[go: up one dir, main page]

JPH04342966A - Secondary battery with non-aqueous solvent - Google Patents

Secondary battery with non-aqueous solvent

Info

Publication number
JPH04342966A
JPH04342966A JP3214828A JP21482891A JPH04342966A JP H04342966 A JPH04342966 A JP H04342966A JP 3214828 A JP3214828 A JP 3214828A JP 21482891 A JP21482891 A JP 21482891A JP H04342966 A JPH04342966 A JP H04342966A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium
electrode body
aqueous solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3214828A
Other languages
Japanese (ja)
Inventor
Yuji Mochizuki
裕二 望月
Yoji Ishihara
石原 洋司
Hiroyoshi Nose
博義 能勢
Yoshiaki Asami
義明 阿左美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP3214828A priority Critical patent/JPH04342966A/en
Publication of JPH04342966A publication Critical patent/JPH04342966A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To equip a secondary battery with excellent charge/discharge cyclic life and a high rate of capacity retention by using carboxymethylcellulose and styrene butadiene rubber as a bonding agent for a negative electrode body. CONSTITUTION:A negative electrode body 5 consisting of a carbonaceous substance as a sintered body of an organic compound and Li or a Li-based alkali metal which is borne by this carbonaceous substance, a separator 6, and a positive electrode body 7 whose active substance is Li-containing composite oxide are put one over another consolidatedly in the sequence as named, and thus a non-aqueous solvent secondary battery 1 is constructed. Carboxymethyle cellulose and styrene butadiene rubber are used as a bonding agent for the negative electrode body 4.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は負極担持体として炭素材
料を用いる非水溶媒二次電池の負極体の改良に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a negative electrode body for a non-aqueous solvent secondary battery using a carbon material as a negative electrode carrier.

【0002】0002

【従来の技術】近年、電子機器の発達に伴い、小型で軽
量、かつ、エネルギー密度が高く、さらに繰り返し充放
電が可能な二次電池の開発が要望されている。この種の
二次電池としては、負極活物質としてリチウム又はリチ
ウム合金を用い、正極活物質としてモリブデン、バナジ
ウム、チタン、ニオブなどの酸化物、硫化物、セレン化
物等を用いたものが知られている。また最近では、高エ
ネルギー密度を有するマンガン酸化物のサイクル特性を
改良・向上させたスピネル型LiMn2O4や、他のリ
チウムマンガン酸化物についての検討が活発に行われて
いる。
BACKGROUND OF THE INVENTION In recent years, with the development of electronic devices, there has been a demand for the development of secondary batteries that are small, lightweight, have high energy density, and can be repeatedly charged and discharged. This type of secondary battery is known to use lithium or lithium alloy as the negative electrode active material and oxides, sulfides, selenides, etc. of molybdenum, vanadium, titanium, niobium, etc. as the positive electrode active material. There is. Recently, spinel-type LiMn2O4, which has improved cycle characteristics of manganese oxide having a high energy density, and other lithium manganese oxides have been actively studied.

【0003】これらのリチウムマンガン酸化物を正極活
物質とし、リチウムを負極活物質とする電池系において
は、サイクルを繰り返すことによって負極活物質である
リチウムの溶解・析出反応が繰り返され、やがてリチウ
ム基板上に針状のリチウムデンドライト析出物を形成す
るという問題が生じる。そのため、電池系においては、
正極活物質中で徐々に進行する結晶構造の崩れとともに
、負極側におけるデンドライトの生成と溶媒の分解反応
によって電池寿命は規定され、500サイクル以上の寿
命と長期間にわたる信頼性を有する電池の製造は非常に
困難であった。
[0003] In these battery systems in which lithium manganese oxide is used as a positive electrode active material and lithium is used as a negative electrode active material, by repeating the cycle, the dissolution and precipitation reactions of lithium, which is the negative electrode active material, are repeated, and eventually the lithium substrate A problem arises with the formation of acicular lithium dendrite precipitates on top. Therefore, in battery systems,
Battery life is determined by the gradual collapse of the crystal structure in the positive electrode active material, the formation of dendrites on the negative electrode side, and the decomposition reaction of the solvent, and the production of batteries with a lifespan of 500 cycles or more and long-term reliability is essential. It was extremely difficult.

【0004】このような問題を回避するために、負極に
各種の有機化合物を焼成した炭素質物に、リチウム又は
リチウムを主体とするアルカリ金属を担持させて構成す
る二次電池が試みられている。このような負極を用いる
ことにより、リチウムデンドライトの析出が防止されサ
イクル特性が向上し、かつ、金属リチウムを使用してい
ないため安全性についても向上されてきている。
[0004] In order to avoid such problems, attempts have been made to create a secondary battery in which the negative electrode is made of a carbonaceous material obtained by firing various organic compounds and supports lithium or an alkali metal mainly composed of lithium. By using such a negative electrode, precipitation of lithium dendrites is prevented, cycle characteristics are improved, and safety is also improved because metallic lithium is not used.

【0005】一方、これらマンガン酸化物と異なる反応
形態である層状化合物のインターカレーション又はドー
ピング現象を利用した電極活物質が注目を集めている。 これらの電極活物質は、充電、放電反応時において複雑
な化学反応を起こさないことから、極めて優れた充放電
サイクル特性を有することが期待される。中でも炭素質
材料を負極担持体とし、正極活物質としてLiCoO2
/LiNiO2やTiS2、MoS2を用いた電池系が
提案されている。しかし、炭素質材料を負極活物質とし
た場合、TiS2、MoS2等の金属カルコゲン化合物
を正極活物質としてもちいると起電力が小さい(1.0
〜1.2V)。そこで、正極活物質としては、3.5V
程度の平均作動電圧を示すLiCoO2、LiNiO2
、LiCoxNi(1−x)O2等が検討されてきてい
る。
On the other hand, electrode active materials that utilize the intercalation or doping phenomenon of layered compounds, which have a different reaction form from these manganese oxides, are attracting attention. Since these electrode active materials do not cause complex chemical reactions during charging and discharging reactions, they are expected to have extremely excellent charge-discharge cycle characteristics. Among them, a carbonaceous material is used as a negative electrode carrier, and LiCoO2 is used as a positive electrode active material.
Battery systems using /LiNiO2, TiS2, and MoS2 have been proposed. However, when a carbonaceous material is used as the negative electrode active material and a metal chalcogen compound such as TiS2 or MoS2 is used as the positive electrode active material, the electromotive force is small (1.0
~1.2V). Therefore, as a positive electrode active material, 3.5V
LiCoO2, LiNiO2 exhibiting an average operating voltage of about
, LiCoxNi(1-x)O2, etc. have been studied.

【0006】[0006]

【発明が解決しようとする課題】しかし、炭素質材料を
負極担持体として使用した電池は、充放電サイクル寿命
が短く又十分な容量維持率を得ることができなかった。 即ち、ここでは結着剤としてポリテトラフルオロエチレ
ンを用いたが、充放電サイクルの進行と共にリチウムと
結着剤であるポリテトラフルオロエチレンとが反応・分
解し、負極体の結着能力を大幅に低下させる。その結果
、集電体と負極担持体との導電性が損なわれ電池内部抵
抗を大幅に増加させた。また結着能力の低下による負極
担持体の脱落、及び内部短絡等の問題があった。又、結
着剤としてエチレン−プロピレン−環状ジエンの三元共
重合体を用いたものは負極担持体を覆うような結着形態
をとるため電池内部抵抗を大幅に増加させ充分な特性を
得ることができなかった。
[Problems to be Solved by the Invention] However, batteries using carbonaceous materials as negative electrode carriers have a short charge/discharge cycle life and have not been able to obtain a sufficient capacity retention rate. That is, although polytetrafluoroethylene was used as a binder here, as the charge/discharge cycle progresses, lithium and the binder polytetrafluoroethylene react and decompose, significantly reducing the binding ability of the negative electrode body. lower. As a result, the conductivity between the current collector and the negative electrode carrier was impaired, and the internal resistance of the battery was significantly increased. Further, there were problems such as falling off of the negative electrode carrier and internal short circuit due to a decrease in binding ability. In addition, those using a terpolymer of ethylene-propylene-cyclic diene as a binder have a binding form that covers the negative electrode carrier, which greatly increases the internal resistance of the battery and provides sufficient characteristics. I couldn't do it.

【0007】本発明はかかる問題点を改善するためにな
されたもので、充放電サイクル寿命に優れ、かつ高い容
量維持率をもつ非水溶媒二次電池を提供しようとするも
のである。
[0007] The present invention has been made in order to improve these problems, and aims to provide a non-aqueous solvent secondary battery that has an excellent charge/discharge cycle life and a high capacity retention rate.

【0008】[0008]

【課題を解決するための手段】本発明の非水溶媒二次電
池は、有機化合物の焼成体である炭素質物と該炭素質物
に担持されたリチウム又はリチウムを主体とするアルカ
リ金属とから成る負極体と、セパレータと、リチウム合
有複合酸化物を正極活物質とする正極体とを、この順序
で一体的に積層してなる発電要素を具備する非水溶媒二
次電池において、該負極体の結着剤として、カルボキシ
メチルセルロースとスチレンブタジエンゴムの混合溶媒
を用いることを特徴とする。
[Means for Solving the Problems] The non-aqueous solvent secondary battery of the present invention has a negative electrode comprising a carbonaceous material which is a fired product of an organic compound and lithium or an alkali metal mainly composed of lithium supported on the carbonaceous material. In a non-aqueous solvent secondary battery comprising a power generation element formed by integrally laminating in this order a separator, a separator, and a positive electrode body having a lithium-containing composite oxide as a positive electrode active material, the negative electrode body It is characterized by using a mixed solvent of carboxymethyl cellulose and styrene-butadiene rubber as a binder.

【0009】本発明で用いられるリチウム含有複合酸化
物は、一般的に次のような方法で合成される。すなわち
、リチウムと、Co,Ni,Fe,またはMnから選ば
れる1種又は2種以上の遷移金属の炭素塩、硝酸塩、硫
酸塩、水酸化物などを出発原料として、これらを化学量
論比で混合し、焼成することによって得られる。なお出
発原料としては炭酸塩が好ましい。焼成温度は出発原料
により多少異なるが、通常は600〜1,000℃の温
度範囲で、好ましくは600〜800℃の範囲である。
The lithium-containing composite oxide used in the present invention is generally synthesized by the following method. That is, using lithium and carbon salts, nitrates, sulfates, hydroxides, etc. of one or more transition metals selected from Co, Ni, Fe, or Mn as starting materials, these are mixed in stoichiometric ratios. Obtained by mixing and baking. Note that carbonates are preferred as starting materials. The firing temperature varies somewhat depending on the starting materials, but is usually in the range of 600 to 1,000°C, preferably in the range of 600 to 800°C.

【0010】負極担持体である炭素質材料は、電池特性
の向上のために、好ましくは有機化合物を焼成してなる
炭素質材を用いる。この炭素質材料の原料となる有機化
合物としては、通常使用されているものであれば特に限
定されるものではなく、フェノール樹脂、とくにノボラ
ック樹脂、ならびにポリアクリロニトリル等を用いるこ
とができる。またこの炭素質材料としては、特願平1−
283086号に示すような有機化合物焼成体の特性を
有するものが、とくに好ましい。
[0010] The carbonaceous material serving as the negative electrode carrier is preferably a carbonaceous material obtained by firing an organic compound in order to improve battery characteristics. The organic compound serving as a raw material for this carbonaceous material is not particularly limited as long as it is commonly used, and phenol resins, particularly novolak resins, polyacrylonitrile, and the like can be used. Moreover, as this carbonaceous material, patent application No.
Particularly preferred are those having the characteristics of an organic compound fired product as shown in No. 283086.

【0011】本発明で結着剤として用いられるカルボキ
シメチルセルロース(以下CMC)は、特に限定はなく
一般に市販品を用いることができるが、なかでもエーテ
ル化度0.5〜2.5、平均重合度100〜2,000
、平均分子量25,000〜400,000のもので中
和剤としてアンモニウム塩を用いたものが特に好ましい
。又、スチレン・ブタジエンゴム(以下SBR)にいて
も特に限定はなく一般品を用いることができるが、なか
でも重合率60〜95%、結合スチレン20〜50%で
、変性のSBRラテックスを用いることが好ましい。
Carboxymethylcellulose (hereinafter referred to as CMC) used as a binder in the present invention is not particularly limited, and commercially available products can generally be used. 100-2,000
, those having an average molecular weight of 25,000 to 400,000 and using an ammonium salt as a neutralizing agent are particularly preferred. In addition, there are no particular limitations on styrene-butadiene rubber (hereinafter referred to as SBR), and general products can be used, but in particular, modified SBR latex with a polymerization rate of 60 to 95% and bound styrene of 20 to 50% should be used. is preferred.

【0012】なお、負極体における負極担持体量は全体
の90重量%以上であり結着剤量は0.5〜5重量%で
ある。そのうちCMC量は0.5〜3重量%好ましくは
1〜1.5重量%であり、SBR量は1〜5重量%好ま
しくは2〜3重量%である。結着剤量が5%を越えると
、負極の内部抵抗が増加し、電池の重負荷放電の能力を
大幅に低下させるので好ましくない。またCMC量が3
%を越えると増粘効果が大きくなり後述するようなスラ
リー化が困難なため好ましくなく、SBR量が5%を越
えると、結着効果が大きくなり電池の内部抵抗を増加さ
せる原因となるため好ましくない。
[0012] The amount of the negative electrode carrier in the negative electrode body is 90% by weight or more of the total weight, and the amount of the binder is 0.5 to 5% by weight. Among these, the amount of CMC is 0.5 to 3% by weight, preferably 1 to 1.5% by weight, and the amount of SBR is 1 to 5% by weight, preferably 2 to 3% by weight. If the amount of the binder exceeds 5%, the internal resistance of the negative electrode will increase and the heavy load discharge capacity of the battery will be significantly reduced, which is not preferable. Also, the amount of CMC is 3
If the SBR amount exceeds 5%, the thickening effect becomes large and it becomes difficult to form a slurry as described later, which is undesirable. If the SBR amount exceeds 5%, the binding effect becomes large and causes an increase in the internal resistance of the battery, so it is not preferable. do not have.

【0013】本発明の非水溶媒二次電池に用いられる非
水電解液の電解質としては、LiPF6、LiClO4
、LiBF4、LiCF3SO3、等のリチウム塩など
が挙げられる。同電解液の溶媒としては、プロピレンカ
ーボネート(PC)、エチレンカーボネート(EC)、
テトラヒドロフラン、2−メチルテトラヒドロフラン、
γ−ブチロラクトン、1,2−ジメトキシエタン(DM
E)が挙げられる。これらの溶媒は1種または2種以上
の混合物で用いることができ、とくに充放電サイクル寿
命を長くする観点から、プロピレンカーボネートと1,
2−ジメトキシエタンとの混合溶媒、エチレンカーボネ
ートと2−メチルテトラヒドロフランとの混合溶媒、エ
チレンカーボネートと1,2−ジメトキシエタンとの混
合溶媒、プロピレンカーボネートとエチレンカーボネー
トとの混合溶媒が望ましい。
[0013] As the electrolyte of the non-aqueous electrolyte used in the non-aqueous solvent secondary battery of the present invention, LiPF6, LiClO4
, LiBF4, LiCF3SO3, and other lithium salts. Solvents for the electrolyte include propylene carbonate (PC), ethylene carbonate (EC),
Tetrahydrofuran, 2-methyltetrahydrofuran,
γ-Butyrolactone, 1,2-dimethoxyethane (DM
E) is mentioned. These solvents can be used alone or in a mixture of two or more, and in particular, from the viewpoint of extending the charge/discharge cycle life, propylene carbonate and 1,
A mixed solvent of 2-dimethoxyethane, a mixed solvent of ethylene carbonate and 2-methyltetrahydrofuran, a mixed solvent of ethylene carbonate and 1,2-dimethoxyethane, and a mixed solvent of propylene carbonate and ethylene carbonate are desirable.

【0014】[0014]

【作用】本発明の二次電池において、負極体の結着剤に
CMCとSBRを用いることによりリチウムと結着剤と
の反応はなくなり、その結果、充放電サイクルを繰り返
しても集電体と負極担持体との導電性を損なうことによ
り生ずる電池内部抵の増加、また結着能力の低下による
負極担持体の脱落、及び内部短絡はなくなる。従って、
充放電サイクル寿命が向上され、しかも電池性能が安定
した非水溶媒二次電池を得ることができる。
[Function] In the secondary battery of the present invention, by using CMC and SBR as the binder in the negative electrode body, there is no reaction between lithium and the binder, and as a result, even after repeated charge/discharge cycles, the current collector remains There is no increase in internal resistance of the battery caused by loss of electrical conductivity with the negative electrode carrier, and there is no possibility of the negative electrode carrier falling off due to a decrease in binding ability, and internal short circuits. Therefore,
A non-aqueous solvent secondary battery with improved charge/discharge cycle life and stable battery performance can be obtained.

【0015】[0015]

【実施例】以下、本発明を実施例及び比較例により、図
面を参照しつつ詳細に説明する。 実施例 市販の炭酸リチウム、炭酸コバルトを、LiとCoのモ
ル比でLi/Co=1.10になるように秤量し、乳鉢
において充分混合した。この混合物をアルミナ製のルツ
ボにいれ、電気炉において、800℃で6時間加熱処理
を行った。得られた焼成物は、冷却後再度粉砕し、同様
に800℃で6時間加熱処理を行い、その後、蒸留水で
充分に洗浄し、未反応のアルカリ分を洗い流した。この
生成物は粉末X線法でLiCoO2と確認された。この
生成物90重量%、導電材としてアセチレンブラック7
重量%及び結着剤としてエチレン−プロピレン−環状ジ
エンの三元共重合体3重量%をヘキサン中で混練してス
ラリー状の正極合剤を調整し、この正極合剤を厚さ10
μmのステンレス基板上に塗布・風乾した後、加圧して
一定厚にし、つづいて、0.26mm厚の正極合剤層を
有する板上の正極を製造した。
EXAMPLES The present invention will now be explained in detail by way of examples and comparative examples with reference to the drawings. Example Commercially available lithium carbonate and cobalt carbonate were weighed so that the molar ratio of Li to Co was Li/Co=1.10, and thoroughly mixed in a mortar. This mixture was placed in an alumina crucible and heat-treated at 800° C. for 6 hours in an electric furnace. The obtained baked product was cooled, then crushed again, and similarly heat-treated at 800° C. for 6 hours. Thereafter, it was thoroughly washed with distilled water to wash away unreacted alkali components. This product was confirmed to be LiCoO2 by powder X-ray method. 90% by weight of this product, acetylene black 7 as a conductive material
A positive electrode mixture in the form of a slurry was prepared by kneading 3% by weight of a terpolymer of ethylene-propylene-cyclic diene as a binder in hexane.
After coating and air-drying on a μm stainless steel substrate, pressure was applied to give a constant thickness, and a positive electrode on a plate having a positive electrode mixture layer with a thickness of 0.26 mm was manufactured.

【0016】一方、負極担持体である炭素質材料は、ノ
ボラック樹脂を窒素雰囲気下で950℃で焼成した後、
さらに、2,000℃に加熱して炭素化することによっ
て製造し、粉砕して平均径10μmの粉末とした。結着
剤に用いるCMCとSBRはそれぞれ蒸留水で溶解させ
、上記した炭素質材料と結着剤の割合が重量比で96:
4(またCMCとSBRの割合が重量比で1:2)とな
るように分散させスラリー状の負極合剤を製造した。こ
の負極合剤を厚さ10μmのステンレス基板上に塗布・
乾燥して厚さ0.2mmの負極合剤層を有する板状の負
極を製造した。このようにして得られた正・負極を用い
て、図1に示すような単三(AA)サイズの非水溶媒二
次電池を組み立てた。
On the other hand, the carbonaceous material serving as the negative electrode carrier is prepared by baking a novolak resin at 950°C in a nitrogen atmosphere.
Further, it was manufactured by heating to 2,000°C to carbonize it, and pulverized to obtain a powder with an average diameter of 10 μm. CMC and SBR used as binders were each dissolved in distilled water, and the weight ratio of the above-mentioned carbonaceous material and binder was 96:
4 (also, the ratio of CMC and SBR was 1:2 by weight) to produce a slurry-like negative electrode mixture. This negative electrode mixture was applied onto a stainless steel substrate with a thickness of 10 μm.
After drying, a plate-shaped negative electrode having a negative electrode mixture layer with a thickness of 0.2 mm was manufactured. Using the positive and negative electrodes thus obtained, an AA-sized non-aqueous solvent secondary battery as shown in FIG. 1 was assembled.

【0017】すなわち、非水溶媒二次電池1は、底部に
絶縁体2が配置され、負極端子を兼ねる有底筒状のステ
ンレス容器3を有する。この容器3には、電極群4が収
納されている。この電極群4は、負極5、セパレータ6
及び正極7をこの順序で積層した帯状物を、負極5が外
側に位置するように渦巻き状に巻回した構造になってい
る。前記のセパレータ6には、電解液を含浸したポリプ
ロピレン性多孔質フィルムから形成されている。各電解
液は、プロピレンカーボネートと1,2−ジメトキシエ
タンとの混合溶媒(体積比率50:50)に、電解質と
して六フッ化リン酸リチウム(LiPF6)を0.5モ
ル濃度含有する。容器3内で前記の電極群4の上方には
、中心を開口した絶縁板8が配置されている前記の容器
3の上部開口部には、絶縁封口体9が、該容器3に気密
にかしめ固定されている。この絶縁板8の中央開口部に
は、正極端子10が嵌合されている。この正極端子10
は、前記の正極7に正極リード11を介して接続されて
いる。なお、前記の負極5は、図示しない負極リードを
介して負極端子である前記の容器3に接続されている。
That is, the non-aqueous solvent secondary battery 1 has a bottomed cylindrical stainless steel container 3 with an insulator 2 disposed at the bottom and also serving as a negative electrode terminal. This container 3 houses an electrode group 4. This electrode group 4 includes a negative electrode 5, a separator 6
It has a structure in which a band-like material in which the positive electrode 7 and the positive electrode 7 are laminated in this order is spirally wound so that the negative electrode 5 is located on the outside. The separator 6 is formed from a polypropylene porous film impregnated with an electrolytic solution. Each electrolytic solution contains 0.5 molar concentration of lithium hexafluorophosphate (LiPF6) as an electrolyte in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane (volume ratio 50:50). An insulating plate 8 with an opening at the center is disposed above the electrode group 4 in the container 3. An insulating sealing body 9 is hermetically caulked to the container 3 at the upper opening of the container 3. Fixed. A positive electrode terminal 10 is fitted into the central opening of the insulating plate 8 . This positive terminal 10
is connected to the above-mentioned positive electrode 7 via a positive electrode lead 11. Note that the negative electrode 5 is connected to the container 3, which is a negative electrode terminal, via a negative electrode lead (not shown).

【0018】比較例1 負極の結着剤にポリテトラフルオロエチレンを用いた以
外は実施例と同様な構成の非水溶媒二次電池を組み立て
た。
Comparative Example 1 A non-aqueous solvent secondary battery was assembled in the same manner as in Example except that polytetrafluoroethylene was used as the binder for the negative electrode.

【0019】比較例2 負極の結着剤にエチレン−プロピレン−環状ジエンの三
元共重合体をもちいた以外は実施例と同様な構成の非水
溶媒二次電池を組み立てた。このようにして組み立てた
実施例、比較例1、2の3種類の非水溶媒二次電池につ
いて、20℃の一定温度、100mAの一定電流で4.
3Vから3.0Vまでの電圧範囲の充放電評価を行った
。その結果を図2に示す。図中Aは本実施例の電池、B
は比較例1の電池、Cは比較例2の電池の放電容量維持
率曲線である。図2から明らかなように、本実施例の非
水溶媒二次電池は、比較例1,2の電池に比べ充放電サ
イクルを繰り返し行っても高い容量維持率を示し、優れ
た性能を有することが分かる。又、評価を終了した電池
を分解し負極電極の表面状態を観察すると、比較例1の
電池は、電極がボロボロになっており、これはリチウム
と結着剤が反応・分解したためによるものと考えられ、
比較例2の電池は、電極表面にかなりのリチウムが析出
していた。
Comparative Example 2 A non-aqueous solvent secondary battery was assembled in the same manner as in Example except that a terpolymer of ethylene-propylene-cyclic diene was used as the binder for the negative electrode. The three types of non-aqueous solvent secondary batteries of Example, Comparative Examples 1 and 2 assembled in this manner were tested at a constant temperature of 20° C. and a constant current of 100 mA.
Charging and discharging evaluation was performed in the voltage range from 3V to 3.0V. The results are shown in FIG. In the figure, A is the battery of this example, and B is the battery of this example.
is the discharge capacity retention rate curve of the battery of Comparative Example 1, and C is the discharge capacity retention rate curve of the battery of Comparative Example 2. As is clear from FIG. 2, the nonaqueous solvent secondary battery of this example exhibits a higher capacity retention rate even after repeated charge/discharge cycles than the batteries of Comparative Examples 1 and 2, and has excellent performance. I understand. In addition, when the battery that had been evaluated was disassembled and the surface condition of the negative electrode was observed, the electrode of the battery of Comparative Example 1 was crumbled, which was thought to be due to the reaction and decomposition of the lithium and the binder. is,
In the battery of Comparative Example 2, a considerable amount of lithium was deposited on the electrode surface.

【0020】[0020]

【発明の効果】以上詳述したように、本発明の非水溶媒
二次電池は、負極担持体に炭素質材料を用い、正極活物
質としてリチウム含有複合酸化物を用い、かつ負極体の
結着剤としてCMCとSBRを用いることによって、充
放電サイクルにともなうリチウムと結着剤の反応・分解
、等をなくすことができ、前記した原因で生ずる負極担
持体の脱落及び内部短絡をも改善することができる。 よって、容量維持率を向上し、かつ長寿命を有する優れ
た非水溶媒二次電池を得ることができる。
Effects of the Invention As described in detail above, the non-aqueous solvent secondary battery of the present invention uses a carbonaceous material for the negative electrode support, a lithium-containing composite oxide as the positive electrode active material, and By using CMC and SBR as adhesives, it is possible to eliminate the reaction and decomposition of lithium and the binder during charge/discharge cycles, and it also improves the falling off of the negative electrode carrier and internal short circuits that occur due to the causes described above. be able to. Therefore, it is possible to obtain an excellent non-aqueous solvent secondary battery with improved capacity retention and long life.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例である非水溶媒二次電池の半載
断面図である。
FIG. 1 is a half-mounted sectional view of a non-aqueous solvent secondary battery that is an example of the present invention.

【図2】本発明の実施例電池Aと、比較例1電池Bと、
比較例2電池Cの充放電サイクル数と放電容量維持率と
の特性図である。
FIG. 2: Example battery A of the present invention, comparative example 1 battery B,
2 is a characteristic diagram of the number of charge/discharge cycles and the discharge capacity retention rate of Comparative Example 2 Battery C. FIG.

【符号の説明】[Explanation of symbols]

1…非水溶媒二次電池 4…電極群 5…負極 1...Nonaqueous solvent secondary battery 4...Electrode group 5...Negative electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  有機化合物の焼成体である炭素質物と
該炭素質物に担持されたリチウム又はリチウムを主体と
するアルカリ金属とから成る負極体と、セパレータと、
リチウム含有複合酸化物を正極活物質とする正極体とを
、この順序で一体的に積層してなる発電要素を具備する
非水溶媒二次電池において、該負極体の結着剤として、
カルボキシメチルセルロースとスチレンブタジエンゴム
とを用いることを特徴とする非水溶媒二次電池。
1. A negative electrode body comprising a carbonaceous material which is a fired body of an organic compound and lithium or an alkali metal mainly composed of lithium supported on the carbonaceous material, and a separator;
In a non-aqueous solvent secondary battery comprising a power generation element formed by integrally laminating in this order a positive electrode body having a lithium-containing composite oxide as a positive electrode active material, as a binder for the negative electrode body,
A non-aqueous solvent secondary battery characterized by using carboxymethyl cellulose and styrene-butadiene rubber.
JP3214828A 1991-05-21 1991-05-21 Secondary battery with non-aqueous solvent Pending JPH04342966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3214828A JPH04342966A (en) 1991-05-21 1991-05-21 Secondary battery with non-aqueous solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3214828A JPH04342966A (en) 1991-05-21 1991-05-21 Secondary battery with non-aqueous solvent

Publications (1)

Publication Number Publication Date
JPH04342966A true JPH04342966A (en) 1992-11-30

Family

ID=16662211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3214828A Pending JPH04342966A (en) 1991-05-21 1991-05-21 Secondary battery with non-aqueous solvent

Country Status (1)

Country Link
JP (1) JPH04342966A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0632513A1 (en) * 1993-06-30 1995-01-04 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrode and sealed-type nickel-metal hydride storage battery using the same
EP0778630A1 (en) 1995-12-06 1997-06-11 SANYO ELECTRIC Co., Ltd. Negative carbon electrode for nonaqueous secondary battery
FR2766969A1 (en) * 1997-08-04 1999-02-05 Alsthom Cge Alcatel Binder for electrochemical system
WO1999008335A1 (en) * 1997-08-11 1999-02-18 Sony Corporation Nonaqueous electrolyte secondary battery
WO1999065096A1 (en) * 1998-06-09 1999-12-16 Matsushita Electric Industrial Co., Ltd. Negative electrode for secondary cell, negative plate for secondary cell, and secondary cell comprising the same
JP2001236950A (en) * 2000-02-24 2001-08-31 Japan Storage Battery Co Ltd Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
US6335114B1 (en) 1998-11-16 2002-01-01 Denso Corporation Laminate-type battery and process for its manufacture
JP2002237305A (en) * 2001-02-09 2002-08-23 Yuasa Corp Non-aqueous electrolyte battery
US6652773B2 (en) 1996-10-01 2003-11-25 Nippon Zeon Co., Ltd. High gel-content polymer dispersed in a high-boiling organic medium
US6852449B2 (en) 2002-08-29 2005-02-08 Quallion Llc Negative electrode including a carbonaceous material for a nonaqueous battery
JP2005158754A (en) * 2003-11-27 2005-06-16 Samsung Sdi Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery including the same
US6998192B1 (en) 2002-08-29 2006-02-14 Quallion Llc Negative electrode for a nonaqueous battery
JP2006516795A (en) * 2003-04-07 2006-07-06 エルジー・ケム・リミテッド Dispersant composition in the production of electrode active material slurry and use thereof
US7174207B2 (en) 2004-09-23 2007-02-06 Quallion Llc Implantable defibrillator having reduced battery volume
JP2008135334A (en) * 2006-11-29 2008-06-12 Sanyo Electric Co Ltd Negative electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using this negative electrode plate
JP2010238365A (en) * 2009-03-30 2010-10-21 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery
WO2011055760A1 (en) 2009-11-06 2011-05-12 旭硝子株式会社 Binder composition for secondary battery, secondary battery electrode mix comprising same, and secondary battery
JP2012174350A (en) * 2011-02-17 2012-09-10 Toshiba Corp Electrode for battery and manufacturing method therefor, nonaqueous electrolyte battery, battery pack, and active material
US20130062571A1 (en) * 2011-09-14 2013-03-14 Samsung Electro-Mechanics Method for preparing electrode active material slurry and electrochemical capacitor comprising electrode using electrode active material slurry prepared by the method
US8728665B2 (en) 2010-03-31 2014-05-20 Panasonic Corporation Negative electrode for lithium ion secondary battery and lithium ion secondary battery including the same
WO2015053200A1 (en) 2013-10-07 2015-04-16 日産自動車株式会社 Electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using same
WO2015053201A1 (en) 2013-10-07 2015-04-16 日産自動車株式会社 Electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using same
JP2015532519A (en) * 2013-03-19 2015-11-09 エルジー・ケム・リミテッド Electrode for low resistance electrochemical element, method for producing the same, and electrochemical element including the electrode
JP2016040775A (en) * 2002-11-13 2016-03-24 イドロ−ケベックHydro−Quebec Electrode covered with a thin film obtained from an aqueous solution containing a water-soluble binder, its production method and use
JPWO2015162885A1 (en) * 2014-04-25 2017-04-13 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
CN107534146A (en) * 2015-04-28 2018-01-02 株式会社杰士汤浅国际 Nonaqueous electrolyte charge storage element negative pole
US10305109B2 (en) 2015-04-14 2019-05-28 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery and method of manufacturing the same
WO2019239947A1 (en) 2018-06-15 2019-12-19 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
WO2023243336A1 (en) * 2022-06-13 2023-12-21 株式会社Gsユアサ Negative electrode for energy storage element and energy storage element

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5527638A (en) * 1993-06-30 1996-06-18 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrode and sealed-type nickel-metal hydride storage battery using the same
EP0632513A1 (en) * 1993-06-30 1995-01-04 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrode and sealed-type nickel-metal hydride storage battery using the same
EP0778630A1 (en) 1995-12-06 1997-06-11 SANYO ELECTRIC Co., Ltd. Negative carbon electrode for nonaqueous secondary battery
US5721069A (en) * 1995-12-06 1998-02-24 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US6652773B2 (en) 1996-10-01 2003-11-25 Nippon Zeon Co., Ltd. High gel-content polymer dispersed in a high-boiling organic medium
FR2766969A1 (en) * 1997-08-04 1999-02-05 Alsthom Cge Alcatel Binder for electrochemical system
EP0907214A1 (en) * 1997-08-04 1999-04-07 Alcatel Binder for electrode of an electrochemical system employing a non-aqueous electrolyte
WO1999008335A1 (en) * 1997-08-11 1999-02-18 Sony Corporation Nonaqueous electrolyte secondary battery
WO1999065096A1 (en) * 1998-06-09 1999-12-16 Matsushita Electric Industrial Co., Ltd. Negative electrode for secondary cell, negative plate for secondary cell, and secondary cell comprising the same
US6555268B1 (en) 1998-06-09 2003-04-29 Matsushita Electric Industrial Co., Ltd. Negative electrode for secondary cell, negative plate for secondary cell, and secondary cell comprising the same
US6335114B1 (en) 1998-11-16 2002-01-01 Denso Corporation Laminate-type battery and process for its manufacture
JP2001236950A (en) * 2000-02-24 2001-08-31 Japan Storage Battery Co Ltd Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2002237305A (en) * 2001-02-09 2002-08-23 Yuasa Corp Non-aqueous electrolyte battery
US6852449B2 (en) 2002-08-29 2005-02-08 Quallion Llc Negative electrode including a carbonaceous material for a nonaqueous battery
US6998192B1 (en) 2002-08-29 2006-02-14 Quallion Llc Negative electrode for a nonaqueous battery
JP2016040775A (en) * 2002-11-13 2016-03-24 イドロ−ケベックHydro−Quebec Electrode covered with a thin film obtained from an aqueous solution containing a water-soluble binder, its production method and use
US9692040B2 (en) 2002-11-13 2017-06-27 Hydro-Quebec Electrode coated with a film obtained from an aqueous solution comprising a water-soluble binder, production method thereof and uses of same
US10879521B2 (en) 2002-11-13 2020-12-29 Hydro-Quebec Electrode coated with a film obtained from an aqueous solution comprising a water-soluble binder, production method thereof and uses of same
US10923704B2 (en) 2002-11-13 2021-02-16 HYDRO-QUéBEC Electrode coated with a film obtained from an aqueous solution comprising a water-soluble binder, production method thereof and uses of same
US11699781B2 (en) 2002-11-13 2023-07-11 HYDRO-QUéBEC Electrode coated with a film obtained from an aqueous solution comprising a water-soluble binder, production method thereof and uses of same
JP2006516795A (en) * 2003-04-07 2006-07-06 エルジー・ケム・リミテッド Dispersant composition in the production of electrode active material slurry and use thereof
US7862929B2 (en) 2003-04-07 2011-01-04 Lg Chem, Ltd. Constitution of the dispersant in the preparation of the electrode active material slurry and the use of the dispersant
JP2005158754A (en) * 2003-11-27 2005-06-16 Samsung Sdi Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery including the same
US7174207B2 (en) 2004-09-23 2007-02-06 Quallion Llc Implantable defibrillator having reduced battery volume
JP2008135334A (en) * 2006-11-29 2008-06-12 Sanyo Electric Co Ltd Negative electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using this negative electrode plate
JP2010238365A (en) * 2009-03-30 2010-10-21 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery
WO2011055760A1 (en) 2009-11-06 2011-05-12 旭硝子株式会社 Binder composition for secondary battery, secondary battery electrode mix comprising same, and secondary battery
US9306219B2 (en) 2009-11-06 2016-04-05 Asahi Glass Company, Limited Binder composition for secondary battery, electrode mixture for secondary battery employing it, and secondary battery
US8728665B2 (en) 2010-03-31 2014-05-20 Panasonic Corporation Negative electrode for lithium ion secondary battery and lithium ion secondary battery including the same
JP2012174350A (en) * 2011-02-17 2012-09-10 Toshiba Corp Electrode for battery and manufacturing method therefor, nonaqueous electrolyte battery, battery pack, and active material
US9698411B2 (en) 2011-02-17 2017-07-04 Kabushiki Kaisha Toshiba Electrode for battery and production method thereof, nonaqueous electrolyte battery, battery pack, and active material
US20130062571A1 (en) * 2011-09-14 2013-03-14 Samsung Electro-Mechanics Method for preparing electrode active material slurry and electrochemical capacitor comprising electrode using electrode active material slurry prepared by the method
JP2015532519A (en) * 2013-03-19 2015-11-09 エルジー・ケム・リミテッド Electrode for low resistance electrochemical element, method for producing the same, and electrochemical element including the electrode
US10270102B2 (en) 2013-03-19 2019-04-23 Lg Chem, Ltd. Electrode for electrochemical device with low resistance, method for manufacturing the same, and electrochemical device comprising the electrode
WO2015053201A1 (en) 2013-10-07 2015-04-16 日産自動車株式会社 Electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using same
US9941511B2 (en) 2013-10-07 2018-04-10 Nissan Motor Co., Ltd. Electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using the same
US9941512B2 (en) 2013-10-07 2018-04-10 Nissan Motor Co., Ltd. Electrode material for non-aqueous electrolyte secondary battery, and electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
WO2015053200A1 (en) 2013-10-07 2015-04-16 日産自動車株式会社 Electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using same
JP2020188017A (en) * 2014-04-25 2020-11-19 株式会社Gsユアサ Lithium ion secondary battery, battery pack, power storage device, and automobile
JPWO2015162885A1 (en) * 2014-04-25 2017-04-13 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
US10305109B2 (en) 2015-04-14 2019-05-28 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery and method of manufacturing the same
CN107534146A (en) * 2015-04-28 2018-01-02 株式会社杰士汤浅国际 Nonaqueous electrolyte charge storage element negative pole
WO2019239947A1 (en) 2018-06-15 2019-12-19 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
US11990622B2 (en) 2018-06-15 2024-05-21 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
WO2023243336A1 (en) * 2022-06-13 2023-12-21 株式会社Gsユアサ Negative electrode for energy storage element and energy storage element

Similar Documents

Publication Publication Date Title
JPH04342966A (en) Secondary battery with non-aqueous solvent
JP4196234B2 (en) Nonaqueous electrolyte lithium secondary battery
JPH0935715A (en) Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery
JPH097638A (en) Nonaqueous electrolytic secondary battery
JP3062304B2 (en) Non-aqueous solvent secondary battery
JPH07235291A (en) Secondary battery
JP3016627B2 (en) Non-aqueous solvent secondary battery
JP4821023B2 (en) Positive electrode for lithium secondary battery and lithium ion battery using the same
JP4591674B2 (en) Lithium ion secondary battery
JP2002117836A (en) Negative electrode for nonaqueous electrolyte secondary battery and battery using it
JP4496688B2 (en) Secondary battery
JPH10312807A (en) Lithium secondary battery and manufacture of negative electrode
JP2001297750A (en) Power generation element for lithium secondary battery and lithium secondary battery using the same
JPH0541251A (en) Nonaqueous electrolyte secondary battery
JP2001210325A (en) Nonaqueous electrolytic solution secondary battery
JPH04345759A (en) Non-aqueous solvent secondary battery
JPH04370661A (en) Secondary battery with nonaqueous solvent
JP3144833B2 (en) Non-aqueous solvent secondary battery
JP3144832B2 (en) Non-aqueous solvent secondary battery
JP2002110152A (en) Nonaqueous electrolyte secondary battery
JP3089662B2 (en) Non-aqueous electrolyte secondary battery
JP3130531B2 (en) Non-aqueous solvent secondary battery
JPH056778A (en) Nonaqueous solvent secondary battery
JP2000106187A (en) Nonaqueous electrolytic secondary battery
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same