controlling serial bus using non-volatile ferroelectric memory |
US6967896B2 (en) * | 2003-01-30 | 2005-11-22 | Saifun Semiconductors Ltd | Address scramble |
DE10307548A1 (en) * | 2003-02-21 | 2004-09-09 | Infineon Technologies Ag | Synchronous memory system for computer, has memory ranks with one-to-one correspondence with elements of select command segment |
JP2004259318A (en) * | 2003-02-24 | 2004-09-16 | Renesas Technology Corp | Synchronous semiconductor memory device |
JP2004265265A (en) * | 2003-03-04 | 2004-09-24 | Matsushita Electric Ind Co Ltd | Data transfer control device |
CN100337269C (en) * | 2003-04-08 | 2007-09-12 | 华为技术有限公司 | Method for matching speech packet collection retransmission entity with coding and decoding entity |
US20050044174A1 (en) * | 2003-04-11 | 2005-02-24 | Sun Microsystems, Inc. | Multi-node computer system where active devices selectively initiate certain transactions using remote-type address packets |
US7234099B2 (en) * | 2003-04-14 | 2007-06-19 | International Business Machines Corporation | High reliability memory module with a fault tolerant address and command bus |
US6741111B1 (en) | 2003-04-21 | 2004-05-25 | Pericom Semiconductor Corp. | Data register for buffering double-data-rate DRAMs with reduced data-input-path power consumption |
US7028155B2 (en) * | 2003-04-22 | 2006-04-11 | Hewlett-Packard Development Company, L.P. | Master-slave data management system and method |
US6996785B1 (en) | 2003-04-25 | 2006-02-07 | Universal Network Machines, Inc . | On-chip packet-based interconnections using repeaters/routers |
US7287143B2 (en) * | 2003-04-30 | 2007-10-23 | Hynix Semiconductor Inc. | Synchronous memory device having advanced data align circuit |
US7266679B2 (en) * | 2003-05-01 | 2007-09-04 | Dell Products L.P. | System and method for reducing instability in an information handling system |
US20040225944A1 (en) * | 2003-05-09 | 2004-11-11 | Brueggen Christopher M. | Systems and methods for processing an error correction code word for storage in memory components |
US7392347B2 (en) * | 2003-05-10 | 2008-06-24 | Hewlett-Packard Development Company, L.P. | Systems and methods for buffering data between a coherency cache controller and memory |
US7421525B2 (en) * | 2003-05-13 | 2008-09-02 | Advanced Micro Devices, Inc. | System including a host connected to a plurality of memory modules via a serial memory interconnect |
US20040232956A1 (en) * | 2003-05-22 | 2004-11-25 | Rambus Inc | Synchronized clocking |
DE10323415A1 (en) * | 2003-05-23 | 2004-12-30 | Infineon Technologies Ag | Data storage arrangement with control device and memory unit for computers and processors |
US6838902B1 (en) * | 2003-05-28 | 2005-01-04 | Actel Corporation | Synchronous first-in/first-out block memory for a field programmable gate array |
US7200787B2 (en) * | 2003-06-03 | 2007-04-03 | Intel Corporation | Memory channel utilizing permuting status patterns |
US7127629B2 (en) * | 2003-06-03 | 2006-10-24 | Intel Corporation | Redriving a data signal responsive to either a sampling clock signal or stable clock signal dependent on a mode signal |
US7194581B2 (en) * | 2003-06-03 | 2007-03-20 | Intel Corporation | Memory channel with hot add/remove |
US7165153B2 (en) | 2003-06-04 | 2007-01-16 | Intel Corporation | Memory channel with unidirectional links |
US7340537B2 (en) * | 2003-06-04 | 2008-03-04 | Intel Corporation | Memory channel with redundant presence detect |
US8171331B2 (en) * | 2003-06-04 | 2012-05-01 | Intel Corporation | Memory channel having deskew separate from redrive |
US7386768B2 (en) * | 2003-06-05 | 2008-06-10 | Intel Corporation | Memory channel with bit lane fail-over |
US7245145B2 (en) * | 2003-06-11 | 2007-07-17 | Micron Technology, Inc. | Memory module and method having improved signal routing topology |
US7168027B2 (en) | 2003-06-12 | 2007-01-23 | Micron Technology, Inc. | Dynamic synchronization of data capture on an optical or other high speed communications link |
US7047385B1 (en) * | 2003-06-16 | 2006-05-16 | Cisco Technology, Inc. | High-speed memory for use in networking systems |
US7120727B2 (en) * | 2003-06-19 | 2006-10-10 | Micron Technology, Inc. | Reconfigurable memory module and method |
US7107415B2 (en) * | 2003-06-20 | 2006-09-12 | Micron Technology, Inc. | Posted write buffers and methods of posting write requests in memory modules |
US7428644B2 (en) * | 2003-06-20 | 2008-09-23 | Micron Technology, Inc. | System and method for selective memory module power management |
US7260685B2 (en) * | 2003-06-20 | 2007-08-21 | Micron Technology, Inc. | Memory hub and access method having internal prefetch buffers |
DE10328658A1 (en) | 2003-06-26 | 2005-02-10 | Infineon Technologies Ag | Hub module for one or more memory modules |
DE10330593B4 (en) * | 2003-07-07 | 2010-11-04 | Qimonda Ag | Integrated clock supply module for a memory module, memory module, which includes the integrated clock supply module, as well as methods for operating the memory module under test conditions |
US7356627B2 (en) * | 2003-07-10 | 2008-04-08 | Nokia Corporation | Device identification |
US6987684B1 (en) | 2003-07-15 | 2006-01-17 | Integrated Device Technology, Inc. | Content addressable memory (CAM) devices having multi-block error detection logic and entry selective error correction logic therein |
US7193876B1 (en) | 2003-07-15 | 2007-03-20 | Kee Park | Content addressable memory (CAM) arrays having memory cells therein with different susceptibilities to soft errors |
US6870749B1 (en) | 2003-07-15 | 2005-03-22 | Integrated Device Technology, Inc. | Content addressable memory (CAM) devices with dual-function check bit cells that support column redundancy and check bit cells with reduced susceptibility to soft errors |
US7389364B2 (en) | 2003-07-22 | 2008-06-17 | Micron Technology, Inc. | Apparatus and method for direct memory access in a hub-based memory system |
US7428245B1 (en) * | 2003-08-01 | 2008-09-23 | Staccato Communications, Inc. | Split medium access and control layer communications system |
US6861884B1 (en) * | 2003-08-04 | 2005-03-01 | Rambus Inc. | Phase synchronization for wide area integrated circuits |
US7317415B2 (en) | 2003-08-08 | 2008-01-08 | Affymetrix, Inc. | System, method, and product for scanning of biological materials employing dual analog integrators |
US7210059B2 (en) * | 2003-08-19 | 2007-04-24 | Micron Technology, Inc. | System and method for on-board diagnostics of memory modules |
US7133991B2 (en) * | 2003-08-20 | 2006-11-07 | Micron Technology, Inc. | Method and system for capturing and bypassing memory transactions in a hub-based memory system |
US20050050237A1 (en) * | 2003-08-28 | 2005-03-03 | Jeddeloh Joseph M. | Memory module and method having on-board data search capabilities and processor-based system using such memory modules |
US7136958B2 (en) * | 2003-08-28 | 2006-11-14 | Micron Technology, Inc. | Multiple processor system and method including multiple memory hub modules |
US7084894B2 (en) * | 2003-09-12 | 2006-08-01 | Hewlett-Packard Development Company, L.P. | Optical disc drive focusing apparatus |
US7310752B2 (en) * | 2003-09-12 | 2007-12-18 | Micron Technology, Inc. | System and method for on-board timing margin testing of memory modules |
US6961276B2 (en) * | 2003-09-17 | 2005-11-01 | International Business Machines Corporation | Random access memory having an adaptable latency |
US7177201B1 (en) | 2003-09-17 | 2007-02-13 | Sun Microsystems, Inc. | Negative bias temperature instability (NBTI) preconditioning of matched devices |
US7194593B2 (en) * | 2003-09-18 | 2007-03-20 | Micron Technology, Inc. | Memory hub with integrated non-volatile memory |
US20050063506A1 (en) * | 2003-09-23 | 2005-03-24 | Sony Corporation | Method and system for jitter correction |
US7057958B2 (en) * | 2003-09-30 | 2006-06-06 | Sandisk Corporation | Method and system for temperature compensation for memory cells with temperature-dependent behavior |
US7164612B1 (en) | 2003-10-10 | 2007-01-16 | Sun Microsystems, Inc. | Test circuit for measuring sense amplifier and memory mismatches |
US7020035B1 (en) | 2003-10-10 | 2006-03-28 | Sun Microsystems, Inc. | Measuring and correcting sense amplifier and memory mismatches using NBTI |
US7120743B2 (en) * | 2003-10-20 | 2006-10-10 | Micron Technology, Inc. | Arbitration system and method for memory responses in a hub-based memory system |
US7234070B2 (en) * | 2003-10-27 | 2007-06-19 | Micron Technology, Inc. | System and method for using a learning sequence to establish communications on a high-speed nonsynchronous interface in the absence of clock forwarding |
US7237042B2 (en) * | 2003-10-29 | 2007-06-26 | Intel Corporation | Mechanism for generating a virtual identifier |
US7243205B2 (en) * | 2003-11-13 | 2007-07-10 | Intel Corporation | Buffered memory module with implicit to explicit memory command expansion |
US7177211B2 (en) * | 2003-11-13 | 2007-02-13 | Intel Corporation | Memory channel test fixture and method |
US7065666B2 (en) * | 2003-11-13 | 2006-06-20 | Micron Technology, Inc. | Apparatus and method for generating a delayed clock signal |
US7143207B2 (en) * | 2003-11-14 | 2006-11-28 | Intel Corporation | Data accumulation between data path having redrive circuit and memory device |
US7219294B2 (en) * | 2003-11-14 | 2007-05-15 | Intel Corporation | Early CRC delivery for partial frame |
US7447953B2 (en) | 2003-11-14 | 2008-11-04 | Intel Corporation | Lane testing with variable mapping |
JP2005182872A (en) * | 2003-12-17 | 2005-07-07 | Toshiba Corp | Nonvolatile semiconductor memory device |
US7304875B1 (en) | 2003-12-17 | 2007-12-04 | Integrated Device Technology. Inc. | Content addressable memory (CAM) devices that support background BIST and BISR operations and methods of operating same |
JP2005190036A (en) * | 2003-12-25 | 2005-07-14 | Hitachi Ltd | Storage controller and control method for storage controller |
JP4741226B2 (en) * | 2003-12-25 | 2011-08-03 | 株式会社日立製作所 | Semiconductor memory module and memory system |
US7330992B2 (en) * | 2003-12-29 | 2008-02-12 | Micron Technology, Inc. | System and method for read synchronization of memory modules |
US8504798B2 (en) | 2003-12-30 | 2013-08-06 | Sandisk Technologies Inc. | Management of non-volatile memory systems having large erase blocks |
US7631138B2 (en) * | 2003-12-30 | 2009-12-08 | Sandisk Corporation | Adaptive mode switching of flash memory address mapping based on host usage characteristics |
US8250295B2 (en) | 2004-01-05 | 2012-08-21 | Smart Modular Technologies, Inc. | Multi-rank memory module that emulates a memory module having a different number of ranks |
KR100558557B1 (en) * | 2004-01-20 | 2006-03-10 | 삼성전자주식회사 | Data Sampling Method and Semiconductor Data Sampling Circuit in Semiconductor Memory Device |
US7042777B2 (en) * | 2004-01-28 | 2006-05-09 | Infineon Technologies Ag | Memory device with non-variable write latency |
US20050018495A1 (en) * | 2004-01-29 | 2005-01-27 | Netlist, Inc. | Arrangement of integrated circuits in a memory module |
US7188219B2 (en) * | 2004-01-30 | 2007-03-06 | Micron Technology, Inc. | Buffer control system and method for a memory system having outstanding read and write request buffers |
US7412574B2 (en) | 2004-02-05 | 2008-08-12 | Micron Technology, Inc. | System and method for arbitration of memory responses in a hub-based memory system |
US7788451B2 (en) | 2004-02-05 | 2010-08-31 | Micron Technology, Inc. | Apparatus and method for data bypass for a bi-directional data bus in a hub-based memory sub-system |
US7181584B2 (en) * | 2004-02-05 | 2007-02-20 | Micron Technology, Inc. | Dynamic command and/or address mirroring system and method for memory modules |
KR100604836B1 (en) * | 2004-02-26 | 2006-07-26 | 삼성전자주식회사 | Memory system employing simultaneous bidirectional I / O circuits on address bus lines |
US7289386B2 (en) | 2004-03-05 | 2007-10-30 | Netlist, Inc. | Memory module decoder |
US7916574B1 (en) | 2004-03-05 | 2011-03-29 | Netlist, Inc. | Circuit providing load isolation and memory domain translation for memory module |
US7366864B2 (en) | 2004-03-08 | 2008-04-29 | Micron Technology, Inc. | Memory hub architecture having programmable lane widths |
US7257683B2 (en) | 2004-03-24 | 2007-08-14 | Micron Technology, Inc. | Memory arbitration system and method having an arbitration packet protocol |
US7120723B2 (en) | 2004-03-25 | 2006-10-10 | Micron Technology, Inc. | System and method for memory hub-based expansion bus |
US7213082B2 (en) | 2004-03-29 | 2007-05-01 | Micron Technology, Inc. | Memory hub and method for providing memory sequencing hints |
CN1938897A (en) | 2004-03-29 | 2007-03-28 | 日本电气株式会社 | Data transmitter, data transmission line and data transmission method |
US7447240B2 (en) * | 2004-03-29 | 2008-11-04 | Micron Technology, Inc. | Method and system for synchronizing communications links in a hub-based memory system |
US6980042B2 (en) * | 2004-04-05 | 2005-12-27 | Micron Technology, Inc. | Delay line synchronizer apparatus and method |
US7590797B2 (en) | 2004-04-08 | 2009-09-15 | Micron Technology, Inc. | System and method for optimizing interconnections of components in a multichip memory module |
US7142479B2 (en) * | 2004-04-19 | 2006-11-28 | Nokia Corporation | Addressing data within dynamic random access memory |
TWI252409B (en) * | 2004-04-26 | 2006-04-01 | Sunplus Technology Co Ltd | Enhanced expandable time-sharing bus device |
US7162567B2 (en) * | 2004-05-14 | 2007-01-09 | Micron Technology, Inc. | Memory hub and method for memory sequencing |
US7222213B2 (en) * | 2004-05-17 | 2007-05-22 | Micron Technology, Inc. | System and method for communicating the synchronization status of memory modules during initialization of the memory modules |
US20050259692A1 (en) * | 2004-05-19 | 2005-11-24 | Zerbe Jared L | Crosstalk minimization in serial link systems |
DE102004025984A1 (en) * | 2004-05-26 | 2005-12-15 | Sms Demag Ag | Method and device for assembly and functional testing of rolling fittings in rolling mills or in rolling mills, such as tandem rolling mills |
US7363419B2 (en) * | 2004-05-28 | 2008-04-22 | Micron Technology, Inc. | Method and system for terminating write commands in a hub-based memory system |
US7212423B2 (en) * | 2004-05-31 | 2007-05-01 | Intel Corporation | Memory agent core clock aligned to lane |
US7519788B2 (en) | 2004-06-04 | 2009-04-14 | Micron Technology, Inc. | System and method for an asynchronous data buffer having buffer write and read pointers |
US7310748B2 (en) * | 2004-06-04 | 2007-12-18 | Micron Technology, Inc. | Memory hub tester interface and method for use thereof |
JP4610235B2 (en) * | 2004-06-07 | 2011-01-12 | ルネサスエレクトロニクス株式会社 | Hierarchical module |
US20060004953A1 (en) * | 2004-06-30 | 2006-01-05 | Vogt Pete D | Method and apparatus for increased memory bandwidth |
DE102004031715B4 (en) * | 2004-06-30 | 2013-05-29 | Globalfoundries Inc. | Combined on-chip command and response data interface |
US7383399B2 (en) * | 2004-06-30 | 2008-06-03 | Intel Corporation | Method and apparatus for memory compression |
DE102004032943A1 (en) * | 2004-07-07 | 2006-02-02 | Siemens Ag | Central processing unit access time point controlling method for micro controller, involves executing access action, with which cycle time is allocated to access category, for availability release of availability control on external circuit |
US7254659B2 (en) * | 2004-07-26 | 2007-08-07 | Motorola, Inc. | Method of VMEbus split-read transaction |
US7296129B2 (en) | 2004-07-30 | 2007-11-13 | International Business Machines Corporation | System, method and storage medium for providing a serialized memory interface with a bus repeater |
US7539800B2 (en) * | 2004-07-30 | 2009-05-26 | International Business Machines Corporation | System, method and storage medium for providing segment level sparing |
US7389375B2 (en) | 2004-07-30 | 2008-06-17 | International Business Machines Corporation | System, method and storage medium for a multi-mode memory buffer device |
US7224595B2 (en) * | 2004-07-30 | 2007-05-29 | International Business Machines Corporation | 276-Pin buffered memory module with enhanced fault tolerance |
US20060036826A1 (en) * | 2004-07-30 | 2006-02-16 | International Business Machines Corporation | System, method and storage medium for providing a bus speed multiplier |
US7287235B1 (en) * | 2004-08-06 | 2007-10-23 | Calypto Design Systems, Inc. | Method of simplifying a circuit for equivalence checking |
US7366942B2 (en) * | 2004-08-12 | 2008-04-29 | Micron Technology, Inc. | Method and apparatus for high-speed input sampling |
US8190808B2 (en) | 2004-08-17 | 2012-05-29 | Rambus Inc. | Memory device having staggered memory operations |
US7392331B2 (en) * | 2004-08-31 | 2008-06-24 | Micron Technology, Inc. | System and method for transmitting data packets in a computer system having a memory hub architecture |
US7301831B2 (en) | 2004-09-15 | 2007-11-27 | Rambus Inc. | Memory systems with variable delays for write data signals |
US7324403B2 (en) * | 2004-09-24 | 2008-01-29 | Intel Corporation | Latency normalization by balancing early and late clocks |
US7280428B2 (en) | 2004-09-30 | 2007-10-09 | Rambus Inc. | Multi-column addressing mode memory system including an integrated circuit memory device |
US7254075B2 (en) | 2004-09-30 | 2007-08-07 | Rambus Inc. | Integrated circuit memory system having dynamic memory bank count and page size |
EP1647989A1 (en) * | 2004-10-18 | 2006-04-19 | Dialog Semiconductor GmbH | Dynamical adaption of memory sense electronics |
US7395476B2 (en) * | 2004-10-29 | 2008-07-01 | International Business Machines Corporation | System, method and storage medium for providing a high speed test interface to a memory subsystem |
US7356737B2 (en) | 2004-10-29 | 2008-04-08 | International Business Machines Corporation | System, method and storage medium for testing a memory module |
US7331010B2 (en) * | 2004-10-29 | 2008-02-12 | International Business Machines Corporation | System, method and storage medium for providing fault detection and correction in a memory subsystem |
US7277988B2 (en) * | 2004-10-29 | 2007-10-02 | International Business Machines Corporation | System, method and storage medium for providing data caching and data compression in a memory subsystem |
US7512762B2 (en) | 2004-10-29 | 2009-03-31 | International Business Machines Corporation | System, method and storage medium for a memory subsystem with positional read data latency |
US7441060B2 (en) | 2004-10-29 | 2008-10-21 | International Business Machines Corporation | System, method and storage medium for providing a service interface to a memory system |
US7299313B2 (en) * | 2004-10-29 | 2007-11-20 | International Business Machines Corporation | System, method and storage medium for a memory subsystem command interface |
US7305574B2 (en) * | 2004-10-29 | 2007-12-04 | International Business Machines Corporation | System, method and storage medium for bus calibration in a memory subsystem |
US7310704B1 (en) * | 2004-11-02 | 2007-12-18 | Symantec Operating Corporation | System and method for performing online backup and restore of volume configuration information |
JP4419074B2 (en) * | 2004-11-15 | 2010-02-24 | エルピーダメモリ株式会社 | Semiconductor memory device |
US7536666B1 (en) * | 2004-11-19 | 2009-05-19 | Xilinx, Inc. | Integrated circuit and method of routing a clock signal in an integrated circuit |
US8595459B2 (en) | 2004-11-29 | 2013-11-26 | Rambus Inc. | Micro-threaded memory |
WO2006065698A2 (en) | 2004-12-13 | 2006-06-22 | William Kenneth Waller | Sense amplifier circuitry and architecture to write data into and/or read data from memory cells |
US7218570B2 (en) * | 2004-12-17 | 2007-05-15 | Sandisk 3D Llc | Apparatus and method for memory operations using address-dependent conditions |
US20060164909A1 (en) * | 2005-01-24 | 2006-07-27 | International Business Machines Corporation | System, method and storage medium for providing programmable delay chains for a memory system |
US20060168407A1 (en) * | 2005-01-26 | 2006-07-27 | Micron Technology, Inc. | Memory hub system and method having large virtual page size |
US20060179191A1 (en) * | 2005-02-10 | 2006-08-10 | Young David W | Covert channel firewall |
JP2006285602A (en) * | 2005-03-31 | 2006-10-19 | Nec Corp | Memory system, information processing apparatus, data transfer method, program, and recording medium |
US7702839B2 (en) | 2005-04-12 | 2010-04-20 | Nokia Corporation | Memory interface for volatile and non-volatile memory devices |
US20060248305A1 (en) * | 2005-04-13 | 2006-11-02 | Wayne Fang | Memory device having width-dependent output latency |
US7184327B2 (en) * | 2005-04-14 | 2007-02-27 | Micron Technology, Inc. | System and method for enhanced mode register definitions |
KR100670656B1 (en) * | 2005-06-09 | 2007-01-17 | 주식회사 하이닉스반도체 | Semiconductor memory device |
US8090897B2 (en) | 2006-07-31 | 2012-01-03 | Google Inc. | System and method for simulating an aspect of a memory circuit |
US7386656B2 (en) | 2006-07-31 | 2008-06-10 | Metaram, Inc. | Interface circuit system and method for performing power management operations in conjunction with only a portion of a memory circuit |
US8130560B1 (en) | 2006-11-13 | 2012-03-06 | Google Inc. | Multi-rank partial width memory modules |
US7609567B2 (en) | 2005-06-24 | 2009-10-27 | Metaram, Inc. | System and method for simulating an aspect of a memory circuit |
US8397013B1 (en) | 2006-10-05 | 2013-03-12 | Google Inc. | Hybrid memory module |
US8111566B1 (en) | 2007-11-16 | 2012-02-07 | Google, Inc. | Optimal channel design for memory devices for providing a high-speed memory interface |
US8335894B1 (en) | 2008-07-25 | 2012-12-18 | Google Inc. | Configurable memory system with interface circuit |
US20080028136A1 (en) | 2006-07-31 | 2008-01-31 | Schakel Keith R | Method and apparatus for refresh management of memory modules |
US10013371B2 (en) | 2005-06-24 | 2018-07-03 | Google Llc | Configurable memory circuit system and method |
US8438328B2 (en) | 2008-02-21 | 2013-05-07 | Google Inc. | Emulation of abstracted DIMMs using abstracted DRAMs |
US9507739B2 (en) | 2005-06-24 | 2016-11-29 | Google Inc. | Configurable memory circuit system and method |
US7580312B2 (en) | 2006-07-31 | 2009-08-25 | Metaram, Inc. | Power saving system and method for use with a plurality of memory circuits |
US7392338B2 (en) | 2006-07-31 | 2008-06-24 | Metaram, Inc. | Interface circuit system and method for autonomously performing power management operations in conjunction with a plurality of memory circuits |
US9542352B2 (en) | 2006-02-09 | 2017-01-10 | Google Inc. | System and method for reducing command scheduling constraints of memory circuits |
US9171585B2 (en) | 2005-06-24 | 2015-10-27 | Google Inc. | Configurable memory circuit system and method |
US8244971B2 (en) | 2006-07-31 | 2012-08-14 | Google Inc. | Memory circuit system and method |
US8327104B2 (en) | 2006-07-31 | 2012-12-04 | Google Inc. | Adjusting the timing of signals associated with a memory system |
US8077535B2 (en) | 2006-07-31 | 2011-12-13 | Google Inc. | Memory refresh apparatus and method |
US8359187B2 (en) | 2005-06-24 | 2013-01-22 | Google Inc. | Simulating a different number of memory circuit devices |
US8055833B2 (en) | 2006-10-05 | 2011-11-08 | Google Inc. | System and method for increasing capacity, performance, and flexibility of flash storage |
US8386722B1 (en) | 2008-06-23 | 2013-02-26 | Google Inc. | Stacked DIMM memory interface |
US20080126690A1 (en) * | 2006-02-09 | 2008-05-29 | Rajan Suresh N | Memory module with memory stack |
US8089795B2 (en) | 2006-02-09 | 2012-01-03 | Google Inc. | Memory module with memory stack and interface with enhanced capabilities |
DE112006001810T5 (en) * | 2005-06-24 | 2008-08-21 | Metaram Inc., San Jose | Integrated memory core and memory interface circuitry |
US7590796B2 (en) | 2006-07-31 | 2009-09-15 | Metaram, Inc. | System and method for power management in memory systems |
US8060774B2 (en) | 2005-06-24 | 2011-11-15 | Google Inc. | Memory systems and memory modules |
US8081474B1 (en) | 2007-12-18 | 2011-12-20 | Google Inc. | Embossed heat spreader |
US20080082763A1 (en) * | 2006-10-02 | 2008-04-03 | Metaram, Inc. | Apparatus and method for power management of memory circuits by a system or component thereof |
US8796830B1 (en) | 2006-09-01 | 2014-08-05 | Google Inc. | Stackable low-profile lead frame package |
US8041881B2 (en) * | 2006-07-31 | 2011-10-18 | Google Inc. | Memory device with emulated characteristics |
KR100674978B1 (en) * | 2005-06-27 | 2007-01-29 | 삼성전자주식회사 | Method of adjusting termination value of some address pins of semiconductor device and semiconductor device using same |
US7872892B2 (en) | 2005-07-05 | 2011-01-18 | Intel Corporation | Identifying and accessing individual memory devices in a memory channel |
KR100615580B1 (en) * | 2005-07-05 | 2006-08-25 | 삼성전자주식회사 | Semiconductor memory device and data input / output method thereof and memory system having same |
US7660183B2 (en) * | 2005-08-01 | 2010-02-09 | Rambus Inc. | Low power memory device |
DE112006004263B4 (en) * | 2005-09-02 | 2015-05-13 | Google, Inc. | memory chip |
US7519888B2 (en) | 2005-09-12 | 2009-04-14 | Virage Logic Corporation | Input-output device testing |
US7616036B1 (en) | 2005-09-12 | 2009-11-10 | Virage Logic Corporation | Programmable strobe and clock generator |
US7464225B2 (en) * | 2005-09-26 | 2008-12-09 | Rambus Inc. | Memory module including a plurality of integrated circuit memory devices and a plurality of buffer devices in a matrix topology |
US7562271B2 (en) * | 2005-09-26 | 2009-07-14 | Rambus Inc. | Memory system topologies including a buffer device and an integrated circuit memory device |
US11328764B2 (en) | 2005-09-26 | 2022-05-10 | Rambus Inc. | Memory system topologies including a memory die stack |
US7403446B1 (en) * | 2005-09-27 | 2008-07-22 | Cypress Semiconductor Corporation | Single late-write for standard synchronous SRAMs |
US7652922B2 (en) | 2005-09-30 | 2010-01-26 | Mosaid Technologies Incorporated | Multiple independent serial link memory |
TWI446356B (en) | 2005-09-30 | 2014-07-21 | Mosaid Technologies Inc | Memory with output control and system thereof |
US7478259B2 (en) | 2005-10-31 | 2009-01-13 | International Business Machines Corporation | System, method and storage medium for deriving clocks in a memory system |
KR100668498B1 (en) * | 2005-11-09 | 2007-01-12 | 주식회사 하이닉스반도체 | Data output device and method of semiconductor memory |
US7685392B2 (en) * | 2005-11-28 | 2010-03-23 | International Business Machines Corporation | Providing indeterminate read data latency in a memory system |
US7679401B1 (en) * | 2005-12-01 | 2010-03-16 | Tabula, Inc. | User registers implemented with routing circuits in a configurable IC |
JP4799157B2 (en) * | 2005-12-06 | 2011-10-26 | エルピーダメモリ株式会社 | Multilayer semiconductor device |
US9632929B2 (en) | 2006-02-09 | 2017-04-25 | Google Inc. | Translating an address associated with a command communicated between a system and memory circuits |
WO2007099447A2 (en) * | 2006-03-02 | 2007-09-07 | Nokia Corporation | Method and system for flexible burst length control |
US7404055B2 (en) | 2006-03-28 | 2008-07-22 | Intel Corporation | Memory transfer with early access to critical portion |
US8335868B2 (en) * | 2006-03-28 | 2012-12-18 | Mosaid Technologies Incorporated | Apparatus and method for establishing device identifiers for serially interconnected devices |
US7681102B2 (en) * | 2006-04-03 | 2010-03-16 | Qlogic, Corporation | Byte level protection in PCI-Express devices |
US20070260841A1 (en) | 2006-05-02 | 2007-11-08 | Hampel Craig E | Memory module with reduced access granularity |
JP5065618B2 (en) * | 2006-05-16 | 2012-11-07 | 株式会社日立製作所 | Memory module |
US7636813B2 (en) | 2006-05-22 | 2009-12-22 | International Business Machines Corporation | Systems and methods for providing remote pre-fetch buffers |
US7640386B2 (en) | 2006-05-24 | 2009-12-29 | International Business Machines Corporation | Systems and methods for providing memory modules with multiple hub devices |
US7594055B2 (en) * | 2006-05-24 | 2009-09-22 | International Business Machines Corporation | Systems and methods for providing distributed technology independent memory controllers |
US7283414B1 (en) | 2006-05-24 | 2007-10-16 | Sandisk 3D Llc | Method for improving the precision of a temperature-sensor circuit |
US7584336B2 (en) | 2006-06-08 | 2009-09-01 | International Business Machines Corporation | Systems and methods for providing data modification operations in memory subsystems |
US20070300077A1 (en) * | 2006-06-26 | 2007-12-27 | Seshadri Mani | Method and apparatus for biometric verification of secondary authentications |
US7617367B2 (en) * | 2006-06-27 | 2009-11-10 | International Business Machines Corporation | Memory system including a two-on-one link memory subsystem interconnection |
US20080028137A1 (en) * | 2006-07-31 | 2008-01-31 | Schakel Keith R | Method and Apparatus For Refresh Management of Memory Modules |
US20080028135A1 (en) * | 2006-07-31 | 2008-01-31 | Metaram, Inc. | Multiple-component memory interface system and method |
US20080025136A1 (en) * | 2006-07-31 | 2008-01-31 | Metaram, Inc. | System and method for storing at least a portion of information received in association with a first operation for use in performing a second operation |
US7724589B2 (en) | 2006-07-31 | 2010-05-25 | Google Inc. | System and method for delaying a signal communicated from a system to at least one of a plurality of memory circuits |
US7493439B2 (en) | 2006-08-01 | 2009-02-17 | International Business Machines Corporation | Systems and methods for providing performance monitoring in a memory system |
US7669086B2 (en) | 2006-08-02 | 2010-02-23 | International Business Machines Corporation | Systems and methods for providing collision detection in a memory system |
US7581073B2 (en) | 2006-08-09 | 2009-08-25 | International Business Machines Corporation | Systems and methods for providing distributed autonomous power management in a memory system |
US7587559B2 (en) * | 2006-08-10 | 2009-09-08 | International Business Machines Corporation | Systems and methods for memory module power management |
US7539842B2 (en) | 2006-08-15 | 2009-05-26 | International Business Machines Corporation | Computer memory system for selecting memory buses according to physical memory organization information stored in virtual address translation tables |
US7490217B2 (en) | 2006-08-15 | 2009-02-10 | International Business Machines Corporation | Design structure for selecting memory busses according to physical memory organization information stored in virtual address translation tables |
US20080059748A1 (en) * | 2006-08-31 | 2008-03-06 | Nokia Corporation | Method, mobile device, system and software for a write method with burst stop and data masks |
US7613265B2 (en) * | 2006-09-05 | 2009-11-03 | International Business Machines Corporation | Systems, methods and computer program products for high speed data transfer using an external clock signal |
US8098784B2 (en) * | 2006-09-05 | 2012-01-17 | International Business Machines Corporation | Systems, methods and computer program products for high speed data transfer using a plurality of external clock signals |
US7757064B2 (en) * | 2006-09-07 | 2010-07-13 | Infineon Technologies Ag | Method and apparatus for sending data from a memory |
JP4328790B2 (en) * | 2006-09-13 | 2009-09-09 | Okiセミコンダクタ株式会社 | Semiconductor integrated circuit |
US7483334B2 (en) | 2006-09-26 | 2009-01-27 | Micron Technology, Inc. | Interleaved input signal path for multiplexed input |
JP4823009B2 (en) * | 2006-09-29 | 2011-11-24 | 株式会社東芝 | Memory card and host device |
US7870459B2 (en) | 2006-10-23 | 2011-01-11 | International Business Machines Corporation | High density high reliability memory module with power gating and a fault tolerant address and command bus |
US7477522B2 (en) * | 2006-10-23 | 2009-01-13 | International Business Machines Corporation | High density high reliability memory module with a fault tolerant address and command bus |
US7546397B2 (en) * | 2006-10-24 | 2009-06-09 | Intersil Americas Inc. | Systems and methods for allowing multiple devices to share the same serial lines |
US7715251B2 (en) * | 2006-10-25 | 2010-05-11 | Hewlett-Packard Development Company, L.P. | Memory access strobe configuration system and process |
US8331361B2 (en) * | 2006-12-06 | 2012-12-11 | Mosaid Technologies Incorporated | Apparatus and method for producing device identifiers for serially interconnected devices of mixed type |
US8271758B2 (en) | 2006-12-06 | 2012-09-18 | Mosaid Technologies Incorporated | Apparatus and method for producing IDS for interconnected devices of mixed type |
KR101441280B1 (en) * | 2006-12-06 | 2014-09-17 | 컨버전트 인텔렉츄얼 프로퍼티 매니지먼트 인코포레이티드 | System and method of operating memory devices of mixed type |
US7853727B2 (en) * | 2006-12-06 | 2010-12-14 | Mosaid Technologies Incorporated | Apparatus and method for producing identifiers regardless of mixed device type in a serial interconnection |
US7925854B2 (en) * | 2006-12-06 | 2011-04-12 | Mosaid Technologies Incorporated | System and method of operating memory devices of mixed type |
US8010709B2 (en) * | 2006-12-06 | 2011-08-30 | Mosaid Technologies Incorporated | Apparatus and method for producing device identifiers for serially interconnected devices of mixed type |
US8433874B2 (en) * | 2006-12-06 | 2013-04-30 | Mosaid Technologies Incorporated | Address assignment and type recognition of serially interconnected memory devices of mixed type |
US20080137470A1 (en) * | 2006-12-07 | 2008-06-12 | Josef Schnell | Memory with data clock receiver and command/address clock receiver |
US7990724B2 (en) | 2006-12-19 | 2011-08-02 | Juhasz Paul R | Mobile motherboard |
US7721140B2 (en) | 2007-01-02 | 2010-05-18 | International Business Machines Corporation | Systems and methods for improving serviceability of a memory system |
US7603526B2 (en) * | 2007-01-29 | 2009-10-13 | International Business Machines Corporation | Systems and methods for providing dynamic memory pre-fetch |
US7606988B2 (en) | 2007-01-29 | 2009-10-20 | International Business Machines Corporation | Systems and methods for providing a dynamic memory bank page policy |
US7609562B2 (en) * | 2007-01-31 | 2009-10-27 | Intel Corporation | Configurable device ID in non-volatile memory |
US8010710B2 (en) * | 2007-02-13 | 2011-08-30 | Mosaid Technologies Incorporated | Apparatus and method for identifying device type of serially interconnected devices |
US7639557B1 (en) | 2007-03-05 | 2009-12-29 | Altera Corporation | Configurable random-access-memory circuitry |
US7778074B2 (en) * | 2007-03-23 | 2010-08-17 | Sigmatel, Inc. | System and method to control one time programmable memory |
US8924680B2 (en) | 2007-04-12 | 2014-12-30 | Rambus Inc. | Memory controllers, systems, and methods supporting multiple request modes |
GB2463806B (en) | 2007-05-08 | 2012-07-18 | Scanimetrics Inc | Ultra high speed signal transmission/reception |
WO2008154625A2 (en) | 2007-06-12 | 2008-12-18 | Rambus Inc. | In-dram cycle-based levelization |
US20080320192A1 (en) * | 2007-06-19 | 2008-12-25 | Sundaram Chinthamani | Front side bus performance using an early defer-reply mechanism |
JP4890369B2 (en) * | 2007-07-10 | 2012-03-07 | エルピーダメモリ株式会社 | Duty detection circuit, DLL circuit using the same, semiconductor memory device, and data processing system |
US8209479B2 (en) | 2007-07-18 | 2012-06-26 | Google Inc. | Memory circuit system and method |
WO2009015086A2 (en) * | 2007-07-20 | 2009-01-29 | Blue Danube Labs Inc | Method and system for multi-point signal generation with phase synchronized local carriers |
US8068357B2 (en) * | 2007-09-05 | 2011-11-29 | Rambus Inc. | Memory controller with multi-modal reference pad |
US8080874B1 (en) | 2007-09-14 | 2011-12-20 | Google Inc. | Providing additional space between an integrated circuit and a circuit board for positioning a component therebetween |
US7764533B2 (en) * | 2007-09-18 | 2010-07-27 | International Business Machines Corporation | Multi-level memory cell utilizing measurement time delay as the characteristic parameter for level definition |
US7602631B2 (en) * | 2007-09-18 | 2009-10-13 | International Business Machines Corporation | Multi-level memory cell utilizing measurement time delay as the characteristic parameter for level definition |
US7602632B2 (en) * | 2007-09-18 | 2009-10-13 | International Business Machines Corporation | Multi-level memory cell utilizing measurement time delay as the characteristic parameter for level definition |
US7567473B2 (en) | 2007-09-18 | 2009-07-28 | International Business Machines Corporation | Multi-level memory cell utilizing measurement time delay as the characteristic parameter for level definition |
US8898368B2 (en) * | 2007-11-07 | 2014-11-25 | Inphi Corporation | Redriven/retimed registered dual inline memory module |
US8332932B2 (en) * | 2007-12-07 | 2012-12-11 | Scout Analytics, Inc. | Keystroke dynamics authentication techniques |
US7523379B1 (en) * | 2008-03-31 | 2009-04-21 | International Business Machines Corporation | Method for time-delayed data protection |
TWI373714B (en) * | 2008-04-02 | 2012-10-01 | Novatek Microelectronics Corp | Electronic device for contention detection of bidirectional bus and related method |
US8154901B1 (en) | 2008-04-14 | 2012-04-10 | Netlist, Inc. | Circuit providing load isolation and noise reduction |
US8787060B2 (en) | 2010-11-03 | 2014-07-22 | Netlist, Inc. | Method and apparatus for optimizing driver load in a memory package |
US8516185B2 (en) | 2009-07-16 | 2013-08-20 | Netlist, Inc. | System and method utilizing distributed byte-wise buffers on a memory module |
WO2010064292A1 (en) * | 2008-12-01 | 2010-06-10 | パイオニア株式会社 | Data processing device, its system, its method, its program and recording medium in which its program is recorded |
US8122159B2 (en) | 2009-01-16 | 2012-02-21 | Allegro Microsystems, Inc. | Determining addresses of electrical components arranged in a daisy chain |
US9105323B2 (en) | 2009-01-23 | 2015-08-11 | Micron Technology, Inc. | Memory device power managers and methods |
US8264903B1 (en) | 2009-05-05 | 2012-09-11 | Netlist, Inc. | Systems and methods for refreshing a memory module |
KR101003150B1 (en) * | 2009-05-14 | 2010-12-21 | 주식회사 하이닉스반도체 | Address shift circuit and method |
JP2010271841A (en) * | 2009-05-20 | 2010-12-02 | Mitsubishi Electric Corp | Clock signal synchronization circuit |
US9767342B2 (en) | 2009-05-22 | 2017-09-19 | Affymetrix, Inc. | Methods and devices for reading microarrays |
JP5449032B2 (en) | 2009-05-28 | 2014-03-19 | パナソニック株式会社 | Memory system |
US8046628B2 (en) * | 2009-06-05 | 2011-10-25 | Micron Technology, Inc. | Failure recovery memory devices and methods |
EP2441007A1 (en) | 2009-06-09 | 2012-04-18 | Google, Inc. | Programming of dimm termination resistance values |
US9128632B2 (en) | 2009-07-16 | 2015-09-08 | Netlist, Inc. | Memory module with distributed data buffers and method of operation |
US20110019760A1 (en) * | 2009-07-21 | 2011-01-27 | Rambus Inc. | Methods and Systems for Reducing Supply and Termination Noise |
US8130016B2 (en) * | 2009-08-27 | 2012-03-06 | Altera Corporation | Techniques for providing reduced duty cycle distortion |
US8461782B2 (en) * | 2009-08-27 | 2013-06-11 | Allegro Microsystems, Llc | Linear or rotational motor driver identification |
US7893739B1 (en) * | 2009-08-27 | 2011-02-22 | Altera Corporation | Techniques for providing multiple delay paths in a delay circuit |
US20110161428A1 (en) * | 2009-12-28 | 2011-06-30 | Ezpnp Technologies Corp. | Two-way data and resources sharing method |
EP2341445B1 (en) * | 2009-12-30 | 2017-09-06 | Intel Deutschland GmbH | Method for high speed data transfer |
WO2011094437A2 (en) | 2010-01-28 | 2011-08-04 | Hewlett-Packard Development Company, L.P. | Memory access methods and apparatus |
US8938589B2 (en) | 2010-01-28 | 2015-01-20 | Hewlett-Packard Development Company, L. P. | Interface methods and apparatus for memory devices using arbitration |
US8335879B2 (en) * | 2010-04-29 | 2012-12-18 | Hewlett-Packard Development Company, L.P. | Node differentiation in multi-node electronic systems |
US8495327B2 (en) | 2010-06-04 | 2013-07-23 | Nvidia Corporation | Memory device synchronization |
US8462532B1 (en) | 2010-08-31 | 2013-06-11 | Netlogic Microsystems, Inc. | Fast quaternary content addressable memory cell |
US8553441B1 (en) | 2010-08-31 | 2013-10-08 | Netlogic Microsystems, Inc. | Ternary content addressable memory cell having two transistor pull-down stack |
US8625320B1 (en) | 2010-08-31 | 2014-01-07 | Netlogic Microsystems, Inc. | Quaternary content addressable memory cell having one transistor pull-down stack |
US8582338B1 (en) | 2010-08-31 | 2013-11-12 | Netlogic Microsystems, Inc. | Ternary content addressable memory cell having single transistor pull-down stack |
US8848438B2 (en) * | 2010-10-05 | 2014-09-30 | Stec, Inc. | Asymmetric log-likelihood ratio for MLC flash channel |
KR101796116B1 (en) | 2010-10-20 | 2017-11-10 | 삼성전자 주식회사 | Semiconductor device, memory module and memory system having the same and operating method thereof |
US8837188B1 (en) | 2011-06-23 | 2014-09-16 | Netlogic Microsystems, Inc. | Content addressable memory row having virtual ground and charge sharing |
US8773880B2 (en) | 2011-06-23 | 2014-07-08 | Netlogic Microsystems, Inc. | Content addressable memory array having virtual ground nodes |
US9268719B2 (en) | 2011-08-05 | 2016-02-23 | Rambus Inc. | Memory signal buffers and modules supporting variable access granularity |
US9146867B2 (en) | 2011-10-31 | 2015-09-29 | Hewlett-Packard Development Company, L.P. | Methods and apparatus to access memory using runtime characteristics |
US9712453B1 (en) * | 2012-03-26 | 2017-07-18 | Amazon Technologies, Inc. | Adaptive throttling for shared resources |
JP2013222364A (en) | 2012-04-18 | 2013-10-28 | Renesas Electronics Corp | Signal processing circuit |
US9129071B2 (en) * | 2012-10-24 | 2015-09-08 | Texas Instruments Incorporated | Coherence controller slot architecture allowing zero latency write commit |
US9582451B2 (en) * | 2013-02-01 | 2017-02-28 | Infineon Technologies Ag | Receiver architecture |
US8723329B1 (en) * | 2013-03-15 | 2014-05-13 | Invensas Corporation | In-package fly-by signaling |
CN110428855B (en) | 2013-07-27 | 2023-09-22 | 奈特力斯股份有限公司 | Memory module with local synchronization |
WO2015048081A1 (en) | 2013-09-24 | 2015-04-02 | Andre Lieber | Desmoglein 2 (dsg2) binding proteins and uses therefor |
KR101816944B1 (en) * | 2013-10-02 | 2018-01-09 | 엘에스산전 주식회사 | Method for automatically setting ID in UART Ring communication |
US9787495B2 (en) | 2014-02-18 | 2017-10-10 | Allegro Microsystems, Llc | Signaling between master and slave components using a shared communication node of the master component |
US9172565B2 (en) | 2014-02-18 | 2015-10-27 | Allegro Microsystems, Llc | Signaling between master and slave components using a shared communication node of the master component |
WO2015167449A1 (en) * | 2014-04-29 | 2015-11-05 | Hewlett-Packard Development Company, L.P. | Switches coupling volatile memory devices to a power source |
KR102204391B1 (en) | 2014-08-18 | 2021-01-18 | 삼성전자주식회사 | Memory device having sharable ECC (Error Correction Code) cell array |
GB201603589D0 (en) * | 2016-03-01 | 2016-04-13 | Surecore Ltd | Memory unit |
US10552361B2 (en) | 2016-07-27 | 2020-02-04 | Hubbell Incorporated | Systems, apparatuses and methods for dual line inbound detection on a data communication bus |
US10402110B2 (en) | 2016-08-04 | 2019-09-03 | Rambus Inc. | Adjustable access energy and access latency memory system and devices |
US10679722B2 (en) | 2016-08-26 | 2020-06-09 | Sandisk Technologies Llc | Storage system with several integrated components and method for use therewith |
US9721675B1 (en) * | 2016-11-09 | 2017-08-01 | Winbond Electronics Corporation | Memory device having input circuit and operating method of same |
FR3061383B1 (en) | 2016-12-26 | 2019-05-24 | Stmicroelectronics (Grenoble 2) Sas | SYNCHRONIZATION OF A SENSOR NETWORK |
US10057523B1 (en) | 2017-02-13 | 2018-08-21 | Alexander Krymski | Image sensors and methods with multiple phase-locked loops and serializers |
US10090026B2 (en) | 2017-02-28 | 2018-10-02 | Micron Technology, Inc. | Apparatuses and methods for providing internal memory commands and control signals in semiconductor memories |
US10210918B2 (en) | 2017-02-28 | 2019-02-19 | Micron Technology, Inc. | Apparatuses and methods for determining a phase relationship between an input clock signal and a multiphase clock signal |
KR20180106017A (en) * | 2017-03-17 | 2018-10-01 | 에스케이하이닉스 주식회사 | Memory system and operating method of memory system |
US10269397B2 (en) * | 2017-08-31 | 2019-04-23 | Micron Technology, Inc. | Apparatuses and methods for providing active and inactive clock signals |
US10170166B1 (en) * | 2017-09-08 | 2019-01-01 | Winbond Electronics Corp. | Data transmission apparatus for memory and data transmission method thereof |
KR20190030923A (en) * | 2017-09-15 | 2019-03-25 | 에스케이하이닉스 주식회사 | Error correction circuit, operating method thereof and data storage device incuding the same |
US10747708B2 (en) | 2018-03-08 | 2020-08-18 | Allegro Microsystems, Llc | Communication system between electronic devices |
US10747470B2 (en) * | 2018-05-10 | 2020-08-18 | Micron Technology, Inc. | Semiconductor device with pseudo flow through scheme for power savings |
TWI666638B (en) * | 2018-08-21 | 2019-07-21 | 華邦電子股份有限公司 | Memory circuit and data bit status detector thereof |
US10861564B2 (en) | 2018-10-17 | 2020-12-08 | Winbond Electronics Corp. | Memory circuit and data bit status detector thereof |
JP6894459B2 (en) | 2019-02-25 | 2021-06-30 | 華邦電子股▲ふん▼有限公司Winbond Electronics Corp. | Pseudo-static random access memory and how it works |
US10714163B2 (en) | 2019-05-13 | 2020-07-14 | Intel Corporation | Methods for mitigating transistor aging to improve timing margins for memory interface signals |
JP6748760B1 (en) | 2019-05-13 | 2020-09-02 | ウィンボンド エレクトロニクス コーポレーション | Semiconductor memory device |
DE102019125493B4 (en) * | 2019-09-23 | 2025-03-20 | Infineon Technologies Ag | Slave device, bus system and procedure |
US11442494B2 (en) | 2020-06-08 | 2022-09-13 | Analog Devices, Inc. | Apparatus and methods for controlling a clock signal |
US12056394B2 (en) | 2020-08-13 | 2024-08-06 | Cadence Design Systems, Inc. | Memory interface training |
KR20220086785A (en) * | 2020-12-16 | 2022-06-24 | 삼성전자주식회사 | Operating method of transaction accelerator, operating method of computing device including transaction accelerator, and computing device including transaction accelerator |
US11768060B2 (en) * | 2021-02-18 | 2023-09-26 | Kirsch Llc | Arrow or bolt having an advanced crossbow pin and pin nock |
CN113377438B (en) * | 2021-08-13 | 2021-11-30 | 沐曦集成电路(上海)有限公司 | Processor and data reading and writing method thereof |
Family Cites Families (495)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL288210A (en) * | 1962-01-26 | |||
US3562432A (en) * | 1966-11-16 | 1971-02-09 | Communications Satellite Corp | Synchronizer for time division multiple access satellite communication system |
GB1262691A (en) * | 1968-11-12 | 1972-02-02 | Burroughs Corp | Data processing system having current drive for transmission line |
FR2044650B1 (en) * | 1969-05-16 | 1974-06-14 | Ibm France | |
US3713025A (en) * | 1969-12-04 | 1973-01-23 | Avco Corp | Phase slip corrector means and method for synchronization of pseudorandom generating means in multistation networks |
US3691534A (en) * | 1970-11-04 | 1972-09-12 | Gen Instrument Corp | Read only memory system having increased data rate with alternate data readout |
US3721838A (en) * | 1970-12-21 | 1973-03-20 | Ibm | Repairable semiconductor circuit element and method of manufacture |
US3740723A (en) * | 1970-12-28 | 1973-06-19 | Ibm | Integral hierarchical binary storage element |
US3771145B1 (en) * | 1971-02-01 | 1994-11-01 | Wiener Patricia P. | Integrated circuit read-only memory |
US3924241A (en) * | 1971-03-15 | 1975-12-02 | Burroughs Corp | Memory cycle initiation in response to the presence of the memory address |
US3758761A (en) * | 1971-08-17 | 1973-09-11 | Texas Instruments Inc | Self-interconnecting/self-repairable electronic systems on a slice |
US3753244A (en) * | 1971-08-18 | 1973-08-14 | Ibm | Yield enhancement redundancy technique |
US3803562A (en) * | 1972-11-21 | 1974-04-09 | Honeywell Inf Systems | Semiconductor mass memory |
US3821715A (en) | 1973-01-22 | 1974-06-28 | Intel Corp | Memory system for a multi chip digital computer |
GB1461245A (en) * | 1973-01-28 | 1977-01-13 | Hawker Siddeley Dynamics Ltd | Reliability of random access memory systems |
DE2364254B2 (en) * | 1973-12-22 | 1976-03-18 | CIRCUIT ARRANGEMENT FOR DATA PROCESSING DEVICES | |
DE2364408C3 (en) * | 1973-12-22 | 1979-06-07 | Olympia Werke Ag, 2940 Wilhelmshaven | Circuit arrangement for addressing the memory locations of a memory consisting of several chips |
US3950735A (en) | 1974-01-04 | 1976-04-13 | Honeywell Information Systems, Inc. | Method and apparatus for dynamically controlling read/write operations in a peripheral subsystem |
US3846763A (en) | 1974-01-04 | 1974-11-05 | Honeywell Inf Systems | Method and apparatus for automatic selection of translators in a data processing system |
US3882470A (en) * | 1974-02-04 | 1975-05-06 | Honeywell Inf Systems | Multiple register variably addressable semiconductor mass memory |
US3900837A (en) * | 1974-02-04 | 1975-08-19 | Honeywell Inf Systems | Variably addressable semiconductor mass memory |
US4038648A (en) * | 1974-06-03 | 1977-07-26 | Chesley Gilman D | Self-configurable circuit structure for achieving wafer scale integration |
US3969706A (en) | 1974-10-08 | 1976-07-13 | Mostek Corporation | Dynamic random access memory misfet integrated circuit |
US4263650B1 (en) * | 1974-10-30 | 1994-11-29 | Motorola Inc | Digital data processing system with interface adaptor having programmable monitorable control register therein |
US4079448A (en) * | 1975-04-07 | 1978-03-14 | Compagnie Honeywell Bull | Apparatus for synchronizing tasks on peripheral devices |
US4084154A (en) | 1975-05-01 | 1978-04-11 | Burroughs Corporation | Charge coupled device memory system with burst mode |
FR2314004A1 (en) | 1975-06-13 | 1977-01-07 | Manurhin Automatic Sa | TURRET LATHE REVOLVER |
US4007452A (en) * | 1975-07-28 | 1977-02-08 | Intel Corporation | Wafer scale integration system |
US4099231A (en) * | 1975-10-01 | 1978-07-04 | Digital Equipment Corporation | Memory control system for transferring selected words in a multiple memory word exchange during one memory cycle |
US4048673A (en) | 1976-02-27 | 1977-09-13 | Data General Corporation | Cpu - i/o bus interface for a data processing system |
US4250570B1 (en) * | 1976-07-15 | 1996-01-02 | Intel Corp | Redundant memory circuit |
US4206833A (en) | 1976-07-15 | 1980-06-10 | Clark Equipment Company | Mobile aerial tower |
JPS60816B2 (en) | 1976-12-18 | 1985-01-10 | 三洋電機株式会社 | Radio receiver digital value setting device |
GB1574468A (en) * | 1976-09-30 | 1980-09-10 | Burroughs Corp | Input-output subsystem in a digital data processing system |
US4494186A (en) * | 1976-11-11 | 1985-01-15 | Honeywell Information Systems Inc. | Automatic data steering and data formatting mechanism |
US4092665A (en) * | 1976-12-29 | 1978-05-30 | Xerox Corporation | Method and means for extracting variable length data from fixed length bytes |
US4047246A (en) | 1977-01-10 | 1977-09-06 | Data General Corporation | I/O bus transceiver for a data processing system |
US4142069A (en) * | 1977-06-20 | 1979-02-27 | The United States Of America As Represented By The Secretary Of The Army | Time reference distribution technique |
US4255814A (en) * | 1977-07-15 | 1981-03-10 | Motorola, Inc. | Simulcast transmission system |
US4191996A (en) * | 1977-07-22 | 1980-03-04 | Chesley Gilman D | Self-configurable computer and memory system |
US4333142A (en) * | 1977-07-22 | 1982-06-01 | Chesley Gilman D | Self-configurable computer and memory system |
US4398248A (en) * | 1980-10-20 | 1983-08-09 | Mcdonnell Douglas Corporation | Adaptive WSI/MNOS solid state memory system |
JPS5714922Y2 (en) | 1977-09-22 | 1982-03-27 | ||
US4426685A (en) | 1978-03-20 | 1984-01-17 | The United States Of America As Represented By The Secretary Of The Navy | Solid state delay device |
US4375665A (en) * | 1978-04-24 | 1983-03-01 | Texas Instruments Incorporated | Eight bit standard connector bus for sixteen bit microcomputer using mirrored memory boards |
US4231104A (en) | 1978-04-26 | 1980-10-28 | Teradyne, Inc. | Generating timing signals |
US4247817A (en) * | 1978-05-15 | 1981-01-27 | Teradyne, Inc. | Transmitting electrical signals with a transmission time independent of distance between transmitter and receiver |
US4205373A (en) * | 1978-05-22 | 1980-05-27 | Ncr Corporation | System and method for accessing memory connected to different bus and requesting subsystem |
US4183095A (en) * | 1978-09-01 | 1980-01-08 | Ncr Corporation | High density memory device |
US4222122A (en) | 1978-11-15 | 1980-09-16 | Everlast World's Boxing Headquarters Corp. | Boxing headguard |
US4234934A (en) * | 1978-11-30 | 1980-11-18 | Sperry Rand Corporation | Apparatus for scaling memory addresses |
US4257097A (en) | 1978-12-11 | 1981-03-17 | Bell Telephone Laboratories, Incorporated | Multiprocessor system with demand assignable program paging stores |
US4315308A (en) * | 1978-12-21 | 1982-02-09 | Intel Corporation | Interface between a microprocessor chip and peripheral subsystems |
US4249247A (en) * | 1979-01-08 | 1981-02-03 | Ncr Corporation | Refresh system for dynamic RAM memory |
US4222112A (en) * | 1979-02-09 | 1980-09-09 | Bell Telephone Laboratories, Incorporated | Dynamic RAM organization for reducing peak current |
JPS55110355A (en) * | 1979-02-16 | 1980-08-25 | Toshiba Corp | Memory board and selection system for it |
US4253147A (en) | 1979-04-09 | 1981-02-24 | Rockwell International Corporation | Memory unit with pipelined cycle of operations |
DE2915488C2 (en) * | 1979-04-17 | 1982-05-19 | Nixdorf Computer Ag, 4790 Paderborn | Circuit arrangement for controlling the transmission of digital signals, in particular PCM signals, between connection points of a time division multiplex telecommunications network, in particular a PCM time division multiplex telecommunications network |
JPS6128248Y2 (en) | 1979-04-26 | 1986-08-22 | ||
US4250352A (en) * | 1979-05-10 | 1981-02-10 | Workman William S Sr | Remote station monitoring system |
US4286321A (en) * | 1979-06-18 | 1981-08-25 | International Business Machines Corporation | Common bus communication system in which the width of the address field is greater than the number of lines on the bus |
EP0021823A1 (en) | 1979-06-26 | 1981-01-07 | Urban Transportation Development Corporation Ltd | Guideway for continuous welded rail and a method of installing rail tracks |
US4320505A (en) * | 1979-07-23 | 1982-03-16 | Bell Telephone Laboratories, Incorporated | Processing apparatus for data rate reduction |
JPS5634186A (en) * | 1979-08-29 | 1981-04-06 | Hitachi Ltd | Bipolar memory circuit |
JPS5636628A (en) | 1979-09-03 | 1981-04-09 | Asahi Optical Co Ltd | Memory device in phase synchronizing type automatic exposure control mechanism |
US4306298A (en) * | 1979-10-09 | 1981-12-15 | Texas Instruments Incorporated | Memory system for microprocessor with multiplexed address/data bus |
US4443864A (en) * | 1979-10-09 | 1984-04-17 | Texas Instruments Incorporated | Memory system for microprocessor with multiplexed address/data bus |
JPS5669056A (en) | 1979-11-08 | 1981-06-10 | Fanuc Ltd | Robot-equipped machining center |
US4330852A (en) | 1979-11-23 | 1982-05-18 | Texas Instruments Incorporated | Semiconductor read/write memory array having serial access |
US4322635A (en) | 1979-11-23 | 1982-03-30 | Texas Instruments Incorporated | High speed serial shift register for MOS integrated circuit |
DE2948159C2 (en) | 1979-11-29 | 1983-10-27 | Siemens AG, 1000 Berlin und 8000 München | Integrated memory module with selectable operating functions |
JPS5682961U (en) | 1979-12-01 | 1981-07-04 | ||
JPS5682961A (en) | 1979-12-11 | 1981-07-07 | Fujitsu Ltd | Memory control system |
DE2952056C2 (en) * | 1979-12-22 | 1981-11-26 | Hewlett-Packard GmbH, 7030 Böblingen | Write and read circuit for a memory with random access |
US4338569A (en) | 1980-03-11 | 1982-07-06 | Control Data Corporation | Delay lock loop |
US4348754A (en) * | 1980-05-15 | 1982-09-07 | Ampex Corporation | Digital delay for high quality audio use |
GB2077468B (en) | 1980-06-04 | 1984-10-24 | Hitachi Ltd | Multi-computer system with plural serial bus loops |
JPS5714922A (en) | 1980-07-02 | 1982-01-26 | Hitachi Ltd | Storage device |
US4385350A (en) * | 1980-07-16 | 1983-05-24 | Ford Aerospace & Communications Corporation | Multiprocessor system having distributed priority resolution circuitry |
US4468738A (en) * | 1980-07-16 | 1984-08-28 | Ford Aerospace & Communications Corporation | Bus access arbitration using unitary arithmetic resolution logic and unique logical addresses of competing processors |
US4360870A (en) * | 1980-07-30 | 1982-11-23 | International Business Machines Corporation | Programmable I/O device identification |
US4373183A (en) * | 1980-08-20 | 1983-02-08 | Ibm Corporation | Bus interface units sharing a common bus using distributed control for allocation of the bus |
US4379222A (en) * | 1980-08-21 | 1983-04-05 | Ncr Corporation | High speed shift register |
US4355376A (en) * | 1980-09-30 | 1982-10-19 | Burroughs Corporation | Apparatus and method for utilizing partially defective memory devices |
JPS5764895U (en) * | 1980-10-03 | 1982-04-17 | ||
US4408272A (en) | 1980-11-03 | 1983-10-04 | Bell Telephone Laboratories, Incorporated | Data control circuit |
EP0054077B1 (en) | 1980-12-08 | 1984-11-21 | International Business Machines Corporation | Method of transmitting information between stations attached to a unidirectional transmission ring |
JPS57101957A (en) | 1980-12-17 | 1982-06-24 | Hitachi Ltd | Storage control device |
US4412313A (en) | 1981-01-19 | 1983-10-25 | Bell Telephone Laboratories, Incorporated | Random access memory system having high-speed serial data paths |
US4435762A (en) | 1981-03-06 | 1984-03-06 | International Business Machines Corporation | Buffered peripheral subsystems |
US4945471A (en) * | 1981-04-01 | 1990-07-31 | Teradata Corporation | Message transmission system for selectively transmitting one of two colliding messages based on contents thereof |
US4493021A (en) * | 1981-04-03 | 1985-01-08 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Multicomputer communication system |
US4417334A (en) * | 1981-04-16 | 1983-11-22 | Ncr Corporation | Data processing system having dual-channel system bus |
US4630193A (en) * | 1981-04-27 | 1986-12-16 | Textron, Inc. | Time multiplexed processor bus |
JPS57186289A (en) * | 1981-05-13 | 1982-11-16 | Hitachi Ltd | Semiconductor memory |
JPS6030898B2 (en) * | 1981-05-15 | 1985-07-19 | テクトロニクス・インコ−ポレイテツド | Logic analyzer input device |
JPS589285A (en) | 1981-07-08 | 1983-01-19 | Toshiba Corp | Semiconductor device |
US4458357A (en) * | 1981-08-17 | 1984-07-03 | Basic Four Corporation | Circuit board identity generator |
JPS5831637A (en) | 1981-08-20 | 1983-02-24 | Nec Corp | Multiplex processor |
US4438494A (en) * | 1981-08-25 | 1984-03-20 | Intel Corporation | Apparatus of fault-handling in a multiprocessing system |
US4419747A (en) * | 1981-09-14 | 1983-12-06 | Seeq Technology, Inc. | Method and device for providing process and test information in semiconductors |
US4513374A (en) * | 1981-09-25 | 1985-04-23 | Ltv Aerospace And Defense | Memory system |
US4500905A (en) * | 1981-09-30 | 1985-02-19 | Tokyo Shibaura Denki Kabushiki Kaisha | Stacked semiconductor device with sloping sides |
US4811202A (en) * | 1981-10-01 | 1989-03-07 | Texas Instruments Incorporated | Quadruply extended time multiplexed information bus for reducing the `pin out` configuration of a semiconductor chip package |
JPS5860575A (en) | 1981-10-07 | 1983-04-11 | Nec Corp | transistor |
US4421996A (en) * | 1981-10-09 | 1983-12-20 | Advanced Micro Devices, Inc. | Sense amplification scheme for random access memory |
US4637365A (en) | 1981-10-19 | 1987-01-20 | Motortech, Inc. | Fuel conditioning apparatus and method |
US4481625A (en) * | 1981-10-21 | 1984-11-06 | Elxsi | High speed data bus system |
US4595923A (en) | 1981-10-21 | 1986-06-17 | Elxsi | Improved terminator for high speed data bus |
US4462088A (en) | 1981-11-03 | 1984-07-24 | International Business Machines Corporation | Array design using a four state cell for double density |
JPS5880193A (en) | 1981-11-06 | 1983-05-14 | Mitsubishi Electric Corp | Erasing device for storage contents of memory |
US4480307A (en) * | 1982-01-04 | 1984-10-30 | Intel Corporation | Interface for use between a memory and components of a module switching apparatus |
US4488218A (en) * | 1982-01-07 | 1984-12-11 | At&T Bell Laboratories | Dynamic priority queue occupancy scheme for access to a demand-shared bus |
FR2520910B1 (en) | 1982-02-04 | 1987-07-10 | Victor Company Of Japan | VIDEO MEMORY DEVICE |
US4470114A (en) * | 1982-03-01 | 1984-09-04 | Burroughs Corporation | High speed interconnection network for a cluster of processors |
JPS58155596A (en) * | 1982-03-10 | 1983-09-16 | Hitachi Ltd | Dynamic type MOSRAM |
JPS58159360A (en) * | 1982-03-17 | 1983-09-21 | Fujitsu Ltd | Semiconductor device |
JPS58184626A (en) | 1982-04-22 | 1983-10-28 | Toshiba Corp | Bus clock synchronization system |
US4449207A (en) | 1982-04-29 | 1984-05-15 | Intel Corporation | Byte-wide dynamic RAM with multiplexed internal buses |
FR2526250B1 (en) * | 1982-04-30 | 1988-05-13 | Labo Electronique Physique | METHOD FOR AUTOMATIC TIME SETTING OF STATIONS IN A MULTIPLEX TRANSMISSION AND DATA PROCESSING SYSTEM |
JPS58192154A (en) | 1982-05-07 | 1983-11-09 | Casio Comput Co Ltd | Memory device having automatic data processing function |
US4506348A (en) | 1982-06-14 | 1985-03-19 | Allied Corporation | Variable digital delay circuit |
US4519034A (en) * | 1982-06-30 | 1985-05-21 | Elxsi | I/O Bus clock |
US4667305A (en) | 1982-06-30 | 1987-05-19 | International Business Machines Corporation | Circuits for accessing a variable width data bus with a variable width data field |
JPS595478A (en) | 1982-07-02 | 1984-01-12 | Toshiba Corp | Addressing device of electronic computer |
NO157998C (en) | 1982-07-13 | 1988-06-29 | Siemens Ag | SYNCHRON RATE GENERATOR FOR DIGITAL SIGNAL MULTIPLE DEVICES. |
US4513370A (en) * | 1982-07-19 | 1985-04-23 | Amdahl Corporation | Data transfer control system and method for a plurality of linked stations |
US4608700A (en) * | 1982-07-29 | 1986-08-26 | Massachusetts Institute Of Technology | Serial multi-drop data link |
US4433934A (en) * | 1982-08-19 | 1984-02-28 | Rockwell International Corporation | Push-pull yoke-power takeoff coupling |
US4494021A (en) * | 1982-08-30 | 1985-01-15 | Xerox Corporation | Self-calibrated clock and timing signal generator for MOS/VLSI circuitry |
DE3380465D1 (en) * | 1982-09-20 | 1989-09-28 | Toshiba Kk | Video ram write control apparatus |
US4476560A (en) * | 1982-09-21 | 1984-10-09 | Advanced Micro Devices, Inc. | Diagnostic circuit for digital systems |
US4562435A (en) * | 1982-09-29 | 1985-12-31 | Texas Instruments Incorporated | Video display system using serial/parallel access memories |
US4513372A (en) | 1982-11-15 | 1985-04-23 | Data General Corporation | Universal memory |
US4496861A (en) * | 1982-12-06 | 1985-01-29 | Intel Corporation | Integrated circuit synchronous delay line |
US4509142A (en) | 1982-12-15 | 1985-04-02 | Texas Instruments Incorporated | Semiconductor memory device with pipeline access |
JPS59111561A (en) * | 1982-12-17 | 1984-06-27 | Hitachi Ltd | Access control method for complex processor systems |
US4586167A (en) * | 1983-01-24 | 1986-04-29 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory device |
US4528661A (en) | 1983-02-14 | 1985-07-09 | Prime Computer, Inc. | Ring communications system |
JPS59165285A (en) | 1983-03-11 | 1984-09-18 | Hitachi Ltd | Semiconductor storage element |
JPS59172897A (en) * | 1983-03-22 | 1984-09-29 | Victor Co Of Japan Ltd | Clock pulse generating circuit in color video signal reproducing device |
EP0120172B1 (en) | 1983-03-29 | 1988-02-03 | International Business Machines Corporation | Bus interface device for a data processing system |
GB2138230B (en) * | 1983-04-12 | 1986-12-03 | Sony Corp | Dynamic random access memory arrangements |
FR2545670B1 (en) | 1983-05-04 | 1985-07-05 | Billy Jean Claude | MULTIPLEXER, DEMULTIPLEXER AND MULTIPLEXING-DEMULTIPLEXING EQUIPMENT WITH RECONFIGURABLE FRAMES |
US4520465A (en) | 1983-05-05 | 1985-05-28 | Motorola, Inc. | Method and apparatus for selectively precharging column lines of a memory |
US4616310A (en) | 1983-05-20 | 1986-10-07 | International Business Machines Corporation | Communicating random access memory |
US4513355A (en) * | 1983-06-15 | 1985-04-23 | Motorola, Inc. | Metallization and bonding means and method for VLSI packages |
JPS603268A (en) | 1983-06-20 | 1985-01-09 | Dainippon Screen Mfg Co Ltd | Method for writing and reading picture data to storage device in picture scanning recorder |
US4770640A (en) * | 1983-06-24 | 1988-09-13 | Walter Howard F | Electrical interconnection device for integrated circuits |
JPS6011993A (en) * | 1983-06-30 | 1985-01-22 | シャープ株式会社 | Electronic cash register |
US4649511A (en) * | 1983-07-25 | 1987-03-10 | General Electric Company | Dynamic memory controller for single-chip microprocessor |
US4656605A (en) * | 1983-09-02 | 1987-04-07 | Wang Laboratories, Inc. | Single in-line memory module |
JPS6055459A (en) | 1983-09-07 | 1985-03-30 | Hitachi Ltd | Block data transfer storage control method |
US4646270A (en) * | 1983-09-15 | 1987-02-24 | Motorola, Inc. | Video graphic dynamic RAM |
US4763249A (en) | 1983-09-22 | 1988-08-09 | Digital Equipment Corporation | Bus device for use in a computer system having a synchronous bus |
US4628489A (en) | 1983-10-03 | 1986-12-09 | Honeywell Information Systems Inc. | Dual address RAM |
JPS6080193A (en) | 1983-10-07 | 1985-05-08 | Hitachi Micro Comput Eng Ltd | memory system |
FR2553609B1 (en) | 1983-10-14 | 1985-12-27 | Chomel Denis | ASYNCHRONOUS DIGITAL BUS MULTIPLEXING SYSTEM WITH DISTRIBUTED BUS |
GB8329511D0 (en) | 1983-11-04 | 1983-12-07 | Inmos Ltd | Timing apparatus |
US4570220A (en) * | 1983-11-25 | 1986-02-11 | Intel Corporation | High speed parallel bus and data transfer method |
US4882669A (en) * | 1983-11-28 | 1989-11-21 | Canon Kabushiki Kaisha | Multi computer fail safe control apparatus |
US4635192A (en) * | 1983-12-06 | 1987-01-06 | Tri Sigma Corporation | Self configuring bus structure for computer network |
US4660141A (en) * | 1983-12-06 | 1987-04-21 | Tri Sigma Corporation | Self configuring computer network with automatic bus exchange of module identification numbers and processor assigned module numbers |
JPS60136086A (en) | 1983-12-23 | 1985-07-19 | Hitachi Ltd | Semiconductor memory device |
JPS60140993A (en) | 1983-12-27 | 1985-07-25 | Matsushita Electric Ind Co Ltd | Recording/reproducing device |
US4663735A (en) | 1983-12-30 | 1987-05-05 | Texas Instruments Incorporated | Random/serial access mode selection circuit for a video memory system |
US4688197A (en) | 1983-12-30 | 1987-08-18 | Texas Instruments Incorporated | Control of data access to memory for improved video system |
US4639890A (en) | 1983-12-30 | 1987-01-27 | Texas Instruments Incorporated | Video display system using memory with parallel and serial access employing selectable cascaded serial shift registers |
US4747081A (en) | 1983-12-30 | 1988-05-24 | Texas Instruments Incorporated | Video display system using memory with parallel and serial access employing serial shift registers selected by column address |
US4745548A (en) * | 1984-02-17 | 1988-05-17 | American Telephone And Telegraph Company, At&T Bell Laboratories | Decentralized bus arbitration using distributed arbiters having circuitry for latching lockout signals gated from higher priority arbiters |
US4584672A (en) * | 1984-02-22 | 1986-04-22 | Intel Corporation | CMOS dynamic random-access memory with active cycle one half power supply potential bit line precharge |
US4654655A (en) * | 1984-03-02 | 1987-03-31 | Motorola, Inc. | Multi-user serial data bus |
US4631659A (en) | 1984-03-08 | 1986-12-23 | Texas Instruments Incorporated | Memory interface with automatic delay state |
US4766536A (en) * | 1984-04-19 | 1988-08-23 | Rational | Computer bus apparatus with distributed arbitration |
US4775931A (en) * | 1984-05-11 | 1988-10-04 | Hewlett-Packard Company | Dynamically configured computing device |
US4566098A (en) * | 1984-05-14 | 1986-01-21 | Northern Telecom Limited | Control mechanism for a ring communication system |
US4727475A (en) * | 1984-05-18 | 1988-02-23 | Frederick Kiremidjian | Self-configuring modular computer system with automatic address initialization |
US4649516A (en) * | 1984-06-01 | 1987-03-10 | International Business Machines Corp. | Dynamic row buffer circuit for DRAM |
JPS60261095A (en) | 1984-06-06 | 1985-12-24 | Mitsubishi Electric Corp | Semiconductor storage device |
US4712194A (en) | 1984-06-08 | 1987-12-08 | Matsushita Electric Industrial Co., Ltd. | Static random access memory |
EP0166192B1 (en) | 1984-06-29 | 1991-10-09 | International Business Machines Corporation | High-speed buffer store arrangement for fast transfer of data |
USH696H (en) | 1984-07-03 | 1989-10-03 | Cpt Corporation | System for accessing shared resource device by intelligent user devices |
JPS6154098A (en) * | 1984-08-23 | 1986-03-18 | Fujitsu Ltd | Pulse generation circuit |
US4637018A (en) | 1984-08-29 | 1987-01-13 | Burroughs Corporation | Automatic signal delay adjustment method |
JPH0799616B2 (en) * | 1984-08-30 | 1995-10-25 | 三菱電機株式会社 | Semiconductor memory device |
US4773005A (en) * | 1984-09-07 | 1988-09-20 | Tektronix, Inc. | Dynamic address assignment system |
JPS6172350A (en) | 1984-09-14 | 1986-04-14 | Fujitsu Ltd | Data transfer control method |
US4646269A (en) | 1984-09-18 | 1987-02-24 | Monolithic Memories, Inc. | Multiple programmable initialize words in a programmable read only memory |
JPS6172350U (en) | 1984-10-12 | 1986-05-16 | ||
US4629909A (en) | 1984-10-19 | 1986-12-16 | American Microsystems, Inc. | Flip-flop for storing data on both leading and trailing edges of clock signal |
US4641276A (en) | 1984-10-22 | 1987-02-03 | General Electric Company | Serial-parallel data transfer system for VLSI data paths |
JPS61102333A (en) * | 1984-10-24 | 1986-05-21 | Nippon Denso Co Ltd | Differential gear for automobile |
JPS61107453A (en) | 1984-10-30 | 1986-05-26 | Nec Corp | Module address setting circuit |
US4758993A (en) * | 1984-11-19 | 1988-07-19 | Fujitsu Limited | Random access memory device formed on a semiconductor substrate having an array of memory cells divided into sub-arrays |
US4625307A (en) | 1984-12-13 | 1986-11-25 | United Technologies Corporation | Apparatus for interfacing between at least one channel and at least one bus |
DE3543911A1 (en) | 1984-12-14 | 1986-06-26 | Mitsubishi Denki K.K., Tokio/Tokyo | DIGITAL DELAY UNIT |
US4633440A (en) | 1984-12-31 | 1986-12-30 | International Business Machines | Multi-port memory chip in a hierarchical memory |
US4675813A (en) * | 1985-01-03 | 1987-06-23 | Northern Telecom Limited | Program assignable I/O addresses for a computer |
JPS61160130A (en) | 1985-01-08 | 1986-07-19 | Nec Corp | Timing generating circuit |
US4683555A (en) * | 1985-01-22 | 1987-07-28 | Texas Instruments Incorporated | Serial accessed semiconductor memory with reconfigureable shift registers |
DE3588156T2 (en) | 1985-01-22 | 1998-01-08 | Texas Instruments Inc., Dallas, Tex. | Semiconductor memory with serial access |
US4636986B1 (en) | 1985-01-22 | 1999-12-07 | Texas Instruments Inc | Separately addressable memory arrays in a multiple array semiconductor chip |
US4984217A (en) * | 1985-01-23 | 1991-01-08 | Hitachi, Ltd. | Semiconductor memory |
US4712190A (en) | 1985-01-25 | 1987-12-08 | Digital Equipment Corporation | Self-timed random access memory chip |
JPS61175845A (en) * | 1985-01-31 | 1986-08-07 | Toshiba Corp | Microprocessor system |
US4719602A (en) * | 1985-02-07 | 1988-01-12 | Visic, Inc. | Memory with improved column access |
DE3504992A1 (en) * | 1985-02-14 | 1986-08-14 | Brown, Boveri & Cie Ag, 6800 Mannheim | PERFORMANCE SEMICONDUCTOR MODULE WITH INTEGRATED HEAT PIPE |
US4933835A (en) * | 1985-02-22 | 1990-06-12 | Intergraph Corporation | Apparatus for maintaining consistency of a cache memory with a primary memory |
US4769778A (en) | 1985-02-25 | 1988-09-06 | Siemens Aktiengesellschaft | Circuit arrangement comprising a matrix-shaped memory arrangement for digital filtration of image signals in row and column directions |
US4740924A (en) | 1985-02-25 | 1988-04-26 | Siemens Aktiengesellschaft | Circuit arrangement comprising a matrix-shaped memory arrangement for variably adjustable time delay of digital signals |
DE3683783D1 (en) * | 1985-03-14 | 1992-03-19 | Fujitsu Ltd | SEMICONDUCTOR MEMORY ARRANGEMENT. |
JPS61160129U (en) | 1985-03-26 | 1986-10-03 | ||
JPS61160130U (en) | 1985-03-27 | 1986-10-03 | ||
US4685088A (en) | 1985-04-15 | 1987-08-04 | International Business Machines Corporation | High performance memory system utilizing pipelining techniques |
US4726021A (en) | 1985-04-17 | 1988-02-16 | Hitachi, Ltd. | Semiconductor memory having error correcting means |
US4744062A (en) * | 1985-04-23 | 1988-05-10 | Hitachi, Ltd. | Semiconductor integrated circuit with nonvolatile memory |
DE3578905D1 (en) * | 1985-04-23 | 1990-08-30 | Ibm | SUB-CONNECTION ARRANGEMENT AND METHOD FOR CONNECTING A STATION FOR A RING COMMUNICATION SYSTEM. |
JPS61245255A (en) | 1985-04-23 | 1986-10-31 | Hitachi Ltd | Nonvolatile memory device |
JPS61267148A (en) * | 1985-05-22 | 1986-11-26 | Hitachi Ltd | Memory circuit |
US4644532A (en) * | 1985-06-10 | 1987-02-17 | International Business Machines Corporation | Automatic update of topology in a hybrid network |
US4951251A (en) * | 1985-06-17 | 1990-08-21 | Hitachi, Ltd. | Semiconductor memory device |
US4703418A (en) | 1985-06-28 | 1987-10-27 | Hewlett-Packard Company | Method and apparatus for performing variable length data read transactions |
US4893174A (en) * | 1985-07-08 | 1990-01-09 | Hitachi, Ltd. | High density integration of semiconductor circuit |
JPS6216289A (en) | 1985-07-16 | 1987-01-24 | Nec Corp | Read only memory |
US4680738A (en) * | 1985-07-30 | 1987-07-14 | Advanced Micro Devices, Inc. | Memory with sequential mode |
US4658381A (en) * | 1985-08-05 | 1987-04-14 | Motorola, Inc. | Bit line precharge on a column address change |
US4750839A (en) * | 1985-08-07 | 1988-06-14 | Texas Instruments Incorporated | Semiconductor memory with static column decode and page mode addressing capability |
JPS6238593A (en) * | 1985-08-14 | 1987-02-19 | Fujitsu Ltd | Dynamic semiconductor storage device |
JPS6240693A (en) * | 1985-08-16 | 1987-02-21 | Fujitsu Ltd | Semiconductor storage device with nibble mode function |
JPS6251509A (en) | 1985-08-27 | 1987-03-06 | Nec Home Electronics Ltd | Transferring device |
JPH0736269B2 (en) * | 1985-08-30 | 1995-04-19 | 株式会社日立製作所 | Semiconductor memory device |
JPS6265298A (en) * | 1985-09-17 | 1987-03-24 | Fujitsu Ltd | EPROM writing method |
JPH0638696B2 (en) | 1985-09-20 | 1994-05-18 | 株式会社東芝 | Power converter |
US4835733A (en) | 1985-09-30 | 1989-05-30 | Sgs-Thomson Microelectronics, Inc. | Programmable access memory |
JP2664137B2 (en) * | 1985-10-29 | 1997-10-15 | 凸版印刷株式会社 | IC card |
US4920483A (en) * | 1985-11-15 | 1990-04-24 | Data General Corporation | A computer memory for accessing any word-sized group of contiguous bits |
US4740923A (en) * | 1985-11-19 | 1988-04-26 | Hitachi, Ltd | Memory circuit and method of controlling the same |
US4779089A (en) * | 1985-11-27 | 1988-10-18 | Tektronix, Inc. | Bus arbitration controller |
US4792926A (en) * | 1985-12-09 | 1988-12-20 | Kabushiki Kaisha Toshiba | High speed memory system for use with a control bus bearing contiguous segmentially intermixed data read and data write request signals |
US4858112A (en) * | 1985-12-17 | 1989-08-15 | General Electric Company | Interface comprising message and protocol processors for interfacing digital data with a bus network |
US4748617A (en) | 1985-12-20 | 1988-05-31 | Network Systems Corporation | Very high-speed digital data bus |
GB2187367B (en) * | 1986-01-09 | 1990-03-28 | Ricoh Kk | Control system for local area network |
US4785396A (en) * | 1986-01-28 | 1988-11-15 | Intel Corporation | Push-pull serial bus coupled to a plurality of devices each having collision detection circuit and arbitration circuit |
US4755937A (en) | 1986-02-14 | 1988-07-05 | Prime Computer, Inc. | Method and apparatus for high bandwidth shared memory |
DE3604966C1 (en) * | 1986-02-17 | 1987-04-09 | Nixdorf Computer Ag | Circuit arrangement for switching binary signals, in particular PCM signals |
JPH0754638B2 (en) * | 1986-02-18 | 1995-06-07 | 松下電子工業株式会社 | Shift register |
JPS62202537A (en) | 1986-02-19 | 1987-09-07 | Hitachi Ltd | Semiconductor integrated circuit device |
JPS62135949U (en) | 1986-02-20 | 1987-08-27 | ||
US4719627A (en) * | 1986-03-03 | 1988-01-12 | Unisys Corporation | Memory system employing a low DC power gate array for error correction |
US4949301A (en) | 1986-03-06 | 1990-08-14 | Advanced Micro Devices, Inc. | Improved pointer FIFO controller for converting a standard RAM into a simulated dual FIFO by controlling the RAM's address inputs |
DE3752017T2 (en) | 1986-03-20 | 1997-08-28 | Nippon Electric Co | Microcomputer with accessibility to an internal memory with the desired variable access time |
US4706166A (en) | 1986-04-25 | 1987-11-10 | Irvine Sensors Corporation | High-density electronic modules--process and product |
CA1293565C (en) | 1986-04-28 | 1991-12-24 | Norio Ebihara | Semiconductor memory |
US4979145A (en) | 1986-05-01 | 1990-12-18 | Motorola, Inc. | Structure and method for improving high speed data rate in a DRAM |
US4825416A (en) * | 1986-05-07 | 1989-04-25 | Advanced Micro Devices, Inc. | Integrated electronic memory circuit with internal timing and operable in both latch-based and register-based systems |
JPS62287499A (en) * | 1986-06-06 | 1987-12-14 | Fujitsu Ltd | Semiconductor memory device |
JPH081754B2 (en) * | 1986-06-10 | 1996-01-10 | 日本電気株式会社 | Memory circuit |
EP0249962B1 (en) | 1986-06-20 | 1994-05-04 | Hitachi, Ltd. | Digital video signal processor |
JPS634492A (en) * | 1986-06-23 | 1988-01-09 | Mitsubishi Electric Corp | Semiconductor storage device |
US4803621A (en) * | 1986-07-24 | 1989-02-07 | Sun Microsystems, Inc. | Memory access system |
US4835674A (en) | 1986-07-28 | 1989-05-30 | Bull Hn Information Systems Inc. | Computer network system for multiple processing elements |
JPS6334795A (en) | 1986-07-29 | 1988-02-15 | Mitsubishi Electric Corp | Semiconductor storage device |
US5031072A (en) * | 1986-08-01 | 1991-07-09 | Texas Instruments Incorporated | Baseboard for orthogonal chip mount |
US4747100A (en) * | 1986-08-11 | 1988-05-24 | Allen-Bradley Company, Inc. | Token passing network utilizing active node table |
JPS6346864A (en) | 1986-08-14 | 1988-02-27 | Nec Corp | Facsimile equipment |
US5276846A (en) | 1986-09-15 | 1994-01-04 | International Business Machines Corporation | Fast access memory structure |
US4845664A (en) * | 1986-09-15 | 1989-07-04 | International Business Machines Corp. | On-chip bit reordering structure |
US4754433A (en) | 1986-09-16 | 1988-06-28 | Ibm Corporation | Dynamic ram having multiplexed twin I/O line pairs |
US4799199A (en) * | 1986-09-18 | 1989-01-17 | Motorola, Inc. | Bus master having burst transfer mode |
US4785394A (en) * | 1986-09-19 | 1988-11-15 | Datapoint Corporation | Fair arbitration technique for a split transaction bus in a multiprocessor computer system |
US4719505A (en) | 1986-09-19 | 1988-01-12 | M/A-Com Government Systems, Inc. | Color burst regeneration |
JPS6391766A (en) | 1986-10-06 | 1988-04-22 | Fujitsu Ltd | Storage device access control method |
US4922141A (en) | 1986-10-07 | 1990-05-01 | Western Digital Corporation | Phase-locked loop delay line |
GB2197553A (en) | 1986-10-07 | 1988-05-18 | Western Digital Corp | Phase-locked loop delay line |
DE3685114D1 (en) * | 1986-10-30 | 1992-06-04 | Ibm | "DAISY-CHAIN" CONFIGURATION FOR BUS ACCESS. |
US4839801A (en) | 1986-11-03 | 1989-06-13 | Saxpy Computer Corporation | Architecture for block processing computer system |
US5140688A (en) | 1986-11-10 | 1992-08-18 | Texas Instruments Incorporated | GaAs integrated circuit programmable delay line element |
JPH01130240A (en) * | 1987-11-16 | 1989-05-23 | Yokogawa Hewlett Packard Ltd | Data train generating device |
CA1258912A (en) * | 1986-11-20 | 1989-08-29 | Stephen J. King | Interactive real-time video processor with zoom, pan and scroll capability |
JPS63132365A (en) * | 1986-11-22 | 1988-06-04 | Nec Corp | Bus adjustment control system |
JPS63142445A (en) | 1986-12-05 | 1988-06-14 | Agency Of Ind Science & Technol | Memory device |
JPS63146298A (en) | 1986-12-10 | 1988-06-18 | Mitsubishi Electric Corp | Variable work length shift register |
JPS63276795A (en) | 1986-12-16 | 1988-11-15 | Mitsubishi Electric Corp | Variable length shift register |
EP0272869B1 (en) * | 1986-12-19 | 1993-07-14 | Fujitsu Limited | Dual port type semiconductor memory device realizing a high speed read operation |
US4764846A (en) | 1987-01-05 | 1988-08-16 | Irvine Sensors Corporation | High density electronic package comprising stacked sub-modules |
JPS63175287A (en) * | 1987-01-16 | 1988-07-19 | Hitachi Ltd | Storage device |
US5018109A (en) | 1987-01-16 | 1991-05-21 | Hitachi, Ltd. | Memory including address registers for increasing access speed to the memory |
US4821226A (en) * | 1987-01-30 | 1989-04-11 | Rca Licensing Corporation | Dual port video memory system having a bit-serial address input port |
US4789960A (en) | 1987-01-30 | 1988-12-06 | Rca Licensing Corporation | Dual port video memory system having semi-synchronous data input and data output |
US4851990A (en) | 1987-02-09 | 1989-07-25 | Advanced Micro Devices, Inc. | High performance processor interface between a single chip processor and off chip memory means having a dedicated and shared bus structure |
US4782439A (en) | 1987-02-17 | 1988-11-01 | Intel Corporation | Direct memory access system for microcontroller |
GB8704315D0 (en) * | 1987-02-24 | 1987-04-01 | Int Computers Ltd | Data display apparatus |
JPS63217452A (en) | 1987-03-06 | 1988-09-09 | Mitsubishi Electric Corp | Setting system for memory access timing |
JPS63142445U (en) | 1987-03-10 | 1988-09-20 | ||
US5038320A (en) * | 1987-03-13 | 1991-08-06 | International Business Machines Corp. | Computer system with automatic initialization of pluggable option cards |
US5056060A (en) * | 1987-03-13 | 1991-10-08 | Apple Computer, Inc. | Printed circuit card with self-configuring memory system for non-contentious allocation of reserved memory space among expansion cards |
US5184027A (en) | 1987-03-20 | 1993-02-02 | Hitachi, Ltd. | Clock signal supply system |
EP0282735B1 (en) | 1987-03-20 | 1992-05-06 | Hitachi, Ltd. | Clock signal supply system |
JPS63239676A (en) | 1987-03-27 | 1988-10-05 | Hitachi Ltd | Semiconductor storage device |
US4837682A (en) * | 1987-04-07 | 1989-06-06 | Glen Culler & Associates | Bus arbitration system and method |
US4858113A (en) | 1987-04-10 | 1989-08-15 | The United States Of America As Represented By The Director Of The National Security Agency | Reconfigurable pipelined processor |
KR960009249B1 (en) * | 1987-04-24 | 1996-07-16 | 미다 가쓰시게 | Semiconductor memory |
US5133064A (en) | 1987-04-27 | 1992-07-21 | Hitachi, Ltd. | Data processing system generating clock signal from an input clock, phase locked to the input clock and used for clocking logic devices |
JPS63271679A (en) * | 1987-04-30 | 1988-11-09 | Toshiba Corp | Data writing system |
US4937733A (en) * | 1987-05-01 | 1990-06-26 | Digital Equipment Corporation | Method and apparatus for assuring adequate access to system resources by processors in a multiprocessor computer system |
JPS63281519A (en) * | 1987-05-13 | 1988-11-18 | Noboru Yamaguchi | Synchronizing clock signal generating device |
US4805198A (en) * | 1987-05-19 | 1989-02-14 | Crystal Semiconductor Corporation | Clock multiplier/jitter attenuator |
US4761567A (en) | 1987-05-20 | 1988-08-02 | Advanced Micro Devices, Inc. | Clock scheme for VLSI systems |
US4817058A (en) | 1987-05-21 | 1989-03-28 | Texas Instruments Incorporated | Multiple input/output read/write memory having a multiple-cycle write mask |
JPS63296292A (en) * | 1987-05-27 | 1988-12-02 | Mitsubishi Electric Corp | Semiconductor device |
JPS63304491A (en) * | 1987-06-04 | 1988-12-12 | Mitsubishi Electric Corp | Semiconductor memory |
US4785428A (en) | 1987-06-18 | 1988-11-15 | Intel Corporation | Programmable memory array control signals |
JPS6429951A (en) | 1987-07-24 | 1989-01-31 | Hitachi Ltd | Storage system |
US4807189A (en) * | 1987-08-05 | 1989-02-21 | Texas Instruments Incorporated | Read/write memory having a multiple column select mode |
JP2714944B2 (en) | 1987-08-05 | 1998-02-16 | 三菱電機株式会社 | Semiconductor storage device |
JP2590122B2 (en) * | 1987-08-07 | 1997-03-12 | 富士通株式会社 | Semiconductor memory |
JP2679994B2 (en) * | 1987-08-14 | 1997-11-19 | 株式会社日立製作所 | Vector processing equipment |
JPS6429951U (en) | 1987-08-17 | 1989-02-22 | ||
US4845677A (en) | 1987-08-17 | 1989-07-04 | International Business Machines Corporation | Pipelined memory chip structure having improved cycle time |
US4930065A (en) | 1987-08-20 | 1990-05-29 | David Computer Corporation | Automatic data channels for a computer system |
JPH0671241B2 (en) | 1987-09-10 | 1994-09-07 | 株式会社ケンウッド | Initial synchronization method for spread spectrum communication |
US5179687A (en) * | 1987-09-26 | 1993-01-12 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory device containing a cache and an operation method thereof |
JPS6488662A (en) | 1987-09-29 | 1989-04-03 | Fujitsu Ltd | Semiconductor memory |
JP2701030B2 (en) * | 1987-10-09 | 1998-01-21 | 株式会社日立製作所 | Write control circuit for high-speed storage device |
US5040153A (en) * | 1987-10-23 | 1991-08-13 | Chips And Technologies, Incorporated | Addressing multiple types of memory devices |
US5051889A (en) * | 1987-10-23 | 1991-09-24 | Chips And Technologies, Incorporated | Page interleaved memory access |
US4964038A (en) * | 1987-10-28 | 1990-10-16 | International Business Machines Corp. | Data processing system having automatic address allocation arrangements for addressing interface cards |
KR970008786B1 (en) | 1987-11-02 | 1997-05-29 | 가부시기가이샤 히다찌세이사꾸쇼 | Semiconductor integrated circuit |
US5226147A (en) * | 1987-11-06 | 1993-07-06 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory device for simple cache system |
JP2593322B2 (en) | 1987-11-06 | 1997-03-26 | 三菱電機株式会社 | Semiconductor storage device |
US4947484A (en) * | 1987-11-10 | 1990-08-07 | Echelon Systems Corporation | Protocol for network having a plurality of intelligent cells |
US4920486A (en) * | 1987-11-23 | 1990-04-24 | Digital Equipment Corporation | Distributed arbitration apparatus and method for shared bus |
US4855809A (en) * | 1987-11-24 | 1989-08-08 | Texas Instruments Incorporated | Orthogonal chip mount system module and method |
JPH01146187A (en) | 1987-12-02 | 1989-06-08 | Mitsubishi Electric Corp | Semiconductor memory device built-in cache memory |
US5014242A (en) * | 1987-12-10 | 1991-05-07 | Hitachi, Ltd. | Semiconductor device for a ram disposed on chip so as to minimize distances of signal paths between the logic circuits and memory circuit |
JPH01236494A (en) | 1988-03-17 | 1989-09-21 | Hitachi Ltd | Semiconductor integrated circuit device |
US6112287A (en) | 1993-03-01 | 2000-08-29 | Busless Computers Sarl | Shared memory multiprocessor system using a set of serial links as processors-memory switch |
US4878166A (en) | 1987-12-15 | 1989-10-31 | Advanced Micro Devices, Inc. | Direct memory access apparatus and methods for transferring data between buses having different performance characteristics |
JPH01163849A (en) | 1987-12-21 | 1989-06-28 | Hitachi Micro Comput Eng Ltd | Semiconductor integrated circuit |
JPH01166545A (en) * | 1987-12-22 | 1989-06-30 | Nec Corp | Zigzag type ic |
US5093807A (en) | 1987-12-23 | 1992-03-03 | Texas Instruments Incorporated | Video frame storage system |
US4954992A (en) * | 1987-12-24 | 1990-09-04 | Mitsubishi Denki Kabushiki Kaisha | Random access memory having separate read out and write in bus lines for reduced access time and operating method therefor |
US5200926A (en) * | 1987-12-28 | 1993-04-06 | Kabushiki Kaisha Toshiba | Semiconductor integrated circuit |
US4959816A (en) * | 1987-12-28 | 1990-09-25 | Kabushiki Kaisha Toshiba | Semiconductor integrated circuit |
US5157776A (en) | 1987-12-30 | 1992-10-20 | Zenith Data Systems Corporation | High speed memory for microcomputer systems |
JPH0821234B2 (en) * | 1988-01-14 | 1996-03-04 | 三菱電機株式会社 | Dynamic semiconductor memory device and control method thereof |
US4873671A (en) | 1988-01-28 | 1989-10-10 | National Semiconductor Corporation | Sequential read access of serial memories with a user defined starting address |
US4916670A (en) * | 1988-02-02 | 1990-04-10 | Fujitsu Limited | Semiconductor memory device having function of generating write signal internally |
IL89120A (en) | 1988-02-17 | 1992-08-18 | Mips Computer Systems Inc | Circuit synchronization system |
US5101117A (en) | 1988-02-17 | 1992-03-31 | Mips Computer Systems | Variable delay line phase-locked loop circuit synchronization system |
JPH0786853B2 (en) * | 1988-02-29 | 1995-09-20 | 株式会社ピーエフユー | Bus transfer control method |
US4975763A (en) * | 1988-03-14 | 1990-12-04 | Texas Instruments Incorporated | Edge-mounted, surface-mount package for semiconductor integrated circuit devices |
JPH021671A (en) * | 1988-03-17 | 1990-01-05 | Toshiba Corp | Load control system for packet switchboard |
JP2923786B2 (en) | 1988-03-18 | 1999-07-26 | 日立マクセル株式会社 | Semiconductor file memory and storage system using the same |
US4811364A (en) * | 1988-04-01 | 1989-03-07 | Digital Equipment Corporation | Method and apparatus for stabilized data transmission |
US5193199A (en) * | 1988-04-14 | 1993-03-09 | Zilog, Inc. | Device and method for programming critical hardware parameters |
US5220673A (en) * | 1988-04-14 | 1993-06-15 | Zilog, Inc. | Device and method for programming critical hardware parameters |
JPH0615657Y2 (en) | 1988-04-26 | 1994-04-27 | 株式会社タカラ | Hair tie for dolls |
CA1301261C (en) * | 1988-04-27 | 1992-05-19 | Wayne D. Grover | Method and apparatus for clock distribution and for distributed clock synchronization |
JPH0212541A (en) * | 1988-04-29 | 1990-01-17 | Internatl Business Mach Corp <Ibm> | Computing system and operation thereof |
US5301278A (en) * | 1988-04-29 | 1994-04-05 | International Business Machines Corporation | Flexible dynamic memory controller |
US5029124A (en) | 1988-05-17 | 1991-07-02 | Digital Equipment Corporation | Method and apparatus for providing high speed parallel transfer of bursts of data |
JP2818415B2 (en) * | 1988-05-18 | 1998-10-30 | 日本電気株式会社 | Buffer storage device |
US5254880A (en) * | 1988-05-25 | 1993-10-19 | Hitachi, Ltd. | Large scale integrated circuit having low internal operating voltage |
US5034917A (en) * | 1988-05-26 | 1991-07-23 | Bland Patrick M | Computer system including a page mode memory with decreased access time and method of operation thereof |
DK163397C (en) | 1988-06-24 | 1992-07-13 | Nordiske Kabel Traad | PROCEDURE FOR REGULATING A PHASE GENERATOR'S PHASE IN RELATION TO A DATA SIGNAL |
US5134699A (en) | 1988-06-24 | 1992-07-28 | Advanced Micro Devices, Inc. | Programmable burst data transfer apparatus and technique |
US4870622A (en) | 1988-06-24 | 1989-09-26 | Advanced Micro Devices, Inc. | DRAM controller cache |
US5210715A (en) * | 1988-06-27 | 1993-05-11 | Texas Instruments Incorporated | Memory circuit with extended valid data output time |
US4953130A (en) * | 1988-06-27 | 1990-08-28 | Texas Instruments, Incorporated | Memory circuit with extended valid data output time |
US5173617A (en) | 1988-06-27 | 1992-12-22 | Motorola, Inc. | Digital phase lock clock generator without local oscillator |
US5404327A (en) * | 1988-06-30 | 1995-04-04 | Texas Instruments Incorporated | Memory device with end of cycle precharge utilizing write signal and data transition detectors |
JP2534757B2 (en) * | 1988-07-06 | 1996-09-18 | 株式会社東芝 | Refresh circuit |
US5111423A (en) * | 1988-07-21 | 1992-05-05 | Altera Corporation | Programmable interface for computer system peripheral circuit card |
US5038317A (en) * | 1988-07-25 | 1991-08-06 | Allen-Bradley Company, Inc. | Programmable controller module rack with a relative rack slot addressing mechanism |
US4912630A (en) | 1988-07-29 | 1990-03-27 | Ncr Corporation | Cache address comparator with sram having burst addressing control |
US4939510A (en) * | 1988-08-22 | 1990-07-03 | E-Systems, Inc. | Broadband communications RF packet collision detection |
JP2574474B2 (en) | 1988-08-23 | 1997-01-22 | 富士通株式会社 | Optical module |
JPH0697614B2 (en) | 1988-08-26 | 1994-11-30 | エヌ・イーケムキャット株式会社 | Supported platinum alloy electrocatalyst |
US5247518A (en) * | 1988-09-02 | 1993-09-21 | Hitachi, Ltd. | High-speed ring lan system |
US5206833A (en) * | 1988-09-12 | 1993-04-27 | Acer Incorporated | Pipelined dual port RAM |
JP2633645B2 (en) * | 1988-09-13 | 1997-07-23 | 株式会社東芝 | Semiconductor memory device |
US5179667A (en) | 1988-09-14 | 1993-01-12 | Silicon Graphics, Inc. | Synchronized DRAM control apparatus using two different clock rates |
US5193193A (en) | 1988-09-14 | 1993-03-09 | Silicon Graphics, Inc. | Bus control system for arbitrating requests with predetermined on/off time limitations |
JPH0283891A (en) * | 1988-09-20 | 1990-03-23 | Fujitsu Ltd | semiconductor memory |
US5138434A (en) * | 1991-01-22 | 1992-08-11 | Micron Technology, Inc. | Packaging for semiconductor logic devices |
FI81225C (en) | 1988-09-30 | 1990-09-10 | Kone Oy | FOERFARANDE OCH ANORDNING FOER ATT SAENDA MEDDELANDE I BINAERFORM I EN SERIETRAFIKBUSS. |
US4932002A (en) * | 1988-09-30 | 1990-06-05 | Texas Instruments, Incorporated | Bit line latch sense amp |
US4975877A (en) | 1988-10-20 | 1990-12-04 | Logic Devices Incorporated | Static semiconductor memory with improved write recovery and column address circuitry |
US5006982A (en) | 1988-10-21 | 1991-04-09 | Siemens Ak. | Method of increasing the bandwidth of a packet bus by reordering reply packets |
US4956694A (en) * | 1988-11-04 | 1990-09-11 | Dense-Pac Microsystems, Inc. | Integrated circuit chip stacking |
JP2674809B2 (en) * | 1988-11-07 | 1997-11-12 | 日本電気株式会社 | Information processing device |
US5034964A (en) | 1988-11-08 | 1991-07-23 | Tandem Computers Incorporated | N:1 time-voltage matrix encoded I/O transmission system |
US4975872A (en) * | 1988-11-17 | 1990-12-04 | Matsushita Electric Industrial Co., Ltd. | Dual port memory device with tag bit marking |
US4956130A (en) | 1988-11-21 | 1990-09-11 | Sonner Lowell F | Method of making dentures |
US5142637A (en) * | 1988-11-29 | 1992-08-25 | Solbourne Computer, Inc. | Dynamic video RAM incorporating single clock random port control |
US5148523A (en) * | 1988-11-29 | 1992-09-15 | Solbourne Computer, Inc. | Dynamic video RAM incorporationg on chip line modification |
US5023838A (en) | 1988-12-02 | 1991-06-11 | Ncr Corporation | Random access memory device with integral logic capability |
US5142376A (en) | 1988-12-16 | 1992-08-25 | Canon Kabushiki Kaisha | Image signal recording and reproducing system with pilot signal phase-locked with a synchronizing signal |
US5018111A (en) | 1988-12-27 | 1991-05-21 | Intel Corporation | Timing circuit for memory employing reset function |
US4982400A (en) * | 1988-12-29 | 1991-01-01 | Intel Corporation | Ring bus hub for a star local area network |
US4864563A (en) | 1989-01-09 | 1989-09-05 | E-Systems, Inc. | Method for establishing and maintaining a nodal network in a communication system |
US5123100A (en) | 1989-01-13 | 1992-06-16 | Nec Corporation | Timing control method in a common bus system having delay and phase correcting circuits for transferring data in synchronization and time division slot among a plurality of transferring units |
US5129069A (en) * | 1989-01-24 | 1992-07-07 | Zenith Data Systems Corporation | Method and apparatus for automatic memory configuration by a computer |
JPH02210685A (en) * | 1989-02-10 | 1990-08-22 | Tokyo Electric Co Ltd | Dram controller |
US4937734A (en) * | 1989-02-21 | 1990-06-26 | Sun Microsystems, Inc. | High speed bus with virtual memory data transfer and rerun cycle capability |
US5099481A (en) | 1989-02-28 | 1992-03-24 | Integrated Device Technology, Inc. | Registered RAM array with parallel and serial interface |
US5111486A (en) | 1989-03-15 | 1992-05-05 | Motorola, Inc. | Bit synchronizer |
JPH02246151A (en) * | 1989-03-20 | 1990-10-01 | Hitachi Ltd | Resistance means, logic circuits, input circuits, fuse cutting circuits, drive circuits, power supply circuits, electrostatic protection circuits, semiconductor storage devices including these, and their layout and testing methods |
US4998069A (en) * | 1989-03-31 | 1991-03-05 | Tandem Computers Incorporated | Loopback tester for testing field replaceable units |
CA2011935A1 (en) * | 1989-04-07 | 1990-10-07 | Desiree A. Awiszio | Dual-path computer interconnect system with four-ported packet memory control |
US4940909A (en) * | 1989-05-12 | 1990-07-10 | Plus Logic, Inc. | Configuration control circuit for programmable logic devices |
US5114423A (en) * | 1989-05-15 | 1992-05-19 | Advanced Cardiovascular Systems, Inc. | Dilatation catheter assembly with heated balloon |
US5001672A (en) | 1989-05-16 | 1991-03-19 | International Business Machines Corporation | Video ram with external select of active serial access register |
JPH06103153B2 (en) | 1989-05-16 | 1994-12-14 | 日本碍子株式会社 | Refractory for rotary kiln |
US5175822A (en) * | 1989-06-19 | 1992-12-29 | International Business Machines Corporation | Apparatus and method for assigning addresses to scsi supported peripheral devices |
EP0405411B1 (en) * | 1989-06-26 | 1995-11-15 | Nec Corporation | Semiconductor memory having improved data readout scheme |
US4901036A (en) | 1989-06-29 | 1990-02-13 | Motorola, Inc. | Frequency synthesizer with an interface controller and buffer memory |
US4954987A (en) * | 1989-07-17 | 1990-09-04 | Advanced Micro Devices, Inc. | Interleaved sensing system for FIFO and burst-mode memories |
CA2017458C (en) * | 1989-07-24 | 2000-10-10 | Jonathan R. Engdahl | Intelligent network interface circuit |
KR940008295B1 (en) * | 1989-08-28 | 1994-09-10 | 가부시기가이샤 히다찌세이사꾸쇼 | Semiconductor memory |
JPH0394350A (en) * | 1989-09-07 | 1991-04-19 | Nec Corp | Semiconductor storage device |
US5163131A (en) * | 1989-09-08 | 1992-11-10 | Auspex Systems, Inc. | Parallel i/o network file server architecture |
US5107465A (en) | 1989-09-13 | 1992-04-21 | Advanced Micro Devices, Inc. | Asynchronous/synchronous pipeline dual mode memory access circuit and method |
US4970418A (en) * | 1989-09-26 | 1990-11-13 | Apple Computer, Inc. | Programmable memory state machine for providing variable clocking to a multimode memory |
JP2982905B2 (en) * | 1989-10-02 | 1999-11-29 | 三菱電機株式会社 | Dynamic semiconductor memory device |
US4998262A (en) * | 1989-10-10 | 1991-03-05 | Hewlett-Packard Company | Generation of topology independent reference signals |
US5121382A (en) * | 1989-10-11 | 1992-06-09 | Digital Equipment Corporation | Station-to-station full duplex communication in a communications network |
US5058132A (en) | 1989-10-26 | 1991-10-15 | National Semiconductor Corporation | Clock distribution system and technique |
US5448744A (en) * | 1989-11-06 | 1995-09-05 | Motorola, Inc. | Integrated circuit microprocessor with programmable chip select logic |
GB8925723D0 (en) | 1989-11-14 | 1990-01-04 | Amt Holdings | Processor array system |
EP0429252B1 (en) * | 1989-11-17 | 1998-01-14 | Digital Equipment Corporation | System and method for storing firmware in relocatable format |
US5111464A (en) * | 1989-12-01 | 1992-05-05 | Mips Computer Systems, Inc. | Interrupt reporting for single-bit memory errors |
US5179670A (en) * | 1989-12-01 | 1993-01-12 | Mips Computer Systems, Inc. | Slot determination mechanism using pulse counting |
US5278974A (en) * | 1989-12-04 | 1994-01-11 | Digital Equipment Corporation | Method and apparatus for the dynamic adjustment of data transfer timing to equalize the bandwidths of two buses in a computer system having different bandwidths |
US4998222A (en) | 1989-12-04 | 1991-03-05 | Nec Electronics Inc. | Dynamic random access memory with internally gated RAS |
US5175831A (en) * | 1989-12-05 | 1992-12-29 | Zilog, Inc. | System register initialization technique employing a non-volatile/read only memory |
DE69032758T2 (en) * | 1989-12-19 | 1999-06-24 | 3Com Corp., Santa Clara, Calif. | Configuration procedure for a computer bus adapter card without bridges or switches |
US5036495A (en) | 1989-12-28 | 1991-07-30 | International Business Machines Corp. | Multiple mode-set for IC chip |
US5175835A (en) * | 1990-01-10 | 1992-12-29 | Unisys Corporation | Multi-mode DRAM controller |
US5021985A (en) | 1990-01-19 | 1991-06-04 | Weitek Corporation | Variable latency method and apparatus for floating-point coprocessor |
US5107491A (en) | 1990-02-20 | 1992-04-21 | Advanced Micro Devices, Inc. | Collision filter |
US5012408A (en) * | 1990-03-15 | 1991-04-30 | Digital Equipment Corporation | Memory array addressing system for computer systems with multiple memory arrays |
US5301155A (en) * | 1990-03-20 | 1994-04-05 | Mitsubishi Denki Kabushiki Kaisha | Multiblock semiconduction storage device including simultaneous operation of a plurality of block defect determination circuits |
KR100236876B1 (en) * | 1990-03-28 | 2000-01-15 | 가나이 쓰도무 | CMOS circuit reduces signal swing |
EP0449052A3 (en) | 1990-03-29 | 1993-02-24 | National Semiconductor Corporation | Parity test method and apparatus for a memory chip |
JP2938511B2 (en) * | 1990-03-30 | 1999-08-23 | 三菱電機株式会社 | Semiconductor storage device |
US5023488A (en) * | 1990-03-30 | 1991-06-11 | Xerox Corporation | Drivers and receivers for interfacing VLSI CMOS circuits to transmission lines |
US5181205A (en) * | 1990-04-10 | 1993-01-19 | National Semiconductor Corporation | Short circuit detector circuit for memory arrays |
US6324120B2 (en) * | 1990-04-18 | 2001-11-27 | Rambus Inc. | Memory device having a variable data output length |
US5243703A (en) * | 1990-04-18 | 1993-09-07 | Rambus, Inc. | Apparatus for synchronously generating clock signals in a data processing system |
IL96808A (en) * | 1990-04-18 | 1996-03-31 | Rambus Inc | Integrated circuit i/o using a high performance bus interface |
US5384501A (en) * | 1990-06-15 | 1995-01-24 | Kabushiki Kaisha Toshiba | Integration circuit including a differential amplifier having a variable transconductance |
US5270973A (en) * | 1990-08-06 | 1993-12-14 | Texas Instruments Incorporated | Video random access memory having a split register and a multiplexer |
US5077693A (en) * | 1990-08-06 | 1991-12-31 | Motorola, Inc. | Dynamic random access memory |
US6249481B1 (en) * | 1991-10-15 | 2001-06-19 | Kabushiki Kaisha Toshiba | Semiconductor memory device |
US5198995A (en) * | 1990-10-30 | 1993-03-30 | International Business Machines Corporation | Trench-capacitor-one-transistor storage cell and array for dynamic random access memories |
JP3992757B2 (en) | 1991-04-23 | 2007-10-17 | テキサス インスツルメンツ インコーポレイテツド | A system that includes a memory synchronized with a microprocessor, and a data processor, a synchronous memory, a peripheral device and a system clock |
US5392292A (en) * | 1991-06-27 | 1995-02-21 | Cray Research, Inc. | Configurable spare memory chips |
GB2260631B (en) * | 1991-10-17 | 1995-06-28 | Intel Corp | Microprocessor 2X core design |
US5297091A (en) * | 1991-10-31 | 1994-03-22 | International Business Machines Corporation | Early row address strobe (RAS) precharge |
US5276641A (en) * | 1991-12-12 | 1994-01-04 | International Business Machines Corporation | Hybrid open folded sense amplifier architecture for a memory device |
DE69230129T2 (en) | 1991-12-18 | 2000-06-15 | Sun Microsystems, Inc. | Write overlap with overwrite prevention |
JP3481263B2 (en) * | 1992-02-19 | 2003-12-22 | 株式会社リコー | Serial storage device |
US5257232A (en) * | 1992-03-05 | 1993-10-26 | International Business Machines Corporation | Sensing circuit for semiconductor memory with limited bitline voltage swing |
US5325516A (en) * | 1992-03-09 | 1994-06-28 | Chips And Technologies Inc. | Processor system with dual clock |
JPH05274879A (en) * | 1992-03-26 | 1993-10-22 | Nec Corp | Semiconductor device |
US5254883A (en) * | 1992-04-22 | 1993-10-19 | Rambus, Inc. | Electrical current source circuitry for a bus |
US5384745A (en) * | 1992-04-27 | 1995-01-24 | Mitsubishi Denki Kabushiki Kaisha | Synchronous semiconductor memory device |
JP2892216B2 (en) * | 1992-05-22 | 1999-05-17 | 株式会社東芝 | Semiconductor memory |
FR2694121B1 (en) * | 1992-07-24 | 1995-09-22 | Sgs Thomson Microelectronics | MEMORY IN INTEGRATED CIRCUIT WITH PRELOADING PRIOR TO OUTPUT. |
KR960001859B1 (en) * | 1993-04-16 | 1996-02-06 | 삼성전자주식회사 | Decoding Circuit and Method of Semiconductor Memory Device |
US5511024A (en) * | 1993-06-02 | 1996-04-23 | Rambus, Inc. | Dynamic random access memory system |
KR960006271B1 (en) * | 1993-08-14 | 1996-05-13 | 삼성전자주식회사 | Semiconductor memory device with I / O line driving method for high speed operation |
US5497347A (en) * | 1994-06-21 | 1996-03-05 | Motorola Inc. | BICMOS cache TAG comparator having redundancy and separate read an compare paths |
US5594937A (en) * | 1994-09-02 | 1997-01-14 | Ghz Equipment Company | System for the transmission and reception of directional radio signals utilizing a gigahertz implosion concept |
JP2630277B2 (en) * | 1994-10-24 | 1997-07-16 | 日本電気株式会社 | Semiconductor storage device |
JP3739104B2 (en) * | 1995-02-27 | 2006-01-25 | 株式会社ルネサステクノロジ | Nonvolatile semiconductor memory device |
US5636173A (en) * | 1995-06-07 | 1997-06-03 | Micron Technology, Inc. | Auto-precharge during bank selection |
US5873114A (en) * | 1995-08-18 | 1999-02-16 | Advanced Micro Devices, Inc. | Integrated processor and memory control unit including refresh queue logic for refreshing DRAM during idle cycles |
US5604705A (en) * | 1995-08-22 | 1997-02-18 | Lucent Technologies Inc. | Static random access memory sense amplifier |
JPH09171486A (en) * | 1995-10-16 | 1997-06-30 | Seiko Epson Corp | PC card |
US5860125A (en) * | 1995-11-08 | 1999-01-12 | Advanced Micro Devices, Inc. | Integrated circuit including a real time clock, configuration RAM, and memory controller in a core section which receives an asynchronous partial reset and an asynchronous master reset |
US5841707A (en) * | 1995-11-29 | 1998-11-24 | Texas Instruments Incorporated | Apparatus and method for a programmable interval timing generator in a semiconductor memory |
US5712882A (en) * | 1996-01-03 | 1998-01-27 | Credence Systems Corporation | Signal distribution system |
US5657841A (en) * | 1996-03-04 | 1997-08-19 | Morvan; Jacques | Extension cord reel assembly with ground fault interrupt outlets |
US5742798A (en) * | 1996-08-09 | 1998-04-21 | International Business Machines Corporation | Compensation of chip to chip clock skew |
KR100204810B1 (en) * | 1996-09-13 | 1999-06-15 | 윤종용 | Semiconductor memory device having variable erasing block size |
US5953263A (en) * | 1997-02-10 | 1999-09-14 | Rambus Inc. | Synchronous memory device having a programmable register and method of controlling same |
US5825710A (en) * | 1997-02-26 | 1998-10-20 | Powerchip Semiconductor Corp. | Synchronous semiconductor memory device |
JP3504104B2 (en) * | 1997-04-03 | 2004-03-08 | 富士通株式会社 | Synchronous DRAM |
US5881016A (en) * | 1997-06-13 | 1999-03-09 | Cirrus Logic, Inc. | Method and apparatus for optimizing power consumption and memory bandwidth in a video controller using SGRAM and SDRAM power reduction modes |
JP3247639B2 (en) * | 1997-08-07 | 2002-01-21 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Semiconductor memory, data reading method and writing method for semiconductor memory |
KR100281898B1 (en) * | 1998-07-21 | 2001-02-15 | 윤종용 | Duty cycle correction circuit and method for correcting duty cycle of data |
JP2000035831A (en) | 1998-07-21 | 2000-02-02 | Nec Corp | Low skew clock tree circuit using variable threshold voltage transistor |
-
1990
- 1990-12-27 IL IL9680890A patent/IL96808A/en not_active IP Right Cessation
-
1991
- 1991-04-16 EP EP06125958A patent/EP1830241B1/en not_active Revoked
- 1991-04-16 DE DE69133611T patent/DE69133611D1/en not_active Expired - Lifetime
- 1991-04-16 EP EP06125946A patent/EP1816569B1/en not_active Revoked
- 1991-04-16 DE DE06125946T patent/DE06125946T1/en active Pending
- 1991-04-16 DE DE00100018T patent/DE00100018T1/en active Pending
- 1991-04-16 DE DE02000378T patent/DE02000378T1/en active Pending
- 1991-04-16 DE DE06125954T patent/DE06125954T1/en active Pending
- 1991-04-16 JP JP50805091A patent/JP3414393B2/en not_active Expired - Lifetime
- 1991-04-16 WO PCT/US1991/002590 patent/WO1991016680A1/en not_active Application Discontinuation
- 1991-04-16 EP EP06125954A patent/EP1816570A3/en not_active Withdrawn
- 1991-04-16 KR KR1019920702584A patent/KR100201057B1/en not_active IP Right Cessation
- 1991-04-16 DE DE69133572T patent/DE69133572T2/en not_active Expired - Lifetime
- 1991-04-16 DE DE69132121T patent/DE69132121T2/en not_active Revoked
- 1991-04-16 DE DE69132721T patent/DE69132721T2/en not_active Expired - Lifetime
- 1991-04-16 EP EP00108822A patent/EP1022642B1/en not_active Revoked
- 1991-04-16 EP EP02000378A patent/EP1197830B1/en not_active Revoked
- 1991-04-16 EP EP05026720A patent/EP1640847B1/en not_active Revoked
- 1991-04-16 DE DE69133598T patent/DE69133598D1/en not_active Expired - Lifetime
- 1991-04-16 DE DE69133500T patent/DE69133500T2/en not_active Expired - Lifetime
- 1991-04-16 DE DE69133550T patent/DE69133550T2/en not_active Expired - Lifetime
- 1991-04-16 DE DE06125958T patent/DE06125958T1/en active Pending
- 1991-04-16 DE DE69132501T patent/DE69132501T3/en not_active Expired - Lifetime
- 1991-04-16 EP EP91908374A patent/EP0525068B1/en not_active Revoked
- 1991-04-16 DE DE1022642T patent/DE1022642T1/en active Pending
- 1991-04-16 DE DE69133565.6T patent/DE69133565T3/en not_active Expired - Lifetime
-
1992
- 1992-03-05 US US07/847,532 patent/US5473575A/en not_active Expired - Lifetime
- 1992-03-05 US US07/847,651 patent/US5606717A/en not_active Expired - Fee Related
- 1992-03-05 US US07/849,212 patent/US5499385A/en not_active Expired - Lifetime
- 1992-09-30 US US07/954,945 patent/US5319755A/en not_active Expired - Lifetime
-
1994
- 1994-01-18 US US08/183,573 patent/US5408129A/en not_active Expired - Fee Related
- 1994-03-31 US US08/222,646 patent/US5513327A/en not_active Expired - Lifetime
- 1994-08-14 IL IL11065094A patent/IL110650A0/en unknown
- 1994-08-14 IL IL11064894A patent/IL110648A0/en unknown
- 1994-08-14 IL IL11064994A patent/IL110649A0/en unknown
-
1995
- 1995-05-24 US US08/448,657 patent/US5638334A/en not_active Expired - Lifetime
-
1996
- 1996-11-15 US US08/749,729 patent/US5657481A/en not_active Expired - Lifetime
- 1996-12-09 US US08/762,139 patent/US5809263A/en not_active Expired - Lifetime
-
1997
- 1997-02-10 US US08/798,520 patent/US5841580A/en not_active Expired - Lifetime
- 1997-02-10 US US08/796,782 patent/US5841715A/en not_active Expired - Lifetime
- 1997-02-10 US US08/798,525 patent/US5954804A/en not_active Expired - Fee Related
- 1997-03-28 US US08/829,459 patent/US6598171B1/en not_active Expired - Fee Related
- 1997-08-13 US US08/910,810 patent/US5983320A/en not_active Expired - Fee Related
- 1997-11-26 US US08/979,127 patent/US5915105A/en not_active Expired - Fee Related
-
1998
- 1998-06-16 US US09/098,387 patent/US5928343A/en not_active Expired - Fee Related
- 1998-09-25 US US09/161,090 patent/US6049846A/en not_active Expired - Fee Related
- 1998-11-20 US US09/196,199 patent/US6038195A/en not_active Expired - Fee Related
- 1998-11-27 US US09/200,446 patent/US6035365A/en not_active Expired - Fee Related
- 1998-12-17 US US09/213,243 patent/US6101152A/en not_active Expired - Fee Related
- 1998-12-28 US US09/221,108 patent/US6415339B1/en not_active Expired - Fee Related
-
1999
- 1999-01-29 US US09/239,522 patent/US6044426A/en not_active Expired - Fee Related
- 1999-02-19 US US09/252,998 patent/US6032214A/en not_active Expired - Fee Related
- 1999-02-19 US US09/252,993 patent/US6085284A/en not_active Expired - Fee Related
- 1999-02-19 US US09/252,997 patent/US6034918A/en not_active Expired - Fee Related
- 1999-03-05 US US09/263,224 patent/US6032215A/en not_active Expired - Fee Related
- 1999-03-05 US US09/263,225 patent/US6128696A/en not_active Expired - Fee Related
- 1999-03-08 US US09/263,956 patent/US6070222A/en not_active Expired - Fee Related
- 1999-07-21 US US09/357,989 patent/US6067592A/en not_active Expired - Fee Related
-
2000
- 2000-01-19 US US09/487,524 patent/US6185644B1/en not_active Expired - Fee Related
- 2000-01-27 US US09/492,982 patent/US6452863B2/en not_active Expired - Fee Related
- 2000-02-22 US US09/510,213 patent/US6182184B1/en not_active Expired - Fee Related
- 2000-02-28 US US09/514,872 patent/US6260097B1/en not_active Expired - Fee Related
- 2000-04-10 US US09/545,648 patent/US6378020B2/en not_active Expired - Fee Related
- 2000-05-08 US US09/566,551 patent/US6266285B1/en not_active Expired - Fee Related
- 2000-07-31 US US09/629,497 patent/US6314051B1/en not_active Expired - Fee Related
- 2000-09-25 US US09/669,295 patent/US6304937B1/en not_active Expired - Fee Related
-
2001
- 2001-02-08 JP JP2001031860A patent/JP3404383B2/en not_active Expired - Fee Related
- 2001-03-07 US US09/801,151 patent/US6697295B2/en not_active Expired - Fee Related
- 2001-06-28 US US09/893,836 patent/US6570814B2/en not_active Expired - Fee Related
- 2001-07-26 US US09/916,493 patent/US6513081B2/en not_active Expired - Fee Related
- 2001-10-01 US US09/969,489 patent/US6564281B2/en not_active Expired - Fee Related
- 2001-12-21 US US10/028,077 patent/US6546446B2/en not_active Expired - Fee Related
-
2002
- 2002-02-04 US US10/102,237 patent/US6584037B2/en not_active Expired - Fee Related
-
2003
- 2003-02-03 JP JP2003026111A patent/JP3550143B2/en not_active Expired - Lifetime
- 2003-11-20 US US10/716,595 patent/US20040114454A1/en not_active Abandoned
-
2004
- 2004-09-14 US US10/939,501 patent/US7110322B2/en not_active Expired - Fee Related
- 2004-09-14 US US10/939,500 patent/US6975558B2/en not_active Expired - Fee Related
- 2004-10-27 US US10/973,268 patent/US20050141332A1/en not_active Abandoned
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3404383B2 (en) | Memory device | |
US6426916B2 (en) | Memory device having a variable data output length and a programmable register | |
US6728819B2 (en) | Synchronous memory device | |
US5995443A (en) | Synchronous memory device | |
EP1004956B1 (en) | Method of operating a synchronous memory having a variable data output length | |
IL110648A (en) | Clock signal generation apparatus for a semiconductor circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D04 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090228 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090228 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100228 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100228 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110228 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |