JP3297087B2 - High voltage semiconductor device - Google Patents
High voltage semiconductor deviceInfo
- Publication number
- JP3297087B2 JP3297087B2 JP25658692A JP25658692A JP3297087B2 JP 3297087 B2 JP3297087 B2 JP 3297087B2 JP 25658692 A JP25658692 A JP 25658692A JP 25658692 A JP25658692 A JP 25658692A JP 3297087 B2 JP3297087 B2 JP 3297087B2
- Authority
- JP
- Japan
- Prior art keywords
- junction
- region
- breakdown voltage
- semiconductor device
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims description 52
- 230000015556 catabolic process Effects 0.000 claims description 37
- 239000000758 substrate Substances 0.000 claims description 30
- 230000000903 blocking effect Effects 0.000 claims description 7
- 230000005684 electric field Effects 0.000 description 17
- 239000007769 metal material Substances 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000006378 damage Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/83—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
- H10D62/832—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge being Group IV materials comprising two or more elements, e.g. SiGe
- H10D62/8325—Silicon carbide
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/411—Insulated-gate bipolar transistors [IGBT]
- H10D12/441—Vertical IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/60—Schottky-barrier diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/113—Isolations within a component, i.e. internal isolations
- H10D62/115—Dielectric isolations, e.g. air gaps
- H10D62/116—Dielectric isolations, e.g. air gaps adjoining the input or output regions of field-effect devices, e.g. adjoining source or drain regions
Landscapes
- Bipolar Transistors (AREA)
- Thyristors (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、高耐圧半導体装置に係
り、特に接合終端部に十分なpn接合が無い高耐圧半導
体装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high withstand voltage semiconductor device, and more particularly to a high withstand voltage semiconductor device having no sufficient pn junction at a junction termination.
【0002】[0002]
【従来の技術】パワー素子は、電流増幅,電源装置,電
動制御などに使われ、高耐圧で大電流動作を目的とした
構造設計がなされる。2. Description of the Related Art A power element is used for current amplification, a power supply device, electric control, and the like, and is designed to have a high breakdown voltage and a large current operation.
【0003】高耐圧化のためには、例えば、バイポーラ
トランジスタの場合、コレクタ低不純物濃度層を厚く高
抵抗にして降状電圧を上げ、ベース層を大きくとってパ
ンチパンチスールーを防ぐ手法がある。しかし、この種
の手法は大電流化や高速化と相反するので、トランジス
タの使用目的に応じた最適のトレードオフ設計がなされ
る。In order to increase the breakdown voltage, for example, in the case of a bipolar transistor, there is a method in which the collector low impurity concentration layer is made thick and high in resistance to increase the breakdown voltage, and the base layer is made large to prevent punch punch through. However, this type of technique is incompatible with increasing the current and increasing the speed, so that an optimal trade-off design is made according to the purpose of use of the transistor.
【0004】また、高耐圧化のためには、従来より、フ
ィールドプレートやガードリングなどの手法が用いられ
ている。In order to increase the breakdown voltage, techniques such as a field plate and a guard ring have been used.
【0005】フィールドプレートは、図9(a)に示す
ように、ベース電極81をn型コレクタ層82の上部8
3まで引き出すことにより、空乏層84をn型コレクタ
層82の上部83まで延ばし、p型ベース層85とn型
コレクタ層82とのpn接合部分、つまり、接合終端部
の空乏層電界を緩和し、電界集中を防止する。なお、図
中、86はn型エミッタ層,87は酸化膜を示してい
る。As shown in FIG. 9A, the field plate is formed by connecting a base electrode 81 to an upper portion 8 of an n-type collector layer 82.
3, the depletion layer 84 is extended to the upper portion 83 of the n-type collector layer 82, and the pn junction between the p-type base layer 85 and the n-type collector layer 82, that is, the depletion layer electric field at the junction termination is alleviated. Prevent electric field concentration. In the drawing, reference numeral 86 denotes an n-type emitter layer, and 87 denotes an oxide film.
【0006】ガードリングは、図9(b)に示すよう
に、p型ベース層85を囲んで1ないし数個のフローテ
ィングガードリング88を設けることにより、接合終端
部の空乏層電界を緩和する。As shown in FIG. 9B, one or several floating guard rings 88 are provided around the p-type base layer 85 to reduce the electric field in the depletion layer at the junction termination.
【0007】しかしながら、このような高耐圧化の手法
には次のような問題がある。However, such a technique for increasing the breakdown voltage has the following problems.
【0008】即ち、素子の主接合がpn接合ではないパ
ワー素子、例えば、ショットキーバリアダイオード,U
−MOS,埋込みゲート構造MOSサイリスタ,埋込み
ゲート構造IGBTなどの接合終端部は高耐圧化に必要
な十分なpn接合を素子の主な工程とは別に作る必要が
ある。また、Siなどのように不純物拡散が比較的容易
な材料からなる基板の場合には、素子部とは別にpn接
合を形成するのは可能であるが、SiCなどの化合物半
導体や、ダイヤモンドのように不純物拡散が困難な材料
からなる基板の場合には、従来のpn接合を前提とした
高耐圧化の手法は使用が困難である。That is, a power element whose main junction is not a pn junction, for example, a Schottky barrier diode, U
In a junction termination part such as a MOS, a buried gate structure MOS thyristor, or a buried gate structure IGBT, it is necessary to form a sufficient pn junction required for increasing the breakdown voltage separately from the main steps of the device. In the case of a substrate made of a material such as Si which is relatively easy to diffuse impurities, it is possible to form a pn junction separately from the element portion, but it is possible to form a compound semiconductor such as SiC or diamond such as diamond. In the case of a substrate made of a material which is difficult to diffuse impurities, it is difficult to use a conventional method of increasing the breakdown voltage on the assumption of a pn junction.
【0009】[0009]
【発明が解決しようとする課題】上述の如く、従来の半
導体パワー素子の高耐圧化の手法は、接合終端部がpn
接合の場合を前提にしたものであった。このため、接合
終端部に十分なpn接合が無く、拡散係数が小さい基板
の場合には、半導体パワー素子の高耐圧化が困難である
という問題があった。As described above, in the conventional method for increasing the breakdown voltage of a semiconductor power element, the junction termination portion is pn.
This was based on the assumption of joining. For this reason, there is a problem that it is difficult to increase the breakdown voltage of the semiconductor power element in the case of a substrate having a small diffusion coefficient without a sufficient pn junction at the junction termination.
【0010】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、接合終端部に十分なp
n接合が無い場合でも、高耐圧を実現できる構造の高耐
圧半導体装置を提供することにある。The present invention has been made in view of the above circumstances, and an object thereof is to provide a structure in which a sufficient p is provided at the end of the junction.
An object of the present invention is to provide a high withstand voltage semiconductor device having a structure capable of realizing a high withstand voltage even without an n-junction.
【0011】[0011]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明の高耐圧半導体装置は、半導体基板に形成
され、トレンチ構造を有し、阻止状態で前記トレンチ構
造と前記半導体基板との接合から空乏層が伸び、且つ該
空乏層によって阻止状態の耐圧が決まる高耐圧半導体素
子の主電流が流れる領域と、前記主電流が流れる領域を
囲むように形成されると共に前記主電流が流れる電極が
形成されていない複数の溝を内部に有し、且つ耐圧向上
用pn接合を含まない接合終端領域とを備えたことを特
徴とする。In order to achieve the above object, a high breakdown voltage semiconductor device of the present invention is formed on a semiconductor substrate and has a trench structure.
A depletion layer extends from the junction between the structure and the semiconductor substrate, and
A region where the main current of the high-voltage semiconductor element <br/> element breakdown voltage of the blocking state is determined by the depletion layer flows, the main current flows electrode while being formed so as to surround a region where the main current flows
It is characterized by having a plurality of unformed grooves therein and a junction termination region not including a pn junction for improving withstand voltage.
【0012】なお、接合終端領域とは、素子の主電流が
流れる領域以外の領域であって、耐圧を大きくするため
の構造を有する領域である。Note that the junction termination region is a region other than the region where the main current of the element flows, and has a structure for increasing the breakdown voltage.
【0013】[0013]
【作用】本発明によれば、接合終端領域内に設けられ
た、主電流が流れる電極と電気的に分離された溝により
接合終端部の空乏層電界の集中が緩和される。このた
め、接合終端部にpn接合が無くても、高耐圧化でき
る。According to the present invention, the concentration of the depletion layer electric field at the junction termination portion is reduced by the groove provided in the junction termination region and electrically separated from the electrode through which the main current flows. For this reason, even if there is no pn junction at the junction termination, a high breakdown voltage can be achieved.
【0014】[0014]
【実施例】以下、図面を参照しながら実施例を説明す
る。Embodiments will be described below with reference to the drawings.
【0015】図1は、本発明の第1の実施例に係る高耐
圧半導体装置の平面図である。FIG. 1 is a plan view of a high breakdown voltage semiconductor device according to a first embodiment of the present invention.
【0016】図中、1は素子の主電流が流れる領域を示
しており、この主電流領域1の回りの領域3は接合終端
領域を示している。接合終端領域3の内部には、複数の
リング状の溝2が主電流領域1と同心的に形成されてい
る。なお、溝の数は、必要な耐圧等に応じて決まるもの
で1個の場合もある。In FIG. 1, reference numeral 1 denotes a region where the main current of the element flows, and region 3 around the main current region 1 denotes a junction termination region. A plurality of ring-shaped grooves 2 are formed concentrically with the main current region 1 inside the junction termination region 3. The number of grooves is determined according to the required withstand voltage and the like, and may be one.
【0017】図2は、図1の一点鎖線で囲まれた領域の
より詳しい図であり、図2(a)は平面図、図2(b)
は図2(a)のA−A´断面図である。FIG. 2 is a more detailed view of a region surrounded by a dashed line in FIG. 1, FIG. 2 (a) is a plan view, and FIG. 2 (b)
FIG. 2 is a sectional view taken along line AA ′ of FIG.
【0018】図中、10は低濃度のn型SiC基板を示
しており、このn型SiC基板10の主電流領域1の表
面には、内面がSiO2 膜5で被覆された溝4が形成さ
れている。なお、2つの溝4の間のn型SiC基板の表
面には、SiO2 膜5は形成されていない。そして、溝
4の内部は金属材料で充填され、2つの溝4はこの金属
材料で繋がっている。In FIG. 1, reference numeral 10 denotes a low-concentration n-type SiC substrate. On the surface of the main current region 1 of the n-type SiC substrate 10, a groove 4 whose inner surface is covered with a SiO 2 film 5 is formed. Have been. Note that the SiO 2 film 5 is not formed on the surface of the n-type SiC substrate between the two grooves 4. The inside of the groove 4 is filled with a metal material, and the two grooves 4 are connected by this metal material.
【0019】即ち、金属材料が充填された2つの溝4の
中に形成された電極に接してアノード電極6が形成さ
れ、そして、このアノード電極6とn型SiC基板10
とのショットキー接合により、ショットキーバリアダイ
オードが形成されている。このショットキーバリアダイ
オードの主電流が流れる電極はアノード電極6である。That is, the anode electrode 6 is formed in contact with the electrodes formed in the two grooves 4 filled with the metal material, and the anode electrode 6 and the n-type SiC substrate 10 are formed.
A Schottky barrier diode is formed by the Schottky junction with this. The electrode through which the main current of the Schottky barrier diode flows is the anode electrode 6.
【0020】一方、接合終端領域3の溝2も同様にその
内面がSiO2 膜5で被覆され、その内部が金属材料で
充填され、2つの溝2が金属材料で繋がっている。On the other hand, the groove 2 in the junction termination region 3 is similarly covered with an SiO 2 film 5 on its inner surface, filled with a metal material, and the two grooves 2 are connected with the metal material.
【0021】即ち、2つの溝2ごとに電位の浮いた電極
7が1つ形成されている。That is, one electrode 7 having a floating potential is formed for each two grooves 2.
【0022】また、n型SiC基板10の裏面には、高
濃度のn型半導体膜からなるコンタクト層8を介してカ
ソード電極9が設けられている。このカソード電極9に
は主電流は流れない。On the back surface of the n-type SiC substrate 10, a cathode electrode 9 is provided via a contact layer 8 made of a high-concentration n-type semiconductor film. No main current flows through the cathode electrode 9.
【0023】このようなショットキーバリアダイオード
からなる高耐圧半導体装置に高電圧の逆バイアス電圧が
印加されると、n型SiC基板10内に大きい空乏層が
形成され、高電界が生じる。When a high reverse bias voltage is applied to such a high breakdown voltage semiconductor device comprising a Schottky barrier diode, a large depletion layer is formed in the n-type SiC substrate 10, and a high electric field is generated.
【0024】ここで、溝2が無いと各電位の電気力線が
全てアノード電極6の端部下部11に集中し、素子が破
壊される。Here, if there is no groove 2, all lines of electric force of each potential are concentrated on the lower end portion 11 of the anode electrode 6, and the element is destroyed.
【0025】一方、本実施例のように、溝2を設ける
と、各1対の溝ごとに等電位の電気力線が集まり、そし
て、アノード電極11から遠い1対の溝ほど高い電位の
電気力線が集まる。この結果、基板表面の電界強度が小
さくなり、素子の破壊を防止できる。On the other hand, when the grooves 2 are provided as in the present embodiment, the lines of electric force having the same potential are gathered for each pair of grooves, and the electric potential of the pair of grooves farther from the anode electrode 11 is higher. Force lines gather. As a result, the electric field intensity on the surface of the substrate is reduced, and destruction of the element can be prevented.
【0026】かくして本実施例によれば、SiCのよう
に不純物拡散が難しい材料からなる半導体基板を用い、
接合終端部にpn接合が無い場合でも、接合終端領域3
に形成され、アノード電極11と電気的に分離された溝
2により、接合部分の空乏層電界を緩和でき、電界集中
による素子破壊を防止できる。Thus, according to the present embodiment, a semiconductor substrate made of a material which is difficult to diffuse impurities, such as SiC, is used.
Even if there is no pn junction at the junction termination, the junction termination region 3
The trench 2 formed electrically and separated from the anode electrode 11 can reduce the depletion layer electric field at the junction and prevent the element from being broken due to electric field concentration.
【0027】図3は、本発明の第2の実施例に係る高耐
圧半導体装置の構造を示す素子断面図である。なお、以
下、前出の図の高耐圧半導体装置と対応する部分には前
出の図と同一符号を付し、詳細な説明は省略する。FIG. 3 is an element sectional view showing the structure of a high breakdown voltage semiconductor device according to a second embodiment of the present invention. In the following, portions corresponding to the high-breakdown-voltage semiconductor device in the above-described drawings are denoted by the same reference numerals as those in the above-described drawings, and detailed description thereof will be omitted.
【0028】本実施例の高耐圧半導体装置が先の実施例
のそれと異なる点は、接合終端領域3内の電位の浮いた
電極7を抵抗体12を介してカソード電極9に接続し、
電極7の電位を固定したことにある。The high voltage semiconductor device of this embodiment is different from that of the previous embodiment in that an electrode 7 having a floating potential in the junction termination region 3 is connected to a cathode electrode 9 via a resistor 12.
That is, the potential of the electrode 7 is fixed.
【0029】このように構成された高耐圧半導体装置で
も先の実施例のそれと同様な効果が得られるのは勿論の
こと、本実施例では、電極7の電位がアノード電位とカ
ソード電位との間の電位に固定されているので、確実に
アノード電極6に遠い1対の溝2ほど大きい電位の電気
力線を集めることができ、空乏層電界を緩和できる電界
分布を確実に形成できる。In the high breakdown voltage semiconductor device constructed as described above, the same effect as that of the previous embodiment can be obtained, and in this embodiment, the potential of the electrode 7 is between the anode potential and the cathode potential. Since the electric field lines having a larger electric potential can be surely collected in the pair of grooves 2 farther from the anode electrode 6, an electric field distribution capable of relaxing the electric field of the depletion layer can be surely formed.
【0030】これは先の実施例のように電位に浮いた電
極7の電位が固定されていないと、電極7に電荷が溜ま
った場合に、溝2により形成された電界分布が変化し、
接合終端部の空乏層電界が強くなる恐れがあるからであ
る。If the electric potential of the electrode 7 floating at the electric potential is not fixed as in the previous embodiment, the electric field distribution formed by the groove 2 changes when electric charges are accumulated in the electrode 7,
This is because the electric field of the depletion layer at the junction termination may be increased.
【0031】なお、抵抗体12の代わりにキャパシタ等
を用いても良い。Incidentally, a capacitor or the like may be used instead of the resistor 12.
【0032】図4は、本発明の第3の実施例に係る高耐
圧半導体装置の平面図である。また、図5は、図4の一
点鎖線で囲まれた領域のより詳しい図であり、図5
(a)は平面図、図5(b)は図5(a)のB−B´断
面図である。FIG. 4 is a plan view of a high withstand voltage semiconductor device according to a third embodiment of the present invention. FIG. 5 is a more detailed view of a region surrounded by a dashed line in FIG.
5A is a plan view, and FIG. 5B is a cross-sectional view taken along line BB ′ of FIG. 5A.
【0033】本実施例の高耐圧半導体装置がこれまでの
実施例のそれと異なる点は、主電流領域1の回りに連続
したリング状の溝の代わり、断続したリング状の溝2a
を設けたことにある。The high voltage semiconductor device of the present embodiment is different from that of the previous embodiments in that an intermittent ring-shaped groove 2a is used instead of a continuous ring-shaped groove around the main current region 1.
Has been established.
【0034】このような構成にしても先の実施例と同様
な効果が得られる。なお、図3のように電位の浮いた電
極7aを固定しても良い。また、リング状の代わりに
は、散乱的に溝2aを設けても良い。Even with such a configuration, the same effect as that of the previous embodiment can be obtained. The electrode 7a having a floating potential may be fixed as shown in FIG. Instead of the ring shape, the grooves 2a may be provided in a scattering manner.
【0035】図6は、本発明の第4の実施例に係る高耐
圧半導体装置の断面図である。FIG. 6 is a sectional view of a high withstand voltage semiconductor device according to a fourth embodiment of the present invention.
【0036】本実施例の高耐圧半導体装置が先の実施例
と異なる点は、1つの溝2bに1つの電位の浮いた電極
7bを設ける共に、電位の浮いた電極7bが溝2bから
横方向に引き出されていることにある。The difference between the high breakdown voltage semiconductor device of the present embodiment and the previous embodiment is that one floating electrode 7b is provided in one groove 2b and the floating electrode 7b is arranged in a lateral direction from the groove 2b. It has been drawn to.
【0037】このように構成された高耐圧半導体装置で
は、電極7bがフイールドプレートの機能を果たすの
で、先の実施例に比べて、より高い空乏層電界の緩和が
期待できる。In the high breakdown voltage semiconductor device configured as described above, since the electrode 7b functions as a field plate, higher relaxation of the depletion layer electric field can be expected as compared with the previous embodiment.
【0038】図7は、本発明の第5の実施例に係る高耐
圧半導体装置の断面図である。FIG. 7 is a sectional view of a high breakdown voltage semiconductor device according to a fifth embodiment of the present invention.
【0039】図中、31は低濃度のn型SiC基板を示
しており、その裏面側にはp型の半導体からなるコンタ
クト層32を介してアノード電極33が設けられてい
る。In the figure, reference numeral 31 denotes a low-concentration n-type SiC substrate, and an anode electrode 33 is provided on the back surface thereof via a contact layer 32 made of a p-type semiconductor.
【0040】n型SiC基板31の表面下部にはSiO
2 膜等の絶縁膜34が埋め込まれている。また、主電流
領域1のn型SiC基板31上には絶縁層35に埋めこ
まれたゲート電極36が設けられ、そして、カソード電
極37がn型SiC基板31に接して設けられている。
このカソード電極37とn型SiC基板31とでショッ
トキー接合が形成され、先の実施例と同様にショットキ
ーバリアダイオードが形成されいてる。On the lower surface of the n-type SiC substrate 31, SiO
An insulating film 34 such as two films is embedded. A gate electrode 36 embedded in an insulating layer 35 is provided on the n-type SiC substrate 31 in the main current region 1, and a cathode electrode 37 is provided in contact with the n-type SiC substrate 31.
A Schottky junction is formed between the cathode electrode 37 and the n-type SiC substrate 31, and a Schottky barrier diode is formed as in the previous embodiment.
【0041】一方、接合終端領域3のn型SiC基板3
1上には絶縁膜38が設けられ、この絶縁膜38は電位
の浮いた電極39で覆われている。この電位の浮いた電
極39は絶縁層40によって互いに電気的に分離されて
いる。On the other hand, the n-type SiC substrate 3 in the junction termination region 3
An insulating film 38 is provided on 1, and the insulating film 38 is covered with an electrode 39 having a floating potential. The electrodes 39 having the floating potential are electrically separated from each other by the insulating layer 40.
【0042】また、主電流領域1と接合終端領域3と境
界ではゲート電極36a,絶縁層35aを共有している
場合もある。The boundary between the main current region 1 and the junction termination region 3 may share the gate electrode 36a and the insulating layer 35a.
【0043】このように構成された高耐圧半導体装置に
高電圧の逆バイアス電圧が印加されると、接合終端領域
3内の基板表面の絶縁膜38と基板中の2つの絶縁膜3
とからなる1組の絶縁膜が先の実施例の1対の溝と同様
な機能を果たす。When a high reverse bias voltage is applied to the high breakdown voltage semiconductor device thus configured, the insulating film 38 on the substrate surface in the junction termination region 3 and the two insulating films 3 in the substrate
A set of insulating films consisting of the same functions as the pair of grooves in the previous embodiment.
【0044】この結果、接合終端部の空乏層電界を緩和
でき、電界集中による素子破壊を防止できる。なお、主
電流領域の絶縁膜34は無くても良いが、あったほうが
空乏層電界を緩和する効果が高くなる。As a result, the electric field in the depletion layer at the junction termination can be alleviated, and element destruction due to electric field concentration can be prevented. Although the insulating film 34 in the main current region may not be provided, the effect of reducing the electric field of the depletion layer becomes higher when the insulating film 34 is provided.
【0045】[0045]
【0046】[0046]
【0047】[0047]
【0048】[0048]
【0049】なお、本発明は上述した実施例に限定され
るものではない。例えば、上記実施例では、2つの溝ご
とに1つの電位が浮いた電極を設けた実施例があった
が、3つ,4つ或いはそれ以上の溝ごとに1つの電位が
浮いた電極を設けても良い。The present invention is not limited to the embodiment described above. For example, in the above embodiment, there is an embodiment in which one floating electrode is provided for every two grooves. However, one floating electrode is provided for every three, four or more grooves. May be.
【0050】更に、2つの溝ごとに1つの電位が浮いた
電極と3つの溝ごとに1つの電位が浮いた電極とのよう
に、溝数の異なる電位の浮いた電極が混在しても良い。In addition, floating electrodes having different numbers of grooves may be mixed, such as an electrode having one floating potential every two grooves and an electrode having one floating potential every three grooves. .
【0051】なお、上記実施例では溝内に金属材料を充
填したが、金属以外の導電材料、更には絶縁材料であっ
ても良い。In the above embodiment, the groove is filled with a metal material. However, a conductive material other than metal or an insulating material may be used.
【0052】更にまた、上記実施例を適宜組み合わせて
も良い。例えば、主電流領域のコーナー部では溝を断続
的(散乱的)に形成し、他の部分では連続な溝を形成す
る。これは特にコーナー部の曲率が大きい場合に有効で
ある。何故なら曲率が大きい部分があると連続したリン
グ状の溝の形成が困難になるからである。また、従来の
技術と組み合わせても良い。また、本発明は、SiCや
ダイヤモンドなど不純物拡散のしにくいものについて特
に効果があるが、Si等でも良い。Further, the above embodiments may be appropriately combined. For example, grooves are formed intermittently (scattered) at corners of the main current region, and continuous grooves are formed at other portions. This is particularly effective when the curvature of the corner is large. This is because if there is a portion having a large curvature, it is difficult to form a continuous ring-shaped groove. Moreover, you may combine with a prior art. In addition, the present invention is particularly effective for those which hardly diffuse impurities such as SiC and diamond, but may be Si or the like.
【0053】その他、本発明の要旨を逸脱しない範囲
で、種々変形して実施できる。In addition, various modifications can be made without departing from the spirit of the present invention.
【0054】[0054]
【発明の効果】以上詳述したように本発明によれば、接
合終端部にpn接合が無い場合や、pn接合の形成が困
難な拡散係数が小さい基板を用いた場合でも、耐圧が十
分大きい高耐圧半導体装置が得られる。As described in detail above, according to the present invention, the withstand voltage is sufficiently high even when there is no pn junction at the junction termination or when a substrate having a small diffusion coefficient is difficult to form a pn junction. A high breakdown voltage semiconductor device is obtained.
【図1】本発明の第1の実施例に係る高耐圧半導体装置
の平面図。FIG. 1 is a plan view of a high breakdown voltage semiconductor device according to a first embodiment of the present invention.
【図2】図1の一点鎖線で囲まれた領域のより詳しい
図。FIG. 2 is a more detailed view of a region surrounded by a dashed line in FIG. 1;
【図3】本発明の第2の実施例に係る高耐圧半導体装置
の断面図。FIG. 3 is a sectional view of a high breakdown voltage semiconductor device according to a second embodiment of the present invention.
【図4】本発明の第3の実施例に係る高耐圧半導体装置
の平面図。FIG. 4 is a plan view of a high breakdown voltage semiconductor device according to a third embodiment of the present invention.
【図5】図4の一点鎖線で囲まれた領域のより詳しい
図。FIG. 5 is a more detailed view of a region surrounded by a dashed line in FIG. 4;
【図6】本発明の第4の実施例に係る高耐圧半導体装置
の断面図。FIG. 6 is a sectional view of a high breakdown voltage semiconductor device according to a fourth embodiment of the present invention.
【図7】本発明の第5の実施例に係る高耐圧半導体装置
の断面図。FIG. 7 is a sectional view of a high withstand voltage semiconductor device according to a fifth embodiment of the present invention.
【図8】本発明の第6の実施例に係る高耐圧半導体装置
の断面図。FIG. 8 is a sectional view of a high breakdown voltage semiconductor device according to a sixth embodiment of the present invention.
【図9】従来の高耐圧化の手法を説明するための図。FIG. 9 is a view for explaining a conventional method for increasing the breakdown voltage.
1…主電流領域、2,2a…溝、3…接合終端領域、4
…溝、5…SiO2 膜、6…アノード電極、7,7a…
電位の浮いた電極、8…コンタクト層、9…カソード電
極、10…n型SiC基板、12…抵抗体、31…n型
SiC基板、32…コンタクト層、33…アノード電
極、34…絶縁膜、35…絶縁層、36…ゲート電極、
37…カソード電極、38…絶縁膜、39…電位の浮い
た電極、40…絶縁層、41…p型半導体層。DESCRIPTION OF SYMBOLS 1 ... Main current area, 2, 2a ... Groove, 3 ... Junction termination area, 4
... groove, 5 ... SiO 2 film, 6 ... anode electrode, 7, 7a ...
Electrode with floating potential, 8 contact layer, 9 cathode electrode, 10 n-type SiC substrate, 12 resistor, 31 n-type SiC substrate, 32 contact layer, 33 anode electrode, 34 insulating film, 35 ... insulating layer, 36 ... gate electrode,
37: a cathode electrode; 38, an insulating film; 39, an electrode with a floating potential; 40, an insulating layer; 41, a p-type semiconductor layer.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−53969(JP,A) 特開 昭53−20869(JP,A) 特開 昭58−100454(JP,A) 特開 昭53−105383(JP,A) 特開 昭51−35286(JP,A) 特開 昭62−18768(JP,A) 特開 平4−29368(JP,A) 特開 平4−239778(JP,A) 特開 平5−190831(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/331 H01L 29/06 301 H01L 29/73 H01L 29/74 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-53969 (JP, A) JP-A-53-20869 (JP, A) JP-A-58-100454 (JP, A) 105383 (JP, A) JP-A-51-35286 (JP, A) JP-A-62-18768 (JP, A) JP-A-4-29368 (JP, A) JP-A-4-239778 (JP, A) JP-A-5-190831 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/331 H01L 29/06 301 H01L 29/73 H01L 29/74
Claims (6)
し、阻止状態で前記トレンチ構造と前記半導体基板との
接合から空乏層が伸び、且つ該空乏層によって阻止状態
の耐圧が決まる高耐圧半導体素子の主電流が流れる領域
と、 前記主電流が流れる領域を囲むように形成されると共に
前記主電流が流れる電極が形成されていない複数の溝を
内部に有し、且つ耐圧向上用pn接合を含まない接合終
端領域と、 を具備してなることを特徴とする高耐圧半導体装置。1. A semiconductor device having a trench structure formed on a semiconductor substrate.
And in the blocking state, the trench structure and the semiconductor substrate
A depletion layer extends from the junction and is blocked by the depletion layer
A region in which the main current of the high breakdown voltage semiconductor element in which the breakdown voltage is determined, and a plurality of grooves formed therein so as to surround the region in which the main current flows and in which the electrodes through which the main current flows are not formed , And a junction termination region that does not include a pn junction for improving withstand voltage.
し、阻止状態で前記トレンチ構造と前記半導体基板との
接合から空乏層が伸び、且つ該空乏層によって阻止状態
の耐圧が決まる高耐圧半導体素子の主電流が流れる領域
と、 この主電流が流れる領域に形成された主電極と、 前記主電極が流れる領域を囲むように形成された複数の
溝と、これらの複数の溝の中に形成されると共に前記主
電極と電気的に分離された、お互いに分離された複数の
電極とを有し、且つ耐圧向上用pn接合を含まない接合
終端領域と、 を具備してなることを特徴とする高耐圧半導体装置。2. A semiconductor device having a trench structure formed on a semiconductor substrate.
And in the blocking state, the trench structure and the semiconductor substrate
A depletion layer extends from the junction and is blocked by the depletion layer
A region in which a main current of the high breakdown voltage semiconductor element in which the breakdown voltage is determined, a main electrode formed in the region where the main current flows, a plurality of grooves formed so as to surround the region in which the main electrode flows, A junction termination region having a plurality of electrodes formed in a plurality of grooves and electrically separated from the main electrode and separated from each other, and not including a pn junction for improving withstand voltage; A high withstand voltage semiconductor device characterized by being formed.
れ、トレンチ構造を有し、阻止状態で前記トレンチ構造
と前記半導体基板との接合から空乏層が伸び、且つ該空
乏層によって阻止状態の耐圧が決まる高耐圧半導体素子
の主電流が流れる領域と、 前記主電流が流れる領域を囲むように形成されると共に
前記主電流が流れる電極が形成されていない複数の溝を
内部に有し、且つ耐圧向上用pn接合を含まない接合終
端領域と、 を具備してなることを特徴とする高耐圧半導体装置。3. A trench formed in a semiconductor substrate made of SiC and having a trench structure, wherein said trench structure is in a blocking state.
A depletion layer extends from the junction between
A region where the main current of the high breakdown voltage semiconductor element whose breakdown voltage in the blocking state is determined by the poor layer flows, and a plurality of trenches formed so as to surround the region where the main current flows and where no electrode through which the main current flows are formed. A high-voltage semiconductor device, comprising: a junction termination region that is internally provided and does not include a pn junction for improving withstand voltage.
れ、トレンチ構造を有し、阻止状態で前記トレンチ構造
と前記半導体基板との接合から空乏層が伸び、且つ該空
乏層 によって阻止状態の耐圧が決まる高耐圧半導体素子
の主電流が流れる領域と、 この主電流が流れる領域に形成された主電極と、 前記主電極が流れる領域を囲むように形成された溝と、
この溝の中に形成されると共に前記主電極と分離された
電極とを有し、且つ耐圧向上用pn接合を含まない接合
終端領域と、 を具備してなることを特徴とする高耐圧半導体装置。4. A trench formed in a semiconductor substrate made of SiC and having a trench structure, wherein said trench structure is formed in a blocking state.
A depletion layer extends from the junction between
A region where the main current of the high breakdown voltage semiconductor element whose breakdown voltage in the blocking state is determined by the poor layer flows, a main electrode formed in the region where the main current flows, and a groove formed so as to surround the region where the main electrode flows ,
A high-voltage semiconductor device, comprising: a junction termination region formed in the groove and separated from the main electrode and not including a pn junction for improving withstand voltage. .
分離された電極は、お互いに分離された複数の電極から
なることを特徴とする請求項4に記載の高耐圧半導体装
置。5. The high breakdown voltage semiconductor device according to claim 4 , wherein said groove comprises a plurality of grooves, and said electrode separated from said main electrode comprises a plurality of electrodes separated from each other.
るか、もしくは抵抗体を介して互いに接続されると共に
前記主電極に電気的に接続された電極であることを特徴
とする請求項2又は5に記載の高耐圧半導体装置。6. The device according to claim 1, wherein the plurality of electrodes are electrodes having a floating potential or electrodes connected to each other via a resistor and electrically connected to the main electrode. Item 6. A high withstand voltage semiconductor device according to item 2 or 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25658692A JP3297087B2 (en) | 1992-09-25 | 1992-09-25 | High voltage semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25658692A JP3297087B2 (en) | 1992-09-25 | 1992-09-25 | High voltage semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06112216A JPH06112216A (en) | 1994-04-22 |
JP3297087B2 true JP3297087B2 (en) | 2002-07-02 |
Family
ID=17294692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25658692A Expired - Fee Related JP3297087B2 (en) | 1992-09-25 | 1992-09-25 | High voltage semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3297087B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2847818B2 (en) * | 1988-12-13 | 1999-01-20 | 住友化学工業株式会社 | Conductive zirconia sintered body and method for producing the same |
JP4085603B2 (en) * | 2001-08-29 | 2008-05-14 | 株式会社デンソー | Silicon carbide semiconductor device and manufacturing method thereof |
JP4527550B2 (en) * | 2005-01-07 | 2010-08-18 | 新電元工業株式会社 | SiC semiconductor device |
KR101416361B1 (en) | 2012-09-14 | 2014-08-06 | 현대자동차 주식회사 | Shottky barrier diode and method for manufacturing the same |
JP2013055347A (en) * | 2012-11-08 | 2013-03-21 | Sanken Electric Co Ltd | Semiconductor device |
TW202327108A (en) * | 2021-12-19 | 2023-07-01 | 日商新電元工業股份有限公司 | Semiconductor device |
-
1992
- 1992-09-25 JP JP25658692A patent/JP3297087B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06112216A (en) | 1994-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7572683B2 (en) | Semiconductor device, the method of manufacturing the same, and two-way switching device using the semiconductor devices | |
US7187054B2 (en) | Diode and method for manufacturing the same | |
JP2766239B2 (en) | High voltage semiconductor device | |
JP2000277726A (en) | High voltage semiconductor device | |
JP2000049360A (en) | Semiconductor device | |
JP2003174169A (en) | Semiconductor device | |
JPH04283968A (en) | Insulating gate type bipolar transistor | |
JP7546715B2 (en) | Semiconductor Device | |
JP3297087B2 (en) | High voltage semiconductor device | |
CN100499159C (en) | IGBT cathode design with improved safe operating area capability | |
US6563169B1 (en) | Semiconductor device with high withstand voltage and a drain layer having a highly conductive region connectable to a diffused source layer by an inverted layer | |
JP3522887B2 (en) | High voltage semiconductor device | |
JPH06283727A (en) | Power semiconductor element | |
US10600898B2 (en) | Vertical bidirectional insulated gate turn-off device | |
JP4177229B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH07221326A (en) | Planar semiconductor device | |
JPH0888357A (en) | Lateral igbt | |
JPH0195568A (en) | Semiconductor device | |
JP2002237605A (en) | Semiconductor element | |
JPH04363068A (en) | semiconductor equipment | |
JPH0974187A (en) | High voltage horizontal semiconductor device | |
JP3249175B2 (en) | Thyristor with insulated gate and high breakdown voltage semiconductor device | |
JPH08102536A (en) | Insulated gate type semiconductor device | |
JP2689719B2 (en) | Semiconductor device | |
JPH07221290A (en) | Planar semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080412 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090412 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100412 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |