[go: up one dir, main page]

JP3144833B2 - Non-aqueous solvent secondary battery - Google Patents

Non-aqueous solvent secondary battery

Info

Publication number
JP3144833B2
JP3144833B2 JP16737291A JP16737291A JP3144833B2 JP 3144833 B2 JP3144833 B2 JP 3144833B2 JP 16737291 A JP16737291 A JP 16737291A JP 16737291 A JP16737291 A JP 16737291A JP 3144833 B2 JP3144833 B2 JP 3144833B2
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
secondary battery
battery
aqueous solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16737291A
Other languages
Japanese (ja)
Other versions
JPH05101829A (en
Inventor
裕二 望月
博義 能勢
義明 阿左美
洋司 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP16737291A priority Critical patent/JP3144833B2/en
Publication of JPH05101829A publication Critical patent/JPH05101829A/en
Application granted granted Critical
Publication of JP3144833B2 publication Critical patent/JP3144833B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、負極担持体として炭素
質材料を用いる非水溶媒二次電池に関し、とくにその改
良された負極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous solvent secondary battery using a carbonaceous material as a negative electrode carrier, and more particularly to an improved negative electrode.

【0002】[0002]

【従来の技術】近年、電子機器の発達に伴い、小形で軽
量、かつ、エネルギー密度が高く、さらに繰り返し充放
電が可能な二次電池の開発が要望されている。この種の
二次電池としては、負極活物質としてリチウム又はリチ
ウム合金を用い、正極活物質としてモリブデン、バナジ
ウム、チタン、ニオブなどの酸化物、硫化物、セレン化
物などを用いたものが知られている。
2. Description of the Related Art In recent years, with the development of electronic equipment, there has been a demand for the development of a secondary battery that is small, lightweight, has a high energy density, and can be repeatedly charged and discharged. As this type of secondary battery, those using lithium or a lithium alloy as a negative electrode active material, and using oxides such as molybdenum, vanadium, titanium, and niobium, sulfides, and selenides as a positive electrode active material are known. I have.

【0003】また最近では、高エネルギー密度を有する
マンガン酸化物のサイクル特性を改良・向上させたスピ
ネル型LiMn24 や、他のリチウムマンガン酸化物
についての検討が活発に行われている。
Recently, studies have been actively conducted on spinel-type LiMn 2 O 4 having improved and improved cycle characteristics of a manganese oxide having a high energy density and other lithium manganese oxides.

【0004】一方、正極にはこれらマンガン酸化物と異
なる反応形態である層状化合物のインターカレーション
又はドーピング現象を利用した電極活物質が注目を集め
ている。これらの電極活物質は、充電、放電反応時にお
いて複雑な化学反応を起こさないことから、極めて優れ
た充放電サイクル特性を有することが期待される。中で
も炭素質材料を負極担持体とし、正極活物質としてLi
CoO2 /LiNiO2 やTiS2 、MoS2 を用いた
電池系が提案されている。
On the other hand, for the positive electrode, an electrode active material utilizing intercalation or doping of a layered compound having a different reaction form from these manganese oxides has attracted attention. Since these electrode active materials do not cause complicated chemical reactions during charge and discharge reactions, they are expected to have extremely excellent charge / discharge cycle characteristics. Among them, a carbonaceous material is used as a negative electrode carrier, and Li is used as a positive electrode active material.
Battery systems using CoO 2 / LiNiO 2 , TiS 2 , and MoS 2 have been proposed.

【0005】これらの酸化物、硫化物、セレン化物を正
極活物質とし、リチウムを負極活物質とする電池系にお
いては、サイクルを繰り返すことによって負極活物質で
あるリチウムの溶解・析出反応が繰り返され、やがてリ
チウム金属上に針状のリチウムデンドライト析出物を形
成するという問題が生じる。そのため、電池系において
は、正極活物質中で充放電を繰り返すごとに徐々に進行
する結晶構造の崩れとともに、負極側におけるリチウム
デンドライトの生成と、負極上に析出したリチウムによ
る溶媒の分解反応によって電池寿命は規定され、500
サイクル以上の寿命と、長期間にわたる信頼性を有する
電池の製造は非常に困難であった。
In a battery system in which these oxides, sulfides, and selenides are used as a positive electrode active material and lithium is used as a negative electrode active material, the dissolution / precipitation reaction of lithium as the negative electrode active material is repeated by repeating the cycle. Eventually, a problem arises in that needle-like lithium dendrite deposits are formed on the lithium metal. Therefore, in the battery system, the battery structure gradually collapses with each repetition of charge / discharge in the positive electrode active material, lithium dendrite is generated on the negative electrode side, and the solvent is decomposed by the lithium deposited on the negative electrode to cause a solvent decomposition reaction. Life is specified, 500
It has been very difficult to manufacture a battery having a life of more than a cycle and a long-term reliability.

【0006】また、充電の際に負極で起こるリチウムデ
ンドライトを軽減するよう、アルミニウム、鉛、ケイ素
などの金属とリチウムとの合金を、負極活物質とする検
討も進められている。しかし、この場合でも、充放電を
繰り返すと合金の粉末化が起こり、電池寿命はさほど延
びない。このような問題を回避するために、各種の有機
化合物を焼成した炭素質物にリチウム又はリチウムを主
体とするアルカリ金属を担持させて、負極を構成する二
次電池が試みられている。このような負極を用いること
により、リチウムデンドライトの析出が防止されてサイ
クル特性が向上し、かつ、金属リチウムを使用していな
いため、安全性についても向上してきている。
Further, in order to reduce lithium dendrite generated at the negative electrode during charging, studies are being made on using an alloy of lithium with a metal such as aluminum, lead, or silicon as the negative electrode active material. However, even in this case, when charge and discharge are repeated, powdering of the alloy occurs, and the battery life is not significantly increased. In order to avoid such a problem, a secondary battery in which a negative electrode is formed by supporting lithium or an alkali metal mainly composed of lithium on a carbonaceous material obtained by firing various organic compounds has been attempted. By using such a negative electrode, precipitation of lithium dendrite is prevented and cycle characteristics are improved, and safety is also improved because metal lithium is not used.

【0007】しかし、炭素質材料を負極活物質とした場
合、TiS2 、MoS2 などの金属カルコゲン化合物を
正極活物質として用いると起電力が小さい(1.0〜
1.2V)。そこで、正極活物質としては、3.5V程
度の平均作動電圧を示すLiCoO2 、LiNiO2
LiCox Ni(1-x)2 などが検討されてきている。
However, when a carbonaceous material is used as the negative electrode active material, when a metal chalcogen compound such as TiS 2 or MoS 2 is used as the positive electrode active material, the electromotive force is small (from 1.0 to 1.0).
1.2V). Therefore, as the positive electrode active material, LiCoO 2 , LiNiO 2 , which exhibits an average operating voltage of about 3.5 V,
LiCo x Ni (1-x) O 2 and the like have been studied.

【0008】これらの正極・負極活物質材料は、通常、
電池電極として使用する場合には、活物質の反応を有効
に進められるように導電剤を、また電極形状を維持でき
るように結着剤を混合して使用している。たとえば、円
筒形電池においては、帯状の正極、セパレータ、負極を
渦巻状に形成した電極を使用している。この場合、帯状
の電極はステンレス、ニッケル、チタン、銅、アルミニ
ウムなどやこれらの金属の合金からなる基板上に、活物
質材料、導電剤、結着剤及び水又は有機溶媒の混合物か
らなるスラリーを塗布乾燥し、圧延して作成される。こ
のとき使用するスラリーは、だまが無く、すべてが均一
に分散されていることが望ましい。
[0008] These positive and negative electrode active material materials are usually
When used as a battery electrode, a conductive agent is used in such a manner that the reaction of the active material can proceed effectively, and a binder is used in such a manner as to maintain the shape of the electrode. For example, in a cylindrical battery, a strip-shaped electrode in which a positive electrode, a separator, and a negative electrode are formed in a spiral shape is used. In this case, the strip-shaped electrode is formed on a substrate made of stainless steel, nickel, titanium, copper, aluminum, or the like or an alloy of these metals, by applying a slurry made of a mixture of an active material, a conductive agent, a binder, and water or an organic solvent. It is made by coating, drying and rolling. It is desirable that the slurry used at this time be uniformly dispersed without any lumps.

【0009】[0009]

【発明が解決しようとする課題】しかし、炭素質材料を
負極担持体として使用した電池は、充放電サイクル寿命
が短く、また、十分な容量維持率を得ることができなか
った。すなわち、電池電極の結着剤として従来から使用
されているポリテトラフルオロエチレンを用いると、充
放電サイクルの進行とともに、リチウムと結着剤である
ポリテトラフルオロエチレンとが反応してポリテトラフ
ルオロエチレンが分解し、負極体の結着能力を大幅に低
下させる。その結果、集電体と負極担持体との間の導電
性が損なわれ、電池内部抵抗を大幅に増加させる。また
結着能力の低下による負極担持体の脱落及び内部短絡な
どの問題があった。また、従来から使用されてきた結着
剤であるエチレン−プロピレン−環状ジエンの三元共重
合体を用いたものは、負極担持体を覆うような結着形態
をとるため、電池内部抵抗を大幅に増加させ、十分な特
性を得ることができなかった。
However, a battery using a carbonaceous material as a negative electrode carrier has a short charge-discharge cycle life and cannot provide a sufficient capacity retention rate. That is, when conventionally used polytetrafluoroethylene is used as a binder for a battery electrode, as the charge / discharge cycle progresses, lithium reacts with polytetrafluoroethylene, which is a binder, to form polytetrafluoroethylene. Decomposes and greatly reduces the binding ability of the negative electrode body. As a result, the conductivity between the current collector and the negative electrode carrier is impaired, and the internal resistance of the battery is greatly increased. There were also problems such as falling off of the negative electrode carrier and internal short circuit due to a decrease in binding ability. In addition, those using a conventionally used terpolymer of ethylene-propylene-cyclic diene, which is a binder, take a binding form that covers the negative electrode carrier, so that the internal resistance of the battery is significantly increased. And sufficient characteristics could not be obtained.

【0010】本発明はかかる問題点を改善するためにな
されたもので、充放電効率が高く、充放電サイクル寿命
に優れた非水溶媒二次電池を提供しようとするものであ
る。
The present invention has been made to solve such problems, and an object thereof is to provide a nonaqueous solvent secondary battery having high charge / discharge efficiency and excellent charge / discharge cycle life.

【0011】[0011]

【課題を解決するための手段】すなわち本発明の非水溶
媒二次電池は、リチウム又はリチウムを主体とするアル
カリ金属を担持した炭素質材料からなる負極体と、セパ
レータと、リチウム含有複合酸化物を正極活物質とする
正極体とを、この順序で一体的に積層してなる発電要素
を具備する非水溶媒二次電池において、該負極体の結着
剤として、カルボキシメチルセルロース又はその塩なら
びにフッ素ゴムを用いることを特徴とする。
That is, a non-aqueous solvent secondary battery according to the present invention comprises a negative electrode made of lithium or a carbonaceous material carrying lithium-based alkali metal, a separator, and a lithium-containing composite oxide. In a non-aqueous solvent secondary battery including a power generating element obtained by integrally laminating a positive electrode body having a positive electrode active material in this order, carboxymethyl cellulose or a salt thereof and fluorine as a binder for the negative electrode body It is characterized by using rubber.

【0012】本発明で用いられるリチウム含有複合酸化
物は、一般的に次のような方法で合成される。すなわ
ち、リチウムと、Co、Ni、Fe又はMnから選ばれ
る1種又は2種以上の遷移金属の炭酸塩、硝酸塩、硫酸
塩、水酸化物などを出発原料として、これらを化学量論
比で混合し、焼成することによって得られる。なお、出
発原料としては炭酸塩が好ましい。焼成温度は出発原料
により多少異なるが、通常は600〜1,000℃の温
度範囲で、好ましくは600〜800℃の範囲である。
The lithium-containing composite oxide used in the present invention is generally synthesized by the following method. That is, lithium and one or more transition metal carbonates, nitrates, sulfates, hydroxides, etc. selected from Co, Ni, Fe or Mn are used as starting materials and mixed at a stoichiometric ratio. And fired. In addition, carbonate is preferable as a starting material. The firing temperature varies somewhat depending on the starting materials, but is usually in the temperature range of 600 to 1,000 ° C, preferably in the range of 600 to 800 ° C.

【0013】負極担持体である炭素質材料は、電池特性
の向上のために、好ましくは有機化合物を焼成してなる
炭素質材料を用いる。この炭素質材料の原料となる有機
化合物としては、通常使用されているものであれば特に
限定されるものではなく、フェノール樹脂、とくにノボ
ラック樹脂、ならびにポリアクリロニトリルなどを用い
ることができる。またこの炭素質材料としては、水素/
炭素の原子比が0.15未満であり、X線広角回折法に
よる(002)面の面間隔(d002 )が3.37Å以
上、及びc軸方向の結晶子の大きさ(Lc)が150Å
以下という結晶特性を有する有機化合物焼成体が、とく
に好ましい。
As the carbonaceous material as the negative electrode carrier, a carbonaceous material obtained by firing an organic compound is preferably used in order to improve battery characteristics. The organic compound serving as a raw material of the carbonaceous material is not particularly limited as long as it is a commonly used one, and a phenol resin, particularly a novolak resin, and polyacrylonitrile can be used. The carbonaceous material includes hydrogen /
The atomic ratio of carbon is less than 0.15, the spacing (d 002 ) of the (002) plane by X-ray wide angle diffraction is 3.37 ° or more, and the crystallite size (Lc) in the c-axis direction is 150 °.
An organic compound fired body having the following crystal characteristics is particularly preferred.

【0014】本発明において特徴的なことは、負極の結
着剤として、カルボキシメチルセルロース又はその塩
(以下、CMCという)と、フッ素ゴムとを用いること
である。
A feature of the present invention is that carboxymethylcellulose or a salt thereof (hereinafter, referred to as CMC) and fluororubber are used as a binder for the negative electrode.

【0015】CMCは特に限定はなく、カルボキシメチ
ルセルロース、そのナトリウム塩、カリウム塩、アンモ
ニウム塩、及びそれらの混合物などを用いることができ
るが、なかでもエーテル化度0.5〜2.5、平均重合
度100〜2,000、平均分子量25,000〜40
0,000のものが好ましく、アンモニウム塩が特に好
ましい。
The CMC is not particularly limited, and carboxymethylcellulose, its sodium salt, potassium salt, ammonium salt and a mixture thereof can be used. Degree 100-2,000, average molecular weight 25,000-40
000 is preferred, and ammonium salts are particularly preferred.

【0016】また、フッ素ゴムについても特に限定はな
く、四フッ化エチレンと二フッ化エチレンの共重合体、
四フッ化エチレンと六フッ化プロピレンの共重合体、ポ
リ三フッ化塩化エチレンなどが用いられ、市販品を用い
ることができるが、なかでも四フッ化エチレンと二フッ
化エチレンの共重合体が好ましい。
There is no particular limitation on the fluororubber, and a copolymer of ethylene tetrafluoride and ethylene difluoride,
Copolymers of ethylene tetrafluoride and propylene hexafluoride, poly (trifluorochloroethylene) are used, and commercially available products can be used. Among them, copolymers of ethylene tetrafluoride and ethylene difluoride are used. preferable.

【0017】なお、負極体における負極担持体の量は全
体の90重量%以上が好ましく、結着剤の量は0.5〜
5.0重量%が好ましい。そのうちCMCの量は0.5
〜3.0重量%が好ましく、1.0〜1.5重量%がさ
らに好ましい。フッ素ゴムの量は1.0重量%以上、
5.0重量%未満が好ましく、2.0〜3.0重量%が
さらに好ましい。結着剤の量が5.0重量%を越える
と、負極の内部抵抗が増加し、電池の重負荷放電の能力
を大幅に低下させるので好ましくない。またCMCの量
が3.0重量%を越えると、増粘効果が大きくなり、後
述するスラリー化が困難なため好ましくなく、フッ素ゴ
ム量が5.0重量%以上では、結着効果が大きくなり、
電池の内部抵抗を増加させる原因となるため、好ましく
ない。
The amount of the negative electrode carrier in the negative electrode body is preferably 90% by weight or more of the whole, and the amount of the binder is 0.5 to 10% by weight.
5.0% by weight is preferred. Of which CMC amount is 0.5
-3.0 wt% is preferable, and 1.0-1.5 wt% is more preferable. The amount of fluoro rubber is 1.0% by weight or more,
It is preferably less than 5.0% by weight, more preferably 2.0 to 3.0% by weight. If the amount of the binder exceeds 5.0% by weight, the internal resistance of the negative electrode increases, and the heavy load discharging capability of the battery is unpreferably reduced. On the other hand, if the amount of CMC exceeds 3.0% by weight, the thickening effect becomes large, and it is not preferable because it is difficult to form a slurry as described later. ,
It is not preferable because it causes an increase in the internal resistance of the battery.

【0018】本発明の非水溶媒二次電池に用いられる非
水電解液の電解質としては、LiPF6 、LiClO
4 、LiBF4 、LiCF3 SO3 などのリチウム塩な
どが挙げられる。該電解液の溶媒としては、プロピレン
カーボネート、エチレンカーボネート、テトラヒドロフ
ラン、2−メチルテトラヒドロフラン、γ−ブチロラク
トン、1,2−ジメトキシエタンなどが挙げられる。こ
れらの溶媒は1種又は2種以上の混合物で用いることが
でき、とくに充放電サイクル寿命を長くする観点から、
プロピレンカーボネートと1,2−ジメトキシエタンと
の混合溶媒、エチレンカーボネートと2−メチルテトラ
ヒドロフランとの混合溶媒、エチレンカーボネートと
1,2−ジメトキシエタンとの混合溶媒、プロピレンカ
ーボネートとエチレンカーボネートとの混合溶媒が望ま
しい。
As the electrolyte of the non-aqueous electrolyte used in the non-aqueous solvent secondary battery of the present invention, LiPF 6 , LiClO 2
4 , lithium salts such as LiBF 4 and LiCF 3 SO 3 . Examples of the solvent for the electrolyte include propylene carbonate, ethylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, 1,2-dimethoxyethane, and the like. These solvents can be used alone or in a mixture of two or more, and particularly from the viewpoint of extending the charge / discharge cycle life,
A mixed solvent of propylene carbonate and 1,2-dimethoxyethane, a mixed solvent of ethylene carbonate and 2-methyltetrahydrofuran, a mixed solvent of ethylene carbonate and 1,2-dimethoxyethane, and a mixed solvent of propylene carbonate and ethylene carbonate desirable.

【0019】[0019]

【発明の効果】本発明の非水溶媒二次電池は、負極担持
体に炭素質材料を用い、正極活物質としてリチウム含有
複合酸化物を用い、かつ負極体の結着剤としてCMCと
フッ素ゴムを用いることによって、充放電サイクルの進
行に伴うリチウムと結着剤の反応や、それによる結合剤
の分解を防止することができる。その結果、それが原因
で生じる負極担持体の脱落及び内部短絡を防止すること
ができる。
The nonaqueous solvent secondary battery of the present invention uses a carbonaceous material for the negative electrode carrier, a lithium-containing composite oxide as the positive electrode active material, and CMC and fluororubber as binders for the negative electrode body. By using the compound, it is possible to prevent the reaction between the lithium and the binder and the decomposition of the binder due to the progress of the charge / discharge cycle. As a result, it is possible to prevent the negative electrode carrier from dropping off and an internal short circuit caused by this.

【0020】本発明によって、容量維持率を向上し、か
つ充放電サイクル寿命が向上し、しかも電池性能が安定
な優れた非水溶媒二次電池を得ることができる。
According to the present invention, it is possible to obtain an excellent non-aqueous solvent secondary battery having an improved capacity retention ratio, an improved charge / discharge cycle life, and a stable battery performance.

【0021】[0021]

【実施例】以下、本発明を実施例及び比較例により、図
面を参照しつつ詳細に説明する。なお、本発明は実施例
によって限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the drawings by way of examples and comparative examples. The present invention is not limited by the embodiments.

【0022】実施例 市販の炭酸リチウムと炭酸コバルトを、LiとCoのモ
ル比がLi/Co=1.10になるように秤量し、乳鉢
を用いて十分に混合した。この混合物をアルミナ製のル
ツボに入れ、電気炉により、800℃で6時間加熱処理
を行った。得られた焼成物を冷却後、再度粉砕し、同様
に800℃で6時間加熱処理を行った。その後、蒸留水
で十分に洗浄し、未反応のアルカリ分を洗い流した。生
成物は粉末X線法でLiCoO2 と確認された。この生
成物を90重量%、導電剤としてアセチレンブラックを
7重量%及び結着剤としてエチレン−プロピレン−環状
ジエンの三元共重合体3重量%をヘキサン中で混練して
スラリー状の正極合剤を調製した。この正極合剤を厚さ
10μm のステンレス基板上に塗布・風乾した後、加圧
して一定の厚さにし、続いて、0.26mm厚の正極合剤
層を有する板状の正極を製造した。
Example Commercially available lithium carbonate and cobalt carbonate were weighed so that the molar ratio of Li to Co became Li / Co = 1.10, and thoroughly mixed using a mortar. This mixture was placed in an alumina crucible and heat-treated at 800 ° C. for 6 hours in an electric furnace. After the obtained fired product was cooled, it was pulverized again, and similarly heated at 800 ° C. for 6 hours. Thereafter, the resultant was sufficiently washed with distilled water to wash away unreacted alkali components. The product was identified as LiCoO 2 by powder X-ray method. 90% by weight of this product, 7% by weight of acetylene black as a conductive agent, and 3% by weight of a terpolymer of ethylene-propylene-cyclic diene as a binder are kneaded in hexane to form a slurry-like positive electrode mixture. Was prepared. This positive electrode mixture was applied on a stainless steel substrate having a thickness of 10 μm, air-dried, and then pressurized to a constant thickness, followed by producing a plate-like positive electrode having a 0.26 mm thick positive electrode mixture layer.

【0023】一方、負極担持体である炭素質材料は、ノ
ボラック樹脂を窒素雰囲気中、950℃で焼成した後、
さらに、2,000℃に加熱して炭素化し、粉砕して平
均粒径10μm の粉末とすることによって得た。
On the other hand, the carbonaceous material as the negative electrode carrier is obtained by firing a novolak resin at 950 ° C. in a nitrogen atmosphere.
Further, it was obtained by heating to 2,000 ° C. to carbonize and pulverizing it into a powder having an average particle size of 10 μm.

【0024】負極の結着剤としては、CMCとフッ素ゴ
ムを用いた。すなわちCMCは、エーテル化度:1、平
均重合度:1,000、平均分子量:50,000であ
り、中和してアンモニウム塩型としたものを用いた。ま
たフッ素ゴムは四フッ化エチレンと二フッ化エチレンの
共重合体を用いた。該CMCはあらかじめ蒸留水に溶解
させ、フッ素ゴムはエステル系溶媒に分散させて混合し
た。上記の炭素質材料と結着剤の合計との割合が重量比
で96:4、また結着剤中、CMCとフッ素ゴムの割合
が重量比で1:2となるように分散させて、スラリー状
の負極合剤を製造した。
CMC and fluorine rubber were used as a binder for the negative electrode. That is, CMC used had a degree of etherification of 1, an average degree of polymerization of 1,000, and an average molecular weight of 50,000, and was neutralized into an ammonium salt type. The fluororubber used was a copolymer of ethylene tetrafluoride and ethylene difluoride. The CMC was previously dissolved in distilled water, and the fluororubber was dispersed and mixed in an ester solvent. The slurry was dispersed such that the ratio of the total of the carbonaceous material and the binder was 96: 4 by weight, and the ratio of CMC and fluororubber in the binder was 1: 2 by weight. A negative electrode mixture was produced.

【0025】この負極合剤を厚さ10μm のステンレス
基板上に塗布・乾燥して、厚さ0.2mmの負極合剤層を
有する板上の負極を製造した。
This negative electrode mixture was coated on a stainless steel substrate having a thickness of 10 μm and dried to produce a negative electrode on a plate having a negative electrode mixture layer having a thickness of 0.2 mm.

【0026】このようにして得られた正・負極を用い
て、図1に示すような単三(AA)サイズの非水溶媒二
次電池を組み立てた。すなわち、非水溶媒二次電池1
は、底部に絶縁体2が配置され、負極端子を兼ねる有底
円筒状のステンレス容器3を有する。この容器3には、
電極群4が収納されている。この電極群4は、負極5、
セパレータ6及び正極7をこの順序で積層した帯状物
を、負極5が外側に位置するように渦巻き状に巻回した
構造になっている。前記のセパレータ6は、電解液を含
浸したポリプロピレン製多孔質フィルムから形成されて
いる。各電解液は、プロピレンカーボネートと1,2−
ジメトキシエタンとの混合溶媒(体積比率50:50)
に、電解質として六フッ化リン酸リチウム(LiPF6)
を0.5モル濃度含有する。
Using the positive and negative electrodes thus obtained, a non-aqueous solvent secondary battery of AA size as shown in FIG. 1 was assembled. That is, the non-aqueous solvent secondary battery 1
Has a bottomed cylindrical stainless steel container 3 in which an insulator 2 is disposed at the bottom and also serves as a negative electrode terminal. In this container 3,
The electrode group 4 is housed. The electrode group 4 includes a negative electrode 5,
The belt-like material in which the separator 6 and the positive electrode 7 are laminated in this order is wound in a spiral shape so that the negative electrode 5 is located outside. The separator 6 is formed from a porous polypropylene film impregnated with an electrolytic solution. Each electrolytic solution was composed of propylene carbonate and 1,2-
Mixed solvent with dimethoxyethane (volume ratio 50:50)
And lithium hexafluorophosphate (LiPF 6 ) as electrolyte
Is contained at 0.5 molar concentration.

【0027】容器3内で前記の電極群4の上方には、中
心を開口した絶縁板8が配置されている。前記の容器3
の上部開口部には、絶縁封口体9が、容器3に気密にか
しめ固定されている。この絶縁板8の中央開口部には、
正極端子10が嵌合されている。この正極端子10は、
前記の正極7に正極リード11を介して接続されてい
る。なお、前記の負極5は、図示しない負極リードを介
して負極端子である前記の容器3に接続されている。
An insulating plate 8 having an open center is arranged above the electrode group 4 in the container 3. The container 3
An insulating sealing body 9 is air-tightly fixed to the container 3 at the upper opening of the container 3. In the central opening of the insulating plate 8,
The positive electrode terminal 10 is fitted. This positive terminal 10 is
The positive electrode 7 is connected to the positive electrode 7 via a positive electrode lead 11. The negative electrode 5 is connected to the container 3 as a negative terminal via a negative lead (not shown).

【0028】比較例1 負極の結着剤にポリテトラフルオロエチレンを用いた以
外は実施例と同様にして、非水溶媒二次電池を組み立て
た。
Comparative Example 1 A non-aqueous solvent secondary battery was assembled in the same manner as in Example except that polytetrafluoroethylene was used as a binder for the negative electrode.

【0029】比較例2 負極の結着剤にエチレン−プロピレン−環状ジエンの三
元共重合体を用いた以外は実施例と同様な構成の非水溶
媒二次電池を組み立てた。
Comparative Example 2 A non-aqueous solvent secondary battery having the same structure as that of the example except that a terpolymer of ethylene-propylene-cyclic diene was used as a binder for the negative electrode was assembled.

【0030】このようにして組み立てた実施例、比較例
1、2の3種類の非水溶媒二次電池について、20℃の
一定温度、100mAの一定電流で4.3Vから3.0V
までの電圧範囲の充放電評価を行った。その結果を図2
に示す。図2のAは本発明による実施例の電池、Bは比
較例1の電池、Cは比較例2の電池の放電容量維持率曲
線である。
With respect to the three types of nonaqueous solvent secondary batteries of the embodiment and Comparative Examples 1 and 2 assembled in this manner, from 4.3 V to 3.0 V at a constant temperature of 20 ° C. and a constant current of 100 mA.
The charge / discharge evaluation in the voltage range up to was performed. Figure 2 shows the result.
Shown in 2A is a discharge capacity retention rate curve of the battery of the example according to the present invention, B is a battery of Comparative Example 1, and C is a discharge capacity retention rate curve of the battery of Comparative Example 2.

【0031】図2から明らかなように、実施例の非水溶
媒二次電池は、比較例の電池に比べて、充放電サイクル
を繰り返し行っても高い容量維持率を示し、優れた性能
を有している。さらに、評価を終了した電池を分解して
負極電極の表面状態を観察すると、比較例1の電池の電
極は、炭素材が基板より脱落し易い状態になっており、
これはリチウムと結着剤が反応して結着剤が分解したた
めと考えられる。また、比較例2の電池は、電極表面に
かなりのリチウムが析出していた。
As is apparent from FIG. 2, the non-aqueous solvent secondary battery of the example shows a higher capacity retention ratio even after repeated charge / discharge cycles than the battery of the comparative example, and has excellent performance. are doing. Furthermore, when the surface state of the negative electrode was observed by disassembling the battery after the evaluation, the electrode of the battery of Comparative Example 1 was in a state where the carbon material was easily dropped from the substrate,
This is probably because lithium and the binder reacted to decompose the binder. In the battery of Comparative Example 2, considerable lithium was deposited on the electrode surface.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の非水溶媒二次電池を示す一部断面図で
ある。
FIG. 1 is a partial cross-sectional view showing a non-aqueous solvent secondary battery of an example.

【図2】実施例及び比較例の非水溶媒二次電池における
充放電サイクル数に対する放電容量維持率の変化を示す
特性図である。
FIG. 2 is a characteristic diagram showing a change in a discharge capacity retention ratio with respect to the number of charge / discharge cycles in non-aqueous solvent secondary batteries of Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 非水溶媒二次電池 2 絶縁体 3 ステンレス容器 4 電極群 5 負極 6 セパレータ 7 正極 8 絶縁板 9 絶縁封口板 10 正極端子 11 正極リード A 実施例の電池の放電容量維持率曲線 B 比較例1 〃 〃 C 比較例2 〃 〃 DESCRIPTION OF SYMBOLS 1 Non-aqueous solvent secondary battery 2 Insulator 3 Stainless steel container 4 Electrode group 5 Negative electrode 6 Separator 7 Positive electrode 8 Insulating plate 9 Insulating sealing plate 10 Positive terminal 11 Positive electrode lead A 〃 〃 C Comparative Example 2 〃 〃

フロントページの続き (72)発明者 石原 洋司 東京都品川区南品川三丁目4番10号 東 芝電池株式会社内 (56)参考文献 特開 昭57−96471(JP,A) 特開 平2−33868(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/62 H01M 10/40 Continuation of front page (72) Inventor Yoji Ishihara 3-4-1-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation (56) References JP-A-57-96471 (JP, A) JP-A-2- 33868 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/62 H01M 10/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リチウム又はリチウムを主体とするアル
カリ金属を担持した炭素質材料からなる負極体と、セパ
レータと、リチウム含有複合酸化物を正極活物質とする
正極体とを、この順序で一体的に積層してなる発電要素
を具備する非水溶媒二次電池において、該負極体の結着
剤として、カルボキシメチルセルロース又はその塩なら
びにフッ素ゴムを用いることを特徴とする非水溶媒二次
電池。
1. An anode body made of a carbonaceous material carrying lithium or an alkali metal mainly composed of lithium, a separator, and a cathode body made of a lithium-containing composite oxide as a cathode active material are integrally formed in this order. A non-aqueous solvent secondary battery comprising a power generating element laminated on a non-aqueous solvent secondary battery, wherein carboxymethyl cellulose or a salt thereof and fluororubber are used as a binder for the negative electrode body.
JP16737291A 1991-06-13 1991-06-13 Non-aqueous solvent secondary battery Expired - Fee Related JP3144833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16737291A JP3144833B2 (en) 1991-06-13 1991-06-13 Non-aqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16737291A JP3144833B2 (en) 1991-06-13 1991-06-13 Non-aqueous solvent secondary battery

Publications (2)

Publication Number Publication Date
JPH05101829A JPH05101829A (en) 1993-04-23
JP3144833B2 true JP3144833B2 (en) 2001-03-12

Family

ID=15848495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16737291A Expired - Fee Related JP3144833B2 (en) 1991-06-13 1991-06-13 Non-aqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JP3144833B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3995791B2 (en) * 1998-03-26 2007-10-24 Tdk株式会社 Method for producing electrode for non-aqueous electrolyte battery
KR100560546B1 (en) * 2003-11-27 2006-03-15 삼성에스디아이 주식회사 Anode for a lithium secondary battery and a lithium secondary battery comprising the same
WO2011121902A1 (en) 2010-03-31 2011-10-06 パナソニック株式会社 Negative electrode for a lithium-ion secondary battery, and lithium-ion secondary battery containing said negative electrode
WO2016039271A1 (en) 2014-09-08 2016-03-17 日産化学工業株式会社 Lithium secondary battery electrode formation material and electrode manufacturing method

Also Published As

Publication number Publication date
JPH05101829A (en) 1993-04-23

Similar Documents

Publication Publication Date Title
US5620812A (en) Non-aqueous electrolyte secondary battery
JP3079343B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3918311B2 (en) Negative electrode material and non-aqueous electrolyte secondary battery using the same
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JPH04342966A (en) Secondary battery with non-aqueous solvent
JPH0935715A (en) Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery
JP3196226B2 (en) Non-aqueous electrolyte secondary battery
EP1439591A1 (en) Lithium ion secondary battery
JP3640227B2 (en) Non-aqueous secondary battery
JP3062304B2 (en) Non-aqueous solvent secondary battery
JP2002008658A (en) Lithium-titanium composite oxide for electrode active material of lithium secondary battery and method for producing the same
JP3016627B2 (en) Non-aqueous solvent secondary battery
JPH09293508A (en) Positive electrode material for lithium secondary battery, its manufacture and nonaqueous electrolyte secondary battery using it
KR20000071371A (en) Non-Aqueous Electrolyte Battery
JP3144833B2 (en) Non-aqueous solvent secondary battery
JP3079613B2 (en) Non-aqueous electrolyte secondary battery
JP2001210325A (en) Nonaqueous electrolytic solution secondary battery
JP2012069453A (en) Nonaqueous electrolyte secondary battery
JP3089662B2 (en) Non-aqueous electrolyte secondary battery
JPH04345759A (en) Non-aqueous solvent secondary battery
JP3144832B2 (en) Non-aqueous solvent secondary battery
JP3625630B2 (en) Method for producing cobalt oxide positive electrode material, and battery using cobalt oxide positive electrode material produced by the method
JPH04370661A (en) Secondary battery with nonaqueous solvent
JP3130531B2 (en) Non-aqueous solvent secondary battery
JP3017847B2 (en) Non-aqueous solvent secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees