JP3292146B2 - 空気調和機 - Google Patents
空気調和機Info
- Publication number
- JP3292146B2 JP3292146B2 JP18189898A JP18189898A JP3292146B2 JP 3292146 B2 JP3292146 B2 JP 3292146B2 JP 18189898 A JP18189898 A JP 18189898A JP 18189898 A JP18189898 A JP 18189898A JP 3292146 B2 JP3292146 B2 JP 3292146B2
- Authority
- JP
- Japan
- Prior art keywords
- distributor
- liquid
- gas
- indoor
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Air Conditioning Control Device (AREA)
Description
【0001】
【発明の属する技術分野】本発明は、1台の室外ユニッ
トに複数台の室内ユニットを接続し得る空気調和機に関
する。
トに複数台の室内ユニットを接続し得る空気調和機に関
する。
【0002】
【従来の技術】一般に1台の室外ユニットに複数台の室
内ユニットを接続してなる多室空気調和機は、例えば特
開昭63−169451号公報に記載のように、室外ユニット内
部に分岐回路を形成し、複数台の室内ユニットを並列に
室外ユニットに接続して構成したもの、あるいは、特開
昭63−91465号公報に記載のように、1台の室外ユニッ
トと複数の室内ユニットを設け、冷凍サイクルの主回路
に室内ユニット内の室内熱交換器をそれぞれ並列に接続
させる中間ユニットを設けて多室形空調機を構成したも
のが開示されている。
内ユニットを接続してなる多室空気調和機は、例えば特
開昭63−169451号公報に記載のように、室外ユニット内
部に分岐回路を形成し、複数台の室内ユニットを並列に
室外ユニットに接続して構成したもの、あるいは、特開
昭63−91465号公報に記載のように、1台の室外ユニッ
トと複数の室内ユニットを設け、冷凍サイクルの主回路
に室内ユニット内の室内熱交換器をそれぞれ並列に接続
させる中間ユニットを設けて多室形空調機を構成したも
のが開示されている。
【0003】
【発明が解決しようとする課題】上記従来技術は、室外
ユニット内に並列接続の分岐回路を形成するか、室内ユ
ニット内の室内熱交換器を1つの分岐点においてそれぞ
れ並列に接続させる中間ユニットを設ける構成であるの
で、設置可能な室内ユニットの台数が予め決められてお
り、室内ユニットの台数の自由な選定及び追加が困難で
ある。即ち、室内ユニットを新たに増設しようとする
と、新たに室外ユニット及び室内ユニットの制御機構を
変更する必要がある。
ユニット内に並列接続の分岐回路を形成するか、室内ユ
ニット内の室内熱交換器を1つの分岐点においてそれぞ
れ並列に接続させる中間ユニットを設ける構成であるの
で、設置可能な室内ユニットの台数が予め決められてお
り、室内ユニットの台数の自由な選定及び追加が困難で
ある。即ち、室内ユニットを新たに増設しようとする
と、新たに室外ユニット及び室内ユニットの制御機構を
変更する必要がある。
【0004】本発明の目的は、1台の室外ユニットに対
し複数の室内ユニットを接続可能とし、家屋の壁を這う
配管及び配線の長さを低減し、家屋の外観の低下と配
管、配線作業を容易にした空気調和機を提供することに
ある。
し複数の室内ユニットを接続可能とし、家屋の壁を這う
配管及び配線の長さを低減し、家屋の外観の低下と配
管、配線作業を容易にした空気調和機を提供することに
ある。
【0005】
【課題を解決するため手段】上記目的は、1台の室外ユ
ニットと、この室外ユニットに接続されるガス側接続管
及び液側接続管と、前記ガス側接続管から分岐したガス
側分岐管と、前記液側接続管から分岐した液側分岐管
と、このガス側分岐管及び液側分岐管とを収納した分配
器と、この分配器内のガス側分岐管及び液側分岐管が接
続される室内ユニットとを備えた空気調和機において、
前記分配器内に作動媒体の流量を制御する弁と、前記室
内ユニットからの信号を受信し、これらの信号に基づき
演算された結果を前記室外ユニットに出力する分配制御
手段とを備え、前記分配器を前記ガス側接続管と液側接
続管とに順次取り付けることによって複数の室内ユニッ
トが接続され、この分配器が夫々の室内ユニットの近傍
に設けられたことにより達成される。
ニットと、この室外ユニットに接続されるガス側接続管
及び液側接続管と、前記ガス側接続管から分岐したガス
側分岐管と、前記液側接続管から分岐した液側分岐管
と、このガス側分岐管及び液側分岐管とを収納した分配
器と、この分配器内のガス側分岐管及び液側分岐管が接
続される室内ユニットとを備えた空気調和機において、
前記分配器内に作動媒体の流量を制御する弁と、前記室
内ユニットからの信号を受信し、これらの信号に基づき
演算された結果を前記室外ユニットに出力する分配制御
手段とを備え、前記分配器を前記ガス側接続管と液側接
続管とに順次取り付けることによって複数の室内ユニッ
トが接続され、この分配器が夫々の室内ユニットの近傍
に設けられたことにより達成される。
【0006】
【0007】
【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1は、本発明の第1の実施の形態に係る多室形
空気調和機の冷凍サイクルを示す図、図2は室内ユニッ
トが1台のセパレートタイプの空気調和機の冷凍サイク
ルを示す図、図3は本発明の第1の実施の形態に係る空
気調和機の制御回路図である。
する。図1は、本発明の第1の実施の形態に係る多室形
空気調和機の冷凍サイクルを示す図、図2は室内ユニッ
トが1台のセパレートタイプの空気調和機の冷凍サイク
ルを示す図、図3は本発明の第1の実施の形態に係る空
気調和機の制御回路図である。
【0008】図1において、1は室外ユニットであり能
力に応じて回転数を変えることができる圧縮機8,冷房
運転と暖房運転の切り換え時に冷媒の流れ方向を切り換
える四方弁9,室外側熱交換器10,室外側熱交換器1
0,室外側熱交換器10に送風する室外ファン11,電
動式の主膨張弁12,アキュームレータからなる。室外
ユニット1内の四方弁9にはガス側接続管4Aが接続さ
れ、電動式の主膨張弁12には液側接続管5Aが接続さ
れており、室内側熱交換器室内ファン等を内蔵した室内
ユニットと接続可能となっている。複数の室内ユニット
との接続は次のようにして行う。
力に応じて回転数を変えることができる圧縮機8,冷房
運転と暖房運転の切り換え時に冷媒の流れ方向を切り換
える四方弁9,室外側熱交換器10,室外側熱交換器1
0,室外側熱交換器10に送風する室外ファン11,電
動式の主膨張弁12,アキュームレータからなる。室外
ユニット1内の四方弁9にはガス側接続管4Aが接続さ
れ、電動式の主膨張弁12には液側接続管5Aが接続さ
れており、室内側熱交換器室内ファン等を内蔵した室内
ユニットと接続可能となっている。複数の室内ユニット
との接続は次のようにして行う。
【0009】2A,2B,2Xはそれぞれ本発明の分配
器であり、ガス側接続管と接続し両端に接続部を有する
ガス側配管(図中に14A,14B,14Xで示す)
と、該ガス側配管から分岐し途中に二方弁(図中に17
A,17B,17Xで示す)を設けた分岐回路であるガ
ス側分岐管(図中に16A,16B,16Xで示す)及
び、液側接続管と接続し両端に接続部を有する液側配管
(図中に15A,15B,15Xで示す)と、該液側配
管から分岐し途中に流量制御弁(図中に19A,19
B,19Xで示す)を設けた分岐回路である液側分岐管
(図中に18A,18B,18Xで示す)から構成され
ている。この分配器2A,2B,2Xにより、室内側熱
交換器20A,室内ファン21Aを備えた室内ユニット
3A及び同様の構成の室内ユニット3B,3Xとは以下
の接続を行う。まず前記ガス側接続管4A,液側接続管
5Aの管端に前記分配器2Aを接続し、ガス側分岐管1
6A,液側分岐管18Aに室内ユニット3Aを接続し、
前記分配器2Aの他端にガス側接続管4B,液側接続管
5Bを接続し、さらにその管端に分配器2Bを接続し、
以下同様にして室内ユニット3A,3Xと接続する。す
なわち、主回路を構成しているガス側接続管と液側接続
管に対し直列に分配器を設け、各分配器と各室内ユニッ
トをそれぞれ接続している。
器であり、ガス側接続管と接続し両端に接続部を有する
ガス側配管(図中に14A,14B,14Xで示す)
と、該ガス側配管から分岐し途中に二方弁(図中に17
A,17B,17Xで示す)を設けた分岐回路であるガ
ス側分岐管(図中に16A,16B,16Xで示す)及
び、液側接続管と接続し両端に接続部を有する液側配管
(図中に15A,15B,15Xで示す)と、該液側配
管から分岐し途中に流量制御弁(図中に19A,19
B,19Xで示す)を設けた分岐回路である液側分岐管
(図中に18A,18B,18Xで示す)から構成され
ている。この分配器2A,2B,2Xにより、室内側熱
交換器20A,室内ファン21Aを備えた室内ユニット
3A及び同様の構成の室内ユニット3B,3Xとは以下
の接続を行う。まず前記ガス側接続管4A,液側接続管
5Aの管端に前記分配器2Aを接続し、ガス側分岐管1
6A,液側分岐管18Aに室内ユニット3Aを接続し、
前記分配器2Aの他端にガス側接続管4B,液側接続管
5Bを接続し、さらにその管端に分配器2Bを接続し、
以下同様にして室内ユニット3A,3Xと接続する。す
なわち、主回路を構成しているガス側接続管と液側接続
管に対し直列に分配器を設け、各分配器と各室内ユニッ
トをそれぞれ接続している。
【0010】又、前記ガス側分岐管と室内側熱交換器の
ガス側との接続には第2のガス側接続管(図中に7A,
7B,7Xで示す)及び前記液側分岐管と室内側熱交換
器の液側との接続には第2の液側接続管を用いて行って
いる。
ガス側との接続には第2のガス側接続管(図中に7A,
7B,7Xで示す)及び前記液側分岐管と室内側熱交換
器の液側との接続には第2の液側接続管を用いて行って
いる。
【0011】22は、室外ユニット1から最も遠い位置
にある分配器2Xのガス側配管14Xと液側配管15Xの
バイパス路を形成するキャピラリチューブであり、該キ
ャピラリチューブ22の抵抗は暖房運転時にガス側接続
管4B,4Xからの放熱により凝縮する冷媒量よりわず
かに多くの冷媒がキャピラリチューブ22に流れるよう
に選んでいる。各接続管はユニオンで接続され、着脱可
能になっている。
にある分配器2Xのガス側配管14Xと液側配管15Xの
バイパス路を形成するキャピラリチューブであり、該キ
ャピラリチューブ22の抵抗は暖房運転時にガス側接続
管4B,4Xからの放熱により凝縮する冷媒量よりわず
かに多くの冷媒がキャピラリチューブ22に流れるよう
に選んでいる。各接続管はユニオンで接続され、着脱可
能になっている。
【0012】図2は室内ユニットを1台しか接続しない
場合を示しており、その時の接続方法を示している。図
2において、図1と同一符号は同一部品を表わす。同図
において、4は室外ユニット1と室内ユニット3Aのガ
ス側を接続するガス側接続管、5は室外ユニット1と室
内ユニット3Aの液側を接続する液側接続管である。
場合を示しており、その時の接続方法を示している。図
2において、図1と同一符号は同一部品を表わす。同図
において、4は室外ユニット1と室内ユニット3Aのガ
ス側を接続するガス側接続管、5は室外ユニット1と室
内ユニット3Aの液側を接続する液側接続管である。
【0013】なお、図2に示すセパレートタイプの空気
調和機を図1に示す多室形空気調和機に変更する場合
は、ガス側接続管4及び液側接続管5の途中に分配器2
Aを設け、順次分配器1つずつ分岐する接続し、その分
配器と室内ユニットとを接続することにより、容易に変
更することができる。
調和機を図1に示す多室形空気調和機に変更する場合
は、ガス側接続管4及び液側接続管5の途中に分配器2
Aを設け、順次分配器1つずつ分岐する接続し、その分
配器と室内ユニットとを接続することにより、容易に変
更することができる。
【0014】この多室形空気調和機の制御回路構成を図
3により説明する。室外ユニット1には、吐出冷媒温度
センサ25,圧縮機吸込温度センサ26,室外熱交換器
温度センサ27が設けられており、圧縮機8を駆動する
インバータ回路30,四方弁9を駆動する四方弁駆動装
置31,室外ファン11を駆動する室外ファン駆動装置
32及び主膨張弁12を駆動する主膨張弁駆動装置33
を制御する室外制御器28を備えている。
3により説明する。室外ユニット1には、吐出冷媒温度
センサ25,圧縮機吸込温度センサ26,室外熱交換器
温度センサ27が設けられており、圧縮機8を駆動する
インバータ回路30,四方弁9を駆動する四方弁駆動装
置31,室外ファン11を駆動する室外ファン駆動装置
32及び主膨張弁12を駆動する主膨張弁駆動装置33
を制御する室外制御器28を備えている。
【0015】分配器2A,2B,2Xにはそれぞれ液側
分岐管温度センサ34A,34B,34Xが設置されて
おり、又、二方弁17A,17B,17Xを開閉する二
方弁駆動装置35A,35B,35X及び流量制御弁1
9A,19B,19Xを駆動する流量制御弁駆動装置3
6A,36B,36Xと、該流量制御弁駆動装置を制御
する分配制御器23A,23B,23Xが設置されてい
る。
分岐管温度センサ34A,34B,34Xが設置されて
おり、又、二方弁17A,17B,17Xを開閉する二
方弁駆動装置35A,35B,35X及び流量制御弁1
9A,19B,19Xを駆動する流量制御弁駆動装置3
6A,36B,36Xと、該流量制御弁駆動装置を制御
する分配制御器23A,23B,23Xが設置されてい
る。
【0016】室内ユニット3A,3B,3Xには、それ
ぞれ室内熱交換器中間温度センサ37A,37B,37
Xと、室内空気温度センサ38A,38B,38Xと、
運転モード(40A,40B,40X)室内の設定温度
(41A,41B,41X)を選定する操作器39A,3
9B,39Xと、さらに室内ファン21A,21B,2
1Xを駆動する室内ファン駆動装置42A,42B,4
2Xと、その室内ファン駆動装置を制御する室内制御器
24A,24B,24Xが設置されている。
ぞれ室内熱交換器中間温度センサ37A,37B,37
Xと、室内空気温度センサ38A,38B,38Xと、
運転モード(40A,40B,40X)室内の設定温度
(41A,41B,41X)を選定する操作器39A,3
9B,39Xと、さらに室内ファン21A,21B,2
1Xを駆動する室内ファン駆動装置42A,42B,4
2Xと、その室内ファン駆動装置を制御する室内制御器
24A,24B,24Xが設置されている。
【0017】室外制御器と分配制御器,分配制御器と分
配制器及び分配制御器と室内制御器は相方向にデータ転
送可能となっており、運転モード,各センサ検出出力,
要求回転数,主膨張弁開度等を各機器間を接続する信号
線を介して転送する。
配制器及び分配制御器と室内制御器は相方向にデータ転
送可能となっており、運転モード,各センサ検出出力,
要求回転数,主膨張弁開度等を各機器間を接続する信号
線を介して転送する。
【0018】以上のように構成した空気調和機の動作を
説明する。まず、全ての室内ユニットを冷房運転する場
合を説明する。すべての操作器39A,39B,39X
の運転モード40A,40B,40Xを冷房運転に設定
すると、二方弁17A,17B,17Xが開状態に、四
方弁19が冷房運転側に設定され、室外ファン11,室
内ファン21A,21B,21XがONになる。また、
一定周期で室内ユニット3Xの設定温度41Xと室内空
気温度センサ38Xで検出した温度差に比例した圧縮機
8の要求回転数fXを分配制御器23Xに転送する。同
様にして、室内ユニット3Aからは要求回転数fA、室
内ユニット3Bからは要求回転数fBがそれぞれ分配制
御器23A,23Bに転送される。分配制御器23A,
23B,23Xはそれぞれ室外ユニット1から遠方側の
分配制御器の要求回転数と室内制御器の圧縮機の要求回
転数を順次合計して室外ユニット1側に近い方の分配制
御に転送する。すなわち、室外ユニット1から最遠方の
分配制御器23Xでは室内ユニット3Xの要求回転数f
Xを分配制御器23Bに転送し、分配制御器23Bは要
求回転数fXと室内ユニット3Bの要求回転数fBの合計
を分配制御器23Aに転送し、室外ユニット1から最近
傍の分配制御器23Aでは、分配制御器23Bからの要
求回転数fX+fBと室内ユニット3Aからの要求回転数
fAの合計値fX+fB+fAを室外制御器28に転送し
て、インバータ回路30を介して圧縮機8の回転数をf
X+fB+fAになるように制御する。さらに、分配制御
器2A,2B,2Xからは要求回転数と同時に要求回転
数に応じた主膨張弁12の開度信号が室外制御器28に
転送され、主膨張弁駆動装置33によって主膨張弁12
の開度が設定される。流量制御弁19A,19B,19
Xは室内制御器24A,24B,24Xからの要求回転
数fA,fB,fXに応じた開度になるように流量制御弁
駆動装置36A,36B,36Xによって設定される。
説明する。まず、全ての室内ユニットを冷房運転する場
合を説明する。すべての操作器39A,39B,39X
の運転モード40A,40B,40Xを冷房運転に設定
すると、二方弁17A,17B,17Xが開状態に、四
方弁19が冷房運転側に設定され、室外ファン11,室
内ファン21A,21B,21XがONになる。また、
一定周期で室内ユニット3Xの設定温度41Xと室内空
気温度センサ38Xで検出した温度差に比例した圧縮機
8の要求回転数fXを分配制御器23Xに転送する。同
様にして、室内ユニット3Aからは要求回転数fA、室
内ユニット3Bからは要求回転数fBがそれぞれ分配制
御器23A,23Bに転送される。分配制御器23A,
23B,23Xはそれぞれ室外ユニット1から遠方側の
分配制御器の要求回転数と室内制御器の圧縮機の要求回
転数を順次合計して室外ユニット1側に近い方の分配制
御に転送する。すなわち、室外ユニット1から最遠方の
分配制御器23Xでは室内ユニット3Xの要求回転数f
Xを分配制御器23Bに転送し、分配制御器23Bは要
求回転数fXと室内ユニット3Bの要求回転数fBの合計
を分配制御器23Aに転送し、室外ユニット1から最近
傍の分配制御器23Aでは、分配制御器23Bからの要
求回転数fX+fBと室内ユニット3Aからの要求回転数
fAの合計値fX+fB+fAを室外制御器28に転送し
て、インバータ回路30を介して圧縮機8の回転数をf
X+fB+fAになるように制御する。さらに、分配制御
器2A,2B,2Xからは要求回転数と同時に要求回転
数に応じた主膨張弁12の開度信号が室外制御器28に
転送され、主膨張弁駆動装置33によって主膨張弁12
の開度が設定される。流量制御弁19A,19B,19
Xは室内制御器24A,24B,24Xからの要求回転
数fA,fB,fXに応じた開度になるように流量制御弁
駆動装置36A,36B,36Xによって設定される。
【0019】圧縮機8を吐出した高温高圧のガス冷媒
は、四方弁9を通り室外側熱交換器10で外気に放熱し
凝縮する。この凝縮した液冷媒は主膨張弁12で減圧さ
れ気液二相の冷媒となり、液側接続管5Aを通り分配器
2Aに送られる。分配器2Aの液側配管15Aに送られ
た冷媒の一部は液側分岐管18Aへ、残りは液側接続管
15B,15Xよりさらに分配器2B,2Xに送られ
る。液側分岐管18Aへ入った冷媒は流量制御弁19A
でさらに減圧され第2の液側接続管7Aを通り室内ユニ
ツト3Aに送られ、室内側熱交換器20Aで吸熱し、ガ
ス冷媒となって第2のガス側接続管6Aを通り分配器2
Aに戻り、ガス側分岐管16A,二方弁17Aを通り、
ガス側配管14Aで同様に室内ユニット3B,3Xでガ
ス冷媒となり、ガス側接続管4X,4Bより戻る冷媒と
合流しガス側接続管4Aを通り四方弁9に送られ、アキ
ュームレータ13を経て圧縮機8に戻る。ここで、流量
制御弁19A,19B,19Xの開度は、要求回転数に
応じて制御されているために、室内側熱交換器20A,
20B,20Xにはそれぞれの要求回転数に適した冷媒
量が供給される。したがって、室内ユニット3A,3
B,3Xでの吸熱量は要求回転数に応じて適正に制御さ
れる。
は、四方弁9を通り室外側熱交換器10で外気に放熱し
凝縮する。この凝縮した液冷媒は主膨張弁12で減圧さ
れ気液二相の冷媒となり、液側接続管5Aを通り分配器
2Aに送られる。分配器2Aの液側配管15Aに送られ
た冷媒の一部は液側分岐管18Aへ、残りは液側接続管
15B,15Xよりさらに分配器2B,2Xに送られ
る。液側分岐管18Aへ入った冷媒は流量制御弁19A
でさらに減圧され第2の液側接続管7Aを通り室内ユニ
ツト3Aに送られ、室内側熱交換器20Aで吸熱し、ガ
ス冷媒となって第2のガス側接続管6Aを通り分配器2
Aに戻り、ガス側分岐管16A,二方弁17Aを通り、
ガス側配管14Aで同様に室内ユニット3B,3Xでガ
ス冷媒となり、ガス側接続管4X,4Bより戻る冷媒と
合流しガス側接続管4Aを通り四方弁9に送られ、アキ
ュームレータ13を経て圧縮機8に戻る。ここで、流量
制御弁19A,19B,19Xの開度は、要求回転数に
応じて制御されているために、室内側熱交換器20A,
20B,20Xにはそれぞれの要求回転数に適した冷媒
量が供給される。したがって、室内ユニット3A,3
B,3Xでの吸熱量は要求回転数に応じて適正に制御さ
れる。
【0020】また、一部の冷房運転が不要になった場合
には、運転モードを停止に選定することにより運転され
なくなった室内ユニットと接続している分配器例えば室
内ユニット3Bに接続している分配器2B内の流量制御
弁19Bを全閉にして室内側熱交換器20Bに冷媒を供
給しないようにして、外部からの吸熱をなくす。この
時、室内側熱交換器20B内の冷媒圧力はガス側配管1
4Bと同一となるため低圧になり、ガス冷媒となる。し
たがって停止室内ユニット内での液冷媒の滞留がなく、
冷凍サイクルの冷媒量不足を生じない。
には、運転モードを停止に選定することにより運転され
なくなった室内ユニットと接続している分配器例えば室
内ユニット3Bに接続している分配器2B内の流量制御
弁19Bを全閉にして室内側熱交換器20Bに冷媒を供
給しないようにして、外部からの吸熱をなくす。この
時、室内側熱交換器20B内の冷媒圧力はガス側配管1
4Bと同一となるため低圧になり、ガス冷媒となる。し
たがって停止室内ユニット内での液冷媒の滞留がなく、
冷凍サイクルの冷媒量不足を生じない。
【0021】次に暖房運転について説明する。すべての
操作器39A,39B,39Xの運転モード40A,4
0B,40Xを暖房運転に設定すると、二方弁17A,
17B,17Xが開状態に、四方弁9の流路の暖房運転
側に切り換わり、室外ファン11,室内ファン21A,
21B,21XがONになる。また、各室内ユニットか
らは、冷房運転時と同様に設定温度41A,41B,41
Xと室内温度センサ38A,38B,38Xで検出した
温度差に比例した要求回転数fA,fB,fXが分配制御
器に転送され、さらに室外制御器28に転送されての合
計値fA+fB+fXで圧縮機8を回転するように制御す
る。さらに、流量制御弁19A,19B,19Xは冷房
運転時と同様に室内ユニット3A,3B,3Xの要求回
転数に応じて弁開度が設定され、主膨張弁12は、(1)
吐出冷媒温度センサ25で検出した圧縮機出口冷媒ガス
温度が設定値Td以下の場合には室外熱交換器温度セン
サ27と圧縮機吸込温度センサ26で検出される温度差
が設定値Tsになるように制御され、(2)吐出冷媒ガス
温度が設定値Tdを超えると設定値Tdになるように弁開
度が設定される。
操作器39A,39B,39Xの運転モード40A,4
0B,40Xを暖房運転に設定すると、二方弁17A,
17B,17Xが開状態に、四方弁9の流路の暖房運転
側に切り換わり、室外ファン11,室内ファン21A,
21B,21XがONになる。また、各室内ユニットか
らは、冷房運転時と同様に設定温度41A,41B,41
Xと室内温度センサ38A,38B,38Xで検出した
温度差に比例した要求回転数fA,fB,fXが分配制御
器に転送され、さらに室外制御器28に転送されての合
計値fA+fB+fXで圧縮機8を回転するように制御す
る。さらに、流量制御弁19A,19B,19Xは冷房
運転時と同様に室内ユニット3A,3B,3Xの要求回
転数に応じて弁開度が設定され、主膨張弁12は、(1)
吐出冷媒温度センサ25で検出した圧縮機出口冷媒ガス
温度が設定値Td以下の場合には室外熱交換器温度セン
サ27と圧縮機吸込温度センサ26で検出される温度差
が設定値Tsになるように制御され、(2)吐出冷媒ガス
温度が設定値Tdを超えると設定値Tdになるように弁開
度が設定される。
【0022】暖房運転時は冷房運転とは逆に、圧縮機8
を出た高温高圧のガス冷媒は四方弁9,ガス側接続管4
A,4B,4Xに送られる。分配器2A,2B,2Xで
流量制御弁19A,19B,19Xの弁開度に応じた冷
媒流量がガス側分岐管16A,16B,16Xに分流さ
れ、それぞれ、二方弁17A,17B,17X、第2の
ガス側接続管6A,6B,6Xを通り室内ユニット3
A,3B,3Xに送られる。室内ユニット3A,3B,
3X内の室内側熱交換器20A,20B,20Xで外部
に放熱し液冷媒となり、第2の液側接続管17A,17
B,17Xより分配器2A,2B,2Xに戻り流量制御
弁19A,19B,19Xで減圧され、二相の冷媒とな
り、液側接続管5X,5B,5Aと通り、順次合流しな
がら室外ユニット1内の主膨張弁12に送られる。主膨
張弁12でさらに減圧され、室外側熱交換器10で外気
から吸熱しガス冷媒となり、四方弁9,アキュームレー
タ13を経て圧縮機8に戻る。
を出た高温高圧のガス冷媒は四方弁9,ガス側接続管4
A,4B,4Xに送られる。分配器2A,2B,2Xで
流量制御弁19A,19B,19Xの弁開度に応じた冷
媒流量がガス側分岐管16A,16B,16Xに分流さ
れ、それぞれ、二方弁17A,17B,17X、第2の
ガス側接続管6A,6B,6Xを通り室内ユニット3
A,3B,3Xに送られる。室内ユニット3A,3B,
3X内の室内側熱交換器20A,20B,20Xで外部
に放熱し液冷媒となり、第2の液側接続管17A,17
B,17Xより分配器2A,2B,2Xに戻り流量制御
弁19A,19B,19Xで減圧され、二相の冷媒とな
り、液側接続管5X,5B,5Aと通り、順次合流しな
がら室外ユニット1内の主膨張弁12に送られる。主膨
張弁12でさらに減圧され、室外側熱交換器10で外気
から吸熱しガス冷媒となり、四方弁9,アキュームレー
タ13を経て圧縮機8に戻る。
【0023】ここで、各室内ユニットの要求回転数が大
幅に異なる場合、例えば室内ユニット3Bの要求回転数
が小さい場合には、室内熱交換器中温度センサ37Bと
分岐管温度センサ34Bで検出した室内熱交換器中間温
度と、液側分岐管の流量制御弁入口温度の差が一定にな
るように室内ファン21Bの回転数を制御する。このよ
うに制御することにより、室内ユニットの放熱量が少な
い場合でも熱交換器内の冷媒量が一定に保たれ、空気調
和機の封入冷媒量を少なくできる。
幅に異なる場合、例えば室内ユニット3Bの要求回転数
が小さい場合には、室内熱交換器中温度センサ37Bと
分岐管温度センサ34Bで検出した室内熱交換器中間温
度と、液側分岐管の流量制御弁入口温度の差が一定にな
るように室内ファン21Bの回転数を制御する。このよ
うに制御することにより、室内ユニットの放熱量が少な
い場合でも熱交換器内の冷媒量が一定に保たれ、空気調
和機の封入冷媒量を少なくできる。
【0024】また、一部の暖房が不要になった場合、た
とえば、室内ユニット3Bが不要になった場合には運転
モード40Bを停止すると、二方弁17Bが閉になる。
その結果、室内熱交換器20Bには冷媒が供給されず外
部へ放熱されなくなる。また、室内側熱交換器20B内
の冷媒圧力は液側配管15Bと同一圧力となり、室内側
熱交換器20B内の冷媒は気液二相の状態で滞留し、運
転中の冷凍サイクルの冷媒が不足すると液側接続管5
A,5B,5Xの圧力が低下し、室内側交換器20B内
から冷媒が放出され、逆に冷媒が過多になると接続管5
A,5B,5Xの圧力が上昇し室内側熱交換器20Bに
冷媒が滞留して吸収され、常に適正な冷媒量で運転され
る。ここで、暖房が不要になった室内ユニットが室外ユ
ニット1から最も遠い室内ユニット3Xの場合にも、ガ
ス側接続管4Xにキャピラリチューブ22を通る冷媒が
流れるために、液冷媒の滞留は生じない。キャピラリチ
ューブ22には常に冷媒が流れるが、室内ユニットに流
れる冷媒に比べてはるかに少なく、熱的な損失はほとん
どない。
とえば、室内ユニット3Bが不要になった場合には運転
モード40Bを停止すると、二方弁17Bが閉になる。
その結果、室内熱交換器20Bには冷媒が供給されず外
部へ放熱されなくなる。また、室内側熱交換器20B内
の冷媒圧力は液側配管15Bと同一圧力となり、室内側
熱交換器20B内の冷媒は気液二相の状態で滞留し、運
転中の冷凍サイクルの冷媒が不足すると液側接続管5
A,5B,5Xの圧力が低下し、室内側交換器20B内
から冷媒が放出され、逆に冷媒が過多になると接続管5
A,5B,5Xの圧力が上昇し室内側熱交換器20Bに
冷媒が滞留して吸収され、常に適正な冷媒量で運転され
る。ここで、暖房が不要になった室内ユニットが室外ユ
ニット1から最も遠い室内ユニット3Xの場合にも、ガ
ス側接続管4Xにキャピラリチューブ22を通る冷媒が
流れるために、液冷媒の滞留は生じない。キャピラリチ
ューブ22には常に冷媒が流れるが、室内ユニットに流
れる冷媒に比べてはるかに少なく、熱的な損失はほとん
どない。
【0025】以上のように、本実施の形態によれば、室
外ユニットに主回路を構成するガス側接続管と液側接続
管とを接続し、この主回路に直列に順次分配器を接続
し、前記分配器を介して室内ユニットを設けることによ
り、順次室内ユニットを増設することが容易となり、必
要に応じて室内ユニットの台数を容易に変えることがで
きる。また、分配器に室内ユニットからの圧縮機要求回
転数と室外ユニットからより遠方側の分配器からの圧縮
機要求回転数を転送し、その合計を室外ユニットあるい
は室外ユニット最近傍側の分配器に転送する分配制御器
を設けることにより、他の制御器を変更することなしに
容易に分配器及び室内ユニットの制御器を接続できる。
さらに、室外ユニット内の主膨張弁と分配器内の流量制
御弁で減圧するために、液側接続管内の冷媒を気液二相
とすることができ、接続管内の必要冷媒量を減少でき
る。これに加えて、室外ユニット最遠方の分配器のガス
側接続管と液側接続管にバイパス路を設けることによ
り、部分的な暖房運転時にもガス側接続管に液冷媒が滞
留することがなくなり接続管長さを長くできる。また、
分配器と室内ユニットを第2の接続管により接続するこ
とで、分配器と室内ユニットを離して設置でき、例えば
分配器を外壁に設置することにより、室内の美観を損な
わない空気調和機が得られる。
外ユニットに主回路を構成するガス側接続管と液側接続
管とを接続し、この主回路に直列に順次分配器を接続
し、前記分配器を介して室内ユニットを設けることによ
り、順次室内ユニットを増設することが容易となり、必
要に応じて室内ユニットの台数を容易に変えることがで
きる。また、分配器に室内ユニットからの圧縮機要求回
転数と室外ユニットからより遠方側の分配器からの圧縮
機要求回転数を転送し、その合計を室外ユニットあるい
は室外ユニット最近傍側の分配器に転送する分配制御器
を設けることにより、他の制御器を変更することなしに
容易に分配器及び室内ユニットの制御器を接続できる。
さらに、室外ユニット内の主膨張弁と分配器内の流量制
御弁で減圧するために、液側接続管内の冷媒を気液二相
とすることができ、接続管内の必要冷媒量を減少でき
る。これに加えて、室外ユニット最遠方の分配器のガス
側接続管と液側接続管にバイパス路を設けることによ
り、部分的な暖房運転時にもガス側接続管に液冷媒が滞
留することがなくなり接続管長さを長くできる。また、
分配器と室内ユニットを第2の接続管により接続するこ
とで、分配器と室内ユニットを離して設置でき、例えば
分配器を外壁に設置することにより、室内の美観を損な
わない空気調和機が得られる。
【0026】尚上記実施の形態では第2の液側及びガス
側の接続管をユニオンで分配器,室内ユニットに着脱可
能に取り付けたが、予め分配器あるいは室内ユニットの
一方に一定長さの接続管を設けておき、必要な長さに切
断した後ユニオン等で分配器あるいは室内ユニット側に
接続してもよい。また、ガス側接続管と液側接続管のバ
イパス路は分配器間の接続管長さの合計が例えば2m以
下の短い長さであればガス側接続管内の液冷媒の滞留が
少なく、設けなくてもよい。
側の接続管をユニオンで分配器,室内ユニットに着脱可
能に取り付けたが、予め分配器あるいは室内ユニットの
一方に一定長さの接続管を設けておき、必要な長さに切
断した後ユニオン等で分配器あるいは室内ユニット側に
接続してもよい。また、ガス側接続管と液側接続管のバ
イパス路は分配器間の接続管長さの合計が例えば2m以
下の短い長さであればガス側接続管内の液冷媒の滞留が
少なく、設けなくてもよい。
【0027】図4は、本発明の他の実施の形態に係る多
室形空気調和機の冷凍サイクルを示す図である。図4に
おいて、図1と同一符号を付したものは同一部品であ
る。分配器2A,2B,2C,2Xは室内ユニットの設
置予定場所近傍に設置され、ガス側分岐管16A,16
B,16C,16Xの出口及び液側分岐管18A,18
B,18C,18Xの出口にはそれぞれ開閉可能なバル
ブ43A,43B,43C,43X、バルブ44A,4
4B,44C,44Xを設けている。分配器2A,2X
には第2のガス側接続管6A,6C、第2の液側接続管
7A,7Cを介して室内ユニット3A,3Cを設け、バ
ルブ43A,43C、バルブ44A,44Cは開状態に
室内ユニットを接続していない分配器ではバルブ43
B,43X、バルブ44B,44Xは閉状態に設定する。
室形空気調和機の冷凍サイクルを示す図である。図4に
おいて、図1と同一符号を付したものは同一部品であ
る。分配器2A,2B,2C,2Xは室内ユニットの設
置予定場所近傍に設置され、ガス側分岐管16A,16
B,16C,16Xの出口及び液側分岐管18A,18
B,18C,18Xの出口にはそれぞれ開閉可能なバル
ブ43A,43B,43C,43X、バルブ44A,4
4B,44C,44Xを設けている。分配器2A,2X
には第2のガス側接続管6A,6C、第2の液側接続管
7A,7Cを介して室内ユニット3A,3Cを設け、バ
ルブ43A,43C、バルブ44A,44Cは開状態に
室内ユニットを接続していない分配器ではバルブ43
B,43X、バルブ44B,44Xは閉状態に設定する。
【0028】以上のように構成することにより、分配器
2A,2C及び室内ユニット3A,3Cについては図1
に示した実施の形態と同様の動作を行い、同様の効果を
得る。第2の実施の形態では新たに室内ユニットを増設
する場合には、設置場所近傍の分配器、例えば分配器2
Bのバルブ43B,バルブ44Bに第2のガス側接続管
と第2の液側接続管を介して室内ユニットを設置し、室
内ユニット内の空気を真空ポンプ等で放出した後バルブ
43B,バルブ44Bを開状態にすることにより他のサ
イクル構成機器に影響を与えることなく容易に増設でき
る。逆に、室内ユニットが不要になった場合、例えば室
内ユニット3Aが不要になった場合には、バルブ43
A,バルブ44Aを閉状態にした後、室内ユニットと第
2のガス側接続管6A,第2の液側接続管7Aをバルブ
43A,バルブ44Aから外せばよい。尚、上記実施の
形態は分配器の設置台数が4台の場合について示したも
のであるが、本発明はそれ以外の設置台数についても自
由に適用できるものである。
2A,2C及び室内ユニット3A,3Cについては図1
に示した実施の形態と同様の動作を行い、同様の効果を
得る。第2の実施の形態では新たに室内ユニットを増設
する場合には、設置場所近傍の分配器、例えば分配器2
Bのバルブ43B,バルブ44Bに第2のガス側接続管
と第2の液側接続管を介して室内ユニットを設置し、室
内ユニット内の空気を真空ポンプ等で放出した後バルブ
43B,バルブ44Bを開状態にすることにより他のサ
イクル構成機器に影響を与えることなく容易に増設でき
る。逆に、室内ユニットが不要になった場合、例えば室
内ユニット3Aが不要になった場合には、バルブ43
A,バルブ44Aを閉状態にした後、室内ユニットと第
2のガス側接続管6A,第2の液側接続管7Aをバルブ
43A,バルブ44Aから外せばよい。尚、上記実施の
形態は分配器の設置台数が4台の場合について示したも
のであるが、本発明はそれ以外の設置台数についても自
由に適用できるものである。
【0029】図5は、本発明のさらに他の実施の形態に
係る多室形空気調和機のセルフシールカップリングの要
部断面図、図6は図5のセルフシールカップリングの接
続状態を示す断面図であり、該セルフシールカップリン
グは前記バルブ43A,43B,43C,43X、バル
ブ44A,44B,44C,44Xの代わりに用いたも
のである。
係る多室形空気調和機のセルフシールカップリングの要
部断面図、図6は図5のセルフシールカップリングの接
続状態を示す断面図であり、該セルフシールカップリン
グは前記バルブ43A,43B,43C,43X、バル
ブ44A,44B,44C,44Xの代わりに用いたも
のである。
【0030】図5,図6に示すセルフシールカップリン
グにおいて、Fカップリング45はOリング47でスリ
ーブ48とボディI49がシールされ、さらにリテーナ
50に取り付けられたバネ51の力でステムバルブ52
をスリーブ48に押しつけてシールを行い結合用のナッ
ト53を設けた構成となっており、Mカップリング46
はリテーナ54に設けたバネ55によりポペットバルブ
56をボディII57に押しつけてシールを行い、結合用
のネジ58と、ボディI49との結合面のパッキン59
を設けた構成となっている。Fカップリング45とMカ
ップリング46を結合すると、ステムバルブ52により
ポペットバルブ56が押され、ステムバルブ52とスリ
ーブ48のシール部及びポペットバルブ56とボディ5
7のシール部が開口して内部が連通する。一方、ボディ
49とボディ57はパッキン59でシールされるために
より密閉され外部に冷媒が漏れることはない。
グにおいて、Fカップリング45はOリング47でスリ
ーブ48とボディI49がシールされ、さらにリテーナ
50に取り付けられたバネ51の力でステムバルブ52
をスリーブ48に押しつけてシールを行い結合用のナッ
ト53を設けた構成となっており、Mカップリング46
はリテーナ54に設けたバネ55によりポペットバルブ
56をボディII57に押しつけてシールを行い、結合用
のネジ58と、ボディI49との結合面のパッキン59
を設けた構成となっている。Fカップリング45とMカ
ップリング46を結合すると、ステムバルブ52により
ポペットバルブ56が押され、ステムバルブ52とスリ
ーブ48のシール部及びポペットバルブ56とボディ5
7のシール部が開口して内部が連通する。一方、ボディ
49とボディ57はパッキン59でシールされるために
より密閉され外部に冷媒が漏れることはない。
【0031】以上のように構成したFカップリング45
を例えば図4のガス側分岐管16A,液側分岐管18A
に取り付け、Mカップリング46を第2のガス側接続管
6A,第2の液側接続管7Aに取り付けることにより、
室内ユニットの着脱が可能となり、バルブを取り付けた
場合と同様の効果が得られる。
を例えば図4のガス側分岐管16A,液側分岐管18A
に取り付け、Mカップリング46を第2のガス側接続管
6A,第2の液側接続管7Aに取り付けることにより、
室内ユニットの着脱が可能となり、バルブを取り付けた
場合と同様の効果が得られる。
【0032】さらに、本実施の形態によれば、室内ユニ
ットの着脱が容易にでき、また、Fカップリング,Mカ
ップリングともにシールされているため、取り外ずして
も冷媒もれはないため、又、新たに室内ユニットを増設
する場合には、室内ユニットに必要冷媒量が封入されて
いるものを用いることにより、室内ユニットを取りはず
す時及び、取り付け時に新たに真空引き,冷媒注入等が
不要になる。
ットの着脱が容易にでき、また、Fカップリング,Mカ
ップリングともにシールされているため、取り外ずして
も冷媒もれはないため、又、新たに室内ユニットを増設
する場合には、室内ユニットに必要冷媒量が封入されて
いるものを用いることにより、室内ユニットを取りはず
す時及び、取り付け時に新たに真空引き,冷媒注入等が
不要になる。
【0033】尚、セルフシールカップリングを接続管と
分配器の接続部に用いてもよい。この場合には分配器の
台数変更がさらに容易になる。
分配器の接続部に用いてもよい。この場合には分配器の
台数変更がさらに容易になる。
【0034】図7は、本発明のさらに他の実施の形態に
係る多室形空気調和機の冷凍サイクルを示す図である。
図7において、図1,図4と同一符号を付したものは同
一部品である。60A,60B,60C,60Xは開閉
可能なバルブ63A,63B,63C,63Xを設けた
第1のガス側分岐管62A,62B,62C,62X及
びバルブ65A,65B,65C,65Xを設けた第1
の液側分岐管64A,64B,64C,64Xからなる
第1の分配器、61A,61Cは二方弁17A,17C
を設けた第2のガス分岐管66A,66C及び流量制御
弁19A,19Cを設けた第2の液側分岐管67A,6
7Cからなる第2の分配器である。室内ユニット3A,
3Cを取り付けた第2の分配器61A,61Cと接続す
る第1の分配器60A,60C内のバルブ63A,63
C及びバルブ65A,65Cは開状態に室内ユニットを
取り付けていない第1の分配器内のバルブ63B,63
X及びバルブ65B,65Xは閉状態とすることで、図1
で示した実施の形態及び図4で示した実施の形態と同様
の動作を行い、同様の効果を得ることができる。さら
に、本実施の形態によれば、分配器を第1の分配器と第
2の分配器に分離することで、室内ユニットを将来取り
付ける予定場所には第1の分配器のみでよく、初期設備
コストが低減でき並列的な拡張も容易になる。
係る多室形空気調和機の冷凍サイクルを示す図である。
図7において、図1,図4と同一符号を付したものは同
一部品である。60A,60B,60C,60Xは開閉
可能なバルブ63A,63B,63C,63Xを設けた
第1のガス側分岐管62A,62B,62C,62X及
びバルブ65A,65B,65C,65Xを設けた第1
の液側分岐管64A,64B,64C,64Xからなる
第1の分配器、61A,61Cは二方弁17A,17C
を設けた第2のガス分岐管66A,66C及び流量制御
弁19A,19Cを設けた第2の液側分岐管67A,6
7Cからなる第2の分配器である。室内ユニット3A,
3Cを取り付けた第2の分配器61A,61Cと接続す
る第1の分配器60A,60C内のバルブ63A,63
C及びバルブ65A,65Cは開状態に室内ユニットを
取り付けていない第1の分配器内のバルブ63B,63
X及びバルブ65B,65Xは閉状態とすることで、図1
で示した実施の形態及び図4で示した実施の形態と同様
の動作を行い、同様の効果を得ることができる。さら
に、本実施の形態によれば、分配器を第1の分配器と第
2の分配器に分離することで、室内ユニットを将来取り
付ける予定場所には第1の分配器のみでよく、初期設備
コストが低減でき並列的な拡張も容易になる。
【0035】図8は本発明のさらに他の実施の形態に係
る多室形空気調和機の一体形流量制御弁、図9は図8の
一体形流量制御弁の流量特性を示す図である。
る多室形空気調和機の一体形流量制御弁、図9は図8の
一体形流量制御弁の流量特性を示す図である。
【0036】図8において、68は図1の二方弁及び流
量制御弁を一体的に形成した一体形流量制御弁である。
ボディ69に液側分岐管15及びガス側分岐管16が接
続され冷媒流路を構成している。駆動部71に設けられ
たパルスモータ(図示せず)によりシャフト70が往復
運動し、ニードル部72とオリフィス73の開度を制御
する。一体形流量制御弁68内には、さらに弁シート7
5に密着してシールを行う弁76が設けられており、バ
ネ77の力でシャフト70と連動するプランジャ74に
よって弁76の開閉を行う。
量制御弁を一体的に形成した一体形流量制御弁である。
ボディ69に液側分岐管15及びガス側分岐管16が接
続され冷媒流路を構成している。駆動部71に設けられ
たパルスモータ(図示せず)によりシャフト70が往復
運動し、ニードル部72とオリフィス73の開度を制御
する。一体形流量制御弁68内には、さらに弁シート7
5に密着してシールを行う弁76が設けられており、バ
ネ77の力でシャフト70と連動するプランジャ74に
よって弁76の開閉を行う。
【0037】以上のように構成した一体形流量制御弁の
動作について図9を用いて説明する。シャフト70のス
トロークが0の位置では弁76が弁シート75に当接し
ガス側分岐管16と室内ユニットの熱交換器とを連通す
る流路はしゃ断される。ストロークを大きくすると弁7
6が弁シート75から離れて行き弁部を流れる冷媒流量
が増加する。ストロークがx0 以上になるとガス側配管
16の流路抵抗が支配的になりストロークが変化しても
流量は一定となる。一方、液側分岐管15はストローク
0からx1ではニードル部72とオリフィス73との間
の開口面積を一定になるように設定しているために一定
流量の冷媒が流れる。ストロークがx1以上になるとニ
ードル部72とオリフィス73との間の開口面積が小さ
くなり、ストロークの増加に比例して流量が減少し、フ
ルストロークでは流路がしゃ断されて冷媒は流れなくな
る。
動作について図9を用いて説明する。シャフト70のス
トロークが0の位置では弁76が弁シート75に当接し
ガス側分岐管16と室内ユニットの熱交換器とを連通す
る流路はしゃ断される。ストロークを大きくすると弁7
6が弁シート75から離れて行き弁部を流れる冷媒流量
が増加する。ストロークがx0 以上になるとガス側配管
16の流路抵抗が支配的になりストロークが変化しても
流量は一定となる。一方、液側分岐管15はストローク
0からx1ではニードル部72とオリフィス73との間
の開口面積を一定になるように設定しているために一定
流量の冷媒が流れる。ストロークがx1以上になるとニ
ードル部72とオリフィス73との間の開口面積が小さ
くなり、ストロークの増加に比例して流量が減少し、フ
ルストロークでは流路がしゃ断されて冷媒は流れなくな
る。
【0038】以上のような構成によりガス側分岐管を開
閉する二方弁及び液側分岐管の流量を制御する流量制御
弁としての作用を行い、前記分配器と同様の動作を行
い、同様の効果を有する。
閉する二方弁及び液側分岐管の流量を制御する流量制御
弁としての作用を行い、前記分配器と同様の動作を行
い、同様の効果を有する。
【0039】以上説明した本実施の形態によれば、一体
形流量制御弁を用いることで分配器を小型にでき、さら
に二方弁と流量制御弁の駆動装置を1つにでき制御が容
易になる。
形流量制御弁を用いることで分配器を小型にでき、さら
に二方弁と流量制御弁の駆動装置を1つにでき制御が容
易になる。
【0040】図10は本発明のさらに他の実施の形態に
係る多室形空気調和機の冷凍サイクルを示す図である。
図10において、図1と同一符号は同一部品であり、7
8は余分な冷媒を溜めるレシーバタンクである。
係る多室形空気調和機の冷凍サイクルを示す図である。
図10において、図1と同一符号は同一部品であり、7
8は余分な冷媒を溜めるレシーバタンクである。
【0041】以上のように構成することにより、冷房運
転及び全室内ユニット暖房運転時には図1で示した実施
の形態と同様の動作を行う。ここで、例えば室内ユニッ
ト3Bの暖房運転を停止すると、流量制御弁19Bを閉
じるように、分配制御器23Bから制御信号を送る。し
たがって、室内側熱交換器20Bは高圧の液冷媒が滞留
し放熱がなくなる。一方、運転中の冷凍サイクル内の冷
媒量は、レシーバタンク 78から冷媒が補充されるた
めに、適正な冷媒量で運転できる。
転及び全室内ユニット暖房運転時には図1で示した実施
の形態と同様の動作を行う。ここで、例えば室内ユニッ
ト3Bの暖房運転を停止すると、流量制御弁19Bを閉
じるように、分配制御器23Bから制御信号を送る。し
たがって、室内側熱交換器20Bは高圧の液冷媒が滞留
し放熱がなくなる。一方、運転中の冷凍サイクル内の冷
媒量は、レシーバタンク 78から冷媒が補充されるた
めに、適正な冷媒量で運転できる。
【0042】以上のように、本実施の形態によれば、分
配器内の二方弁が不要になり、低価格の多室形空気調和
機を提供できる。
配器内の二方弁が不要になり、低価格の多室形空気調和
機を提供できる。
【0043】尚、本実施の形態では暖房運転の部分運転
時に停止室内ユニットの流量制御弁を閉じるようにした
が、微小量開けておいてもよい。この場合、停止ユニッ
トからもわずかに放熱するが、室内側熱交換器内に滞留
する液冷媒量が少なくなり、レシーバタンクの容量を小
さくできる。
時に停止室内ユニットの流量制御弁を閉じるようにした
が、微小量開けておいてもよい。この場合、停止ユニッ
トからもわずかに放熱するが、室内側熱交換器内に滞留
する液冷媒量が少なくなり、レシーバタンクの容量を小
さくできる。
【0044】上記実施の形態では、室内ユニットとした
室内ファンを用いた空気循環方式について説明したが、
床暖房用の床パネル,副射冷暖房用のパネルでも実施可
能である。
室内ファンを用いた空気循環方式について説明したが、
床暖房用の床パネル,副射冷暖房用のパネルでも実施可
能である。
【0045】
【発明の効果】本発明によれば、1台の室外ユニットに
対し複数の室内ユニットを接続可能とし、家屋の壁を這
う配管及び配線の長さを低減し、家屋の外観の低下と配
管、配線作業を容易にした空気調和機を提供できる。
対し複数の室内ユニットを接続可能とし、家屋の壁を這
う配管及び配線の長さを低減し、家屋の外観の低下と配
管、配線作業を容易にした空気調和機を提供できる。
【図1】本発明の一実施の形態に係る多室形空気調和機
の冷凍サイクルを示す図。
の冷凍サイクルを示す図。
【図2】セパレートタイプの空気調和機の冷凍サイクル
を示す図。
を示す図。
【図3】本発明の実施の形態に係る多室形空気調和機の
制御回路図。
制御回路図。
【図4】本発明の他の実施の形態に係る多室形空気調和
機の冷凍サイクルを示す図。
機の冷凍サイクルを示す図。
【図5】本発明のさらに他の実施の形態に係る多室形空
気調和機のセルフシールカップリングの要部断面図。
気調和機のセルフシールカップリングの要部断面図。
【図6】図5のセルフシールカップリングの接続状態を
示す断面図。
示す断面図。
【図7】本発明のさらに他の実施の形態に係る多室形空
気調和機の冷凍サイクルを示す図。
気調和機の冷凍サイクルを示す図。
【図8】本発明のさらに他の実施の形態に係る多室形空
気調和機の一体形流量制御弁。
気調和機の一体形流量制御弁。
【図9】図8の一体形流量制御弁の流量特性を示す図。
【図10】本発明のさらに他の実施の形態に係る多室形
空気調和機の冷凍サイクルを示す図。
空気調和機の冷凍サイクルを示す図。
1…室外ユニット、2A,2B,2C,2X…分配器、
3A,3B,3C,3X…室内ユニット、4,4A,4
B,4C,4X…ガス側接続管、5,5A,5B,5
C,5X…液側接続管、6A,6B,6C,6X…第2
のガス側接続管、7A,7B,7C,7X…第2の液側接
続管、12…主膨張弁、16A,16B,16C,16
X…ガス側分岐管、17A,17B,17C,17X…
二方弁、18A,18B,18C,18X…液側分岐
管、19A,19B,19C,19X…流量制御弁、22
…キャピラリチューブ、23A,23B,23X…分配
制御器、24A,24B,24X…室内制御器、28…
室外制御器、43A,43B,43C,43X,44
A,44B,44C,44X,63A,63B,63
C,63X,64A,64B,64C,64X…バル
ブ、45…Fカップリング、46…Mカップリング、4
8…スリーブ、52…ステムバルブ、56…ポペットバ
ルブ、60A,60B,60C,60X…第1の分配
器、61A,61C…第2の分配器、68…一体形流量
制御弁、70…シャフト、71…駆動部、72…ニード
ル部、73…オリフィス、74…プランジャ、75…弁
シート、76…弁、78…レシーバタンク。
3A,3B,3C,3X…室内ユニット、4,4A,4
B,4C,4X…ガス側接続管、5,5A,5B,5
C,5X…液側接続管、6A,6B,6C,6X…第2
のガス側接続管、7A,7B,7C,7X…第2の液側接
続管、12…主膨張弁、16A,16B,16C,16
X…ガス側分岐管、17A,17B,17C,17X…
二方弁、18A,18B,18C,18X…液側分岐
管、19A,19B,19C,19X…流量制御弁、22
…キャピラリチューブ、23A,23B,23X…分配
制御器、24A,24B,24X…室内制御器、28…
室外制御器、43A,43B,43C,43X,44
A,44B,44C,44X,63A,63B,63
C,63X,64A,64B,64C,64X…バル
ブ、45…Fカップリング、46…Mカップリング、4
8…スリーブ、52…ステムバルブ、56…ポペットバ
ルブ、60A,60B,60C,60X…第1の分配
器、61A,61C…第2の分配器、68…一体形流量
制御弁、70…シャフト、71…駆動部、72…ニード
ル部、73…オリフィス、74…プランジャ、75…弁
シート、76…弁、78…レシーバタンク。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 政克 茨城県土浦市神立町502番地 株式会社 日立製作所 機械研究所内 (72)発明者 浦田 和幹 茨城県土浦市神立町502番地 株式会社 日立製作所 機械研究所内 (72)発明者 坂爪 秋郎 栃木県下都賀郡大平町富田800番地 株 式会社 日立製作所 栃木工場内 (56)参考文献 特開 昭63−294463(JP,A) 実開 昭50−106940(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 41/00 F24F 11/02 102 F25B 13/00 104 F25B 41/04
Claims (1)
- 【請求項1】1台の室外ユニットと、この室外ユニット
に接続されるガス側接続管及び液側接続管と、前記ガス
側接続管から分岐したガス側分岐管と、前記液側接続管
から分岐した液側分岐管と、このガス側分岐管及び液側
分岐管とを収納した分配器と、この分配器内のガス側分
岐管及び液側分岐管が接続される室内ユニットとを備え
た空気調和機において、 前記分配器内に作動媒体の流量を制御する弁と、前記室
内ユニットからの信号を受信し、これらの信号に基づき
演算された結果を前記室外ユニットに出力する分配制御
手段とを備え、前記分配器を前記ガス側接続管と液側接
続管とに順次取り付けることによって複数の室内ユニッ
トが接続され、この分配器が夫々の室内ユニットの近傍
に設けられた空気調和機。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18189898A JP3292146B2 (ja) | 1998-06-29 | 1998-06-29 | 空気調和機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18189898A JP3292146B2 (ja) | 1998-06-29 | 1998-06-29 | 空気調和機 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8292402A Division JP3033503B2 (ja) | 1996-11-05 | 1996-11-05 | 空気調和機 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1114195A JPH1114195A (ja) | 1999-01-22 |
JP3292146B2 true JP3292146B2 (ja) | 2002-06-17 |
Family
ID=16108821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18189898A Expired - Fee Related JP3292146B2 (ja) | 1998-06-29 | 1998-06-29 | 空気調和機 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3292146B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1121947C (zh) * | 1996-06-07 | 2003-09-24 | 佳能株式会社 | 喷液头和喷液设备以及制造喷液头的方法 |
US6959471B2 (en) | 1998-11-14 | 2005-11-01 | Xaar Technology Limited | Method of manufacturing a droplet deposition apparatus |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5186398B2 (ja) * | 2009-01-22 | 2013-04-17 | 日立アプライアンス株式会社 | 空気調和機 |
WO2023073877A1 (ja) * | 2021-10-28 | 2023-05-04 | 日本電気株式会社 | 冷却装置および冷却装置の製造方法 |
WO2024185032A1 (ja) * | 2023-03-07 | 2024-09-12 | 東芝キヤリア株式会社 | 空気調和装置 |
-
1998
- 1998-06-29 JP JP18189898A patent/JP3292146B2/ja not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1121947C (zh) * | 1996-06-07 | 2003-09-24 | 佳能株式会社 | 喷液头和喷液设备以及制造喷液头的方法 |
US6959471B2 (en) | 1998-11-14 | 2005-11-01 | Xaar Technology Limited | Method of manufacturing a droplet deposition apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH1114195A (ja) | 1999-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100447204B1 (ko) | 냉난방 동시형 멀티공기조화기 및 그 제어방법 | |
KR100437805B1 (ko) | 냉난방 동시형 멀티공기조화기 및 그 제어방법 | |
JP4331544B2 (ja) | 冷暖房同時型マルチ空気調和機 | |
WO2010131335A1 (ja) | 空気調和装置 | |
KR100447202B1 (ko) | 냉난방 동시형 멀티공기조화기 및 그 제어방법 | |
KR20040017602A (ko) | 냉난방 동시형 멀티공기조화기 및 그 제어방법 | |
JP2003194384A (ja) | ヒートポンプ式空気調和機 | |
CN105953486A (zh) | 空调系统及其控制方法 | |
US5664421A (en) | Heat pump type air conditioner using circulating fluid branching passage | |
JP3292146B2 (ja) | 空気調和機 | |
US6357245B1 (en) | Apparatus for making hot-water by air conditioner/heater | |
JP3033503B2 (ja) | 空気調和機 | |
JP3033504B2 (ja) | 空気調和機 | |
US11512901B2 (en) | Adjustable capacity heat exchanger | |
KR20120047677A (ko) | 공기조화기 | |
KR940003732B1 (ko) | 공기 조화기 | |
WO2002084186A1 (en) | Continuous heating type air conditioning system | |
JPH0989416A (ja) | 空調装置 | |
JPH0451319Y2 (ja) | ||
CN222651458U (zh) | 空调系统 | |
CN220374230U (zh) | 一种空调系统和车辆 | |
KR19990038849A (ko) | 멀티형 공조기기 및 그 제어방법 | |
JP2899517B2 (ja) | 空気熱源型空調機および空調システム | |
JP3518487B2 (ja) | 温調装置の運転制御装置 | |
JPH0620053Y2 (ja) | ヒートポンプ式空調機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |