US6125157A - Delay-locked loop circuitry for clock delay adjustment - Google Patents
Delay-locked loop circuitry for clock delay adjustment Download PDFInfo
- Publication number
- US6125157A US6125157A US08/795,657 US79565797A US6125157A US 6125157 A US6125157 A US 6125157A US 79565797 A US79565797 A US 79565797A US 6125157 A US6125157 A US 6125157A
- Authority
- US
- United States
- Prior art keywords
- phase
- clock
- delay
- signal
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000013598 vector Substances 0.000 claims abstract description 139
- 239000000872 buffer Substances 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 11
- 238000001914 filtration Methods 0.000 claims description 3
- 230000003111 delayed effect Effects 0.000 abstract description 21
- 230000001934 delay Effects 0.000 abstract description 17
- 230000010363 phase shift Effects 0.000 abstract description 12
- 230000000295 complement effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000015654 memory Effects 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 230000003139 buffering effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K5/13—Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
- H03K5/133—Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals using a chain of active delay devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/04—Generating or distributing clock signals or signals derived directly therefrom
- G06F1/10—Distribution of clock signals, e.g. skew
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/22—Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/22—Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management
- G11C7/222—Clock generating, synchronizing or distributing circuits within memory device
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K5/22—Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
- H03K5/24—Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude
- H03K5/2472—Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude using field effect transistors
- H03K5/2481—Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude using field effect transistors with at least one differential stage
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/07—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop using several loops, e.g. for redundant clock signal generation
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/0805—Details of the phase-locked loop the loop being adapted to provide an additional control signal for use outside the loop
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/081—Details of the phase-locked loop provided with an additional controlled phase shifter
- H03L7/0812—Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
- H03L7/0814—Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used the phase shifting device being digitally controlled
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/081—Details of the phase-locked loop provided with an additional controlled phase shifter
- H03L7/0812—Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
- H03L7/0816—Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used the controlled phase shifter and the frequency- or phase-detection arrangement being connected to a common input
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/0016—Arrangements for synchronising receiver with transmitter correction of synchronization errors
- H04L7/0033—Correction by delay
- H04L7/0037—Delay of clock signal
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K2005/00013—Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
- H03K2005/00019—Variable delay
- H03K2005/00026—Variable delay controlled by an analog electrical signal, e.g. obtained after conversion by a D/A converter
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K2005/00013—Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
- H03K2005/00019—Variable delay
- H03K2005/00026—Variable delay controlled by an analog electrical signal, e.g. obtained after conversion by a D/A converter
- H03K2005/00032—DC control of switching transistors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K2005/00013—Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
- H03K2005/00019—Variable delay
- H03K2005/00026—Variable delay controlled by an analog electrical signal, e.g. obtained after conversion by a D/A converter
- H03K2005/00052—Variable delay controlled by an analog electrical signal, e.g. obtained after conversion by a D/A converter by mixing the outputs of fixed delayed signals with each other or with the input signal
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K2005/00013—Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
- H03K2005/0015—Layout of the delay element
- H03K2005/00195—Layout of the delay element using FET's
- H03K2005/00208—Layout of the delay element using FET's using differential stages
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/0008—Synchronisation information channels, e.g. clock distribution lines
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/0016—Arrangements for synchronising receiver with transmitter correction of synchronization errors
- H04L7/002—Arrangements for synchronising receiver with transmitter correction of synchronization errors correction by interpolation
- H04L7/0025—Arrangements for synchronising receiver with transmitter correction of synchronization errors correction by interpolation interpolation of clock signal
Definitions
- the present invention relates to clock delay adjustment circuitry.
- the present invention relates to the generation of a set of phase vectors and the generation of output clocks that have precise phase relationships to an input clock.
- Previous art includes the Rambus patent, U.S. Pat. No. 5,485,490, by Leung and Horowitz, which discloses two independent loops, the first of which creates a fixed number of phase vectors, the second of which creates an output clock that is in phase with the input clock. Also disclosed in this patent is the use of separate circuitry to create a leading phase clock to the output clock by selecting a pair of phase vectors and interpolating between them to produce an output that leads the output clock by the delay between phase vectors available from the first loop.
- Lee discloses a pair of delay-locked loops (DLL) for transmitting and receiving data in DRAMs.
- DLL delay-locked loops
- IEEE Journal of Solid-State Circuits, Vol. 31, No. 4, April 1996, Tanoi et al. shows a two-loop architecture in which a frequency locked-loop (FLL) is designed to lock onto an external input frequency and to control the DLL for lock-in to the phase of the external input clock.
- FLL frequency locked-loop
- Phase-locked loop circuitry employing a VCO and single order loop filter to create phase vectors is a second order system.
- This second order system has stability problems associated with its operation.
- the VCO phase lock loop accumulates phase error in response to sudden changes in phase on inputs to the loop, where the input includes not only the input clock but also the power supplies to the loop. This occurs because the loop changes the frequency of the VCO in response to a sudden phase change and this frequency shift is integrated to become phase error which persists for a time on the order of the reciprocal loop bandwidth (see Lee, above).
- the present invention provides delay-locked loop circuitry for generating a predetermined phase relationship between a pair of clocks.
- a first delay-locked loop (DLL) includes delay elements arranged in a chain, the chain receiving an input clock and generating, from the delay elements, a set of phase vectors, each shifted a unit delay from the adjacent vector.
- the first delay-locked loop adjusts the unit delays in the delay chain using a delay adjustment signal so that the phase vectors span a predetermined phase shift of the input clock.
- a second DLL is used, although the second DLL could be used with another circuit which produces two different delayed clock signals.
- the second DLL selects, from the first DLL, a pair of phase vectors which brackets the phase of an input clock.
- a phase interpolator receives the selected pair of vectors and generates an output clock and a delayed output clock, the amount of the delay being controlled by the delay adjustment signal of the first delay-locked loop circuitry.
- a phase detector in the second DLL compares the delayed output clock with the input clock and adjusts the phase interpolator, based on the phase comparison, so that the phase of the delayed output clock is in phase with the input clock.
- the phase interpolator is preferably adjusted with a control circuit including a digital memory for storing a count corresponding to the delay adjustment, which can be maintained in the absence of the input clock signal.
- the first DLL includes a control circuit with a digital memory for providing the desired delay adjustment to the adjustable delay elements.
- a filter is used between the phase detector and the control circuit to reduce loop jitter.
- the present invention is advantageously used for the transmit and receive clocks in a high-speed DRAM and a high-speed DRAM bus channel.
- FIG. 1 shows a block diagram of a delay locked loop for generating phase vectors, K ⁇ r:0>;
- FIG. 2 shows a more detailed block diagram than FIG. 1 of a delayed locked loop for generating phase vectors, K ⁇ r:0>, according to one embodiment
- FIG. 3 shows a more detailed architecture than FIG. 2 of a delayed locked loop for generating phase vectors, K ⁇ r:0>, according to one embodiment
- FIG. 4 shows another embodiment of a delay-locked loop for generating phase vectors using buffered delay elements and a buffer clock source.
- FIG. 5 shows a block diagram of the architecture of a DLL for generating an Output Clock in precise phase relationship with an Input Clock according to one embodiment
- FIG. 6 shows a more detailed architecture than FIG. 5 of a DLL for generating an Output Clock in precise phase relationship with an Input Clock according to one embodiment
- FIG. 7 shows another embodiment of a DLL for generating an Output Clock in precise phase relationship with an Input Clock using an adjustable delay section in the path of both the Output Clock and the feedback clock;
- FIG. 8 shows another embodiment of an adjustable delay section having one adjustable delay for use in FIG. 7;
- FIG. 9 shows another embodiment of an adjustable delay section having at least two adjustable delays for use in FIG. 7;
- FIG. 10 shows an embodiment for producing a pair of delays from the same chain for use in FIG. 7;
- FIG. 11 shows a set of four phase vectors each separated by a 90 degree interval and spanning 360 degrees shift of the 0 degree vector
- FIG. 12 shows a set of eight phase vectors each separated by a 45 degree interval and spanning 360 degrees shift of the 0 degree vector
- FIG. 13 shows a set of 12 phase vectors each separated by a 30 degree interval and spanning 360 degrees shift of the 0 degree vector
- FIG. 14 shows a set of four phase vectors each separated by a 90 degree interval and spanning 360 degrees shift of the 0 degree vector, with the Input Clock and feedback clock between the 90 and 180 degree phase vectors and the Output Clock between the 0 and 90 degree vectors and 90 degrees earlier in time than the Input Clock;
- FIG. 15 depicts a case in which the Input Clock is between the 135 and 180 degree phase vectors, with the initially selected phase vectors being the 0 and 45 degree vectors;
- FIG. 16A shows an embodiment of a delay element for use in a delay-locked loop
- FIG. 16B shows another embodiment of a delay element for use in a delay-locked loop
- FIG. 17 shows an embodiment of a digital to analog converter for use in a delay-locked loop
- FIG. 18 shows an embodiment of a phase interpolator for use in a delay-locked loop
- FIGS. 19A and 19B show an embodiment of a duty cycle correcting amplifier for use in a delay-locked loop.
- FIG. 19A is the amplifier in which the duty cycle is corrected and
- FIG. 19B is the duty cycle error detecting circuit which applies a correction signal to the amplifier in FIG. 19A;
- FIG. 20 is a block diagram of a TrimAdj circuit for use in one variation of the embodiment of FIG. 7;
- FIG. 21 is a circuit diagram of one embodiment of a phase detector as set forth in FIG. 6;
- FIG. 22 is a block diagram of a DRAM system incorporating the present invention.
- Embodiments of the present invention provide a method and circuitry to generate a set of phase vectors in a way that is more immune to noise on loop inputs including the power supplies, leading to a more stable set of phase vectors.
- an output clock that has a predetermined phase relationship with an input clock is provided. The effect of clock buffer delays between the input clock and output clock is minimized.
- the delay of an adjustable delay element is adjusted with a counter and a digital-to-analog converter, the count in the counter digitally representing the current delay adjustment of the delay-locked loop. The digital count is converted to a signal suitable for adjusting an adjustable delay element used in a delay-locked loop.
- the current delay adjustment setting of the loop is digitally represented so that the setting may be stored while the loop is in a powered-down or low power state. There is quick re-acquisition of the locked state of a delay-locked loop after the delay-locked loop has been powered down.
- a delay-locked loop is employed for generating phase vectors.
- the DLL 100 receives an external clock, ClkSrc 101, and generates phase vectors, K ⁇ r:0> 103.
- a convenient way to represent the set of phase vectors for a periodic signal is to draw the vectors in phase space as in FIG. 11. In this figure there are four vectors each spaced apart by 90 degrees and spanning a 360 degree phase shift of the 0 degree vector. Each vector in this figure represents a time delay of one-fourth of the cycle of the periodic signal.
- FIGS. 12 and 13 show alternate sets of phase vectors.
- FIG. 12 shows a set of vectors spaced at 45 degree intervals and spanning a 360 degree phase shift of the 0 degree vector.
- FIG. 13 shows a set of vectors spaced at 30 degree intervals and spanning a 360 degree phase shift of the 0 degree vector.
- the DLL 100 is a first order loop comprising at adjustable delay section 110, a control circuit 120 and a phase detector 130.
- the phase detector 130 receives the external clock, ClkSrc 150 from which it derives a clock input ClkIn (not shown), a set of phase vector lines 140 and the last phase vector K ⁇ r> on line 160.
- the output of phase detector 130 is coupled to the control circuit 120 which processes the output of the phase detector to generate a delay adjust signal 125 for adjusting the delay of the delay elements.
- the adjustable delay elements are adjusted so that the phase of K ⁇ r> is the same as the clock input, ClkIn.
- FIG. 3 shows an embodiment of the DLL in more detail.
- adjustable delay section 205 comprises a set of four identical adjustable delay elements 210 connected in series with the output of each delay element 210 except the last element connected to the input of the next element 210. While four delay elements are shown in the particular embodiment, any number such as two, three, four, six, eight or twelve, can be used.
- This arrangement produces a set of clocks, called phase vectors K ⁇ r:0> 270, each shifted in time from the next by a delay, called a unit delay, generated by the adjustable delay section 205.
- Each adjustable delay element 210 receives the delay adjust signal DlyAdj 260 from control circuit 230, comprising counter control circuit 240 and digital-to-analog converter (DAC) 250.
- DlyAdj 260 from control circuit 230, comprising counter control circuit 240 and digital-to-analog converter (DAC) 250.
- DAC digital-to-analog converter
- Counter control circuit 240 receives an input, PhDiff 225, from phase detector 220 and generates count Cnt ⁇ c:0> 245 for input to the DAC.
- control circuit 230 is implemented with digital circuits to permit the storage of the current delay adjustment setting of the loop, held by Cnt ⁇ c:0>245, during times when the ClkSrc 200 is not present, perhaps during a period when the system is shut down to save power. The saved setting permits the loop to quickly re-acquire a locked condition when the ClkSrc is reactivated.
- phase detector 220 receives as inputs ClkIn 215 derived from the ClkSrc 200 via buffer 202 and the last phase vector K ⁇ r> 280.
- buffer 202 performs duty cycle correction as well as amplification to assure that ClkIn 215 has a 50% duty cycle. Duty cycle correction is discussed in greater detail below.
- adjustable delay element 210 may be implemented according to the embodiment shown in FIG. 16A, which shows a delay element 1010 and a bias circuit 1000.
- the delay element is a differential delay element, having both true and complementary inputs and outputs.
- the circuit operates to delay the differential inputs IN 1005 and IN -- B 1015 to produce delayed outputs Out 1130 and Out -- B 1140.
- the amount of delay is adjusted by adjustable current source 1020, which controls the amount of current switched by differential pair 1100 and 1110. The greater the amount of current switched the smaller delay produced by the differential pair.
- Transistors 1080 and 1090 act as clamps to limit the swing of the differential pair allowing small delays to be realized by the circuit.
- the adjustable delay element may also be implemented according to the embodiment shown in FIG. 16B.
- section 1215 functions as a fixed delay comprising a current source 1260 and a differential pair 1220 and 1230
- section 1225 operates as a phase interpolator comprising differential pair 1330 and 1340 with current source 1320 and differential pair 1290 and 1300 with current source 1310 to produce a delay that is adjustable between a stage delay to a fixed delay plus the stage delay.
- the stage delay represents the fixed delay time through the interpolator stage 1225.
- the phase interpolator delay stage 1225 is adjusted by varying the current sources Ix 1320 and Iy 1310.
- phase interpolator delay stage 1225 is adjustable through a range of delay equal to the fixed delay of the 1215 section.
- FIG. 3 depicts a DAC which may be implemented according to the DAC shown in FIG. 17, which depicts a circuit for converting a digital count Cnt ⁇ c:0> 1510 and its complement Cnt -- B ⁇ c:o> 1500 to a differential current pair, Ictl 1640 and Ictl -- B 1590 proportional to the count.
- FIG. 17 shows three sections of circuitry, a set of binary weighted current sources 1520, a set of switches 1540 for producing the true current output Ictl 1640 and a set of switches 1530 for producing the complement output Ictl -- B 1590.
- Ictl 1640 has a maximum current, Max -- I, which is the sum of all of the current sources 1650, 1660, 1670 through 1680 and the complementary current Ictl -- B is zero. If the count input Cnt ⁇ c:0> 1510 is all zeros then Ictl -- B 1590 has the maximum current, Max I, and Ictl is zero. Intermediate counts produce intermediate amounts of current, Im, and (Max -- I-Im) on Ictl and Ictl -- B respectively.
- This DAC is suitable for controlling the differential input delay adjust signals of the adjustable delay element 210 shown in FIG. 16B for the delay-locked loop shown in FIG. 3.
- Phase detector 220 compares the ClkIn signal, with the last phase vector K ⁇ r> 280 to determine the phase difference from a predetermined phase relationship between the two clocks.
- the predetermined phase difference could be zero degrees.
- the predetermined phase difference could be 180 degrees.
- the phase difference is represented by signal PhDiff 225.
- Counter control block then converts the PhDiff signal into a digital count, Cnt ⁇ c:0> 245, and DAC 250 converts the count value into an analog quantity, DlyAdj 260, for adjusting the adjustable delay elements.
- the Cnt ⁇ c:0> signal and the DlyAdj signal may be differential signals.
- the delay adjustment operates to change the delay of the adjustable delay elements so that the phase difference from the predetermined phase relationship between clock input, ClkIn and K ⁇ r> is made close to zero.
- the DLL is locked, and each adjustable delay element has substantially the same delay.
- each phase vector is displaced in time from the adjacent vector by an amount equal to the setting of the adjustable delay element. This time displacement is termed a unit delay.
- the result is that the phase vectors span a 360 degree phase shift of the ClkIn signal 215.
- an alternate embodiment could use fewer delay elements to produce phase vectors that span the 360 degree phase shift of the ClkIn if each delay element, such as the ones depicted in FIGS. 16A and 16B, can produce both true and complementary outputs.
- each delay element such as the ones depicted in FIGS. 16A and 16B
- two delay elements separated by 90 degrees could be used if the delay element had true outputs yielding delays of 90 and 180 degrees and complementary outputs yielding 270 and 360 degrees, respectively.
- fewer delay elements could be used if the phase detector were designed to detect phase differences from a predetermined phase relationship of 180 degrees. Using such a phase detector would only require that two delay elements be used spanning a 180 degree phase shift of the ClkIn signal.
- the outputs of the delay elements could be inverted in a separate circuit which receives the phase vectors, so that a set of phase vectors spanning 360 degrees is obtained.
- buffer 202 may perform a duty cycle correction function to assure that the ClkIn signal 215 has a 50% duty cycle. This is especially important when the remaining span of 180 degrees is derived through inversion of the phase vectors spanning the first 180 degrees, because inversion will not generate the proper phase shift if the duty cycle is not substantially close to 50%.
- an additional adjustable delay element has been placed in the circuit to receive the last phase vector.
- This additional delay has the effect of insuring that each phase vector has the identical loading as the other phase vectors, so that phase errors caused by loading differences are substantially eliminated.
- signal 265 may be connected to a convenient voltage, because the output of the additional delay is not used. This eliminates some of the loading on the DlyAdj signal 260.
- phase vectors 275 are buffered by buffers 212 in order to further control the loading on the vectors by isolating the loading of the phase vectors from other circuits which may receive the vectors.
- a buffered version of ClkIn 215 and a buffered version of the last phase vector K ⁇ r> 285 are sent to the phase detector. This guarantees that buffered version of the phase vectors K ⁇ r:0> 275 are separated in phase by a unit delay and that the set of buffered phase vectors span a 360 degree or 180 degree shift of the buffered ClkIn signal depending upon the embodiment chosen.
- FIG. 4 Also shown in FIG. 4 is a version of buffer 202 which has a duty cycle correcting circuit 290 attached.
- the duty cycle correcting circuit 290 senses signal 214 for a deviation from a 50% duty cycle. It then feeds a correction signal to buffer 202 to correct signal 214.
- signal 214 is a differential signal and the error signal 295 is a differential signal.
- FIGS. 19A and 19B An embodiment of a duty cycle correcting amplifier is shown in FIGS. 19A and 19B.
- FIG. 19A shows the correcting stage 2005 and the buffering stage 2055 and
- FIG. 19B shows the duty cycle error detecting stage 2215.
- differential pair 1960 and 1970 receive the input clock differential on In+ 1920 and In- 1930 and produce a differential output clock on Corr Clock -- B 2090 and Corr Clock 2100. If the duty cycle deviates from 50% then the circuit shown in FIG. 19B will produce a differential error voltage signal pair Error+ 2300 and Error- 2200 from the differential pair 2230 and 2250 and capacitor 2260 acting as an integrator.
- Transistors 2220, 2280, 2290 and 2270 function as a load element especially suited for controlling the charge leakage across integrating capacitor 2260.
- the differential error voltage signal pair is fed back to the correcting stage 2005 such that the duty cycle error in the Corr Clock and Corr Clock -- B signals is reduced by altering currents 2110 and 2120 depending on the polarity of the error.
- the output of the buffering stage 2055 is a clock having a duty cycle substantially close to 50%.
- Phase detector 220 compares the ClkIn signal, with the last phase vector K ⁇ r> 280 to determine the phase difference from a predetermined phase relationship between the two clocks, and signal PhDiff 225 represents that difference.
- PhDiff signal 225 contains random variations due to the instantaneous phase error which, when used directly by Counter Control 240, causes an amount of overall loop jitter, thus affecting the stability of the phase vectors.
- the amount of jitter is reduced by filtering the PhDiff signal before converting it to DlyAdj signal 260.
- control circuit 230 includes filter 235 in addition to counter control 240 and digital to analog converter (DAC) 250.
- Filter circuit 235 receives an input, PhDiff 225, from phase detector 220 and CntClk 241 from buffer 238 and generates output PhDiffF 237 for input to the Counter Control 240, which receives CntClk 241 and generates count Cnt ⁇ c:0> 245 for input to DAC 250.
- the PhDiff signal is a digital signal
- a digital filter is used, but either analog or digital filtering may be employed.
- CntClk 241 operates the circuitry in both Filter 235 and Counter Control 240.
- Buffer 238 is employed when ClkSrc is a small swing signal but Counter Control 240 and Filter 235 require a full swing signal.
- Types of digital filters that can be employed to reduce loop jitter include a majority-detector filter or an unanimity-detector filter.
- CntClk 241 operates circuitry which samples and stores the state, either true or false, of PhDiff 225.
- a majority-detector filter saves the last N samples, where N is an odd number, of PhDiff signal 225 and determines whether a majority of the last N cycles, say 3 out of 5 (N), are the same. If so, then the majority-detector filter activates PhDiffF 237 to alter the count in counter control 240. This type of filter alters the count in counter control 240 on every sample because there is always a majority of true or false samples.
- An unanimity-detector filter also records the last N samples, where N can be even or odd, of the PhDiff signal but instead determines whether all N cycles are the same. If all samples are the same, the unanimity-detector filter activates the PhDiffF signal 237 to alter the count and at times during which not all the samples are the same, the PhDiffF signal will not be activated to alter the count. Both types of filters have the effect of reducing loop jitter, and either type may be used.
- the first delay-locked loop 320 is one which generates phase vectors K ⁇ r:0> 330 from a clock source ClkSrc 300 as described above.
- the phase vectors and the DlyAdj signal 340 are then used by a second delay-locked loop 350 to create a precise phase relationship between Input Clock 310 and Output Clock 360.
- FIG. 6 shows an embodiment of the loop of FIG. 5 in more detail.
- First loop 400 is the phase vector loop which receives ClkSrc 410 and generates phase vectors K ⁇ r:0> 430 and DlyAdj signal 440.
- the second loop 500 is the loop for creating the phase relationship between the Input Clk 650 and Output Clk 640.
- Loop 500 comprises a selection circuitry 510, phase interpolator 560, adjustable delay section 610 which represents an integer multiple of adjustable delay elements, clock buffers 620 and 630, control circuit 570 and phase detector 590.
- selection circuitry 510 receives the phase vectors 430 and passes along a selected pair of vectors Kx 520 and Ky 530, which are received by phase interpolator 560.
- the phase interpolator generates an interpolated output clock 615 which is buffered by clock buffer 620 to become the Output Clk 640.
- Adjustable delay section 610 also receives output clock 615 and feeds the delayed clock to clock buffer 630 to generate FdBkClk 600.
- Control circuit generates PhAdj signal 550 for controlling the interpolator 560.
- Control circuit 570 receives phase difference information, PhDiff 580, from phase detector 590, which detects the difference in phase between the Input Clk 650 and FdBkClk 600.
- control circuit 570 may comprise counter control 240 and DAC 250 such as in FIG. 3, to enable the saving of the setting of the current phase adjustment of the loop or Filter 235, Counter Control 240 and DAC 250 as in FIG. 4 to additionally reduce loop jitter.
- Selection circuitry 510 may be implemented as an analog or digital set of switches comprising a multiplexer, depending upon whether the phase vectors are low swing or full swing signals.
- Phase interpolator 560 may be implemented as shown in FIG. 18. Alternately, selection circuitry 510 may be merged or combined with interpolator 560, shown in FIG. 6 as block 562. In some embodiments when selection circuitry is combined with the phase interpolator, the circuit shown in FIG. 18 is duplicated several times, each duplicate connected to a different set of switches for applying a particular phase vector to the interpolator.
- Differential pair 1800 and 1810 receive one of the selected phase vectors Kx 1700 and Kx -- B 1740 which is the complement of the Kx signal.
- Kx and Kx -- B may be generated from a delay element having differential outputs as shown in FIG. 16A or 16B.
- Differential pair 1820 and 1830 receive the Ky 1710 phase vector and the Ky -- B 1750 complementary phase vector.
- the phase interpolator functions as a weighted integrator using capacitors C1 1760 and C2 1770 and coincidence detector 1860.
- Ictl 1720 is set at a maximum value and Ictl -- B 1730 is zero then the output signal PIout 1870 is in phase with the Kx clock but delayed by a stage delay through the interpolator. If Ictl -- B 1730 is set a maximum value and Ictl 1720 is zero then the output signal is in phase with the Ky clock but delayed by a stage delay. By adjusting the values of adjustable currents 1720 and 1730 any delay between Kx and Ky may be achieved.
- phase detector 590 determines what the difference in phase, if any, is between the Input Clk 650 and FdBkClk 600. This difference is then processed by control circuit 570 to select a pair of phase vectors via selection circuitry 510.
- the chosen pair of vectors is that pair between which the phase of Input Clk 650 lies, after accounting for fixed delays inherent in circuits in the path of the FdBkClk signal such as the phase selector, phase interpolator, adjustable delay section and clock buffer.
- FIG. 14 An example of a pair of vectors meeting this requirement is shown in FIG. 14, in which the Input Clk is shown between the 90 degree and 180 degree vectors and at a delay of alpha degrees from the 180 degree vector.
- FIG. 15 depicts a circumstance in which the stepping of several phase vectors must occur if loop 500 starts in the 0 degree state before the correct pair is discovered.
- the phase interpolator 560 is adjusted so that the phase interpolator output 615 is in phase with the 45 degree vector. While in this condition the 0 degree vector is replaced with the 90 degree vector by the control circuit and selection circuitry. Next, the phase interpolator is adjusted to produce an output in phase with the 90 degree vector and the 45 degree vector is replaced with the 135 degree vector.
- phase interpolator is then adjusted to produce an output in phase with the 135 degree vector. Finally, the control circuit replaces the 90 degree vector with the 180 degree vector. Thus, while this stepping occurs the phase interpolator generates an output clock 615 which is in phase with one of the selected vectors, in particular, the one that will not be switched in selecting a new pair of vectors. The constraint that the interpolator generate the output clock in phase with the non-switched vector prevents the output clock from glitching during the stepping process.
- the phase interpolator is allowed to be adjusted by PhAdj signal 550 to precisely align the delayed output FdBkClk 600 to the phase of the Input Clk 650, which is at some phase, alpha degrees, (FIG. 14) from one of the selected phase vectors.
- the loop is locked.
- FdBkClk 600 is delayed by at least one unit delay from adjustable delay section 610, the unit delay being precisely a delay between any two adjacent phase vectors 430 from the first loop because it is adjusted by the same DlyAdj 440 signal of the first loop.
- phase interpolator 615 assuming one delay element in block 610.
- FIG. 14 shows this condition.
- Clock buffers 620 and 630 are matched buffers having the same physical construction. FdBkClk is thus delayed by an amount equal to a unit delay and a clock buffer delay plus the other fixed delays from the phase selector and phase interpolator. However, because the Output Clk 640 is delayed by the same amount of fixed delays, the clock buffer delays and fixed delays cancel and the difference between the Output Clk 640 and the Input Clock 650 is only the unit delay.
- adjustable delay section 610 could comprise an integer multiple of unit delays, in which case the delay between the Input Clk 650 and Output Clk 640 would then be the integer multiple of unit delays. For example, if the multiple of the unit delay is 3 and the value of the unit delay 10 degrees then the Output Clk would lead the Input Clk by 30 degrees. If the multiple of the unit delay is zero, then the Input Clk and Output Clk would be in phase.
- FIG. 7 is an alternate embodiment showing adjustable delay section 612 in the path of the Output Clk 640.
- This section has the same implementation as the section in the path of the FdBkClk 600 and provides a way for the Output Clk 640 to not only lead the Input Clk in phase but to lag it in phase.
- This latter condition occurs when the adjustable delay section 612 comprises a larger multiple of unit delays than adjustable delay section 610.
- Adjustable delay sections 612 and 610 may be implemented in a fashion similar to section 206 in FIG. 4 in order to insure that phase errors due to loading differences are minimized.
- the delay circuits shown in FIGS. 16A and 16B are suitable for implementing an adjustable delay element employed in the adjustable delay section 610 or 612.
- FIG. 16A and 16B are suitable for implementing an adjustable delay element employed in the adjustable delay section 610 or 612.
- FIG. 7 also shows that buffers 620 and 630 may be implemented as duty cycle correcting amplifiers with the aid of duty cycle correction circuit 670. Buffers 620 and 630 may be implemented according to the circuitry shown in FIG. 19A and duty cycle correction circuit 670 may be implemented as shown in FIG. 19B.
- FIG. 7 shows three more inputs, Fast 575,Test 585 and ExtIn 595, to the control circuit 570.
- Fast signal 575 is used to alter the control circuit so that the loop can lock more quickly by taking larger phase adjustments toward the lock condition.
- the control circuit 570 is implemented as a counter
- the Fast signal 575 can cause the counter to count by a multiple of the smallest step between counts.
- the Test signal 585 is used to allow the control circuit to be under the control of external signal ExtIn 595 rather than PhDiff 580 derived from the loop. This allows loop properties to be tested more easily.
- FIG. 8 shows one embodiment of adjustable delay section 612.
- Block 612 comprises a buffer 702, similar to 202 in FIG. 4, an adjustable delay element 710 similar to adjustable delay element 210 in FIG. 4, and an output buffer 712 similar to the 212 buffer in FIG. 4.
- FIG. 9 shows an embodiment of adjustable delay section 610. This figure is similar to FIG. 8 but has more adjustable delay elements, but is still buffered at the front of the chain and has an additional delay element at the end of the chain.
- the adjustable delay sections in both FIG. 8 and FIG. 9 are controlled from an external delay adjust signal such as 441 as shown in FIG. 7, such that the setting produces a delay equal to the delay between phase vectors.
- adjustable delay sections 610 and 612 are implemented in this fashion, loading differences are kept to a minimum and only the desired phase difference between signal 617 and 618 is generated. As may be easily seen it is not necessary that adjustable delay sections 610 and 612 be implemented as two separate and distinct sections. It is convenient in some embodiments to derive 617 and 618 from the same section 625 as shown in FIG. 7 and 10.
- the delay adjust signal 441 in FIG. 7 is buffered by buffer 442, in some embodiments, to isolate the loading effects of sections 610 and 612 from section 420.
- FIG. 20 discloses circuitry for biasing the predetermined phase relationship between the input clock and the output clock with a fixed offset.
- the fixed offset is necessary when system requirements dictate that the predetermined phase relationship be altered by an amount that is smaller than is available from a unit a delay, for example a one degree phase shift.
- This fine tuning or trimming is accomplished by the TrimAdj signal 2300 which is combined with the DlyAdj signal 441 in FIG. 7.
- the TrimAdj signal 2300 adds a small amount of adjustment current to the adjustable delay sections 610 and 612. This causes the delay elements in those sections to have a delay that is slightly smaller or larger than the unit delay provided by the delay adjustment signal from the loop which generates the phase vectors.
- the TrimAdj signal 2300 is derived from DAC 2310 and trim word storage 2320.
- Trim word storage in some embodiments is a set of fuses or other permanent storage for holding a digital code TW ⁇ t:0> 2330 for setting the trim delay.
- DAC 2310 converts the trim word 2330 to an analog signal such as a current for controlling the delay elements in sections 610 and 612.
- FIG. 21 is a circuit diagram of a phase detector circuit which could be used for the phase detector of FIGS. 2, 3, 4, 6 and 7.
- a clock input 2530 is shown, and data input 2540 would correspond to the feedback clock or phase vector.
- Output 3000 is the phase difference signal provided to the control circuit.
- the phase detector is implemented as three blocks 2500, 2510, and 2520 connected in flip-flop fashion using NAND gates 2550, 2560, 2570, 2580, 2590, and 2595.
- FIG. 22 shows a system application for the delay-locked loops of the present invention.
- master device 3100 communicates with slave device 3110 or slave device 3120.
- Slave devices 3110 or 3120 may communicate with master device 3100 but not with each other.
- the system operates from a pair of clocks generated from oscillator 3170 which generates CTM (Clock To Master) 3140 and CFM (Clock From Master) 3130.
- CTM travels in the direction from the slave device to the master device and is used for transmitting data to the master on data bus 3150.
- CTM is looped back to generate CFM which travels in the direction from master to slave device and is used for transmitting data from the master to the slave device.
- Each device, master or slave has a data receiver Rcvr 3180 and a data transmitter Txmtr 3190 for receiving and sending data respectively.
- the Rcvr 3180 uses a signal rclk 3220 to receive the data from the data Bus and Txmtr 3190 uses tclk 3230 to transmit the data onto the data bus.
- Signals rclk and tclk are generated from a pair of delay-locked loops 3200 and 3205 in the slave and from a single delay-locked loop 3235 in the master, because the master makes no distinction between CTM and CFM.
- DLLR 3210 is the delay-locked loop for generating the phase vectors and is called the reference loop. Each device uses a single DLLR loop.
- DLLF 3200 is the delay-locked loop for generating a predetermined phase relationship between the input clock and the output clock.
- the DLLF 3200 loop is used to generate a 90 degree phase relationship between CTM and tclk, because data is always transmitted in quadrature to the receive clock.
- the DLLF 3205 is used to generate a zero degree phase relationship between CFM and rclk.
- the master receives the clock CTM and generates the rclk signal for operating its receiver.
- Signal rclk in the master is in a 0 degree phase relationship with CTM so that the data is sampled when it is not changing.
- the master sends data to a slave, it clocks its transmitter changing the data on the data bus with tclk which is in a 90 degree phase relationship with the CFM.
- a slave 3110 receiving the data in its receiver 3180 operates its receiver using rclk which has a 0 degree phase relationship with the CFM.
- the receiver will sample the data when it is not changing. In this manner, data may be transmitted using both edges of the CTM or CFM clocks and safely sampled in the receiver.
- the master of FIG. 22 is an intelligent device, such as a microprocessor, an application specific integrated circuit (ASIC), a memory controller, or a graphics engine.
- the slave devices may be DRAMs, SRAMs, ROMs, EPROMs, flash memories, or other memory devices.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Nonlinear Science (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
- Pulse Circuits (AREA)
- Dram (AREA)
Abstract
Description
Claims (20)
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/795,657 US6125157A (en) | 1997-02-06 | 1997-02-06 | Delay-locked loop circuitry for clock delay adjustment |
DE69840242T DE69840242D1 (en) | 1997-02-06 | 1998-02-04 | Delay loop circuit for setting a clock delay |
EP05025847A EP1633049B1 (en) | 1997-02-06 | 1998-02-04 | Delay locked loop circuitry for clock delay adjustment |
DE69840350T DE69840350D1 (en) | 1997-02-06 | 1998-02-04 | Circuit with delay locked loop to adjust the clock delay |
EP05018741A EP1601130B1 (en) | 1997-02-06 | 1998-02-04 | Delay locked loop circuitry for clock delay adjustment |
PCT/US1998/002053 WO1998037656A2 (en) | 1997-02-06 | 1998-02-04 | Delay locked loop circuitry for clock delay adjustment |
DE29825196U DE29825196U1 (en) | 1997-02-06 | 1998-02-04 | Circuit for setting a clock delay |
EP98906112A EP1031203A4 (en) | 1997-02-06 | 1998-02-04 | Delay locked loop circuitry for clock delay adjustment |
US09/524,402 US6539072B1 (en) | 1997-02-06 | 2000-03-13 | Delay locked loop circuitry for clock delay adjustment |
US10/366,865 US7039147B2 (en) | 1997-02-06 | 2003-02-14 | Delay locked loop circuitry for clock delay adjustment |
US11/406,557 US7308065B2 (en) | 1997-02-06 | 2006-04-18 | Delay locked loop circuitry for clock delay adjustment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/795,657 US6125157A (en) | 1997-02-06 | 1997-02-06 | Delay-locked loop circuitry for clock delay adjustment |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/524,402 Continuation US6539072B1 (en) | 1997-02-06 | 2000-03-13 | Delay locked loop circuitry for clock delay adjustment |
Publications (1)
Publication Number | Publication Date |
---|---|
US6125157A true US6125157A (en) | 2000-09-26 |
Family
ID=25166104
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/795,657 Expired - Lifetime US6125157A (en) | 1997-02-06 | 1997-02-06 | Delay-locked loop circuitry for clock delay adjustment |
US09/524,402 Expired - Lifetime US6539072B1 (en) | 1997-02-06 | 2000-03-13 | Delay locked loop circuitry for clock delay adjustment |
US10/366,865 Expired - Fee Related US7039147B2 (en) | 1997-02-06 | 2003-02-14 | Delay locked loop circuitry for clock delay adjustment |
US11/406,557 Expired - Fee Related US7308065B2 (en) | 1997-02-06 | 2006-04-18 | Delay locked loop circuitry for clock delay adjustment |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/524,402 Expired - Lifetime US6539072B1 (en) | 1997-02-06 | 2000-03-13 | Delay locked loop circuitry for clock delay adjustment |
US10/366,865 Expired - Fee Related US7039147B2 (en) | 1997-02-06 | 2003-02-14 | Delay locked loop circuitry for clock delay adjustment |
US11/406,557 Expired - Fee Related US7308065B2 (en) | 1997-02-06 | 2006-04-18 | Delay locked loop circuitry for clock delay adjustment |
Country Status (4)
Country | Link |
---|---|
US (4) | US6125157A (en) |
EP (3) | EP1633049B1 (en) |
DE (3) | DE69840350D1 (en) |
WO (1) | WO1998037656A2 (en) |
Cited By (169)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010018751A1 (en) * | 2000-02-28 | 2001-08-30 | Gresham Paul Alan | Integrated data clock extractor |
US6304117B1 (en) * | 1997-07-29 | 2001-10-16 | Fujitsu Limited | Variable delay circuit and semiconductor integrated circuit device |
US6342797B1 (en) * | 1998-12-30 | 2002-01-29 | Hyundai Electronics Industries Co., Ltd. | Delayed locked loop clock generator using delay-pulse-delay conversion |
US6369652B1 (en) | 2000-05-15 | 2002-04-09 | Rambus Inc. | Differential amplifiers with current and resistance compensation elements for balanced output |
US6373301B1 (en) | 2001-04-18 | 2002-04-16 | Silicon Integrated Systems Corporation | Fast-locking dual rail digital delayed locked loop |
WO2002031980A2 (en) * | 2000-10-13 | 2002-04-18 | Silicon Communication Lab, Inc. | Cyclic phase signal generation from a single clock source using current phase interpolation |
US6388482B1 (en) * | 2000-06-21 | 2002-05-14 | Infineon Technologies North America Corp. | DLL lock scheme with multiple phase detection |
US6392466B1 (en) * | 1999-12-30 | 2002-05-21 | Intel Corporation | Apparatus, method and system for a controllable pulse clock delay arrangement to control functional race margins in a logic data path |
US6400197B2 (en) * | 2000-01-26 | 2002-06-04 | Via Technologies, Inc. | Delay device having a delay lock loop and method of calibration thereof |
US20020070752A1 (en) * | 2000-08-30 | 2002-06-13 | Harrison Ronnie M. | Method and system for controlling the duty cycle of a clock signal |
US6424184B1 (en) * | 1996-09-25 | 2002-07-23 | Matsushita Electric Industrial Co., Ltd. | Frequency-voltage conversion circuit, delay amount judgement circuit, system having frequency-voltage conversion circuit, method of adjusting input/output characteristics of frequency-voltage conversion circuit, and apparatus for automatically adjusting input |
US6434706B1 (en) * | 1999-05-24 | 2002-08-13 | Koninklijke Philips Electronics N.V. | Clock system for multiple component system including module clocks for safety margin of data transfers among processing modules |
US6441662B2 (en) * | 2000-05-30 | 2002-08-27 | Mitsubishi Denki Kabushiki Kaisha | DLL circuit that can prevent erroneous operation |
US6445234B1 (en) * | 1998-12-30 | 2002-09-03 | Hyundai Electronics Industries Co., Ltd. | Apparatus and method for accelerating initial lock time of delayed locked loop |
US6452431B1 (en) * | 2000-08-28 | 2002-09-17 | Micron Technology, Inc. | Scheme for delay locked loop reset protection |
US6456130B1 (en) * | 2001-01-11 | 2002-09-24 | Infineon Technologies Ag | Delay lock loop and update method with limited drift and improved power savings |
EP1246368A2 (en) * | 2001-03-27 | 2002-10-02 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device |
US20020154723A1 (en) * | 2001-01-11 | 2002-10-24 | Nec Corporation | Oversampling clock recovery having a high follow-up character using a few clock signals |
WO2002087086A1 (en) * | 2001-04-19 | 2002-10-31 | Micron Technology, Inc. | Clock generator using master and slave dlls |
US20020163986A1 (en) * | 1999-03-01 | 2002-11-07 | Harrison Ronnie M. | Method and apparatus for generating a phase dependent control signal |
WO2002097987A2 (en) * | 2001-05-25 | 2002-12-05 | Infineon Technologies Ag | Method and system for managing a pulse width of a signal pulse |
EP1265247A1 (en) * | 2001-06-05 | 2002-12-11 | STMicroelectronics S.r.l. | A programmable delay line and corresponding memory |
US20020196885A1 (en) * | 2001-06-25 | 2002-12-26 | Jun Kim | Determining phase relationships using digital phase values |
US6501313B2 (en) * | 2000-12-27 | 2002-12-31 | International Business Machines Corporation | Dynamic duty cycle adjuster |
US20030012321A1 (en) * | 2001-07-12 | 2003-01-16 | Mitsubishi Denki Kabushiki Kaisha | Delay locked loop circuit and its control method |
US6518811B1 (en) | 2000-12-29 | 2003-02-11 | Cisco Technology, Inc. | Software programmable delay circuit |
US6525581B1 (en) | 2001-09-20 | 2003-02-25 | Hynix Semiconductor Inc. | Duty correction circuit and a method of correcting a duty |
US6530006B1 (en) | 2000-09-18 | 2003-03-04 | Intel Corporation | System and method for providing reliable transmission in a buffered memory system |
US20030052718A1 (en) * | 2001-09-19 | 2003-03-20 | Elpida Memory, Inc. | Interpolating circuit, DLL circuit and semiconductor integrated circuit |
US6549046B1 (en) * | 2000-12-29 | 2003-04-15 | Cisco Technology, Inc. | Method and apparatus for phase aligning two clock signals utilizing a programmable phase adjustment circuit |
US6570944B2 (en) | 2001-06-25 | 2003-05-27 | Rambus Inc. | Apparatus for data recovery in a synchronous chip-to-chip system |
US6583655B2 (en) * | 2001-05-24 | 2003-06-24 | Nec Electronics Corporation | Clock control circuit |
US20030117864A1 (en) * | 2001-10-22 | 2003-06-26 | Hampel Craig E. | Phase adjustment apparatus and method for a memory device signaling system |
US20030117194A1 (en) * | 2001-12-21 | 2003-06-26 | Lee Seong Hoon | Delay locked loop circuit with duty cycle correction function |
US20030123594A1 (en) * | 2002-01-02 | 2003-07-03 | Glenn Robert C. | Phase interpolator based clock recovering |
US6597212B1 (en) | 2002-03-12 | 2003-07-22 | Neoaxiom Corporation | Divide-by-N differential phase interpolator |
US20030161430A1 (en) * | 2002-02-26 | 2003-08-28 | Fujitsu Limited | Clock recovery circuitry |
US6621762B1 (en) * | 2002-05-29 | 2003-09-16 | Micron Technology, Inc. | Non-volatile delay register |
US20030179027A1 (en) * | 2002-03-22 | 2003-09-25 | Kizer Jade M. | Locked loop with dual rail regulation |
US20030183842A1 (en) * | 2002-03-22 | 2003-10-02 | Kizer Jade M. | System with phase jumping locked loop circuit |
US6636098B1 (en) | 2001-12-05 | 2003-10-21 | Rambus Inc. | Differential integrator and related circuitry |
US6642760B1 (en) | 2002-03-29 | 2003-11-04 | Rambus, Inc. | Apparatus and method for a digital delay locked loop |
US6650157B2 (en) * | 2002-01-11 | 2003-11-18 | Sun Microsystems, Inc. | Using a push/pull buffer to improve delay locked loop performance |
US20030219089A1 (en) * | 2002-05-21 | 2003-11-27 | Via Technologies, Inc. | Delay phase-locked loop device and clock signal generating method |
US6665219B2 (en) * | 2001-02-12 | 2003-12-16 | Micron Technology, Inc. | Method of reducing standby current during power down mode |
US20040008733A1 (en) * | 2002-07-12 | 2004-01-15 | Berthold Wedding | Multiplexer input circuit with DLL phase detector |
US20040012429A1 (en) * | 2000-12-05 | 2004-01-22 | Mikael Lindberg | Device and method in a semiconductor circuit |
US6687881B2 (en) * | 2002-02-14 | 2004-02-03 | Sun Microsystems, Inc. | Method for optimizing loop bandwidth in delay locked loops |
US6686785B2 (en) * | 2001-10-11 | 2004-02-03 | Sun Microsystems, Inc. | Deskewing global clock skew using localized DLLs |
US20040041604A1 (en) * | 2002-09-03 | 2004-03-04 | Kizer Jade M. | Phase jumping locked loop circuit |
US20040052323A1 (en) * | 2002-09-13 | 2004-03-18 | Bo Zhang | Phase interpolater and applications thereof |
US20040066873A1 (en) * | 2002-10-05 | 2004-04-08 | Cho Geun-Hee | Delay locked loop circuit for internally correcting duty cycle and duty cycle correction method thereof |
US6727738B2 (en) * | 2000-12-19 | 2004-04-27 | Renesas Technology Corp. | Configuration for generating a clock including a delay circuit and method thereof |
US20040101079A1 (en) * | 2002-11-25 | 2004-05-27 | International Business Machines Corporation | Delay-lock-loop with improved accuracy and range |
US20040140837A1 (en) * | 2003-01-21 | 2004-07-22 | Altera Corporation | Digital phase locked loop circuitry and methods |
US6775342B1 (en) | 1998-06-22 | 2004-08-10 | Xilinx, Inc. | Digital phase shifter |
US20040155686A1 (en) * | 2003-01-10 | 2004-08-12 | Se-Jun Kim | Analog delay locked loop having duty cycle correction circuit |
US20040179419A1 (en) * | 2003-03-12 | 2004-09-16 | Choi Joo S. | Multi-frequency synchronizing clock signal generator |
US6794919B1 (en) | 2000-09-29 | 2004-09-21 | Intel Corporation | Devices and methods for automatically producing a clock signal that follows the master clock signal |
US6806750B1 (en) * | 2002-04-23 | 2004-10-19 | National Semiconductor Corporation | Method and system for clock deskewing using a continuously calibrated delay element in a phase-locked loop |
US20040223571A1 (en) * | 1997-02-06 | 2004-11-11 | Rambus Inc. | Delay locked loop circuitry for clock delay adjustment |
EP1497923A1 (en) * | 2002-03-22 | 2005-01-19 | Rambus, Inc. | System with dual rail regulated locked loop |
US6856558B1 (en) | 2002-09-20 | 2005-02-15 | Integrated Device Technology, Inc. | Integrated circuit devices having high precision digital delay lines therein |
US20050046453A1 (en) * | 2003-09-03 | 2005-03-03 | Broadcom Corporation | Method and apparatus for glitch-free control of a delay-locked loop in a network device |
US20050053162A1 (en) * | 2001-11-20 | 2005-03-10 | Masaru Goishi | Phase adjustment apparatus and semiconductor test apparatus |
US6867627B1 (en) | 2003-09-16 | 2005-03-15 | Integrated Device Technology, Inc. | Delay-locked loop (DLL) integrated circuits having high bandwidth and reliable locking characteristics |
US20050083721A1 (en) * | 2001-09-07 | 2005-04-21 | Hampel Craig E. | Granularity memory column access |
US20050088211A1 (en) * | 2003-10-24 | 2005-04-28 | Kim Kyu-Hyoun | Jitter suppressing delay locked loop circuits and related methods |
US6889304B2 (en) | 2001-02-28 | 2005-05-03 | Rambus Inc. | Memory device supporting a dynamically configurable core organization |
US6897699B1 (en) | 2002-07-19 | 2005-05-24 | Rambus Inc. | Clock distribution network with process, supply-voltage, and temperature compensation |
WO2005057718A1 (en) * | 2003-12-10 | 2005-06-23 | Telefonaktiebolaget Lm Ericsson (Publ) | A delay-locked loop with precision controlled delay |
WO2005064434A1 (en) * | 2003-12-19 | 2005-07-14 | Koninklijke Philips Electronics N.V. | Integrated circuit clock distribution |
US6922091B2 (en) | 2002-09-03 | 2005-07-26 | Rambus Inc. | Locked loop circuit with clock hold function |
US20050220235A1 (en) * | 2000-02-07 | 2005-10-06 | Stark Donald C | System and method for aligning internal transmit and receive clocks |
US6954097B2 (en) * | 1997-06-20 | 2005-10-11 | Micron Technology, Inc. | Method and apparatus for generating a sequence of clock signals |
US20050237093A1 (en) * | 2004-04-22 | 2005-10-27 | Wilhite Jeffrey B | Adjustable frequency delay-locked loop |
US6970313B1 (en) * | 1999-03-31 | 2005-11-29 | Matsushita Electric Industrial Co., Ltd. | Write compensation circuit and signal interpolation circuit of recording device |
US20050268196A1 (en) * | 2002-09-19 | 2005-12-01 | Chang Timothy C | Multiple sweep point testing of circuit devices |
US6975695B1 (en) * | 2001-04-30 | 2005-12-13 | Cypress Semiconductor Corp. | Circuit for correction of differential signal path delays in a PLL |
US6977539B1 (en) | 2003-08-26 | 2005-12-20 | Integrated Device Technology, Inc. | Clock signal generators having programmable full-period clock skew control and methods of generating clock signals having programmable skews |
US20050286672A1 (en) * | 2001-05-18 | 2005-12-29 | Micron Technology, Inc. | Phase splitter using digital delay locked loops |
US20060023523A1 (en) * | 2004-07-28 | 2006-02-02 | Martin Perner | Integrated semiconductor memory |
US6998897B2 (en) | 2004-02-23 | 2006-02-14 | International Business Machines Corporation | System and method for implementing a micro-stepping delay chain for a delay locked loop |
US20060039227A1 (en) * | 2004-08-17 | 2006-02-23 | Lawrence Lai | Memory device having staggered memory operations |
US20060038601A1 (en) * | 2003-08-26 | 2006-02-23 | Shawn Giguere | Clock signal generators having programmable full-period clock skew control |
US20060072366A1 (en) * | 2004-09-30 | 2006-04-06 | Ware Frederick A | Multi-column addressing mode memory system including an integrated circuit memory device |
US7038519B1 (en) | 2004-04-30 | 2006-05-02 | Xilinx, Inc. | Digital clock manager having cascade voltage switch logic clock paths |
US20060091925A1 (en) * | 2004-11-01 | 2006-05-04 | Desai Jayen J | Interpolator systems and methods |
US7046093B1 (en) | 2003-08-27 | 2006-05-16 | Intergrated Device Technology, Inc. | Dynamic phase-locked loop circuits and methods of operation thereof |
US7046058B1 (en) | 2003-09-24 | 2006-05-16 | Integrated Device Technology, Ltd. | Delayed-locked loop with fine and coarse control using cascaded phase interpolator and variable delay circuit |
US7046052B1 (en) | 2004-04-30 | 2006-05-16 | Xilinx, Inc. | Phase matched clock divider |
US20060133124A1 (en) * | 1999-12-23 | 2006-06-22 | Nader Gamini | Semiconductor package with a controlled impedance bus and method of forming same |
US7085975B2 (en) | 1998-09-03 | 2006-08-01 | Micron Technology, Inc. | Method and apparatus for generating expect data from a captured bit pattern, and memory device using same |
US7109760B1 (en) | 2004-01-05 | 2006-09-19 | Integrated Device Technology, Inc. | Delay-locked loop (DLL) integrated circuits that support efficient phase locking of clock signals having non-unity duty cycles |
US20060214709A1 (en) * | 2005-03-15 | 2006-09-28 | Aaron Nygren | Circuit arrangement for generating a synchronization signal |
US20060238227A1 (en) * | 2005-04-26 | 2006-10-26 | Samsung Electronics Co., Ltd. | Delay-locked loop circuits and method for generating transmission core clock signals |
US7129763B1 (en) | 2004-11-08 | 2006-10-31 | Western Digital Technologies, Inc. | Adjusting power consumption of digital circuitry by generating frequency error representing error in propagation delay |
US20060248305A1 (en) * | 2005-04-13 | 2006-11-02 | Wayne Fang | Memory device having width-dependent output latency |
US20060279342A1 (en) * | 2005-06-14 | 2006-12-14 | Micron Technology, Inc. | DLL measure initialization circuit for high frequency operation |
US7157951B1 (en) | 2004-04-30 | 2007-01-02 | Xilinx, Inc. | Digital clock manager capacitive trim unit |
US7159092B2 (en) | 2001-06-28 | 2007-01-02 | Micron Technology, Inc. | Method and system for adjusting the timing offset between a clock signal and respective digital signals transmitted along with that clock signal, and memory device and computer system using same |
US20070009073A1 (en) * | 2005-05-31 | 2007-01-11 | Kabushiki Kaisha Toshiba | Data sampling circuit and semiconductor integrated circuit |
US7168027B2 (en) | 2003-06-12 | 2007-01-23 | Micron Technology, Inc. | Dynamic synchronization of data capture on an optical or other high speed communications link |
US20070046346A1 (en) * | 2005-08-30 | 2007-03-01 | Alessandro Minzoni | Clock controller with integrated DLL and DCC |
US7187742B1 (en) | 2000-10-06 | 2007-03-06 | Xilinx, Inc. | Synchronized multi-output digital clock manager |
US7196562B1 (en) | 2003-08-26 | 2007-03-27 | Integrated Device Technology, Inc. | Programmable clock drivers that support CRC error checking of configuration data during program restore operations |
US20070080731A1 (en) * | 2005-10-11 | 2007-04-12 | Kim Jung P | Duty cycle corrector |
US7205805B1 (en) | 2004-11-02 | 2007-04-17 | Western Digital Technologies, Inc. | Adjusting power consumption of digital circuitry relative to critical path circuit having the largest propagation delay error |
US20070086267A1 (en) * | 2005-10-14 | 2007-04-19 | Micron Technology, Inc. | Clock generator having a delay locked loop and duty cycle correction circuit in a parallel configuration |
US20070096784A1 (en) * | 2005-10-28 | 2007-05-03 | Nec Electronics Corporation | Delay locked loop circuit |
US20070103216A1 (en) * | 2005-11-10 | 2007-05-10 | Jonghee Han | Duty cycle corrector |
US20070176659A1 (en) * | 2006-01-27 | 2007-08-02 | Micron Technology, Inc | Duty cycle error calculation circuit for a clock generator having a delay locked loop and duty cycle correction circuit |
US7254075B2 (en) | 2004-09-30 | 2007-08-07 | Rambus Inc. | Integrated circuit memory system having dynamic memory bank count and page size |
US20070194821A1 (en) * | 2006-02-22 | 2007-08-23 | Micron Technology, Inc. | Continuous high-frequency event filter |
WO2007107182A1 (en) * | 2006-03-17 | 2007-09-27 | Telefonaktiebolaget Lm Ericsson (Publ) | Adjusting a digital delay function of a data memory unit |
US7279938B1 (en) | 2004-01-05 | 2007-10-09 | Integrated Device Technology, Inc. | Delay chain integrated circuits having binary-weighted delay chain units with built-in phase comparators therein |
US20070273416A1 (en) * | 2006-05-29 | 2007-11-29 | Patrick Heyne | Signal delay loop and method for locking a signal delay loop |
US20080001643A1 (en) * | 2005-06-30 | 2008-01-03 | Lee Hyun W | Duty cycle correction device |
US7330019B1 (en) | 2006-10-31 | 2008-02-12 | Western Digital Technologies, Inc. | Adjusting on-time for a discontinuous switching voltage regulator |
WO2008032701A1 (en) * | 2006-09-13 | 2008-03-20 | Nec Corporation | Clock adjusting circuit and semiconductor integrated circuit device |
US20080074154A1 (en) * | 2006-08-10 | 2008-03-27 | Jong-Shin Shin | Low-jitter spread-spectrum clock generator |
US20080201597A1 (en) * | 2006-08-24 | 2008-08-21 | Altera Corporation | Write-leveling implementation in programmable logic devices |
US7432750B1 (en) * | 2005-12-07 | 2008-10-07 | Netlogic Microsystems, Inc. | Methods and apparatus for frequency synthesis with feedback interpolation |
US7461286B2 (en) | 2003-10-27 | 2008-12-02 | Micron Technology, Inc. | System and method for using a learning sequence to establish communications on a high-speed nonsynchronous interface in the absence of clock forwarding |
US20080320324A1 (en) * | 2007-06-25 | 2008-12-25 | Analogix Semiconductor, Inc. | Data recovery (CDR) architecture using interpolator and timing loop module |
US7486060B1 (en) | 2006-03-30 | 2009-02-03 | Western Digital Technologies, Inc. | Switching voltage regulator comprising a cycle comparator for dynamic voltage scaling |
US7500075B1 (en) | 2001-04-17 | 2009-03-03 | Rambus Inc. | Mechanism for enabling full data bus utilization without increasing data granularity |
US7532697B1 (en) | 2005-01-27 | 2009-05-12 | Net Logic Microsystems, Inc. | Methods and apparatus for clock and data recovery using a single source |
US7551383B1 (en) | 2006-06-28 | 2009-06-23 | Western Digital Technologies, Inc. | Adjusting voltage delivered to disk drive circuitry based on a selected zone |
US7564283B1 (en) | 1998-06-22 | 2009-07-21 | Xilinx, Inc. | Automatic tap delay calibration for precise digital phase shift |
US20090316514A1 (en) * | 1994-10-06 | 2009-12-24 | Foss Richard C | Delay Locked Loop Implementation in a Synchronous Dynamic Random Access Memory |
US20100007390A1 (en) * | 2008-07-10 | 2010-01-14 | Wen-Chung Yeh | Clock generating circuit, power converting system, and related method with spread spectrum for EMI reduction |
US20100021588A1 (en) * | 2007-09-12 | 2010-01-28 | Pepsico, Inc. | Granulation Method And Additives With Narrow Particle Size Distribution Produced From Granulation Method |
US20100083027A1 (en) * | 2008-09-30 | 2010-04-01 | Mosaid Technologies Incorporated | Serial-connected memory system with output delay adjustment |
US20100083028A1 (en) * | 2008-09-30 | 2010-04-01 | Mosaid Technologies Incorporated | Serial-connected memory system with duty cycle correction |
US20100119024A1 (en) * | 2005-01-21 | 2010-05-13 | Shumarayev Sergey Y | Method and apparatus for multi-mode clock data recovery |
US7733189B1 (en) | 2007-09-14 | 2010-06-08 | Western Digital Technologies, Inc. | Oscillator comprising foldover detection |
US7746134B1 (en) | 2007-04-18 | 2010-06-29 | Altera Corporation | Digitally controlled delay-locked loops |
US20100188910A1 (en) * | 2007-04-19 | 2010-07-29 | Rambus, Inc. | Clock synchronization in a memory system |
US20100296351A1 (en) * | 2009-05-21 | 2010-11-25 | Fujitsu Semiconductor Limited | Timing adjustment circuit, timing adjustment method, and correction value computing method |
US7869553B1 (en) | 2003-01-21 | 2011-01-11 | Altera Corporation | Digital phase locked loop circuitry and methods |
US20110199368A1 (en) * | 2010-02-12 | 2011-08-18 | Au Optronics Corporation | Display with clk phase auto-adjusting mechanism and method of driving same |
US20110228889A1 (en) * | 2010-03-19 | 2011-09-22 | Dean Liu | Repeater Architecture with Single Clock Multiplier Unit |
US20110228860A1 (en) * | 2010-03-19 | 2011-09-22 | Marc Loinaz | Multi-Value Logic Signaling in Multi-Functional Circuits |
US8085020B1 (en) | 2008-06-13 | 2011-12-27 | Western Digital Technologies, Inc. | Switching voltage regulator employing dynamic voltage scaling with hysteretic comparator |
US8102936B2 (en) | 2002-06-21 | 2012-01-24 | Netlogic Microsystems, Inc. | Methods and apparatus for clock and data recovery using transmission lines |
KR101123353B1 (en) * | 2011-09-21 | 2012-03-13 | 홍익대학교 산학협력단 | Delay-locked loop utilizing feedback delay elements |
US20120087452A1 (en) * | 2009-06-30 | 2012-04-12 | Rambus Inc. | Techniques for Adjusting Clock Signals to Compensate for Noise |
US20120182053A1 (en) * | 2011-01-18 | 2012-07-19 | Qualcomm Incorporated | Half cycle delay locked loop |
WO2012167239A2 (en) * | 2011-06-03 | 2012-12-06 | Texas Instruments Incorporated | Apparatus and systems digital phase interpolator with improved linearity |
US8364926B2 (en) | 2006-05-02 | 2013-01-29 | Rambus Inc. | Memory module with reduced access granularity |
US8423814B2 (en) | 2010-03-19 | 2013-04-16 | Netlogic Microsystems, Inc. | Programmable drive strength in memory signaling |
US8493116B2 (en) | 2010-09-15 | 2013-07-23 | Samsung Electronics Co., Ltd. | Clock delay circuit and delay locked loop including the same |
US8494377B1 (en) | 2010-06-30 | 2013-07-23 | Netlogic Microsystems, Inc. | Systems, circuits and methods for conditioning signals for transmission on a physical medium |
US8537949B1 (en) | 2010-06-30 | 2013-09-17 | Netlogic Microsystems, Inc. | Systems, circuits and methods for filtering signals to compensate for channel effects |
US20130271192A1 (en) * | 2002-12-31 | 2013-10-17 | Mosaid Technologies Incorporated | Wide frequency range delay locked loop |
US8595459B2 (en) | 2004-11-29 | 2013-11-26 | Rambus Inc. | Micro-threaded memory |
US8937404B1 (en) | 2010-08-23 | 2015-01-20 | Western Digital Technologies, Inc. | Data storage device comprising dual mode independent/parallel voltage regulators |
CN104734695A (en) * | 2013-12-24 | 2015-06-24 | 澜起科技(上海)有限公司 | Signal generator, electronic system and method for generating signals |
US20150188526A1 (en) * | 2013-12-30 | 2015-07-02 | SK Hynix Inc. | Semiconductor apparatus |
TWI502895B (en) * | 2012-12-06 | 2015-10-01 | Himax Tech Inc | Clock generator |
US9225322B2 (en) | 2013-12-17 | 2015-12-29 | Micron Technology, Inc. | Apparatuses and methods for providing clock signals |
US9268719B2 (en) | 2011-08-05 | 2016-02-23 | Rambus Inc. | Memory signal buffers and modules supporting variable access granularity |
US9912322B2 (en) | 2013-07-03 | 2018-03-06 | Nvidia Corporation | Clock generation circuit that tracks critical path across process, voltage and temperature variation |
US10103719B2 (en) | 2013-07-22 | 2018-10-16 | Nvidia Corporation | Integrated voltage regulator with in-built process, temperature and aging compensation |
US10361690B1 (en) | 2018-06-14 | 2019-07-23 | Sandisk Technologies Llc | Duty cycle and skew correction for output signals generated in source synchronous systems |
US10367493B1 (en) | 2018-06-14 | 2019-07-30 | Sandisk Technologies Llc | Duty cycle and skew correction for output signals generated in source synchronous systems |
US20220209717A1 (en) * | 2020-12-28 | 2022-06-30 | Seiko Epson Corporation | Circuit Device And Oscillator |
CN115361017A (en) * | 2022-08-31 | 2022-11-18 | 集益威半导体(上海)有限公司 | Clock skew calibration circuit based on phase interpolator |
Families Citing this family (140)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5978379A (en) | 1997-01-23 | 1999-11-02 | Gadzoox Networks, Inc. | Fiber channel learning bridge, learning half bridge, and protocol |
US6144712A (en) * | 1997-10-09 | 2000-11-07 | Broadcom Corporation | Variable rate modulator |
US7430171B2 (en) | 1998-11-19 | 2008-09-30 | Broadcom Corporation | Fibre channel arbitrated loop bufferless switch circuitry to increase bandwidth without significant increase in cost |
KR100295056B1 (en) | 1999-01-27 | 2001-07-12 | 윤종용 | Loop &method for delay-locking |
DE19910885C2 (en) * | 1999-03-11 | 2001-02-08 | Siemens Ag | Circuit arrangement for the trouble-free initialization of delay-locked loop circuits with Fast-Lock |
TW483255B (en) * | 1999-11-26 | 2002-04-11 | Fujitsu Ltd | Phase-combining circuit and timing signal generator circuit for carrying out a high-speed signal transmission |
US7035269B2 (en) * | 2000-02-02 | 2006-04-25 | Mcgill University | Method and apparatus for distributed synchronous clocking |
EP1122921B1 (en) | 2000-02-02 | 2005-11-30 | Telefonaktiebolaget LM Ericsson (publ) | Circuit and method for providing a digital data signal with pre-distortion |
US6329859B1 (en) * | 2000-03-23 | 2001-12-11 | Bitblitz Communications, Inc. | N-way circular phase interpolator for generating a signal having arbitrary phase |
JP3495311B2 (en) * | 2000-03-24 | 2004-02-09 | Necエレクトロニクス株式会社 | Clock control circuit |
US6765976B1 (en) * | 2000-03-29 | 2004-07-20 | G-Link Technology | Delay-locked loop for differential clock signals |
JP3467446B2 (en) | 2000-03-30 | 2003-11-17 | Necエレクトロニクス株式会社 | Digital phase control circuit |
KR100366618B1 (en) | 2000-03-31 | 2003-01-09 | 삼성전자 주식회사 | Delay locked loop circuit for correcting duty cycle of clock signal and delay locking method |
US7194037B1 (en) | 2000-05-23 | 2007-03-20 | Marvell International Ltd. | Active replica transformer hybrid |
USRE41831E1 (en) | 2000-05-23 | 2010-10-19 | Marvell International Ltd. | Class B driver |
US7433665B1 (en) | 2000-07-31 | 2008-10-07 | Marvell International Ltd. | Apparatus and method for converting single-ended signals to a differential signal, and transceiver employing same |
US6775529B1 (en) | 2000-07-31 | 2004-08-10 | Marvell International Ltd. | Active resistive summer for a transformer hybrid |
US7113121B1 (en) | 2000-05-23 | 2006-09-26 | Marvell International Ltd. | Communication driver |
US7095348B1 (en) | 2000-05-23 | 2006-08-22 | Marvell International Ltd. | Communication driver |
US7312739B1 (en) * | 2000-05-23 | 2007-12-25 | Marvell International Ltd. | Communication driver |
US7606547B1 (en) | 2000-07-31 | 2009-10-20 | Marvell International Ltd. | Active resistance summer for a transformer hybrid |
NZ528578A (en) * | 2001-03-23 | 2006-06-30 | Advanced Bionutrition | Microbial feeds for aquaculture and agriculture using microbes containing bioactive proteins |
US7242229B1 (en) | 2001-05-06 | 2007-07-10 | Altera Corporation | Phase locked loop (PLL) and delay locked loop (DLL) counter and delay element programming in user mode |
US20020184577A1 (en) * | 2001-05-29 | 2002-12-05 | James Chow | Precision closed loop delay line for wide frequency data recovery |
US6472921B1 (en) | 2001-05-31 | 2002-10-29 | Siemens Aktiengesellschaft | Delivering a fine delay stage for a delay locked loop |
JP2002374312A (en) * | 2001-06-18 | 2002-12-26 | Matsushita Electric Ind Co Ltd | Differential signal delay device, and receiver and communication system using the same |
DE10130122B4 (en) * | 2001-06-22 | 2006-01-19 | Infineon Technologies Ag | Delay locked loop |
US7180352B2 (en) * | 2001-06-28 | 2007-02-20 | Intel Corporation | Clock recovery using clock phase interpolator |
DE10149512B4 (en) * | 2001-10-08 | 2006-08-03 | Infineon Technologies Ag | Method and device for synchronizing data transmission between two circuits |
US6605969B2 (en) * | 2001-10-09 | 2003-08-12 | Micron Technology, Inc. | Method and circuit for adjusting the timing of ouput data based on an operational mode of output drivers |
US20030081709A1 (en) * | 2001-10-30 | 2003-05-01 | Sun Microsystems, Inc. | Single-ended IO with dynamic synchronous deskewing architecture |
DE10214304B4 (en) * | 2002-03-28 | 2004-10-21 | Infineon Technologies Ag | Method and device for generating two signals with a predetermined distance between corresponding signal edges |
US6891415B2 (en) * | 2002-06-11 | 2005-05-10 | Micron Technology, Inc. | Method and apparatus for enabling a timing synchronization circuit |
US7028207B2 (en) * | 2002-08-22 | 2006-04-11 | Micron Technology, Inc. | Measure controlled delay with duty cycle control |
US6950770B2 (en) * | 2002-09-25 | 2005-09-27 | Intel Corporation | Method and apparatus for calibration of a delay element |
WO2004040835A1 (en) * | 2002-11-01 | 2004-05-13 | Fujitsu Limited | Data processing circuit |
KR100870422B1 (en) * | 2002-12-11 | 2008-11-26 | 주식회사 하이닉스반도체 | Semiconductor Memory Device Having Fast Signal Control Circuit |
US7190719B2 (en) * | 2003-01-08 | 2007-03-13 | Sun Microsystems, Inc. | Impedance controlled transmitter with adaptive compensation for chip-to-chip communication |
US7020793B1 (en) * | 2003-01-31 | 2006-03-28 | Lsi Logic Corporation | Circuit for aligning signal with reference signal |
US6677793B1 (en) * | 2003-02-03 | 2004-01-13 | Lsi Logic Corporation | Automatic delay matching circuit for data serializer |
US6954913B2 (en) * | 2003-04-03 | 2005-10-11 | Sun Microsystems Inc. | System and method for in-situ signal delay measurement for a microprocessor |
US7050341B1 (en) | 2003-08-11 | 2006-05-23 | Marvell Semiconductor Israel Ltd. | Diagonal matrix delay |
US7046042B1 (en) | 2003-08-11 | 2006-05-16 | Marvell Semiconductor Israel Ltd. | Phase detector |
US6963232B2 (en) * | 2003-08-11 | 2005-11-08 | Rambus, Inc. | Compensator for leakage through loop filter capacitors in phase-locked loops |
US7072355B2 (en) * | 2003-08-21 | 2006-07-04 | Rambus, Inc. | Periodic interface calibration for high speed communication |
US7307461B2 (en) * | 2003-09-12 | 2007-12-11 | Rambus Inc. | System and method for adaptive duty cycle optimization |
US7271788B2 (en) * | 2003-11-20 | 2007-09-18 | National Semiconductor Corporation | Generating adjustable-delay clock signal for processing color signals |
US7246018B1 (en) | 2003-12-22 | 2007-07-17 | Marvell International Ltd. | Interpolator testing circuit |
US7111185B2 (en) * | 2003-12-23 | 2006-09-19 | Micron Technology, Inc. | Synchronization device with delay line control circuit to control amount of delay added to input signal and tuning elements to receive signal form delay circuit |
US6995622B2 (en) * | 2004-01-09 | 2006-02-07 | Robert Bosh Gmbh | Frequency and/or phase compensated microelectromechanical oscillator |
US8422568B2 (en) | 2004-01-28 | 2013-04-16 | Rambus Inc. | Communication channel calibration for drift conditions |
US7095789B2 (en) | 2004-01-28 | 2006-08-22 | Rambus, Inc. | Communication channel calibration for drift conditions |
US7158536B2 (en) * | 2004-01-28 | 2007-01-02 | Rambus Inc. | Adaptive-allocation of I/O bandwidth using a configurable interconnect topology |
US7400670B2 (en) | 2004-01-28 | 2008-07-15 | Rambus, Inc. | Periodic calibration for communication channels by drift tracking |
DE102004007172B4 (en) * | 2004-02-13 | 2007-10-04 | Texas Instruments Deutschland Gmbh | Phase adjustment circuit for minimum phase step irregularities |
US6961862B2 (en) * | 2004-03-17 | 2005-11-01 | Rambus, Inc. | Drift tracking feedback for communication channels |
DE102004025984A1 (en) * | 2004-05-26 | 2005-12-15 | Sms Demag Ag | Method and device for assembly and functional testing of rolling fittings in rolling mills or in rolling mills, such as tandem rolling mills |
US7024324B2 (en) * | 2004-05-27 | 2006-04-04 | Intel Corporation | Delay element calibration |
US7978754B2 (en) * | 2004-05-28 | 2011-07-12 | Rambus Inc. | Communication channel calibration with nonvolatile parameter store for recovery |
US7516029B2 (en) | 2004-06-09 | 2009-04-07 | Rambus, Inc. | Communication channel calibration using feedback |
US7535958B2 (en) * | 2004-06-14 | 2009-05-19 | Rambus, Inc. | Hybrid wired and wireless chip-to-chip communications |
JP4271623B2 (en) * | 2004-06-17 | 2009-06-03 | 富士通株式会社 | Clock adjustment apparatus and method |
KR100645461B1 (en) * | 2004-06-30 | 2006-11-15 | 주식회사 하이닉스반도체 | Digital Delay Locked Loop with Duty Cycle Correction and Its Control Method |
US7138845B2 (en) * | 2004-07-22 | 2006-11-21 | Micron Technology, Inc. | Method and apparatus to set a tuning range for an analog delay |
DE102004037160B3 (en) * | 2004-07-30 | 2006-03-16 | Infineon Technologies Ag | A method and apparatus for generating an output clock signal having an adjustable phase position from a plurality of input clock signals |
US7489739B2 (en) * | 2004-09-17 | 2009-02-10 | Rambus, Inc. | Method and apparatus for data recovery |
US20060062340A1 (en) * | 2004-09-20 | 2006-03-23 | Intersil Americas, Inc. | Phase adjuster |
US7088191B2 (en) * | 2004-09-29 | 2006-08-08 | Intel Corporation | Delay interpolation in a ring oscillator delay stage |
US7116147B2 (en) * | 2004-10-18 | 2006-10-03 | Freescale Semiconductor, Inc. | Circuit and method for interpolative delay |
US7233173B1 (en) * | 2004-10-26 | 2007-06-19 | National Semiconductor Corporation | System and method for providing a low jitter data receiver for serial links with a regulated single ended phase interpolator |
US7180378B2 (en) * | 2004-11-04 | 2007-02-20 | Gennum Corporation | Tunable ring oscillator |
US7848473B2 (en) * | 2004-12-22 | 2010-12-07 | Agere Systems Inc. | Phase interpolator having a phase jump |
KR100695525B1 (en) * | 2005-01-31 | 2007-03-15 | 주식회사 하이닉스반도체 | Delay-Locked Loops in Semiconductor Memory Devices |
US7119593B2 (en) * | 2005-02-08 | 2006-10-10 | International Business Machines Corporation | Delayed signal generation circuits and methods |
KR100713082B1 (en) * | 2005-03-02 | 2007-05-02 | 주식회사 하이닉스반도체 | Delay-Locked Loop with Adjustable Duty Ratio for Clock |
JP2006262197A (en) * | 2005-03-17 | 2006-09-28 | Fujitsu Ltd | Phase control circuit |
US7561653B2 (en) * | 2005-07-01 | 2009-07-14 | Agere Systems Inc. | Method and apparatus for automatic clock alignment |
US7236028B1 (en) | 2005-07-22 | 2007-06-26 | National Semiconductor Corporation | Adaptive frequency variable delay-locked loop |
US7312662B1 (en) | 2005-08-09 | 2007-12-25 | Marvell International Ltd. | Cascode gain boosting system and method for a transmitter |
US7577892B1 (en) | 2005-08-25 | 2009-08-18 | Marvell International Ltd | High speed iterative decoder |
US7330060B2 (en) * | 2005-09-07 | 2008-02-12 | Agere Systems Inc. | Method and apparatus for sigma-delta delay control in a delay-locked-loop |
US7616036B1 (en) | 2005-09-12 | 2009-11-10 | Virage Logic Corporation | Programmable strobe and clock generator |
US7519888B2 (en) | 2005-09-12 | 2009-04-14 | Virage Logic Corporation | Input-output device testing |
US7425858B1 (en) | 2005-09-16 | 2008-09-16 | Advanced Micro Devices, Inc. | Delay line periodically operable in a closed loop |
US7487378B2 (en) * | 2005-09-19 | 2009-02-03 | Ati Technologies, Inc. | Asymmetrical IO method and system |
KR100834400B1 (en) * | 2005-09-28 | 2008-06-04 | 주식회사 하이닉스반도체 | DLL for increasing frequency of DRAM and output driver of the DLL |
US7285996B2 (en) * | 2005-09-30 | 2007-10-23 | Slt Logic, Llc | Delay-locked loop |
KR100759786B1 (en) * | 2006-02-01 | 2007-09-20 | 삼성전자주식회사 | Delay Synchronous Loop Circuit and Delay Synchronous Loop Control Method of Semiconductor Device |
US8095090B2 (en) * | 2006-02-03 | 2012-01-10 | Quantance, Inc. | RF power amplifier controller circuit |
US7917106B2 (en) * | 2006-02-03 | 2011-03-29 | Quantance, Inc. | RF power amplifier controller circuit including calibrated phase control loop |
US8032097B2 (en) * | 2006-02-03 | 2011-10-04 | Quantance, Inc. | Amplitude error de-glitching circuit and method of operating |
US7933570B2 (en) * | 2006-02-03 | 2011-04-26 | Quantance, Inc. | Power amplifier controller circuit |
CN101401261B (en) * | 2006-02-03 | 2012-11-21 | 匡坦斯公司 | Power amplifier controller circuit |
US7761065B2 (en) * | 2006-02-03 | 2010-07-20 | Quantance, Inc. | RF power amplifier controller circuit with compensation for output impedance mismatch |
US7869542B2 (en) * | 2006-02-03 | 2011-01-11 | Quantance, Inc. | Phase error de-glitching circuit and method of operating |
KR100757921B1 (en) * | 2006-03-07 | 2007-09-11 | 주식회사 하이닉스반도체 | DL circuit and clock delay fixing method of semiconductor memory device |
US8570881B2 (en) | 2006-03-28 | 2013-10-29 | Advanced Micro Devices, Inc. | Transmitter voltage and receiver time margining |
WO2007126820A1 (en) * | 2006-04-24 | 2007-11-08 | Advanced Micro Devices, Inc. | Phase recovery from forward clock |
KR100805698B1 (en) * | 2006-08-31 | 2008-02-21 | 주식회사 하이닉스반도체 | Semiconductor memory device |
US7653167B2 (en) * | 2006-09-07 | 2010-01-26 | Intel Corporation | Phase deglitch circuit for phase interpolator for high-speed serial I/O applications |
KR100771887B1 (en) * | 2006-10-17 | 2007-11-01 | 삼성전자주식회사 | Duty detector and duty detection / correction circuit having the same |
JP4774005B2 (en) * | 2007-04-11 | 2011-09-14 | ザインエレクトロニクス株式会社 | Receiver |
US7817761B2 (en) | 2007-06-01 | 2010-10-19 | Advanced Micro Devices, Inc. | Test techniques for a delay-locked loop receiver interface |
DE102007027069B3 (en) * | 2007-06-12 | 2008-10-23 | Texas Instruments Deutschland Gmbh | Integrated electronic device for digital signal generation |
US7728636B2 (en) * | 2007-08-14 | 2010-06-01 | Qimonda Ag | Clock signal synchronizing device with inherent duty-cycle correction capability |
US7885365B2 (en) * | 2007-08-31 | 2011-02-08 | International Business Machines Corporation | Low-power, low-area high-speed receiver architecture |
US8253454B2 (en) * | 2007-12-21 | 2012-08-28 | Realtek Semiconductor Corp. | Phase lock loop with phase interpolation by reference clock and method for the same |
US7737742B2 (en) | 2008-02-14 | 2010-06-15 | Qimonda Ag | Delay locked loop |
US8036614B2 (en) * | 2008-11-13 | 2011-10-11 | Seiko Epson Corporation | Replica DLL for phase resetting |
US7999589B2 (en) | 2009-09-03 | 2011-08-16 | Micron Technology, Inc. | Circuits and methods for clock signal duty-cycle correction |
KR101145316B1 (en) * | 2009-12-28 | 2012-05-14 | 에스케이하이닉스 주식회사 | Semiconductor device and operating method thereof |
US9559706B1 (en) * | 2010-07-06 | 2017-01-31 | Altera Corporation | Techniques for phase shifting periodic signals |
JP5893958B2 (en) * | 2011-03-31 | 2016-03-23 | ローム株式会社 | Semiconductor device and electronic device |
KR20130002671A (en) * | 2011-06-29 | 2013-01-08 | 에스케이하이닉스 주식회사 | Semiconductor device |
US8909065B2 (en) * | 2011-07-15 | 2014-12-09 | Intel Mobile Communications GmbH | Adjustable delayer, method for delaying an input signal and polar transmitter |
JPWO2013065208A1 (en) * | 2011-11-04 | 2015-04-02 | パナソニックIpマネジメント株式会社 | Timing recovery circuit and receiver circuit having the same |
DE112011106014T5 (en) * | 2011-12-22 | 2014-09-11 | Intel Corp. | Small jitter and low latency low power clocking with common reference clock signals for on-package I / O interfaces |
US9413389B2 (en) * | 2012-01-20 | 2016-08-09 | Fujitsu Limited | Automatic synchronization of a transmitter |
US8754678B1 (en) * | 2013-03-15 | 2014-06-17 | Analog Devices, Inc. | Apparatus and methods for invertible sine-shaping for phase interpolation |
US9335372B2 (en) * | 2013-06-21 | 2016-05-10 | Micron Technology, Inc. | Apparatus and methods for delay line testing |
EP2902866B1 (en) * | 2014-02-04 | 2018-03-07 | Hittite Microwave LLC | System ready in a clock distribution chip |
TWI547950B (en) * | 2014-04-03 | 2016-09-01 | 旺宏電子股份有限公司 | Devices and operation methods for configuring data strobe signal in memory device |
TWI489482B (en) * | 2014-04-25 | 2015-06-21 | 群聯電子股份有限公司 | Sampling circuit module, memory control circuit unit, and method for sampling data |
DE102014106336B4 (en) * | 2014-05-07 | 2019-08-08 | Infineon Technologies Ag | phase interpolator |
KR102283255B1 (en) * | 2014-10-10 | 2021-07-28 | 삼성전자주식회사 | Semiconductor device |
TWI537965B (en) * | 2014-11-07 | 2016-06-11 | Phison Electronics Corp | Sampling circuit module, memory control circuit unit, and data sampling method |
CN105743463B (en) * | 2016-03-16 | 2019-03-01 | 珠海全志科技股份有限公司 | Clock duty cycle calibration and frequency multiplier circuit |
CN108270441B (en) * | 2017-01-04 | 2021-12-28 | 京东方科技集团股份有限公司 | Frequency tunable frequency source and related systems, methods, and electronic devices |
KR102469133B1 (en) * | 2018-03-07 | 2022-11-22 | 에스케이하이닉스 주식회사 | Delay circuit |
JP7174271B2 (en) * | 2018-07-10 | 2022-11-17 | 株式会社ソシオネクスト | Phase locked loop, transmitter/receiver circuit and integrated circuit |
CN112118063B (en) | 2019-06-21 | 2022-05-24 | 华为技术有限公司 | Clock synchronization device, optical transmitter, optical receiver and method |
TWI693796B (en) * | 2019-11-08 | 2020-05-11 | 群聯電子股份有限公司 | Signal generation circuit, memory storage device and signal generation method |
US11177815B2 (en) | 2020-03-13 | 2021-11-16 | Analog Devices International Unlimited Company | Timing alignment systems with gap detection and compensation |
KR20210126821A (en) * | 2020-04-10 | 2021-10-21 | 삼성전자주식회사 | Semiconductor device |
KR20210140875A (en) | 2020-05-14 | 2021-11-23 | 삼성전자주식회사 | Multi-phase clock generator, memory device having the same, and method for generating multi-phase clock thereof |
KR20220032732A (en) * | 2020-09-08 | 2022-03-15 | 에스케이하이닉스 주식회사 | Semiconductor apparatus and data processing system including the semiconductor apparatus |
US11831323B2 (en) * | 2021-04-13 | 2023-11-28 | Cadence Design Systems, Inc. | Methods and circuits for reducing clock jitter |
US12255655B2 (en) | 2021-06-10 | 2025-03-18 | Microsoft Technology Licensing, Llc | Clock monitor |
US12155391B2 (en) | 2021-12-09 | 2024-11-26 | Rambus, Inc. | Clock buffer |
US12038462B2 (en) * | 2022-08-05 | 2024-07-16 | Nanya Technology Corporation | Electronic device and phase detector |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4338569A (en) * | 1980-03-11 | 1982-07-06 | Control Data Corporation | Delay lock loop |
US4884041A (en) * | 1987-06-05 | 1989-11-28 | Hewlett-Packard Company | Fully integrated high-speed voltage controlled ring oscillator |
US5180994A (en) * | 1991-02-14 | 1993-01-19 | The Regents Of The University Of California | Differential-logic ring oscillator with quadrature outputs |
US5399995A (en) * | 1994-04-08 | 1995-03-21 | Raytheon Company | CMOS circuit providing 90 degree phase delay |
US5451894A (en) * | 1993-02-24 | 1995-09-19 | Advanced Micro Devices, Inc. | Digital full range rotating phase shifter |
US5485490A (en) * | 1992-05-28 | 1996-01-16 | Rambus, Inc. | Method and circuitry for clock synchronization |
US5513327A (en) * | 1990-04-18 | 1996-04-30 | Rambus, Inc. | Integrated circuit I/O using a high performance bus interface |
US5532633A (en) * | 1993-12-03 | 1996-07-02 | Nec Corporaton | Clock generating circuit generating a plurality of non-overlapping clock signals |
US5534805A (en) * | 1990-12-26 | 1996-07-09 | Mitsubishi Denki Kabushiki Kaisha | Synchronized clock generating apparatus |
US5550783A (en) * | 1995-04-19 | 1996-08-27 | Alliance Semiconductor Corporation | Phase shift correction circuit for monolithic random access memory |
US5570054A (en) * | 1994-09-26 | 1996-10-29 | Hitachi Micro Systems, Inc. | Method and apparatus for adaptive clock deskewing |
US5614885A (en) * | 1988-12-05 | 1997-03-25 | Prince Corporation | Electrical control system for vehicle options |
US5712883A (en) * | 1996-01-03 | 1998-01-27 | Credence Systems Corporation | Clock signal distribution system |
US5712884A (en) * | 1995-03-31 | 1998-01-27 | Samsung Electronics Co., Ltd. | Data receiving method and circuit of digital communication system |
US5764092A (en) * | 1995-05-26 | 1998-06-09 | Nec | Delay clock generator for generating a plurality of delay clocks delaying the basic clock |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4447675A (en) * | 1982-10-29 | 1984-05-08 | Bell Telephone Laboratories, Incorporated | Ring-trip detector |
AU2450384A (en) | 1983-02-17 | 1984-08-23 | International Standard Electric Corp. | Adjustable delay circuit |
EP0116669B1 (en) * | 1983-02-17 | 1986-12-10 | Deutsche ITT Industries GmbH | Delay circuit with an integrated insulated layer field-effect transistor for digital signals |
US4833695A (en) | 1987-09-08 | 1989-05-23 | Tektronix, Inc. | Apparatus for skew compensating signals |
US5087829A (en) * | 1988-12-07 | 1992-02-11 | Hitachi, Ltd. | High speed clock distribution system |
US5459823A (en) * | 1990-07-05 | 1995-10-17 | Canon Kabushiki Kaisha | Graphics engine for true colour 2D graphics |
DE69130043T2 (en) * | 1990-09-18 | 1999-04-15 | Fujitsu Ltd., Kawasaki, Kanagawa | Electronic arrangement with a reference delay generator |
US5126691A (en) * | 1991-06-17 | 1992-06-30 | Motorola, Inc. | Variable clock delay circuit |
US5420887A (en) * | 1992-03-26 | 1995-05-30 | Pacific Communication Sciences | Programmable digital modulator and methods of modulating digital data |
US5412697A (en) * | 1993-01-14 | 1995-05-02 | Apple Computer, Inc. | Delay line separator for data bus |
FR2710800B1 (en) * | 1993-09-27 | 1995-12-15 | Sgs Thomson Microelectronics | Digital delay line. |
KR100393317B1 (en) * | 1994-02-15 | 2003-10-23 | 람버스 인코포레이티드 | Delayed synchronization loop |
US5714904A (en) * | 1994-06-06 | 1998-02-03 | Sun Microsystems, Inc. | High speed serial link for fully duplexed data communication |
DE69502724T2 (en) * | 1994-07-21 | 1999-01-21 | Mitel Corp., Kanata, Ontario | DIGITAL PHASE CONTROL CIRCUIT |
JP3292864B2 (en) * | 1995-02-07 | 2002-06-17 | 株式会社日立製作所 | Data processing device |
US5673295A (en) * | 1995-04-13 | 1997-09-30 | Synopsis, Incorporated | Method and apparatus for generating and synchronizing a plurality of digital signals |
US5687202A (en) * | 1995-04-24 | 1997-11-11 | Cyrix Corporation | Programmable phase shift clock generator |
US5727037A (en) * | 1996-01-26 | 1998-03-10 | Silicon Graphics, Inc. | System and method to reduce phase offset and phase jitter in phase-locked and delay-locked loops using self-biased circuits |
KR0157952B1 (en) * | 1996-01-27 | 1999-03-20 | 문정환 | Phase delay correction device |
US5757218A (en) * | 1996-03-12 | 1998-05-26 | International Business Machines Corporation | Clock signal duty cycle correction circuit and method |
US5661419A (en) * | 1996-05-23 | 1997-08-26 | Sun Microsystems, Inc. | Dynamic phase-frequency detector circuit |
US5715884A (en) * | 1997-01-06 | 1998-02-10 | Cotten; Fred | Window covering cord safety assembly |
US5789958A (en) * | 1997-01-13 | 1998-08-04 | Credence Systems Corporation | Apparatus for controlling timing of signal pulses |
US6125157A (en) | 1997-02-06 | 2000-09-26 | Rambus, Inc. | Delay-locked loop circuitry for clock delay adjustment |
US6282253B1 (en) * | 1997-12-16 | 2001-08-28 | Texas Instruments Incorporated | Post-filtered recirculating delay-locked loop and method for producing a clock signal |
-
1997
- 1997-02-06 US US08/795,657 patent/US6125157A/en not_active Expired - Lifetime
-
1998
- 1998-02-04 EP EP05025847A patent/EP1633049B1/en not_active Expired - Lifetime
- 1998-02-04 EP EP98906112A patent/EP1031203A4/en not_active Withdrawn
- 1998-02-04 DE DE69840350T patent/DE69840350D1/en not_active Expired - Lifetime
- 1998-02-04 WO PCT/US1998/002053 patent/WO1998037656A2/en not_active Application Discontinuation
- 1998-02-04 DE DE69840242T patent/DE69840242D1/en not_active Expired - Lifetime
- 1998-02-04 DE DE29825196U patent/DE29825196U1/en not_active Expired - Lifetime
- 1998-02-04 EP EP05018741A patent/EP1601130B1/en not_active Expired - Lifetime
-
2000
- 2000-03-13 US US09/524,402 patent/US6539072B1/en not_active Expired - Lifetime
-
2003
- 2003-02-14 US US10/366,865 patent/US7039147B2/en not_active Expired - Fee Related
-
2006
- 2006-04-18 US US11/406,557 patent/US7308065B2/en not_active Expired - Fee Related
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4338569A (en) * | 1980-03-11 | 1982-07-06 | Control Data Corporation | Delay lock loop |
US4884041A (en) * | 1987-06-05 | 1989-11-28 | Hewlett-Packard Company | Fully integrated high-speed voltage controlled ring oscillator |
US5614885A (en) * | 1988-12-05 | 1997-03-25 | Prince Corporation | Electrical control system for vehicle options |
US5513327A (en) * | 1990-04-18 | 1996-04-30 | Rambus, Inc. | Integrated circuit I/O using a high performance bus interface |
US5534805A (en) * | 1990-12-26 | 1996-07-09 | Mitsubishi Denki Kabushiki Kaisha | Synchronized clock generating apparatus |
US5180994A (en) * | 1991-02-14 | 1993-01-19 | The Regents Of The University Of California | Differential-logic ring oscillator with quadrature outputs |
US5485490A (en) * | 1992-05-28 | 1996-01-16 | Rambus, Inc. | Method and circuitry for clock synchronization |
US5451894A (en) * | 1993-02-24 | 1995-09-19 | Advanced Micro Devices, Inc. | Digital full range rotating phase shifter |
US5532633A (en) * | 1993-12-03 | 1996-07-02 | Nec Corporaton | Clock generating circuit generating a plurality of non-overlapping clock signals |
US5399995A (en) * | 1994-04-08 | 1995-03-21 | Raytheon Company | CMOS circuit providing 90 degree phase delay |
US5570054A (en) * | 1994-09-26 | 1996-10-29 | Hitachi Micro Systems, Inc. | Method and apparatus for adaptive clock deskewing |
US5712884A (en) * | 1995-03-31 | 1998-01-27 | Samsung Electronics Co., Ltd. | Data receiving method and circuit of digital communication system |
US5550783A (en) * | 1995-04-19 | 1996-08-27 | Alliance Semiconductor Corporation | Phase shift correction circuit for monolithic random access memory |
US5764092A (en) * | 1995-05-26 | 1998-06-09 | Nec | Delay clock generator for generating a plurality of delay clocks delaying the basic clock |
US5712883A (en) * | 1996-01-03 | 1998-01-27 | Credence Systems Corporation | Clock signal distribution system |
Non-Patent Citations (4)
Title |
---|
"A 2.5 V CMOS Delay-Locked Loop for an 18 Mbit, 500 Megabyte/s DRAM", Thomas H. Lee et al., IEEE Journal of Solid-State Circuit, vol. 29, No. 12, Dec. 1994. |
"A 250-622 MHz Deskew and Jitter-Suppressed Clock Buffer Using Two-Loop Architecture", Satoru Tanoi et al., IEEE Journal of Solid-State Circuits, vol. 31, No. 4, Apr. 1996. |
A 2.5 V CMOS Delay Locked Loop for an 18 Mbit, 500 Megabyte/s DRAM , Thomas H. Lee et al., IEEE Journal of Solid State Circuit, vol. 29, No. 12, Dec. 1994. * |
A 250 622 MHz Deskew and Jitter Suppressed Clock Buffer Using Two Loop Architecture , Satoru Tanoi et al., IEEE Journal of Solid State Circuits, vol. 31, No. 4, Apr. 1996. * |
Cited By (386)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8369182B2 (en) | 1994-10-06 | 2013-02-05 | Mosaid Technologies Incorporated | Delay locked loop implementation in a synchronous dynamic random access memory |
US8638638B2 (en) | 1994-10-06 | 2014-01-28 | Mosaid Technologies Incorporated | Delay locked loop implementation in a synchronous dynamic random access memory |
US20090316514A1 (en) * | 1994-10-06 | 2009-12-24 | Foss Richard C | Delay Locked Loop Implementation in a Synchronous Dynamic Random Access Memory |
US6424184B1 (en) * | 1996-09-25 | 2002-07-23 | Matsushita Electric Industrial Co., Ltd. | Frequency-voltage conversion circuit, delay amount judgement circuit, system having frequency-voltage conversion circuit, method of adjusting input/output characteristics of frequency-voltage conversion circuit, and apparatus for automatically adjusting input |
US20060188051A1 (en) * | 1997-02-06 | 2006-08-24 | Donnelly Kevin S | Delay locked loop circuitry for clock delay adjustment |
US7039147B2 (en) | 1997-02-06 | 2006-05-02 | Rambus Inc. | Delay locked loop circuitry for clock delay adjustment |
US20040223571A1 (en) * | 1997-02-06 | 2004-11-11 | Rambus Inc. | Delay locked loop circuitry for clock delay adjustment |
US7308065B2 (en) | 1997-02-06 | 2007-12-11 | Rambus Inc. | Delay locked loop circuitry for clock delay adjustment |
US7889593B2 (en) | 1997-06-20 | 2011-02-15 | Round Rock Research, Llc | Method and apparatus for generating a sequence of clock signals |
US8565008B2 (en) | 1997-06-20 | 2013-10-22 | Round Rock Research, Llc | Method and apparatus for generating a sequence of clock signals |
US7415404B2 (en) * | 1997-06-20 | 2008-08-19 | Micron Technology, Inc. | Method and apparatus for generating a sequence of clock signals |
US6954097B2 (en) * | 1997-06-20 | 2005-10-11 | Micron Technology, Inc. | Method and apparatus for generating a sequence of clock signals |
US6549047B2 (en) | 1997-07-29 | 2003-04-15 | Fujitsu Limited | Variable delay circuit and semiconductor integrated circuit device |
US6304117B1 (en) * | 1997-07-29 | 2001-10-16 | Fujitsu Limited | Variable delay circuit and semiconductor integrated circuit device |
US7010014B1 (en) * | 1998-06-22 | 2006-03-07 | Xilinx, Inc. | Digital spread spectrum circuitry |
US7564283B1 (en) | 1998-06-22 | 2009-07-21 | Xilinx, Inc. | Automatic tap delay calibration for precise digital phase shift |
US6775342B1 (en) | 1998-06-22 | 2004-08-10 | Xilinx, Inc. | Digital phase shifter |
US7373575B2 (en) | 1998-09-03 | 2008-05-13 | Micron Technology, Inc. | Method and apparatus for generating expect data from a captured bit pattern, and memory device using same |
US7085975B2 (en) | 1998-09-03 | 2006-08-01 | Micron Technology, Inc. | Method and apparatus for generating expect data from a captured bit pattern, and memory device using same |
US7657813B2 (en) | 1998-09-03 | 2010-02-02 | Micron Technology, Inc. | Method and apparatus for generating expect data from a captured bit pattern, and memory device using same |
US7954031B2 (en) | 1998-09-03 | 2011-05-31 | Round Rock Research, Llc | Method and apparatus for generating expect data from a captured bit pattern, and memory device using same |
US6445234B1 (en) * | 1998-12-30 | 2002-09-03 | Hyundai Electronics Industries Co., Ltd. | Apparatus and method for accelerating initial lock time of delayed locked loop |
US6342797B1 (en) * | 1998-12-30 | 2002-01-29 | Hyundai Electronics Industries Co., Ltd. | Delayed locked loop clock generator using delay-pulse-delay conversion |
US7602876B2 (en) | 1999-03-01 | 2009-10-13 | Micron Technology, Inc. | Method and apparatus for generating a phase dependent control signal |
US20020163986A1 (en) * | 1999-03-01 | 2002-11-07 | Harrison Ronnie M. | Method and apparatus for generating a phase dependent control signal |
US7016451B2 (en) | 1999-03-01 | 2006-03-21 | Micron Technology, Inc. | Method and apparatus for generating a phase dependent control signal |
US8433023B2 (en) | 1999-03-01 | 2013-04-30 | Round Rock Research, Llc | Method and apparatus for generating a phase dependent control signal |
US7418071B2 (en) | 1999-03-01 | 2008-08-26 | Micron Technology, Inc. | Method and apparatus for generating a phase dependent control signal |
US8107580B2 (en) | 1999-03-01 | 2012-01-31 | Round Rock Research, Llc | Method and apparatus for generating a phase dependent control signal |
US6931086B2 (en) | 1999-03-01 | 2005-08-16 | Micron Technology, Inc. | Method and apparatus for generating a phase dependent control signal |
US6970313B1 (en) * | 1999-03-31 | 2005-11-29 | Matsushita Electric Industrial Co., Ltd. | Write compensation circuit and signal interpolation circuit of recording device |
US20050270677A1 (en) * | 1999-03-31 | 2005-12-08 | Matsushita Electric Industrial Co., Ltd. | Write compensation circuit and signal interpolation circuit of recording device |
US7523154B2 (en) | 1999-03-31 | 2009-04-21 | Panasonic Corporation | Write compensation circuit and signal interpolation circuit of recording device |
US6434706B1 (en) * | 1999-05-24 | 2002-08-13 | Koninklijke Philips Electronics N.V. | Clock system for multiple component system including module clocks for safety margin of data transfers among processing modules |
US20060133124A1 (en) * | 1999-12-23 | 2006-06-22 | Nader Gamini | Semiconductor package with a controlled impedance bus and method of forming same |
US7626248B2 (en) | 1999-12-23 | 2009-12-01 | Rambus Inc. | Semiconductor package with a controlled impedance bus |
US20100072605A1 (en) * | 1999-12-23 | 2010-03-25 | Nader Gamini | Semiconductor Package With a Controlled Impedance Bus and Method of Forming Same |
US8076759B2 (en) | 1999-12-23 | 2011-12-13 | Rambus Inc. | Semiconductor package with a controlled impedance bus and method of forming same |
US6392466B1 (en) * | 1999-12-30 | 2002-05-21 | Intel Corporation | Apparatus, method and system for a controllable pulse clock delay arrangement to control functional race margins in a logic data path |
US6400197B2 (en) * | 2000-01-26 | 2002-06-04 | Via Technologies, Inc. | Delay device having a delay lock loop and method of calibration thereof |
US20050220235A1 (en) * | 2000-02-07 | 2005-10-06 | Stark Donald C | System and method for aligning internal transmit and receive clocks |
US6795514B2 (en) * | 2000-02-28 | 2004-09-21 | Zarlink Semiconductor Inc. | Integrated data clock extractor |
US20010018751A1 (en) * | 2000-02-28 | 2001-08-30 | Gresham Paul Alan | Integrated data clock extractor |
US6369652B1 (en) | 2000-05-15 | 2002-04-09 | Rambus Inc. | Differential amplifiers with current and resistance compensation elements for balanced output |
US6441662B2 (en) * | 2000-05-30 | 2002-08-27 | Mitsubishi Denki Kabushiki Kaisha | DLL circuit that can prevent erroneous operation |
US6388482B1 (en) * | 2000-06-21 | 2002-05-14 | Infineon Technologies North America Corp. | DLL lock scheme with multiple phase detection |
US6452431B1 (en) * | 2000-08-28 | 2002-09-17 | Micron Technology, Inc. | Scheme for delay locked loop reset protection |
US20020070752A1 (en) * | 2000-08-30 | 2002-06-13 | Harrison Ronnie M. | Method and system for controlling the duty cycle of a clock signal |
US6781419B2 (en) | 2000-08-30 | 2004-08-24 | Micron Technology, Inc. | Method and system for controlling the duty cycle of a clock signal |
US6744281B2 (en) | 2000-08-30 | 2004-06-01 | Micron Technology, Inc. | Method and system for controlling the duty cycle of a clock signal |
US6530006B1 (en) | 2000-09-18 | 2003-03-04 | Intel Corporation | System and method for providing reliable transmission in a buffered memory system |
US6794919B1 (en) | 2000-09-29 | 2004-09-21 | Intel Corporation | Devices and methods for automatically producing a clock signal that follows the master clock signal |
US7187742B1 (en) | 2000-10-06 | 2007-03-06 | Xilinx, Inc. | Synchronized multi-output digital clock manager |
WO2002031980A2 (en) * | 2000-10-13 | 2002-04-18 | Silicon Communication Lab, Inc. | Cyclic phase signal generation from a single clock source using current phase interpolation |
WO2002031980A3 (en) * | 2000-10-13 | 2003-11-06 | Silicon Comm Lab Inc | Cyclic phase signal generation from a single clock source using current phase interpolation |
US20040012429A1 (en) * | 2000-12-05 | 2004-01-22 | Mikael Lindberg | Device and method in a semiconductor circuit |
US6900683B2 (en) * | 2000-12-05 | 2005-05-31 | Telefonaktiebolaget Lm Ericsson (Publ) | Apparatus and method for generating a predetermined time delay in a semiconductor circuit |
US6727738B2 (en) * | 2000-12-19 | 2004-04-27 | Renesas Technology Corp. | Configuration for generating a clock including a delay circuit and method thereof |
US6501313B2 (en) * | 2000-12-27 | 2002-12-31 | International Business Machines Corporation | Dynamic duty cycle adjuster |
US6518811B1 (en) | 2000-12-29 | 2003-02-11 | Cisco Technology, Inc. | Software programmable delay circuit |
US6549046B1 (en) * | 2000-12-29 | 2003-04-15 | Cisco Technology, Inc. | Method and apparatus for phase aligning two clock signals utilizing a programmable phase adjustment circuit |
US20020154723A1 (en) * | 2001-01-11 | 2002-10-24 | Nec Corporation | Oversampling clock recovery having a high follow-up character using a few clock signals |
US7010074B2 (en) * | 2001-01-11 | 2006-03-07 | Nec Electronics Corporation | Oversampling clock recovery having a high follow-up character using a few clock signals |
US6456130B1 (en) * | 2001-01-11 | 2002-09-24 | Infineon Technologies Ag | Delay lock loop and update method with limited drift and improved power savings |
US6665219B2 (en) * | 2001-02-12 | 2003-12-16 | Micron Technology, Inc. | Method of reducing standby current during power down mode |
US20040042282A1 (en) * | 2001-02-12 | 2004-03-04 | Wen Li | Method of reducing standby current during power down mode |
US6836437B2 (en) | 2001-02-12 | 2004-12-28 | Micron Technology, Inc. | Method of reducing standby current during power down mode |
US9257151B2 (en) | 2001-02-28 | 2016-02-09 | Rambus Inc. | Printed-circuit board supporting memory systems with multiple data-bus configurations |
US8769234B2 (en) | 2001-02-28 | 2014-07-01 | Rambus Inc. | Memory modules and devices supporting configurable data widths |
US9824036B2 (en) | 2001-02-28 | 2017-11-21 | Rambus Inc. | Memory systems with multiple modules supporting simultaneous access responsive to common memory commands |
US8412906B2 (en) | 2001-02-28 | 2013-04-02 | Rambus Inc. | Memory apparatus supporting multiple width configurations |
US6889304B2 (en) | 2001-02-28 | 2005-05-03 | Rambus Inc. | Memory device supporting a dynamically configurable core organization |
EP1246368A3 (en) * | 2001-03-27 | 2004-07-14 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device |
EP1246368A2 (en) * | 2001-03-27 | 2002-10-02 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device |
US20020140472A1 (en) * | 2001-03-27 | 2002-10-03 | Hiroshi Sonobe | Semiconductor device |
US6819153B2 (en) | 2001-03-27 | 2004-11-16 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device for clock signals synchronization accuracy |
US7500075B1 (en) | 2001-04-17 | 2009-03-03 | Rambus Inc. | Mechanism for enabling full data bus utilization without increasing data granularity |
US6373301B1 (en) | 2001-04-18 | 2002-04-16 | Silicon Integrated Systems Corporation | Fast-locking dual rail digital delayed locked loop |
WO2002087086A1 (en) * | 2001-04-19 | 2002-10-31 | Micron Technology, Inc. | Clock generator using master and slave dlls |
US20050083099A1 (en) * | 2001-04-19 | 2005-04-21 | Micron Technology, Inc. | Capture clock generator using master and slave delay locked loops |
US6839860B2 (en) | 2001-04-19 | 2005-01-04 | Mircon Technology, Inc. | Capture clock generator using master and slave delay locked loops |
US6975695B1 (en) * | 2001-04-30 | 2005-12-13 | Cypress Semiconductor Corp. | Circuit for correction of differential signal path delays in a PLL |
US20110102036A1 (en) * | 2001-05-18 | 2011-05-05 | Round Rock Research, Llc | Phase splitter using digital delay locked loops |
US7873131B2 (en) * | 2001-05-18 | 2011-01-18 | Round Rock Research, Llc | Phase splitter using digital delay locked loops |
US20050286672A1 (en) * | 2001-05-18 | 2005-12-29 | Micron Technology, Inc. | Phase splitter using digital delay locked loops |
US8218708B2 (en) * | 2001-05-18 | 2012-07-10 | Round Rock Research, Llc | Phase splitter using digital delay locked loops |
US6583655B2 (en) * | 2001-05-24 | 2003-06-24 | Nec Electronics Corporation | Clock control circuit |
WO2002097987A2 (en) * | 2001-05-25 | 2002-12-05 | Infineon Technologies Ag | Method and system for managing a pulse width of a signal pulse |
WO2002097987A3 (en) * | 2001-05-25 | 2004-02-19 | Infineon Technologies Ag | Method and system for managing a pulse width of a signal pulse |
EP1265247A1 (en) * | 2001-06-05 | 2002-12-11 | STMicroelectronics S.r.l. | A programmable delay line and corresponding memory |
US9159388B2 (en) | 2001-06-25 | 2015-10-13 | Rambus Inc. | Methods and apparatus for synchronizing communication with a memory controller |
US20080181348A1 (en) * | 2001-06-25 | 2008-07-31 | Rambus Inc. | Apparatus for data recovery in a synchronous chip-to-chip system |
US20020196885A1 (en) * | 2001-06-25 | 2002-12-26 | Jun Kim | Determining phase relationships using digital phase values |
US8666007B2 (en) | 2001-06-25 | 2014-03-04 | Rambus Inc. | Methods and apparatus for synchronizing communication with a memory controller |
WO2003001673A2 (en) * | 2001-06-25 | 2003-01-03 | Rambus, Inc. | Determining phase relationships using digital phase values |
US8208595B2 (en) | 2001-06-25 | 2012-06-26 | Rambus Inc. | Apparatus for data recovery in a synchronous chip-to-chip system |
US6836503B2 (en) | 2001-06-25 | 2004-12-28 | Rambus Inc. | Apparatus for data recovery in a synchronous chip-to-chip system |
US7970089B2 (en) | 2001-06-25 | 2011-06-28 | Rambus Inc. | Apparatus for data recovery in a synchronous chip-to-chip system |
WO2003001673A3 (en) * | 2001-06-25 | 2003-10-23 | Rambus Inc | Determining phase relationships using digital phase values |
US7194056B2 (en) * | 2001-06-25 | 2007-03-20 | Rambus Inc. | Determining phase relationships using digital phase values |
US7627066B2 (en) | 2001-06-25 | 2009-12-01 | Rambus Inc. | Apparatus for data recovery in a synchronous chip-to-chip system |
US20040213067A1 (en) * | 2001-06-25 | 2004-10-28 | Rambus Inc. | Apparatus for data recovery in a synchronous chip-to-chip system |
EP2302831A1 (en) | 2001-06-25 | 2011-03-30 | Rambus Inc. | Apparatus for data recovery in a synchronous chip-to-chip system |
US6570944B2 (en) | 2001-06-25 | 2003-05-27 | Rambus Inc. | Apparatus for data recovery in a synchronous chip-to-chip system |
US7349510B2 (en) | 2001-06-25 | 2008-03-25 | Rambus Inc. | Apparatus for data recovery in a synchronous chip-to-chip system |
US10699769B2 (en) | 2001-06-25 | 2020-06-30 | Rambus Inc. | Methods and apparatus for synchronizing communication with a memory controller |
US8355480B2 (en) | 2001-06-25 | 2013-01-15 | Rambus Inc. | Methods and apparatus for synchronizing communication with a memory controller |
US10192610B2 (en) | 2001-06-25 | 2019-01-29 | Rambus Inc. | Methods and apparatus for synchronizing communication with a memory controller |
US9741423B2 (en) | 2001-06-25 | 2017-08-22 | Rambus Inc. | Methods and apparatus for synchronizing communication with a memory controller |
US9466353B2 (en) | 2001-06-25 | 2016-10-11 | Rambus Inc. | Methods and apparatus for synchronizing communication with a memory controller |
US7159092B2 (en) | 2001-06-28 | 2007-01-02 | Micron Technology, Inc. | Method and system for adjusting the timing offset between a clock signal and respective digital signals transmitted along with that clock signal, and memory device and computer system using same |
US7035366B2 (en) * | 2001-07-12 | 2006-04-25 | Renesas Technology Corp. | Delay locked loop circuit and its control method |
US20030012321A1 (en) * | 2001-07-12 | 2003-01-16 | Mitsubishi Denki Kabushiki Kaisha | Delay locked loop circuit and its control method |
US20050083721A1 (en) * | 2001-09-07 | 2005-04-21 | Hampel Craig E. | Granularity memory column access |
DE10242886B4 (en) * | 2001-09-19 | 2006-09-28 | Elpida Memory, Inc. | Interpolation circuit, DLL circuit and semiconductor integrated circuit |
US20030052718A1 (en) * | 2001-09-19 | 2003-03-20 | Elpida Memory, Inc. | Interpolating circuit, DLL circuit and semiconductor integrated circuit |
US6674314B2 (en) * | 2001-09-19 | 2004-01-06 | Elpida Memory, Inc. | Interpolating circuit, DLL circuit and semiconductor integrated circuit |
US6525581B1 (en) | 2001-09-20 | 2003-02-25 | Hynix Semiconductor Inc. | Duty correction circuit and a method of correcting a duty |
US6686785B2 (en) * | 2001-10-11 | 2004-02-03 | Sun Microsystems, Inc. | Deskewing global clock skew using localized DLLs |
US20030117864A1 (en) * | 2001-10-22 | 2003-06-26 | Hampel Craig E. | Phase adjustment apparatus and method for a memory device signaling system |
US6920540B2 (en) | 2001-10-22 | 2005-07-19 | Rambus Inc. | Timing calibration apparatus and method for a memory device signaling system |
US7965567B2 (en) | 2001-10-22 | 2011-06-21 | Rambus Inc. | Phase adjustment apparatus and method for a memory device signaling system |
US20050132158A1 (en) * | 2001-10-22 | 2005-06-16 | Rambus Inc. | Memory device signaling system and method with independent timing calibration for parallel signal paths |
US9099194B2 (en) | 2001-10-22 | 2015-08-04 | Rambus Inc. | Memory component with pattern register circuitry to provide data patterns for calibration |
US9123433B2 (en) | 2001-10-22 | 2015-09-01 | Rambus Inc. | Memory component with pattern register circuitry to provide data patterns for calibration |
US11232827B2 (en) | 2001-10-22 | 2022-01-25 | Highlands, LLC | Memory component with pattern register circuitry to provide data patterns for calibration |
US10811080B2 (en) | 2001-10-22 | 2020-10-20 | Rambus Inc. | Memory component with pattern register circuitry to provide data patterns for calibration |
US7668276B2 (en) | 2001-10-22 | 2010-02-23 | Rambus Inc. | Phase adjustment apparatus and method for a memory device signaling system |
US7398413B2 (en) | 2001-10-22 | 2008-07-08 | Rambus Inc. | Memory device signaling system and method with independent timing calibration for parallel signal paths |
US8542787B2 (en) | 2001-10-22 | 2013-09-24 | Rambus Inc. | Phase adjustment apparatus and method for a memory device signaling system |
US9367248B2 (en) | 2001-10-22 | 2016-06-14 | Rambus Inc. | Memory component with pattern register circuitry to provide data patterns for calibration |
US20090138747A1 (en) * | 2001-10-22 | 2009-05-28 | Hampel Craig E | Phase Adjustment Apparatus and Method for a Memory Device Signaling System |
US20030131160A1 (en) * | 2001-10-22 | 2003-07-10 | Hampel Craig E. | Timing calibration apparatus and method for a memory device signaling system |
US9721642B2 (en) | 2001-10-22 | 2017-08-01 | Rambus Inc. | Memory component with pattern register circuitry to provide data patterns for calibration |
US10192609B2 (en) | 2001-10-22 | 2019-01-29 | Rambus Inc. | Memory component with pattern register circuitry to provide data patterns for calibration |
US7336714B2 (en) * | 2001-11-20 | 2008-02-26 | Advantest Corporation | Phase adjustment apparatus and semiconductor test apparatus |
US20050053162A1 (en) * | 2001-11-20 | 2005-03-10 | Masaru Goishi | Phase adjustment apparatus and semiconductor test apparatus |
US6636098B1 (en) | 2001-12-05 | 2003-10-21 | Rambus Inc. | Differential integrator and related circuitry |
US6853225B2 (en) * | 2001-12-21 | 2005-02-08 | Hynix Semiconductor Inc. | Delay locked loop circuit with duty cycle correction function |
US20030117194A1 (en) * | 2001-12-21 | 2003-06-26 | Lee Seong Hoon | Delay locked loop circuit with duty cycle correction function |
US20030123594A1 (en) * | 2002-01-02 | 2003-07-03 | Glenn Robert C. | Phase interpolator based clock recovering |
US7197101B2 (en) * | 2002-01-02 | 2007-03-27 | Intel Corporation | Phase interpolator based clock recovering |
US6650157B2 (en) * | 2002-01-11 | 2003-11-18 | Sun Microsystems, Inc. | Using a push/pull buffer to improve delay locked loop performance |
US6687881B2 (en) * | 2002-02-14 | 2004-02-03 | Sun Microsystems, Inc. | Method for optimizing loop bandwidth in delay locked loops |
US7577226B2 (en) * | 2002-02-26 | 2009-08-18 | Fujitsu Microelectronics Limited | Clock recovery circuitry |
US20030161430A1 (en) * | 2002-02-26 | 2003-08-28 | Fujitsu Limited | Clock recovery circuitry |
US6597212B1 (en) | 2002-03-12 | 2003-07-22 | Neoaxiom Corporation | Divide-by-N differential phase interpolator |
US7535271B2 (en) | 2002-03-22 | 2009-05-19 | Rambus Inc. | Locked loop circuit with clock hold function |
US6952123B2 (en) | 2002-03-22 | 2005-10-04 | Rambus Inc. | System with dual rail regulated locked loop |
US8120399B2 (en) | 2002-03-22 | 2012-02-21 | Rambus Inc. | Locked loop circuit with clock hold function |
EP1497923A1 (en) * | 2002-03-22 | 2005-01-19 | Rambus, Inc. | System with dual rail regulated locked loop |
US6911853B2 (en) | 2002-03-22 | 2005-06-28 | Rambus Inc. | Locked loop with dual rail regulation |
US7902890B2 (en) | 2002-03-22 | 2011-03-08 | Rambus Inc. | Locked loop circuit with clock hold function |
US20030183842A1 (en) * | 2002-03-22 | 2003-10-02 | Kizer Jade M. | System with phase jumping locked loop circuit |
US6960948B2 (en) | 2002-03-22 | 2005-11-01 | Rambus Inc. | System with phase jumping locked loop circuit |
US20090219067A1 (en) * | 2002-03-22 | 2009-09-03 | Rambus Inc. | Locked Loop Circuit With Clock Hold Function |
US20050001662A1 (en) * | 2002-03-22 | 2005-01-06 | Kizer Jade M. | System with phase jumping locked loop circuit |
US8680903B2 (en) | 2002-03-22 | 2014-03-25 | Rambus Inc. | Locked loop circuit with clock hold function |
US20030179027A1 (en) * | 2002-03-22 | 2003-09-25 | Kizer Jade M. | Locked loop with dual rail regulation |
US20050206416A1 (en) * | 2002-03-22 | 2005-09-22 | Kizer Jade M | Locked loop circuit with clock hold function |
US6759881B2 (en) | 2002-03-22 | 2004-07-06 | Rambus Inc. | System with phase jumping locked loop circuit |
US20040046597A1 (en) * | 2002-03-29 | 2004-03-11 | Rambus Inc. | Apparatus and method for a digital delay locked loop |
US6642760B1 (en) | 2002-03-29 | 2003-11-04 | Rambus, Inc. | Apparatus and method for a digital delay locked loop |
US6919749B2 (en) | 2002-03-29 | 2005-07-19 | Rambus, Inc. | Apparatus and method for a digital delay locked loop |
US6806750B1 (en) * | 2002-04-23 | 2004-10-19 | National Semiconductor Corporation | Method and system for clock deskewing using a continuously calibrated delay element in a phase-locked loop |
US20030219089A1 (en) * | 2002-05-21 | 2003-11-27 | Via Technologies, Inc. | Delay phase-locked loop device and clock signal generating method |
US7242741B2 (en) * | 2002-05-21 | 2007-07-10 | Via Technologies, Inc. | Delay phase-locked loop device and clock signal generating method |
US6621762B1 (en) * | 2002-05-29 | 2003-09-16 | Micron Technology, Inc. | Non-volatile delay register |
US8599983B2 (en) | 2002-06-21 | 2013-12-03 | Netlogic Microsystems, Inc. | Methods and apparatus for clock and data recovery using transmission lines |
US8102936B2 (en) | 2002-06-21 | 2012-01-24 | Netlogic Microsystems, Inc. | Methods and apparatus for clock and data recovery using transmission lines |
US8155236B1 (en) | 2002-06-21 | 2012-04-10 | Netlogic Microsystems, Inc. | Methods and apparatus for clock and data recovery using transmission lines |
US20050157579A1 (en) * | 2002-06-26 | 2005-07-21 | Perego Richard E. | Memory device supporting a dynamically configurable core organization |
US20040008733A1 (en) * | 2002-07-12 | 2004-01-15 | Berthold Wedding | Multiplexer input circuit with DLL phase detector |
US20050179479A1 (en) * | 2002-07-19 | 2005-08-18 | Huy Nguyen | Clock distribution network with process, supply-voltage, and temperature compensation |
US6897699B1 (en) | 2002-07-19 | 2005-05-24 | Rambus Inc. | Clock distribution network with process, supply-voltage, and temperature compensation |
US7095265B2 (en) | 2002-07-19 | 2006-08-22 | Rambus Inc. | PVT-compensated clock distribution |
US7135903B2 (en) | 2002-09-03 | 2006-11-14 | Rambus Inc. | Phase jumping locked loop circuit |
US6922091B2 (en) | 2002-09-03 | 2005-07-26 | Rambus Inc. | Locked loop circuit with clock hold function |
US20040041604A1 (en) * | 2002-09-03 | 2004-03-04 | Kizer Jade M. | Phase jumping locked loop circuit |
US7266169B2 (en) * | 2002-09-13 | 2007-09-04 | Broadcom Corporation | Phase interpolater and applications thereof |
US20040052323A1 (en) * | 2002-09-13 | 2004-03-18 | Bo Zhang | Phase interpolater and applications thereof |
US7331006B2 (en) | 2002-09-19 | 2008-02-12 | Rambus Inc. | Multiple sweep point testing of circuit devices |
US20050268196A1 (en) * | 2002-09-19 | 2005-12-01 | Chang Timothy C | Multiple sweep point testing of circuit devices |
US6944070B1 (en) | 2002-09-20 | 2005-09-13 | Integrated Device Technology, Inc. | Integrated circuit devices having high precision digital delay lines therein |
US6856558B1 (en) | 2002-09-20 | 2005-02-15 | Integrated Device Technology, Inc. | Integrated circuit devices having high precision digital delay lines therein |
US7203126B2 (en) | 2002-09-20 | 2007-04-10 | Integrated Device Technology, Inc. | Integrated circuit systems and devices having high precision digital delay lines therein |
US7184509B2 (en) | 2002-10-05 | 2007-02-27 | Samsung Elctronics Co., Ltd. | Delay locked loop circuit for internally correcting duty cycle and duty cycle correction method thereof |
DE10336300B4 (en) * | 2002-10-05 | 2006-03-02 | Samsung Electronics Co., Ltd., Suwon | Delay control circuit with duty cycle correction and associated correction method |
US20040066873A1 (en) * | 2002-10-05 | 2004-04-08 | Cho Geun-Hee | Delay locked loop circuit for internally correcting duty cycle and duty cycle correction method thereof |
US20040101079A1 (en) * | 2002-11-25 | 2004-05-27 | International Business Machines Corporation | Delay-lock-loop with improved accuracy and range |
US6999547B2 (en) | 2002-11-25 | 2006-02-14 | International Business Machines Corporation | Delay-lock-loop with improved accuracy and range |
US20130271192A1 (en) * | 2002-12-31 | 2013-10-17 | Mosaid Technologies Incorporated | Wide frequency range delay locked loop |
US8599984B2 (en) * | 2002-12-31 | 2013-12-03 | Mosaid Technologies Incorporated | Wide frequency range delay locked loop |
US20040155686A1 (en) * | 2003-01-10 | 2004-08-12 | Se-Jun Kim | Analog delay locked loop having duty cycle correction circuit |
US7078949B2 (en) * | 2003-01-10 | 2006-07-18 | Hynix Semiconductor Inc. | Analog delay locked loop having duty cycle correction circuit |
US8804890B2 (en) | 2003-01-21 | 2014-08-12 | Altera Corporation | Digital phase locked loop circuitry and methods |
US7869553B1 (en) | 2003-01-21 | 2011-01-11 | Altera Corporation | Digital phase locked loop circuitry and methods |
EP1441443A3 (en) * | 2003-01-21 | 2004-10-06 | Altera Corporation | Digital phase locked loop circuitry and methods |
US7138837B2 (en) | 2003-01-21 | 2006-11-21 | Altera Corporation | Digital phase locked loop circuitry and methods |
CN100483946C (en) * | 2003-01-21 | 2009-04-29 | 阿尔特拉公司 | Digital phaselocked loop circuit and method |
US9438272B1 (en) | 2003-01-21 | 2016-09-06 | Altera Corporation | Digital phase locked loop circuitry and methods |
EP1441443A2 (en) * | 2003-01-21 | 2004-07-28 | Altera Corporation | Digital phase locked loop circuitry and methods |
US20110090101A1 (en) * | 2003-01-21 | 2011-04-21 | Ramanand Venkata | Digital phase locked loop circuitry and methods |
US8462908B2 (en) | 2003-01-21 | 2013-06-11 | Altera Corporation | Digital phase locked loop circuitry and methods |
US20040140837A1 (en) * | 2003-01-21 | 2004-07-22 | Altera Corporation | Digital phase locked loop circuitry and methods |
US6980480B2 (en) | 2003-03-12 | 2005-12-27 | Micron Technology, Inc. | Multi-frequency synchronizing clock signal generator |
US6914852B2 (en) | 2003-03-12 | 2005-07-05 | Micron Technology, Inc. | Multi-frequency synchronizing clock signal generator |
US20040202263A1 (en) * | 2003-03-12 | 2004-10-14 | Choi Joo S. | Multi-frequency synchronizing clock signal generator |
US20040179419A1 (en) * | 2003-03-12 | 2004-09-16 | Choi Joo S. | Multi-frequency synchronizing clock signal generator |
US6865135B2 (en) | 2003-03-12 | 2005-03-08 | Micron Technology, Inc. | Multi-frequency synchronizing clock signal generator |
US20040202264A1 (en) * | 2003-03-12 | 2004-10-14 | Choi Joo S. | Multi-frequency synchronizing clock signal generator |
US7168027B2 (en) | 2003-06-12 | 2007-01-23 | Micron Technology, Inc. | Dynamic synchronization of data capture on an optical or other high speed communications link |
US8181092B2 (en) | 2003-06-12 | 2012-05-15 | Round Rock Research, Llc | Dynamic synchronization of data capture on an optical or other high speed communications link |
US8892974B2 (en) | 2003-06-12 | 2014-11-18 | Round Rock Research, Llc | Dynamic synchronization of data capture on an optical or other high speed communications link |
US7151398B2 (en) | 2003-08-26 | 2006-12-19 | Integrated Device Technology, Inc. | Clock signal generators having programmable full-period clock skew control |
US20060038601A1 (en) * | 2003-08-26 | 2006-02-23 | Shawn Giguere | Clock signal generators having programmable full-period clock skew control |
US7196562B1 (en) | 2003-08-26 | 2007-03-27 | Integrated Device Technology, Inc. | Programmable clock drivers that support CRC error checking of configuration data during program restore operations |
US6977539B1 (en) | 2003-08-26 | 2005-12-20 | Integrated Device Technology, Inc. | Clock signal generators having programmable full-period clock skew control and methods of generating clock signals having programmable skews |
US7046093B1 (en) | 2003-08-27 | 2006-05-16 | Intergrated Device Technology, Inc. | Dynamic phase-locked loop circuits and methods of operation thereof |
US20050046453A1 (en) * | 2003-09-03 | 2005-03-03 | Broadcom Corporation | Method and apparatus for glitch-free control of a delay-locked loop in a network device |
US7132866B2 (en) * | 2003-09-03 | 2006-11-07 | Broadcom Corporation | Method and apparatus for glitch-free control of a delay-locked loop in a network device |
US7348820B2 (en) | 2003-09-03 | 2008-03-25 | Broadcom Corporation | Method and apparatus for glitch-free control of a delay-locked loop in a network device |
US6867627B1 (en) | 2003-09-16 | 2005-03-15 | Integrated Device Technology, Inc. | Delay-locked loop (DLL) integrated circuits having high bandwidth and reliable locking characteristics |
US7046058B1 (en) | 2003-09-24 | 2006-05-16 | Integrated Device Technology, Ltd. | Delayed-locked loop with fine and coarse control using cascaded phase interpolator and variable delay circuit |
US20050088211A1 (en) * | 2003-10-24 | 2005-04-28 | Kim Kyu-Hyoun | Jitter suppressing delay locked loop circuits and related methods |
US7212052B2 (en) * | 2003-10-24 | 2007-05-01 | Samsung Electronics Co., Ltd. | Jitter suppressing delay locked loop circuits and related methods |
US7461286B2 (en) | 2003-10-27 | 2008-12-02 | Micron Technology, Inc. | System and method for using a learning sequence to establish communications on a high-speed nonsynchronous interface in the absence of clock forwarding |
US7456664B2 (en) | 2003-12-10 | 2008-11-25 | Telefonaktiebolaget Lm Ericsson (Publ) | Delay locked loop with precision controlled delay |
US20070139089A1 (en) * | 2003-12-10 | 2007-06-21 | Harald Jacobsson | Delay locked loop with precision contolled delay |
WO2005057718A1 (en) * | 2003-12-10 | 2005-06-23 | Telefonaktiebolaget Lm Ericsson (Publ) | A delay-locked loop with precision controlled delay |
CN1879252B (en) * | 2003-12-10 | 2012-07-18 | 艾利森电话股份有限公司 | A delay-locked loop with precision controlled delay |
US20070194829A1 (en) * | 2003-12-19 | 2007-08-23 | Koninklijke Philips Electronic, N.V. | Integrated circuit clock distribution |
US7474137B2 (en) * | 2003-12-19 | 2009-01-06 | Nxp B.V. | Integrated circuit clock distribution |
CN100421048C (en) * | 2003-12-19 | 2008-09-24 | Nxp股份有限公司 | Integrated circuit clock distribution |
WO2005064434A1 (en) * | 2003-12-19 | 2005-07-14 | Koninklijke Philips Electronics N.V. | Integrated circuit clock distribution |
US7109760B1 (en) | 2004-01-05 | 2006-09-19 | Integrated Device Technology, Inc. | Delay-locked loop (DLL) integrated circuits that support efficient phase locking of clock signals having non-unity duty cycles |
US7119591B1 (en) | 2004-01-05 | 2006-10-10 | Integrated Device Technology, Inc. | Delay-locked loop (DLL) integrated circuits having binary-weighted delay chain units with built-in phase comparators that support efficient phase locking |
US7279938B1 (en) | 2004-01-05 | 2007-10-09 | Integrated Device Technology, Inc. | Delay chain integrated circuits having binary-weighted delay chain units with built-in phase comparators therein |
US6998897B2 (en) | 2004-02-23 | 2006-02-14 | International Business Machines Corporation | System and method for implementing a micro-stepping delay chain for a delay locked loop |
US7049873B2 (en) | 2004-02-23 | 2006-05-23 | International Business Machines Corporation | System and method for implementing a micro-stepping delay chain for a delay locked loop |
US7109766B2 (en) * | 2004-04-22 | 2006-09-19 | Motorola, Inc. | Adjustable frequency delay-locked loop |
US20050237093A1 (en) * | 2004-04-22 | 2005-10-27 | Wilhite Jeffrey B | Adjustable frequency delay-locked loop |
US7038519B1 (en) | 2004-04-30 | 2006-05-02 | Xilinx, Inc. | Digital clock manager having cascade voltage switch logic clock paths |
US7157951B1 (en) | 2004-04-30 | 2007-01-02 | Xilinx, Inc. | Digital clock manager capacitive trim unit |
US7046052B1 (en) | 2004-04-30 | 2006-05-16 | Xilinx, Inc. | Phase matched clock divider |
US20060023523A1 (en) * | 2004-07-28 | 2006-02-02 | Martin Perner | Integrated semiconductor memory |
US7337284B2 (en) | 2004-07-28 | 2008-02-26 | Infineon Technologies, Ag | Integrated semiconductor memory |
US8190808B2 (en) | 2004-08-17 | 2012-05-29 | Rambus Inc. | Memory device having staggered memory operations |
US20060039227A1 (en) * | 2004-08-17 | 2006-02-23 | Lawrence Lai | Memory device having staggered memory operations |
US20080062807A1 (en) * | 2004-09-30 | 2008-03-13 | Ware Frederick A | Multi-column addressing mode memory system including an integrated circuit memory device |
US8050134B2 (en) | 2004-09-30 | 2011-11-01 | Rambus Inc. | Multi-column addressing mode memory system including an integrated circuit memory device |
US7280428B2 (en) | 2004-09-30 | 2007-10-09 | Rambus Inc. | Multi-column addressing mode memory system including an integrated circuit memory device |
US8908466B2 (en) | 2004-09-30 | 2014-12-09 | Rambus Inc. | Multi-column addressing mode memory system including an integrated circuit memory device |
US7755968B2 (en) | 2004-09-30 | 2010-07-13 | Rambus Inc. | Integrated circuit memory device having dynamic memory bank count and page size |
US8432766B2 (en) | 2004-09-30 | 2013-04-30 | Rambus Inc. | Multi-column addressing mode memory system including an integrated circuit memory device |
US20060072366A1 (en) * | 2004-09-30 | 2006-04-06 | Ware Frederick A | Multi-column addressing mode memory system including an integrated circuit memory device |
US20070268765A1 (en) * | 2004-09-30 | 2007-11-22 | Steven Woo | Integrated Circuit Memory Device Having Dynamic Memory Bank Count and Page Size |
US7254075B2 (en) | 2004-09-30 | 2007-08-07 | Rambus Inc. | Integrated circuit memory system having dynamic memory bank count and page size |
US20110153932A1 (en) * | 2004-09-30 | 2011-06-23 | Rambus Inc. | Multi-column addressing mode memory system including an integrated circuit memory device |
US7505356B2 (en) | 2004-09-30 | 2009-03-17 | Rambus Inc. | Multi-column addressing mode memory system including an integrated circuit memory device |
US8154947B2 (en) | 2004-09-30 | 2012-04-10 | Rambus Inc. | Multi-column addressing mode memory system including an integrated circuit memory device |
US7498858B2 (en) * | 2004-11-01 | 2009-03-03 | Hewlett-Packard Development Company, L.P. | Interpolator systems with linearity adjustments and related methods |
US20060091925A1 (en) * | 2004-11-01 | 2006-05-04 | Desai Jayen J | Interpolator systems and methods |
US7205805B1 (en) | 2004-11-02 | 2007-04-17 | Western Digital Technologies, Inc. | Adjusting power consumption of digital circuitry relative to critical path circuit having the largest propagation delay error |
US7129763B1 (en) | 2004-11-08 | 2006-10-31 | Western Digital Technologies, Inc. | Adjusting power consumption of digital circuitry by generating frequency error representing error in propagation delay |
US9292223B2 (en) | 2004-11-29 | 2016-03-22 | Rambus Inc. | Micro-threaded memory |
US8595459B2 (en) | 2004-11-29 | 2013-11-26 | Rambus Inc. | Micro-threaded memory |
US10331379B2 (en) | 2004-11-29 | 2019-06-25 | Rambus Inc. | Memory controller for micro-threaded memory operations |
US9652176B2 (en) | 2004-11-29 | 2017-05-16 | Rambus Inc. | Memory controller for micro-threaded memory operations |
US11797227B2 (en) | 2004-11-29 | 2023-10-24 | Rambus Inc. | Memory controller for micro-threaded memory operations |
US8537954B2 (en) | 2005-01-21 | 2013-09-17 | Altera Corporation | Method and apparatus for multi-mode clock data recovery |
US20100119024A1 (en) * | 2005-01-21 | 2010-05-13 | Shumarayev Sergey Y | Method and apparatus for multi-mode clock data recovery |
US7532697B1 (en) | 2005-01-27 | 2009-05-12 | Net Logic Microsystems, Inc. | Methods and apparatus for clock and data recovery using a single source |
US20060214709A1 (en) * | 2005-03-15 | 2006-09-28 | Aaron Nygren | Circuit arrangement for generating a synchronization signal |
US20060248305A1 (en) * | 2005-04-13 | 2006-11-02 | Wayne Fang | Memory device having width-dependent output latency |
US7825710B2 (en) * | 2005-04-26 | 2010-11-02 | Samsung Electronics Co., Ltd. | Delay-locked loop circuits and method for generating transmission core clock signals |
US20060238227A1 (en) * | 2005-04-26 | 2006-10-26 | Samsung Electronics Co., Ltd. | Delay-locked loop circuits and method for generating transmission core clock signals |
US20070009073A1 (en) * | 2005-05-31 | 2007-01-11 | Kabushiki Kaisha Toshiba | Data sampling circuit and semiconductor integrated circuit |
US7526049B2 (en) * | 2005-05-31 | 2009-04-28 | Kabushiki Kaisha Toshiba | Data sampling circuit and semiconductor integrated circuit |
US20060279342A1 (en) * | 2005-06-14 | 2006-12-14 | Micron Technology, Inc. | DLL measure initialization circuit for high frequency operation |
US7332950B2 (en) | 2005-06-14 | 2008-02-19 | Micron Technology, Inc. | DLL measure initialization circuit for high frequency operation |
US20080001643A1 (en) * | 2005-06-30 | 2008-01-03 | Lee Hyun W | Duty cycle correction device |
US7629829B2 (en) | 2005-06-30 | 2009-12-08 | Hynix Semiconductor Inc. | Phase mixing device for use in duty cycle correction |
US20070046346A1 (en) * | 2005-08-30 | 2007-03-01 | Alessandro Minzoni | Clock controller with integrated DLL and DCC |
US7279946B2 (en) | 2005-08-30 | 2007-10-09 | Infineon Technologies Ag | Clock controller with integrated DLL and DCC |
US20070080731A1 (en) * | 2005-10-11 | 2007-04-12 | Kim Jung P | Duty cycle corrector |
US7227809B2 (en) | 2005-10-14 | 2007-06-05 | Micron Technology, Inc. | Clock generator having a delay locked loop and duty cycle correction circuit in a parallel configuration |
US20070086267A1 (en) * | 2005-10-14 | 2007-04-19 | Micron Technology, Inc. | Clock generator having a delay locked loop and duty cycle correction circuit in a parallel configuration |
US7583118B2 (en) * | 2005-10-28 | 2009-09-01 | Nec Electronics Corporation | Delay locked loop circuit |
US20070096784A1 (en) * | 2005-10-28 | 2007-05-03 | Nec Electronics Corporation | Delay locked loop circuit |
US7420399B2 (en) * | 2005-11-10 | 2008-09-02 | Jonghee Han | Duty cycle corrector |
US20070103216A1 (en) * | 2005-11-10 | 2007-05-10 | Jonghee Han | Duty cycle corrector |
US20080260071A1 (en) * | 2005-12-07 | 2008-10-23 | Stefanos Sidiropoulos | Methods and Apparatus for Frequency Synthesis with Feedback Interpolation |
US7443215B1 (en) | 2005-12-07 | 2008-10-28 | Netlogic Microsystems, Inc. | Methods and apparatus to increase the resolution of a clock synthesis circuit that uses feedback interpolation |
US7432750B1 (en) * | 2005-12-07 | 2008-10-07 | Netlogic Microsystems, Inc. | Methods and apparatus for frequency synthesis with feedback interpolation |
US8433018B2 (en) | 2005-12-07 | 2013-04-30 | Netlogic Microsystems, Inc. | Methods and apparatus for frequency synthesis with feedback interpolation |
US8667038B1 (en) | 2005-12-07 | 2014-03-04 | Netlogic Microsystems, Inc. | Methods and apparatus to increase the resolution of a clock synthesis circuit that uses feedback interpolation |
US7791388B2 (en) | 2006-01-27 | 2010-09-07 | Micron Technology, Inc. | Duty cycle error calculation circuit for a clock generator having a delay locked loop and duty cycle correction circuit |
US20070176659A1 (en) * | 2006-01-27 | 2007-08-02 | Micron Technology, Inc | Duty cycle error calculation circuit for a clock generator having a delay locked loop and duty cycle correction circuit |
US7423465B2 (en) | 2006-01-27 | 2008-09-09 | Micron Technology, Inc. | Duty cycle error calculation circuit for a clock generator having a delay locked loop and duty cycle correction circuit |
US20080315930A1 (en) * | 2006-01-27 | 2008-12-25 | Tyler Gomm | Duty cycle error calculation circuit for a clock generator having a delay locked loop and duty cycle correction circuit |
US9154141B2 (en) | 2006-02-22 | 2015-10-06 | Micron Technology, Inc. | Continuous high-frequency event filter |
US8073890B2 (en) | 2006-02-22 | 2011-12-06 | Micron Technology, Inc. | Continuous high-frequency event filter |
US20070194821A1 (en) * | 2006-02-22 | 2007-08-23 | Micron Technology, Inc. | Continuous high-frequency event filter |
WO2007107182A1 (en) * | 2006-03-17 | 2007-09-27 | Telefonaktiebolaget Lm Ericsson (Publ) | Adjusting a digital delay function of a data memory unit |
US7933156B2 (en) | 2006-03-17 | 2011-04-26 | Telefonaktiebolaget Lm Ericsson (Publ) | Adjusting a digital delay function of a data memory unit |
CN101443852B (en) * | 2006-03-17 | 2012-10-10 | 艾利森电话股份有限公司 | Method and device for regulating digital delay function for regulating data memory cell |
US20090219771A1 (en) * | 2006-03-17 | 2009-09-03 | Ruthemann Klaus W | Adjusting a Digital Delay Function of a Data Memory Unit |
US7486060B1 (en) | 2006-03-30 | 2009-02-03 | Western Digital Technologies, Inc. | Switching voltage regulator comprising a cycle comparator for dynamic voltage scaling |
US8912778B1 (en) | 2006-03-30 | 2014-12-16 | Western Digital Technologies, Inc. | Switching voltage regulator employing current pre-adjust based on power mode |
US10191866B2 (en) | 2006-05-02 | 2019-01-29 | Rambus Inc. | Memory controller for selective rank or subrank access |
US11467986B2 (en) | 2006-05-02 | 2022-10-11 | Rambus Inc. | Memory controller for selective rank or subrank access |
US9256557B2 (en) | 2006-05-02 | 2016-02-09 | Rambus Inc. | Memory controller for selective rank or subrank access |
US10795834B2 (en) | 2006-05-02 | 2020-10-06 | Rambus Inc. | Memory controller for selective rank or subrank access |
US8364926B2 (en) | 2006-05-02 | 2013-01-29 | Rambus Inc. | Memory module with reduced access granularity |
US20070273416A1 (en) * | 2006-05-29 | 2007-11-29 | Patrick Heyne | Signal delay loop and method for locking a signal delay loop |
DE102006024960A1 (en) * | 2006-05-29 | 2007-12-06 | Qimonda Ag | Signal delay loop and method for latching a signal delay loop |
DE102006024960B4 (en) * | 2006-05-29 | 2013-01-31 | Qimonda Ag | Signal delay loop and method for latching a signal delay loop |
US7551383B1 (en) | 2006-06-28 | 2009-06-23 | Western Digital Technologies, Inc. | Adjusting voltage delivered to disk drive circuitry based on a selected zone |
US20080074154A1 (en) * | 2006-08-10 | 2008-03-27 | Jong-Shin Shin | Low-jitter spread-spectrum clock generator |
US8229053B2 (en) | 2006-08-10 | 2012-07-24 | Samsung Electronics Co., Ltd. | Low-jitter spread-spectrum clock generator |
US8122275B2 (en) | 2006-08-24 | 2012-02-21 | Altera Corporation | Write-leveling implementation in programmable logic devices |
US8671303B2 (en) | 2006-08-24 | 2014-03-11 | Altera Corporation | Write-leveling implementation in programmable logic devices |
US20080201597A1 (en) * | 2006-08-24 | 2008-08-21 | Altera Corporation | Write-leveling implementation in programmable logic devices |
US20100039157A1 (en) * | 2006-09-13 | 2010-02-18 | Shunichi Kaeriyama | Clock adjusting circuit and semiconductor integrated circuit device |
US8072253B2 (en) | 2006-09-13 | 2011-12-06 | Nec Corporation | Clock adjusting circuit and semiconductor integrated circuit device |
WO2008032701A1 (en) * | 2006-09-13 | 2008-03-20 | Nec Corporation | Clock adjusting circuit and semiconductor integrated circuit device |
US7330019B1 (en) | 2006-10-31 | 2008-02-12 | Western Digital Technologies, Inc. | Adjusting on-time for a discontinuous switching voltage regulator |
US7746134B1 (en) | 2007-04-18 | 2010-06-29 | Altera Corporation | Digitally controlled delay-locked loops |
US20100188910A1 (en) * | 2007-04-19 | 2010-07-29 | Rambus, Inc. | Clock synchronization in a memory system |
US8159887B2 (en) | 2007-04-19 | 2012-04-17 | Rambus Inc. | Clock synchronization in a memory system |
US8451674B2 (en) | 2007-04-19 | 2013-05-28 | Rambus, Inc. | Clock synchronization in a memory system |
US7861105B2 (en) | 2007-06-25 | 2010-12-28 | Analogix Semiconductor, Inc. | Clock data recovery (CDR) system using interpolator and timing loop module |
US20080320324A1 (en) * | 2007-06-25 | 2008-12-25 | Analogix Semiconductor, Inc. | Data recovery (CDR) architecture using interpolator and timing loop module |
US20100021588A1 (en) * | 2007-09-12 | 2010-01-28 | Pepsico, Inc. | Granulation Method And Additives With Narrow Particle Size Distribution Produced From Granulation Method |
US7733189B1 (en) | 2007-09-14 | 2010-06-08 | Western Digital Technologies, Inc. | Oscillator comprising foldover detection |
US8085020B1 (en) | 2008-06-13 | 2011-12-27 | Western Digital Technologies, Inc. | Switching voltage regulator employing dynamic voltage scaling with hysteretic comparator |
US20100007390A1 (en) * | 2008-07-10 | 2010-01-14 | Wen-Chung Yeh | Clock generating circuit, power converting system, and related method with spread spectrum for EMI reduction |
US20100083027A1 (en) * | 2008-09-30 | 2010-04-01 | Mosaid Technologies Incorporated | Serial-connected memory system with output delay adjustment |
US8181056B2 (en) | 2008-09-30 | 2012-05-15 | Mosaid Technologies Incorporated | Serial-connected memory system with output delay adjustment |
US8161313B2 (en) | 2008-09-30 | 2012-04-17 | Mosaid Technologies Incorporated | Serial-connected memory system with duty cycle correction |
US20100083028A1 (en) * | 2008-09-30 | 2010-04-01 | Mosaid Technologies Incorporated | Serial-connected memory system with duty cycle correction |
US8300483B2 (en) * | 2009-05-21 | 2012-10-30 | Fujitsu Semiconductor Limited | Timing adjustment circuit, timing adjustment method, and correction value computing method |
US20100296351A1 (en) * | 2009-05-21 | 2010-11-25 | Fujitsu Semiconductor Limited | Timing adjustment circuit, timing adjustment method, and correction value computing method |
US9565036B2 (en) * | 2009-06-30 | 2017-02-07 | Rambus Inc. | Techniques for adjusting clock signals to compensate for noise |
US20120087452A1 (en) * | 2009-06-30 | 2012-04-12 | Rambus Inc. | Techniques for Adjusting Clock Signals to Compensate for Noise |
US20110199368A1 (en) * | 2010-02-12 | 2011-08-18 | Au Optronics Corporation | Display with clk phase auto-adjusting mechanism and method of driving same |
US8362996B2 (en) | 2010-02-12 | 2013-01-29 | Au Optronics Corporation | Display with CLK phase auto-adjusting mechanism and method of driving same |
US8423814B2 (en) | 2010-03-19 | 2013-04-16 | Netlogic Microsystems, Inc. | Programmable drive strength in memory signaling |
US8638896B2 (en) | 2010-03-19 | 2014-01-28 | Netlogic Microsystems, Inc. | Repeate architecture with single clock multiplier unit |
US20110228889A1 (en) * | 2010-03-19 | 2011-09-22 | Dean Liu | Repeater Architecture with Single Clock Multiplier Unit |
US20110228860A1 (en) * | 2010-03-19 | 2011-09-22 | Marc Loinaz | Multi-Value Logic Signaling in Multi-Functional Circuits |
US9094020B2 (en) | 2010-03-19 | 2015-07-28 | Broadcom Corporation | Multi-value logic signaling in multi-functional circuits |
US8520744B2 (en) | 2010-03-19 | 2013-08-27 | Netlogic Microsystems, Inc. | Multi-value logic signaling in multi-functional circuits |
US8700944B2 (en) | 2010-03-19 | 2014-04-15 | Netlogic Microsystems, Inc. | Programmable drive strength in memory signaling |
US8537949B1 (en) | 2010-06-30 | 2013-09-17 | Netlogic Microsystems, Inc. | Systems, circuits and methods for filtering signals to compensate for channel effects |
US8948331B2 (en) | 2010-06-30 | 2015-02-03 | Netlogic Microsystems, Inc. | Systems, circuits and methods for filtering signals to compensate for channel effects |
US8494377B1 (en) | 2010-06-30 | 2013-07-23 | Netlogic Microsystems, Inc. | Systems, circuits and methods for conditioning signals for transmission on a physical medium |
US8937404B1 (en) | 2010-08-23 | 2015-01-20 | Western Digital Technologies, Inc. | Data storage device comprising dual mode independent/parallel voltage regulators |
US8493116B2 (en) | 2010-09-15 | 2013-07-23 | Samsung Electronics Co., Ltd. | Clock delay circuit and delay locked loop including the same |
US8487678B2 (en) * | 2011-01-18 | 2013-07-16 | Qualcomm Incorporated | Half cycle delay locked loop |
US20120182053A1 (en) * | 2011-01-18 | 2012-07-19 | Qualcomm Incorporated | Half cycle delay locked loop |
WO2012167239A2 (en) * | 2011-06-03 | 2012-12-06 | Texas Instruments Incorporated | Apparatus and systems digital phase interpolator with improved linearity |
CN103718460A (en) * | 2011-06-03 | 2014-04-09 | 德克萨斯仪器股份有限公司 | Apparatus and systems digital phase interpolator with improved linearity |
WO2012167239A3 (en) * | 2011-06-03 | 2013-04-25 | Texas Instruments Incorporated | Apparatus and systems digital phase interpolator with improved linearity |
CN103718460B (en) * | 2011-06-03 | 2016-08-31 | 德克萨斯仪器股份有限公司 | For having device and the system of the digit phase interpolation device improving the linearity |
US9666250B2 (en) | 2011-08-05 | 2017-05-30 | Rambus Inc. | Memory signal buffers and modules supporting variable access granularity |
US9268719B2 (en) | 2011-08-05 | 2016-02-23 | Rambus Inc. | Memory signal buffers and modules supporting variable access granularity |
KR101123353B1 (en) * | 2011-09-21 | 2012-03-13 | 홍익대학교 산학협력단 | Delay-locked loop utilizing feedback delay elements |
TWI502895B (en) * | 2012-12-06 | 2015-10-01 | Himax Tech Inc | Clock generator |
US9912322B2 (en) | 2013-07-03 | 2018-03-06 | Nvidia Corporation | Clock generation circuit that tracks critical path across process, voltage and temperature variation |
US10200022B2 (en) | 2013-07-22 | 2019-02-05 | Nvidia Corporation | Integrated voltage regulator with in-built process, temperature and aging compensation |
US10103719B2 (en) | 2013-07-22 | 2018-10-16 | Nvidia Corporation | Integrated voltage regulator with in-built process, temperature and aging compensation |
US9471087B2 (en) | 2013-12-17 | 2016-10-18 | Micron Technology, Inc. | Apparatuses and methods for providing clock signals |
US9225322B2 (en) | 2013-12-17 | 2015-12-29 | Micron Technology, Inc. | Apparatuses and methods for providing clock signals |
CN104734695B (en) * | 2013-12-24 | 2018-05-04 | 澜起科技(上海)有限公司 | Signal generator, electronic system and the method for producing signal |
US20150180643A1 (en) * | 2013-12-24 | 2015-06-25 | Montage Technology (Shanghai) Co., Ltd. | Signal Generator, Electronic System Comprising the Signal Generator and Method of Generating Signals |
CN104734695A (en) * | 2013-12-24 | 2015-06-24 | 澜起科技(上海)有限公司 | Signal generator, electronic system and method for generating signals |
US9240879B2 (en) * | 2013-12-24 | 2016-01-19 | Montage Technology (Shanghai) Co., Ltd. | Signal generator, electronic system comprising the signal generator and method of generating signals |
US20150188526A1 (en) * | 2013-12-30 | 2015-07-02 | SK Hynix Inc. | Semiconductor apparatus |
US9374071B2 (en) * | 2013-12-30 | 2016-06-21 | SK Hynix Inc. | Semiconductor apparatus |
US10361690B1 (en) | 2018-06-14 | 2019-07-23 | Sandisk Technologies Llc | Duty cycle and skew correction for output signals generated in source synchronous systems |
US10367493B1 (en) | 2018-06-14 | 2019-07-30 | Sandisk Technologies Llc | Duty cycle and skew correction for output signals generated in source synchronous systems |
US20220209717A1 (en) * | 2020-12-28 | 2022-06-30 | Seiko Epson Corporation | Circuit Device And Oscillator |
US11990869B2 (en) * | 2020-12-28 | 2024-05-21 | Seiko Epson Corporation | Circuit device and oscillator |
CN115361017A (en) * | 2022-08-31 | 2022-11-18 | 集益威半导体(上海)有限公司 | Clock skew calibration circuit based on phase interpolator |
Also Published As
Publication number | Publication date |
---|---|
DE69840242D1 (en) | 2009-01-02 |
DE29825196U1 (en) | 2006-01-26 |
WO1998037656A2 (en) | 1998-08-27 |
US7308065B2 (en) | 2007-12-11 |
US7039147B2 (en) | 2006-05-02 |
EP1031203A2 (en) | 2000-08-30 |
EP1601130A2 (en) | 2005-11-30 |
EP1633049A2 (en) | 2006-03-08 |
US20040223571A1 (en) | 2004-11-11 |
WO1998037656A3 (en) | 1998-11-19 |
EP1633049A3 (en) | 2007-02-28 |
EP1633049B1 (en) | 2008-11-19 |
US6539072B1 (en) | 2003-03-25 |
EP1031203A4 (en) | 2003-04-16 |
EP1601130A3 (en) | 2007-02-28 |
US20060188051A1 (en) | 2006-08-24 |
EP1601130B1 (en) | 2008-12-10 |
DE69840350D1 (en) | 2009-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6125157A (en) | Delay-locked loop circuitry for clock delay adjustment | |
US7840831B2 (en) | Methods of reducing skew between multiphase signals and related phase correction circuits | |
KR100424180B1 (en) | A delay locked loop circuit with duty cycle correction function | |
US5485490A (en) | Method and circuitry for clock synchronization | |
US7057431B2 (en) | Digital DLL apparatus for correcting duty cycle and method thereof | |
JP4065234B2 (en) | Data recovery device for synchronous chip-chip system | |
KR100490655B1 (en) | Duty cycle correction circuit and delay locked loop having the same | |
US7206370B2 (en) | Clock recovery circuit | |
KR100807115B1 (en) | Semiconductor memory device and driving method thereof | |
US7362186B2 (en) | Phase-locked loop circuit and data reproduction apparatus | |
US7622970B2 (en) | Apparatus and method for controlling a delay- or phase-locked loop as a function of loop frequency | |
US7782103B2 (en) | Phase adjustment circuit | |
KR20220039167A (en) | Signal generating circuit having minimum delay, a semiconductor appratus using the same, and a signal generating method | |
US6005425A (en) | PLL using pulse width detection for frequency and phase error correction | |
US20210271288A1 (en) | Clock generation circuit and semiconductor apparatus using the clock generation circuit | |
US20080054964A1 (en) | Semiconductor memory device | |
KR20080037233A (en) | Delay sync loop circuit | |
US12057847B2 (en) | Clock generation circuit and semiconductor apparatus using the clock generation circuit | |
USRE38482E1 (en) | Delay stage circuitry for a ring oscillator | |
JP4615089B2 (en) | Delay lock loop circuit | |
US6489821B1 (en) | High frequency system with duty cycle buffer | |
WO2007084876A2 (en) | Systems and methods for reducing static phase error | |
US20040212413A1 (en) | DLL Circuit | |
KR20030049303A (en) | Register Controlled DLL Circuit | |
KR0162461B1 (en) | Full width digital PL for low frequencies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: RAMBUS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DONNELLY, KEVIN S.;CHAU, PAK SHING;LAU, BENEDICT C.;AND OTHERS;REEL/FRAME:008596/0055;SIGNING DATES FROM 19970512 TO 19970615 |
|
AS | Assignment |
Owner name: RAMBUS INCORPORATED, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NGUYEN, NHAT M.;REEL/FRAME:010166/0202 Effective date: 19990629 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 12 |