JP3918311B2 - Negative electrode material and non-aqueous electrolyte secondary battery using the same - Google Patents
Negative electrode material and non-aqueous electrolyte secondary battery using the same Download PDFInfo
- Publication number
- JP3918311B2 JP3918311B2 JP21460398A JP21460398A JP3918311B2 JP 3918311 B2 JP3918311 B2 JP 3918311B2 JP 21460398 A JP21460398 A JP 21460398A JP 21460398 A JP21460398 A JP 21460398A JP 3918311 B2 JP3918311 B2 JP 3918311B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- compound
- lithium
- electrolyte secondary
- aqueous electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、リチウムをドープ・脱ドープ可能な負極材料に関するものであり、これを用いた非水電解液二次電池に関するものである。
【0002】
【従来の技術】
近年の電子技術の進歩に伴い、カメラ一体型ビデオテープレコーダー、携帯電話、ラップトップコンピューター等の小型のポータブル電子機器が開発され、これらを使用するためのポータブル電源として、小型かつ軽量で高エネルギー密度を有する二次電池の開発が強く要請されている。
【0003】
このような要請に応える二次電池としては、理論上高電圧を発生できかつ高エネルギー密度を有するリチウム、ナトリウム、アルミニウム等の軽金属を負極活物質として用いる非水電解液二次電池が期待されている。中でも、非水電解液リチウム二次電池は、取扱い性が良好で、高出力及び高エネルギー密度を達成できることから、活発に研究開発が行われている。
【0004】
ところで、これらリチウム金属等の軽金属をそのまま非水電解液二次電池の負極材料として用いた場合には、充電過程において負極に軽金属がデンドライト状に析出しやすくなり、デンドライトの先端で電流密度が非常に高くなる。このため、非水電解液の分解などによりサイクル寿命が低下したり、また、過度にデンドライトが成長して電池の内部短絡が発生したりするという問題があった。
【0005】
そこで、そのようなデンドライト状の金属の析出を防止するため、負極にこれらリチウム金属を単にそのまま使用するのではなく、黒鉛層間へのリチウムイオンのインターカレーション反応を利用した黒鉛材料、或いは細孔中へのリチウムイオンのドープ・脱ドープ作用を応用した炭素質材料が使用されている。
【0006】
【発明が解決しようとする課題】
しかしながら、インターカレーション反応を利用した黒鉛材料では、第1ステージ黒鉛層間化合物の組成C6Liに規定されるように、負極容量に上限が存在する。また、ドープ・脱ドープ作用を応用した炭素質材料において、その微小な細孔構造を制御することは、工業的に困難であるとともに、炭素質材料の比重の低下をもたらし、単位体積当たりの負極容量の向上に対して有効な手段とはなり得ない。
【0007】
このような理由から、現状の炭素材料では、今後の更なる電子機器使用の長時間化、電源の高エネルギー密度化に対応することが困難と考えられ、よりリチウムのドープ・脱ドープ能力に優れた負極材料の開発が望まれている。
【0008】
本発明は、このような課題を解決しようとするものであり、よりリチウムのドープ・脱ドープ能力に優れた負極材料を提供し、より大きな容量を有する非水電解液二次電池を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、シリコン、ゲルマニウム、スズの少なくともいずれか1つと、窒素と、酸素とを含む化合物が、リチウムのドープ・脱ドープ能力に優れた負極材料であることを見いだした。
【0010】
本発明に係る負極材料は、一般式MxNyOz(MはSi、Ge、Snの少なくともいずれか1つの元素であり、x、y、zはそれぞれ1.4<x<2.1、1.4<y<2.1、0.9<z<1.6である。)で表される化合物であることを特徴とする。
【0011】
この化合物の具体例としては、例えば、Si2N2O、Ge2N2O、Sn2N2Oが挙げられる。
【0012】
また、この化合物は、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、アルミニウムの少なくともいずれか1つを含有していてもよい。
【0013】
シリコン、ゲルマニウム、スズの少なくともいずれか1つと、窒素と酸素とからなる化合物では、例えばシリコンと窒素とからなるチェア型6員環からなる疑似平面が広がり、その平面間をシリコン−酸素−シリコン結合が架橋するように存在している。この層間がリチウムのドープ・脱ドープサイトとして、1次元のトンネル状に形成されていると考えられる。したがって、この化合物からなる負極材料は、従来の炭素質材料に比べて大きなドープ・脱ドープ能力を有する。
【0014】
また、本発明に係る負極は、一般式MxNyOz(MはSi、Ge、Snの少なくともいずれか1つの元素であり、x、y、zはそれぞれ1.4<x<2.1、1.4<y<2.1、0.9<z<1.6である。)で表される化合物を含有することを特徴とする。
この負極は、炭素質材料、金属粉、導電性ポリマーの少なくともいずれか1つを含有することを特徴とする。
【0015】
また、本発明に係る非水電解液二次電池は、一般式MxNyOz(MはSi、Ge、Snの少なくともいずれか1つの元素であり、x、y、zはそれぞれ1.4<x<2.1、1.4<y<2.1、0.9<z<1.6である。)で表される化合物を含有する負極と、正極と、非水電解液とを有することを特徴とする。
この負極に用いる化合物の具体例としては、例えば、Si2N2O、Ge2N2O、Sn2N2Oが挙げられる。
【0016】
また、この負極に用いる化合物は、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、アルミニウムの少なくともいずれか1つを含有してもよい。これにより、負極材料の導電性を向上させることができる。
【0017】
また、この負極材料に、導電剤として、炭素質材料、金属粉、導電性ポリマーの少なくともいずれか1つを含有させるとよい。
【0018】
本発明に係る非水電解液二次電池は、上述したように、負極が大きなドープ・脱ドープ能力を有するため、大きな負極容量を得ることができ、適切な正極と組み合わせることにより大きな容量を得ることが可能となる。
【0019】
【発明の実施の形態】
以下、本発明に係る負極材料及び非水電解液二次電池について詳細に説明する。
【0020】
本発明に係る負極材料は、シリコン、ゲルマニウム、スズの少なくともいずれか1つと、窒素と、酸素とを含む化合物であることを特徴とする。
【0021】
この化合物は、一般式MxNyOz (MはSi、Ge、Snの少なくともいずれか1つの元素であり、x、y、zはそれぞれ1.4<x<2.1、1.4<y<2.1、0.9<z<1.6である。)で表される。
【0022】
この化合物の具体例としては、例えば、Si2N2O、Ge2N2O、Sn2N2O等が挙げられる。
【0023】
また、この化合物には、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、アルミニウム等のアルカリ金属又はアルカリ土類金属を添加してもよい。例えば、Si2-xAlxN2-xO1+xのように、Siの一部をAlに置換するとよい。このように、4価の元素の一部を1価や2価の他の元素に置換することにおり、導電性を向上させることができる。
【0024】
シリコン、ゲルマニウム、スズの少なくともいずれか1つと、窒素と酸素とからなる化合物では、例えばシリコンと窒素とからなるチェア型6員環からなる疑似平面が広がり、その平面間をシリコン−酸素−シリコン結合が架橋するように存在している。この層間がリチウムのドープ・脱ドープサイトとして、1次元のトンネル状に形成されていると考えられる。したがって、この化合物からなる負極材料は、従来の炭素質材料に比べて大きなドープ・脱ドープ能力を有する。
【0025】
一方、本発明に係る非水電解液二次電池は、上述したように、シリコン、ゲルマニウム、スズの少なくともいずれか1つと、窒素と、酸素とからなる化合物を主体とする負極と、例えばリチウムを含む複合金属酸化物又はリチウムを含む層間化合物を主体とする正極と、非水電解液とからなることを特徴とする。
【0026】
上述したように、この負極材料となる化合物としては、例えば、Si2N2O、Ge2N2O、Sn2N2O等が挙げられる。
【0027】
また、この負極材料に導電性がない場合若しくは低い場合には、この負極材料に1価や2価の元素、例えば、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、アルミニウム等のアルカリ金属又はアルカリ土類金属等をドープすることにより、導電性を向上させてもよい。例えば、Si2-xAlxN2-xO1+xのように、Siの一部をAlに置換するとよい。このように、一部を他の元素に置換した材料も好適に用いることができる。
【0028】
また、負極材料から負極を形成するに際して、結着剤とともに、炭素質材料、電気導導性のある金属粉、導電性ポリマー等を導電剤として加えることにより、負極材料の導電性を確保してもよい。結着剤としては、従来公知のものをいずれも使用できる。
【0029】
本発明に係る非水電解液二次電池は、上述したように、シリコン、ゲルマニウム、スズの少なくともいずれか1つと、窒素と、酸素とからなる化合物を主体とする負極が、大きなドープ・脱ドープ能力を有する。したがって、このような負極材料を用いた非水電解液二次電池においては、従来に比べて、体積当たりのエネルギー密度を大幅に向上でき、高い負極容量を得ることができる。
【0030】
ところで、この負極材料を用いて非水電解液二次電池を構成する場合、その正極は、十分なリチウムを含んでいることが好ましい。例えば、一般式LixMO2(ただし、MはCo、Ni、Mnの少なくとも1種を表し、0<x<1である。)で表されるリチウム複合金属酸化物や、リチウムを含んだ層間化合物が好適に用いられる。特に、LiCoO2を使用した場合には、良好な特性を発揮する。
【0031】
リチウム複合金属酸化物は、リチウムの炭酸塩、硝酸塩、酸化物、あるいは水酸化物と、コバルト、マンガン、あるいはニッケル等の炭酸塩、硝酸塩、酸化物、あるいは水酸化物とを所望の組成に応じて粉砕混合し、酸素雰囲気下で600〜1000℃の温度範囲で焼成することにより調整することができる。
【0032】
本発明に係る非水電解液二次電池は、高容量を達成することを狙ったものであるので、上述した正極は、定常状態(例えば、5回程度充放電を繰り返した後)で、負極材料1g当たり250mAh以上の充放電容量相当分のリチウムを含むことが必要で、300mAh以上の充放電容量相当分のリチウムを含むことが好ましく、350mAh以上の充放電容量相当分のリチウムを含むことがより好ましい。なお、リチウムは、必ずしも正極材料から全て供給される必要はなく、要は電池系内に負極材料1g当たり250mAh以上の充放電容量相当分のリチウムが存在すればよい。また、このリチウム量は、電池の放電容量を測定することによって判断することとする。
【0033】
本発明で用いられる非水電解液は、有機溶媒と電解質とを適宜組み合わせて調製されるが、これら有機溶媒や電解質としては、この種の電池に用いられるものであればいずれも使用可能である。
【0034】
例示するならば、有機溶媒としては、プロピレンカーボネート、エチレンカーボネイト、ジエチルカーボネイト、メチルエチルカーボネイト、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピルニトリル、アニソール、酢酸エステル、プロピオン酸エステル等を使用することができ、1種類を単独で用いても、2種類以上混合して使用してもよい。
【0035】
電解質としては、LiClO4、LiAsF6、LiPF6、LiBF4、LiB(C6H5)4、LiCH3SO3、LiCF3SO3、LiCl、LiBr等のリチウム塩を使用することができる。
【0036】
【実施例】
以下、本発明を具体的な実験結果に基づいて説明する。
【0037】
<負極容量の評価>
実施例1
まず始めに、試薬の非晶質SiO2(平均粒径約10μm)と、試薬のSi(平均粒径約1μm)をモル比で1:3となるように秤量し、メノウ乳鉢で混合した。この混合物を、アルミナのボートに入れ、管状電気炉にて1450℃で5時間、窒素流量5リットル/分で熱処理した。
【0038】
得られた化合物は、メノウ乳鉢で粉砕し、X線回折測定を行ったところ、回折ピークのd値(面間隔距離)及び相対強度が文献値とほぼ一致することから、Si2N2Oと同定された。
【0039】
次に、このSi2N2Oに、導電剤として人造黒鉛をSi2N2O:人造黒鉛=2:1の割合で混合し、試料を作製した。この試料をアルゴンガス雰囲気中120℃にて2時間乾燥させた後、バインダーとして試料の10重量%のポリフッ化ビニリデンを加え、ジメチルホルムアミドを溶媒として混合、乾燥して負極合剤を調製した。そして、この負極合剤37mgを集電体であるニッケルメッシュとともに直径15.5mmのペレットに成型し、Si2N2O電極を作製した。
【0040】
比較例1
石油ピッチを酸化して炭素前駆体を用意し、窒素雰囲気中で500℃、5時間炭化した。次いで、これをミルで粉砕し、約10gをルツボに仕込んで、窒素ガスを流量5リットル/分で流した電気炉中で、昇温速度5℃/分、到達温度1100℃、到達温度での保持時間1時間なる条件で焼成した。そして、冷却後、乳鉢で粉砕し、メッシュにて38μm以下に分級し、試料を作製した。
【0041】
次に、この試料をアルゴンガス雰囲気中120℃にて2時間乾燥させた後、バインダーとして試料の10重量%当量のポリフッ化ビニリデンを加え、ジメチルホルムアミドを溶媒として混合、乾燥して負極合剤を調製した。そして、この負極合剤37mgを集電体であるニッケルメッシュとともに直径15.5mmのペレットに成型し、カーボン電極を作製した。
【0042】
比較例2
試料として、人造黒鉛を用いた以外は、比較例1と同様に黒鉛電極を作製した。
【0043】
特性評価
実施例及び比較例でそれぞれ作製された各電極に対して、対極としてリチウム金属と、セパレータとしてポリプロピレン製多孔質膜と、非水電解液としてエチレンカーボネイトとジメチルカーボネートとの等容量混合溶媒にLiPF6を1mol/lの割合で溶解させたものとを使用して、それぞれ直径20mm、厚さ2.5mmのコイン型テストセル(実施例1、比較例1、比較例2)を作製した。
【0044】
上記構成の各コイン型テストセルに対して、以下の条件で充放電を行った。なお、本評価は、負極材料としてのリチウムのドープ・脱ドープ能力を評価するためのものであるため、目的とする負極材料にリチウムをドープする過程、つまりテストセルの電圧が降下する過程を充電と呼ぶ。逆にリチウムを脱ドープする過程、つまりテストセル電圧が上昇する過程を放電と呼ぶこととする。
【0045】
充電:テストセルの電圧が0Vに達するまで1mAの定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が20μAを下回った時点で、充電を終了とした。
【0046】
放電:0.5mAの定電流で放電を行い、セル電圧が1.5Vを上回った時点で放電を終了し、放電容量を求めた。
【0047】
以下、その結果を表1及び図1に示す。
【0048】
【表1】
【0049】
表1及び図1の結果から、Si2N2O電極は、従来用いられている比較例1のカーボン電極と比較して大きな負極容量を示してることがわかる。また、導電剤として用いた人造黒鉛もリチウムをドープ・脱ドープし、電極として作用するが、Si2N2O電極を用いた実施例1では、人造黒鉛を用いた比較例2に比べ、大きな負極容量を示していることがわかる。
【0050】
したがって、Si2N2O電極は、リチウムのドープ・脱ドープ能力に優れ、従来より用いられている負極材料よりも大きい負極容量を示すことがわかる。
【0051】
<電池特性の評価>
図2に示される外径20mm、厚み2.5mmのコイン型電池を以下に示すように作製した。
【0052】
実施例2
始めに、正極ペレット1は、次のように作製した。LiCoO2と、導電剤として人造黒鉛、バインダーとしてポリフッ化ビニリデンを混合し、ジメチルフォルムアミドを溶媒として加え、混練し、スラリー状の混合物を得た。この混合物を乾燥させた後、メノウ乳鉢で粉砕し、アルミメッシュとともに加圧成型し、正極ペレット1とした。
【0053】
負極ペレット2には、実施例1で作製されたSi2N2O電極を用いた。
【0054】
次に、図2に示すように、上記正極ペレット1及び負極ペレット2とをそれぞれ正極缶4及び負極カップ5に収納した。そして、正極ペレット1と負極ペレット2とをセパレータ3を介して積層し、電解液を注入し、ガスケット6によりかしめて、コイン型電池を作成した。電解液としては、エチレンカーボネートと、ジメチルカーボネートとの等容量混合溶媒にLiPF6を1モル/リットル溶解したものを用いた。
【0055】
比較例3
負極ペレットに、比較例1で作製された石油ピッチ由来のカーボン電極を用いる以外は、実施例2と同様にしてコイン型電池を作製した。
【0056】
特性評価
実施例2及び比較例3で作製されたコイン型電池に対して、0.5mAの定電流で電池電圧が3.7Vになるまで充電した。そして、1時間放置後、0.5mAの定電流で電池電圧が2.5Vになるまで放電し、放電に要する時間を測定した。その結果を表2に示す。
【0057】
【表2】
【0058】
表2の結果から、Si2N2O電極は、電池構成においても、従来用いられているカーボン電極より放電時間が長くなることが確認された。したがって、Si2N2O電極は、適切な正極を選択することにより、大きな電池容量をもつ電池を構成することが可能であることがわかる。
【0059】
<負極材料の検討>
実施例3
アンモニアを含有させたアルゴンガス気流(500ml/分)中、870℃で試薬のGeO2 とアンモニアを反応させ、Ge2N2Oを得た。
【0060】
得られた化合物をメノウ乳鉢で粉砕し、X線回折測定を行った。回折ピークのd値(面間隔距離)、相対強度が文献値とほぼ合致することから、得られた化合物はGe2N2Oと同定された。
【0061】
実施例1と同様に、本化合物と人造黒鉛とを2:1の割合で混合し、実施例1と同様に負極容量を評価した。
【0062】
その結果、充電容量は1003mAh/g、放電容量は792mAh/gであった。
【0063】
実施例4
非晶質SiO2 (平均粒径約10μm)と試薬のSi(平均粒径約1μm)、Al2O3粉末(平均粒径3μm)をモル比で23:69:4になるように秤量し、実施例1と同様に混合、熱処理を行った。
【0064】
得られた化合物をメノウ乳鉢で粉砕し、X線回折測定を精密に行ったところ、回折ピークのd値(面間隔距離)、相対強度が文献値とほぼ合致することから、得られた化合物はAl0.16Si1.84N1.84O1.16と同定された。
【0065】
実施例1と同様に、本化合物と人造黒鉛とを2:1の割合で混合し、実施例1と同様に負極容量を評価した。
【0066】
その結果、充電容量は1133mAh/g、放電容量は895mAh/gであった。
【0067】
実施例5
非晶質SiO2 (平均粒径約10μm)と試薬のSi(平均粒径約1μm)、MgO粉末をモル比で10:30:1になるように秤量し、実施例1と同様に混合、熱処理を行った。
【0068】
得られた化合物をメノウ乳鉢で粉砕し、X線回折測定を精密に行ったところ、Si2N2Oと同様のd値、相対強度が得られ、それ以外の回折ピークは認められなかった。Mgは、実施例4の材料中のAlと同様に化合物中のSiと置換しており、その量が微量なため、Si2N2Oの回折ピークのみが認められたものと考えられる。
【0069】
実施例1と同様に、本化合物と人造黒鉛とを2:1の割合で混合し、実施例1と同様に負極容量を評価した。
【0070】
その結果、充電容量は1147mAh/g、放電容量は934mAh/gであった。
【0071】
実施例6
非晶質SiO2 (平均粒径約10μm)と試薬のSi(平均粒径約1μm)、KOHをモル比で10:30:1になるように秤量し、これらを混合した。混合に際しては、先ず、非晶質SiO2 とSiをメノウ乳鉢で混合した。KOHは純水に溶解させ、非晶質SiO2 とSiの混合物と混ぜ合わせた。次いで、実施例1と同様に混合、熱処理を行った。
【0072】
得られた化合物をメノウ乳鉢で粉砕し、X線回折測定を精密に行ったところ、Si2N2Oと同様のd値、相対強度が得られた。
【0073】
実施例1と同様に、本化合物と人造黒鉛とを2:1の割合で混合し、実施例1と同様に負極容量を評価した。
【0074】
その結果、充電容量は1050mAh/g、放電容量は770mAh/gであった。
【0075】
実施例7
非晶質SiO2 (平均粒径約10μm)と試薬のSi(平均粒径約1μm)、CaO粉末をモル比で10:30:1になるように秤量し、実施例1と同様に混合、熱処理を行った。
【0076】
得られた化合物をメノウ乳鉢で粉砕し、X線回折測定を精密に行ったところ、Si2N2Oと同様のd値、相対強度が得られ、それ以外の回折ピークは認められなかった。Caは、実施例4の材料中のAlと同様に化合物中のSiと置換しており、その量が微量なため、Si2N2Oの回折ピークのみが認められたものと考えられる。
【0077】
実施例1と同様に、本化合物と人造黒鉛とを2:1の割合で混合し、実施例1と同様に負極容量を評価した。
【0078】
その結果、充電容量は1254mAh/g、放電容量は884mAh/gであった。
【0079】
実施例8
非晶質SiO2 (平均粒径約10μm)と試薬のSi(平均粒径約1μm)、NaOHをモル比で10:30:1になるように秤量し、これらを混合した。混合に際しては、先ず、非晶質SiO2 とSiをメノウ乳鉢で混合した。NaOHは純水に溶解させ、非晶質SiO2 とSiの混合物と混ぜ合わせた。次いで、実施例1と同様に混合、熱処理を行った。
【0080】
得られた化合物をメノウ乳鉢で粉砕し、X線回折測定を精密に行ったところ、Si2N2Oと同様のd値、相対強度が得られた。
【0081】
実施例1と同様に、本化合物と人造黒鉛とを2:1の割合で混合し、実施例1と同様に負極容量を評価した。
【0082】
その結果、充電容量は1091mAh/g、放電容量は821mAh/gであった。
【0083】
以上、実施例3〜実施例8の電極は、実施例1と同様、大きな負極容量を示していることがわかる。このように人造黒鉛のみを負極材料として使用する場合に比べ負極容量は大きく増加し、容量の大きな電池を構成することが可能である。
【0084】
また、一般式MxNyOz (MはSi、Ge、Snの少なくともいずれか1つの元素である。)の組成は、厳密にx:y:z=2:2:1である必要はなく、1.4<x<2.1、1.4<y<2.1、0.9<z<1.6に入っていればよい。
【0085】
【発明の効果】
以上の説明からも明らかなように、本発明によれば、リチウムのドープ・脱ドープ能力に優れた負極材料を得ることができ、大きな負極容量を得ることができる。また、適切な正極と組み合わせることにより、大きな容量を有する非水電解液二次電池を得ることができる。
【図面の簡単な説明】
【図1】本実施例で作製された負極材料の放電曲線を示す特性図である。
【図2】本実施例で作製されたコイン型電池の構成を示す断面図である。
【符号の説明】
1 正極、2 負極、3 セパレータ、4 正極缶、5 負極缶、6 ガスケット[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a negative electrode material that can be doped / undoped with lithium, and relates to a non-aqueous electrolyte secondary battery using the same.
[0002]
[Prior art]
With recent advances in electronic technology, compact portable electronic devices such as camera-integrated video tape recorders, mobile phones, and laptop computers have been developed. As portable power sources for using these devices, they are small, lightweight, and have high energy density. There is a strong demand for the development of secondary batteries having the following characteristics.
[0003]
Non-aqueous electrolyte secondary batteries that use light metals such as lithium, sodium, and aluminum as the negative electrode active material are expected as secondary batteries that can meet such demands. Yes. Among these, non-aqueous electrolyte lithium secondary batteries are actively researched and developed because they are easy to handle and can achieve high output and high energy density.
[0004]
By the way, when these light metals such as lithium metal are used as the negative electrode material of the non-aqueous electrolyte secondary battery as they are, the light metal tends to precipitate in the form of dendrites on the negative electrode during the charging process, and the current density is very high at the tip of the dendrites. To be high. For this reason, there has been a problem that the cycle life is reduced due to decomposition of the non-aqueous electrolyte, or the dendrite grows excessively and an internal short circuit of the battery occurs.
[0005]
Therefore, in order to prevent the precipitation of such dendritic metals, these lithium metals are not simply used as they are for the negative electrode, but graphite materials or pores using intercalation reaction of lithium ions between graphite layers. A carbonaceous material using lithium ion doping / dedoping action is used.
[0006]
[Problems to be solved by the invention]
However, in the graphite material using the intercalation reaction, there is an upper limit in the negative electrode capacity as defined by the composition C 6 Li of the first stage graphite intercalation compound. In addition, it is industrially difficult to control the fine pore structure of a carbonaceous material to which doping and dedoping action is applied, and the specific gravity of the carbonaceous material is reduced, resulting in a negative electrode per unit volume. It cannot be an effective means for improving the capacity.
[0007]
For these reasons, it is considered difficult for the current carbon materials to cope with the longer use of electronic devices in the future and the higher energy density of the power supply, and it has better lithium doping and dedoping capabilities. Development of a negative electrode material is desired.
[0008]
The present invention is intended to solve such a problem, and provides a negative electrode material with more excellent lithium doping / undoping ability and a non-aqueous electrolyte secondary battery having a larger capacity. It is intended.
[0009]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that a compound containing at least one of silicon, germanium, and tin, nitrogen, and oxygen has a lithium doping / undoping ability. It was found to be an excellent negative electrode material.
[0010]
The negative electrode material according to the present invention has a general formula M x N y O z (M is at least one element of Si, Ge, and Sn, and x, y, and z are respectively 1.4 <x <2.1. 1.4 <y <2.1, 0.9 <z <1.6.)).
[0011]
Specific examples of this compound include Si 2 N 2 O, Ge 2 N 2 O, and Sn 2 N 2 O.
[0012]
The compound may contain at least one of lithium, sodium, potassium, magnesium, calcium, and aluminum.
[0013]
In a compound composed of at least one of silicon, germanium, and tin, and nitrogen and oxygen, for example, a pseudo-plane composed of a chair-shaped six-membered ring composed of silicon and nitrogen spreads, and a silicon-oxygen-silicon bond is formed between the planes. Are present to crosslink. It is considered that this interlayer is formed in a one-dimensional tunnel shape as a lithium doping / dedoping site. Therefore, the negative electrode material made of this compound has a larger doping / de-doping ability than the conventional carbonaceous material.
[0014]
Further, the negative electrode according to the present invention has a general formula M x N y O z (M is at least one element of Si, Ge, and Sn, and x, y, and z are 1.4 <x <2. 1, 1.4 <y <2.1, 0.9 <z <1.6.).
The negative electrode contains at least one of a carbonaceous material, a metal powder, and a conductive polymer.
[0015]
The non-aqueous electrolyte secondary battery according to the present invention has a general formula M x N y O z (M is at least one element of Si, Ge, and Sn, and x, y, and z are each 1. 4 <x <2.1, 1.4 <y <2.1, 0.9 <z <1.6.) A negative electrode containing a compound represented by: a positive electrode, a non-aqueous electrolyte, It is characterized by having.
Specific examples of the compound used for the negative electrode include, for example, Si 2 N 2 O, Ge 2 N 2 O, and Sn 2 N 2 O.
[0016]
Moreover, the compound used for this negative electrode may contain at least any one of lithium, sodium, potassium, magnesium, calcium, and aluminum. Thereby, the electroconductivity of negative electrode material can be improved.
[0017]
Moreover, it is good to make this negative electrode material contain at least any one of a carbonaceous material, metal powder, and a conductive polymer as a electrically conductive agent.
[0018]
As described above, the non-aqueous electrolyte secondary battery according to the present invention has a large negative electrode capacity because it has a large doping and dedoping capability, and can obtain a large capacity when combined with an appropriate positive electrode. It becomes possible.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the negative electrode material and the nonaqueous electrolyte secondary battery according to the present invention will be described in detail.
[0020]
The negative electrode material according to the present invention is a compound containing at least one of silicon, germanium, and tin, nitrogen, and oxygen.
[0021]
This compound has the general formula M x N y O z (M is at least one element of Si, Ge and Sn, and x, y and z are 1.4 <x <2.1 and 1.4, respectively. <Y <2.1, 0.9 <z <1.6.)
[0022]
Specific examples of this compound include Si 2 N 2 O, Ge 2 N 2 O, Sn 2 N 2 O and the like.
[0023]
Moreover, you may add alkali metals or alkaline-earth metals, such as lithium, sodium, potassium, magnesium, calcium, aluminum, to this compound. For example, a part of Si may be replaced with Al, such as Si 2-x Al x N 2-x O 1 + x . Thus, by replacing a part of the tetravalent element with another monovalent or divalent element, the conductivity can be improved.
[0024]
In a compound composed of at least one of silicon, germanium, and tin, and nitrogen and oxygen, for example, a pseudo-plane composed of a chair-shaped six-membered ring composed of silicon and nitrogen spreads, and a silicon-oxygen-silicon bond is formed between the planes. Are present to crosslink. It is considered that this interlayer is formed in a one-dimensional tunnel shape as a lithium doping / dedoping site. Therefore, the negative electrode material made of this compound has a larger doping / de-doping ability than the conventional carbonaceous material.
[0025]
On the other hand, as described above, the non-aqueous electrolyte secondary battery according to the present invention includes at least one of silicon, germanium, and tin, a negative electrode mainly composed of a compound including nitrogen and oxygen, and lithium, for example. It is characterized by comprising a positive electrode mainly composed of a composite metal oxide containing or an intercalation compound containing lithium, and a non-aqueous electrolyte.
[0026]
As described above, examples of the compound serving as the negative electrode material include Si 2 N 2 O, Ge 2 N 2 O, Sn 2 N 2 O, and the like.
[0027]
When the negative electrode material is not conductive or low, the negative electrode material may be monovalent or divalent element, for example, alkali metal such as lithium, sodium, potassium, magnesium, calcium, aluminum, or alkaline earth Conductivity may be improved by doping with metal or the like. For example, a part of Si may be replaced with Al, such as Si 2-x Al x N 2-x O 1 + x . In this way, a material partially substituted with another element can also be suitably used.
[0028]
In addition, when forming a negative electrode from a negative electrode material, the conductivity of the negative electrode material is ensured by adding a carbonaceous material, electrically conductive metal powder, conductive polymer, etc. as a conductive agent together with a binder. Also good. Any conventionally known binder can be used as the binder.
[0029]
As described above, the non-aqueous electrolyte secondary battery according to the present invention has a large negative electrode mainly composed of a compound composed of at least one of silicon, germanium, and tin, nitrogen, and oxygen. Have the ability. Therefore, in a non-aqueous electrolyte secondary battery using such a negative electrode material, the energy density per volume can be greatly improved and a high negative electrode capacity can be obtained as compared with the conventional battery.
[0030]
By the way, when forming a non-aqueous electrolyte secondary battery using this negative electrode material, it is preferable that the positive electrode contains sufficient lithium. For example, a lithium composite metal oxide represented by the general formula Li x MO 2 (wherein M represents at least one of Co, Ni, and Mn, and 0 <x <1), or an interlayer containing lithium A compound is preferably used. In particular, when LiCoO 2 is used, good characteristics are exhibited.
[0031]
Lithium composite metal oxides are lithium carbonates, nitrates, oxides or hydroxides, and carbonates, nitrates, oxides or hydroxides of cobalt, manganese, nickel, etc., depending on the desired composition. It can be adjusted by pulverizing and mixing and firing in a temperature range of 600 to 1000 ° C. in an oxygen atmosphere.
[0032]
Since the non-aqueous electrolyte secondary battery according to the present invention aims to achieve a high capacity, the above-described positive electrode is in a steady state (for example, after repeated charging and discharging about 5 times), and the negative electrode It is necessary to include lithium corresponding to a charge / discharge capacity of 250 mAh or more per 1 g of material, preferably including lithium corresponding to a charge / discharge capacity of 300 mAh or more, and including lithium corresponding to a charge / discharge capacity of 350 mAh or more. More preferred. Note that it is not always necessary to supply all lithium from the positive electrode material. In short, it is sufficient that lithium corresponding to a charge / discharge capacity of 250 mAh or more per 1 g of the negative electrode material exists in the battery system. The amount of lithium is determined by measuring the discharge capacity of the battery.
[0033]
The nonaqueous electrolytic solution used in the present invention is prepared by appropriately combining an organic solvent and an electrolyte, and any of these organic solvents and electrolytes can be used as long as they are used in this type of battery. .
[0034]
Illustrative examples of the organic solvent include propylene carbonate, ethylene carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1 , 3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propyl nitrile, anisole, acetic acid ester, propionic acid ester, etc., can be used alone. Or you may use it, mixing 2 or more types.
[0035]
As the electrolyte, lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiCl, and LiBr can be used.
[0036]
【Example】
Hereinafter, the present invention will be described based on specific experimental results.
[0037]
<Evaluation of negative electrode capacity>
Example 1
First, the reagent amorphous SiO 2 (average particle size of about 10 μm) and the reagent Si (average particle size of about 1 μm) were weighed to a molar ratio of 1: 3 and mixed in an agate mortar. This mixture was placed in an alumina boat and heat-treated in a tubular electric furnace at 1450 ° C. for 5 hours at a nitrogen flow rate of 5 liters / minute.
[0038]
The obtained compound was pulverized in an agate mortar and subjected to X-ray diffraction measurement. As a result, the d-value (interplanar distance) and relative intensity of the diffraction peak almost coincided with the literature values, so that Si 2 N 2 O and Identified.
[0039]
Next, artificial graphite as a conductive agent was mixed with this Si 2 N 2 O at a ratio of Si 2 N 2 O: artificial graphite = 2: 1 to prepare a sample. After this sample was dried at 120 ° C. for 2 hours in an argon gas atmosphere, 10% by weight of polyvinylidene fluoride as a binder was added, and dimethylformamide was mixed and dried to prepare a negative electrode mixture. Then, 37 mg of this negative electrode mixture was molded into a pellet having a diameter of 15.5 mm together with a nickel mesh as a current collector to produce a Si 2 N 2 O electrode.
[0040]
Comparative Example 1
Petroleum pitch was oxidized to prepare a carbon precursor, and carbonized in a nitrogen atmosphere at 500 ° C. for 5 hours. Next, this was pulverized by a mill, about 10 g was charged in a crucible, and the temperature was increased at a rate of 5 ° C./min, at an ultimate temperature of 1100 ° C. Firing was performed under the condition of a holding time of 1 hour. And after cooling, it grind | pulverized with the mortar and classified to 38 micrometers or less with the mesh, and produced the sample.
[0041]
Next, after drying this sample for 2 hours at 120 ° C. in an argon gas atmosphere, 10% by weight equivalent of polyvinylidene fluoride as a binder was added, and dimethylformamide was mixed as a solvent and dried to obtain a negative electrode mixture. Prepared. Then, 37 mg of this negative electrode mixture was molded into a pellet having a diameter of 15.5 mm together with a nickel mesh as a current collector to produce a carbon electrode.
[0042]
Comparative Example 2
A graphite electrode was produced in the same manner as in Comparative Example 1 except that artificial graphite was used as a sample.
[0043]
Characteristic evaluation For each electrode produced in each of the examples and comparative examples, lithium metal as a counter electrode, a polypropylene porous membrane as a separator, ethylene carbonate and dimethyl carbonate as a non-aqueous electrolyte, etc. A coin-type test cell having a diameter of 20 mm and a thickness of 2.5 mm using LiPF 6 dissolved in a volumetric solvent at a ratio of 1 mol / l (Example 1, Comparative Example 1, Comparative Example 2). Was made.
[0044]
Each coin-type test cell having the above configuration was charged / discharged under the following conditions. This evaluation is intended to evaluate the doping and undoping ability of lithium as the negative electrode material, so the process of doping lithium into the target negative electrode material, that is, the process of decreasing the voltage of the test cell is charged. Call it. Conversely, the process of dedoping lithium, that is, the process of increasing the test cell voltage is called discharge.
[0045]
Charging: Charging was performed at a constant current of 1 mA until the voltage of the test cell reached 0V, and after reaching 0V, charging was performed by decreasing the current so as to keep the cell voltage at 0V. When the current value fell below 20 μA, the charging was terminated.
[0046]
Discharge: Discharge was performed at a constant current of 0.5 mA, and when the cell voltage exceeded 1.5 V, the discharge was terminated and the discharge capacity was determined.
[0047]
The results are shown in Table 1 and FIG.
[0048]
[Table 1]
[0049]
From the results of Table 1 and FIG. 1, it can be seen that the Si 2 N 2 O electrode exhibits a larger negative electrode capacity than the conventionally used carbon electrode of Comparative Example 1. Further, artificial graphite used as a conductive agent also acts as an electrode by doping and dedoping lithium, but in Example 1 using an Si 2 N 2 O electrode, it is larger than Comparative Example 2 using artificial graphite. It can be seen that the negative electrode capacity is shown.
[0050]
Therefore, it can be seen that the Si 2 N 2 O electrode is excellent in lithium doping / dedoping ability and exhibits a larger negative electrode capacity than that of conventionally used negative electrode materials.
[0051]
<Evaluation of battery characteristics>
A coin-type battery having an outer diameter of 20 mm and a thickness of 2.5 mm shown in FIG. 2 was produced as shown below.
[0052]
Example 2
First, the
[0053]
As the negative electrode pellet 2, the Si 2 N 2 O electrode produced in Example 1 was used.
[0054]
Next, as shown in FIG. 2, the
[0055]
Comparative Example 3
A coin-type battery was produced in the same manner as in Example 2 except that the carbon electrode derived from the petroleum pitch produced in Comparative Example 1 was used for the negative electrode pellet.
[0056]
Characteristic evaluation The coin-type batteries produced in Example 2 and Comparative Example 3 were charged with a constant current of 0.5 mA until the battery voltage reached 3.7V. Then, after being left for 1 hour, the battery was discharged at a constant current of 0.5 mA until the battery voltage became 2.5 V, and the time required for the discharge was measured. The results are shown in Table 2.
[0057]
[Table 2]
[0058]
From the results in Table 2, it was confirmed that the discharge time of the Si 2 N 2 O electrode was longer than that of the conventionally used carbon electrode even in the battery configuration. Therefore, it can be seen that the Si 2 N 2 O electrode can constitute a battery having a large battery capacity by selecting an appropriate positive electrode.
[0059]
<Examination of anode material>
Example 3
In a stream of argon gas containing ammonia (500 ml / min), GeO 2 as a reagent was reacted with ammonia at 870 ° C. to obtain Ge 2 N 2 O.
[0060]
The obtained compound was pulverized in an agate mortar and subjected to X-ray diffraction measurement. Since the d-value (distance between planes) and relative intensity of the diffraction peak almost matched the literature values, the obtained compound was identified as Ge 2 N 2 O.
[0061]
In the same manner as in Example 1, this compound and artificial graphite were mixed at a ratio of 2: 1, and the negative electrode capacity was evaluated in the same manner as in Example 1.
[0062]
As a result, the charge capacity was 1003 mAh / g, and the discharge capacity was 792 mAh / g.
[0063]
Example 4
Amorphous SiO 2 (average particle size: about 10 μm), reagent Si (average particle size: about 1 μm), and Al 2 O 3 powder (average particle size: 3 μm) are weighed to a molar ratio of 23: 69: 4. In the same manner as in Example 1, mixing and heat treatment were performed.
[0064]
When the obtained compound was pulverized in an agate mortar and X-ray diffraction measurement was performed precisely, the d value (surface separation distance) of the diffraction peak and the relative intensity almost matched the literature values. Al 0.16 Si 1.84 N 1.84 O 1.16 was identified.
[0065]
In the same manner as in Example 1, this compound and artificial graphite were mixed at a ratio of 2: 1, and the negative electrode capacity was evaluated in the same manner as in Example 1.
[0066]
As a result, the charge capacity was 1133 mAh / g, and the discharge capacity was 895 mAh / g.
[0067]
Example 5
Amorphous SiO 2 (average particle size of about 10 μm), reagent Si (average particle size of about 1 μm), and MgO powder were weighed in a molar ratio of 10: 30: 1 and mixed in the same manner as in Example 1. Heat treatment was performed.
[0068]
The obtained compound was pulverized in an agate mortar and X-ray diffraction measurement was performed precisely. As a result, the same d value and relative intensity as Si 2 N 2 O were obtained, and no other diffraction peak was observed. Mg is substituted with Si in the compound in the same manner as Al in the material of Example 4, and since the amount thereof is very small, it is considered that only the diffraction peak of Si 2 N 2 O was observed.
[0069]
In the same manner as in Example 1, this compound and artificial graphite were mixed at a ratio of 2: 1, and the negative electrode capacity was evaluated in the same manner as in Example 1.
[0070]
As a result, the charge capacity was 1147 mAh / g, and the discharge capacity was 934 mAh / g.
[0071]
Example 6
Amorphous SiO 2 (average particle size: about 10 μm), reagent Si (average particle size: about 1 μm), and KOH were weighed in a molar ratio of 10: 30: 1 and mixed. In mixing, amorphous SiO 2 and Si were first mixed in an agate mortar. KOH was dissolved in pure water and mixed with a mixture of amorphous SiO 2 and Si. Subsequently, mixing and heat treatment were performed in the same manner as in Example 1.
[0072]
The obtained compound was pulverized in an agate mortar and subjected to precise X-ray diffraction measurement. As a result, d values and relative intensities similar to those of Si 2 N 2 O were obtained.
[0073]
In the same manner as in Example 1, this compound and artificial graphite were mixed at a ratio of 2: 1, and the negative electrode capacity was evaluated in the same manner as in Example 1.
[0074]
As a result, the charge capacity was 1050 mAh / g, and the discharge capacity was 770 mAh / g.
[0075]
Example 7
Amorphous SiO 2 (average particle size of about 10 μm), reagent Si (average particle size of about 1 μm), and CaO powder were weighed to a molar ratio of 10: 30: 1 and mixed in the same manner as in Example 1. Heat treatment was performed.
[0076]
The obtained compound was pulverized in an agate mortar and X-ray diffraction measurement was performed precisely. As a result, the same d value and relative intensity as Si 2 N 2 O were obtained, and no other diffraction peak was observed. Ca is substituted with Si in the compound in the same manner as Al in the material of Example 4, and since the amount thereof is very small, it is considered that only the diffraction peak of Si 2 N 2 O was observed.
[0077]
In the same manner as in Example 1, this compound and artificial graphite were mixed at a ratio of 2: 1, and the negative electrode capacity was evaluated in the same manner as in Example 1.
[0078]
As a result, the charge capacity was 1254 mAh / g, and the discharge capacity was 884 mAh / g.
[0079]
Example 8
Amorphous SiO 2 (average particle size: about 10 μm), reagent Si (average particle size: about 1 μm), and NaOH were weighed in a molar ratio of 10: 30: 1 and mixed. In mixing, amorphous SiO 2 and Si were first mixed in an agate mortar. NaOH was dissolved in pure water and mixed with a mixture of amorphous SiO 2 and Si. Subsequently, mixing and heat treatment were performed in the same manner as in Example 1.
[0080]
The obtained compound was pulverized in an agate mortar and subjected to precise X-ray diffraction measurement. As a result, d values and relative intensities similar to those of Si 2 N 2 O were obtained.
[0081]
In the same manner as in Example 1, this compound and artificial graphite were mixed at a ratio of 2: 1, and the negative electrode capacity was evaluated in the same manner as in Example 1.
[0082]
As a result, the charge capacity was 1091 mAh / g, and the discharge capacity was 821 mAh / g.
[0083]
As described above, it can be seen that the electrodes of Examples 3 to 8 show a large negative electrode capacity as in Example 1. Thus, compared with the case where only artificial graphite is used as the negative electrode material, the negative electrode capacity is greatly increased, and a battery having a large capacity can be configured.
[0084]
In addition, the composition of the general formula M x N y O z (M is at least one element of Si, Ge, and Sn) must be strictly x: y: z = 2: 2: 1. And 1.4 <x <2.1, 1.4 <y <2.1, and 0.9 <z <1.6.
[0085]
【The invention's effect】
As is apparent from the above description, according to the present invention, a negative electrode material excellent in lithium doping / dedoping ability can be obtained, and a large negative electrode capacity can be obtained. Moreover, a nonaqueous electrolyte secondary battery having a large capacity can be obtained by combining with an appropriate positive electrode.
[Brief description of the drawings]
FIG. 1 is a characteristic diagram showing a discharge curve of a negative electrode material produced in this example.
FIG. 2 is a cross-sectional view illustrating a configuration of a coin-type battery manufactured in this example.
[Explanation of symbols]
1 positive electrode, 2 negative electrode, 3 separator, 4 positive electrode can, 5 negative electrode can, 6 gasket
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21460398A JP3918311B2 (en) | 1997-07-29 | 1998-07-29 | Negative electrode material and non-aqueous electrolyte secondary battery using the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9-203495 | 1997-07-29 | ||
JP20349597 | 1997-07-29 | ||
JP21460398A JP3918311B2 (en) | 1997-07-29 | 1998-07-29 | Negative electrode material and non-aqueous electrolyte secondary battery using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11102705A JPH11102705A (en) | 1999-04-13 |
JP3918311B2 true JP3918311B2 (en) | 2007-05-23 |
Family
ID=26513955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21460398A Expired - Fee Related JP3918311B2 (en) | 1997-07-29 | 1998-07-29 | Negative electrode material and non-aqueous electrolyte secondary battery using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3918311B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2104175A2 (en) | 2008-03-17 | 2009-09-23 | Shin-Etsu Chemical Co., Ltd. | Non-aqueous electrolyte secondary battery, negative electrode material, and making method |
KR20110128246A (en) | 2010-05-21 | 2011-11-29 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Silicon oxide for nonaqueous electrolyte secondary battery negative electrode material and its manufacturing method, and negative electrode, lithium ion secondary battery, and electrochemical capacitor |
EP2509139A1 (en) | 2011-04-08 | 2012-10-10 | Shin-Etsu Chemical Co., Ltd. | Method for manufacturing negative electrode active material for use in non-aqueous electrolyte secondary battery, negative electrode material for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
WO2013054476A1 (en) | 2011-10-14 | 2013-04-18 | 信越化学工業株式会社 | Silicon oxide for negative electrode material of nonaqueous electroltye secondary cell, method for producing same, lithium ion secondary cell, and electrochemical capacitor |
EP2724982A2 (en) | 2012-10-23 | 2014-04-30 | Shin-Etsu Chemical Co., Ltd. | Silicon oxide, making method, negative electrode, lithium ion secondary battery, and electrochemical capacitor. |
US8734991B2 (en) | 2007-11-12 | 2014-05-27 | Sanyo Electric Co., Ltd. | Negative electrode material for nonaqueous electrolyte secondary battery |
KR20140074837A (en) | 2012-12-10 | 2014-06-18 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Silicon oxide and method for producing the same, negative electrode, and lithium ion secondary battery and electrochemical capacitor |
WO2015097990A1 (en) | 2013-12-25 | 2015-07-02 | 信越化学工業株式会社 | Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same |
US9142858B2 (en) | 2008-08-26 | 2015-09-22 | Shin-Etsu Chemical Co., Ltd. | Non-aqueous electrolyte secondary battery, negative electrode, negative electrode material, and preparation of Si—O—Al composite |
US9281129B2 (en) | 2012-05-16 | 2016-03-08 | Shin-Etsu Chemical Co., Ltd. | Silicon oxide particles, making method, lithium ion secondary battery, and electrochemical capacitor |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6242132B1 (en) * | 1997-04-16 | 2001-06-05 | Ut-Battelle, Llc | Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery |
JP4639410B2 (en) * | 1999-11-05 | 2011-02-23 | ソニー株式会社 | Negative electrode and non-aqueous electrolyte battery |
JP2001196052A (en) * | 2000-01-12 | 2001-07-19 | Sony Corp | Negative electrode and nonaqueous electrolyte battery |
JP4702510B2 (en) * | 2001-09-05 | 2011-06-15 | 信越化学工業株式会社 | Lithium-containing silicon oxide powder and method for producing the same |
TWI278429B (en) | 2002-05-17 | 2007-04-11 | Shinetsu Chemical Co | Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell |
JP3734169B2 (en) | 2002-09-17 | 2006-01-11 | ソニー株式会社 | Battery negative electrode material and battery using the same |
JP4135074B2 (en) | 2002-10-25 | 2008-08-20 | ソニー株式会社 | Negative electrode manufacturing method and battery manufacturing method |
JP4025995B2 (en) | 2002-11-26 | 2007-12-26 | 信越化学工業株式会社 | Nonaqueous electrolyte secondary battery negative electrode material, method for producing the same, and lithium ion secondary battery |
JP4022889B2 (en) | 2004-02-12 | 2007-12-19 | ソニー株式会社 | Electrolyte and battery |
US7790316B2 (en) | 2004-03-26 | 2010-09-07 | Shin-Etsu Chemical Co., Ltd. | Silicon composite particles, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell |
JP2006032321A (en) * | 2004-06-16 | 2006-02-02 | Matsushita Electric Ind Co Ltd | Active material, its manufacturing method, and nonaqueous electrolyte secondary battery containing it |
CN100344019C (en) | 2004-06-16 | 2007-10-17 | 松下电器产业株式会社 | Active material, manufacturing method thereof and nonaqueous electrolyte secondary battery containing the material |
JP4450192B2 (en) | 2004-07-01 | 2010-04-14 | 信越化学工業株式会社 | Silicon composite, method for producing the same, and negative electrode material for non-aqueous electrolyte secondary battery |
US7658863B2 (en) | 2004-07-30 | 2010-02-09 | Shin-Etsu Chemical Co., Ltd. | Si-C-O composite, making method, and non-aqueous electrolyte secondary cell negative electrode material |
JP4367311B2 (en) * | 2004-10-18 | 2009-11-18 | ソニー株式会社 | battery |
JP4264567B2 (en) | 2004-11-05 | 2009-05-20 | ソニー株式会社 | Secondary battery |
US7923148B2 (en) | 2005-03-31 | 2011-04-12 | Sanyo Electric Co., Ltd. | Nonaqueous electrolyte secondary battery including a negative electrode containing silicon and an additive which retards oxidation of silicon during battery operation |
US7776473B2 (en) | 2006-03-27 | 2010-08-17 | Shin-Etsu Chemical Co., Ltd. | Silicon-silicon oxide-lithium composite, making method, and non-aqueous electrolyte secondary cell negative electrode material |
JP5196149B2 (en) | 2008-02-07 | 2013-05-15 | 信越化学工業株式会社 | Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery and electrochemical capacitor |
JP5396902B2 (en) * | 2009-02-20 | 2014-01-22 | Tdk株式会社 | Lithium ion secondary battery |
JP4634515B2 (en) | 2009-06-19 | 2011-02-16 | 株式会社大阪チタニウムテクノロジーズ | Negative electrode material for silicon oxide and lithium ion secondary battery |
JP6030995B2 (en) | 2013-05-15 | 2016-11-24 | 信越化学工業株式会社 | Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and lithium ion secondary battery |
WO2014188851A1 (en) | 2013-05-23 | 2014-11-27 | 信越化学工業株式会社 | Negative electrode material for nonaqueous electrolyte secondary batteries, and secondary battery |
JP6100610B2 (en) | 2013-05-27 | 2017-03-22 | 信越化学工業株式会社 | Negative electrode active material, non-aqueous electrolyte secondary battery, and production method thereof |
JP6466635B2 (en) | 2013-06-14 | 2019-02-06 | 信越化学工業株式会社 | Method for producing negative electrode for nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery |
JP2015072809A (en) | 2013-10-03 | 2015-04-16 | 信越化学工業株式会社 | Silicon-containing material, and negative electrode for nonaqueous electrolytic secondary batteries and nonaqueous electrolyte secondary battery, and manufacturing method thereof |
JP6301142B2 (en) | 2014-01-31 | 2018-03-28 | 信越化学工業株式会社 | Anode material for nonaqueous electrolyte secondary battery, method for producing anode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
JP6281306B2 (en) | 2014-02-06 | 2018-02-21 | 信越化学工業株式会社 | Negative electrode material for lithium ion secondary battery, manufacturing method thereof, negative electrode and lithium ion secondary battery |
JP6193798B2 (en) | 2014-04-14 | 2017-09-06 | 信越化学工業株式会社 | Method for producing negative electrode material for lithium ion secondary battery |
JP6312212B2 (en) | 2014-11-18 | 2018-04-18 | 信越化学工業株式会社 | Rotating cylindrical furnace and method for producing negative electrode active material for non-aqueous electrolyte secondary battery |
EP3331068A4 (en) | 2015-07-31 | 2019-03-27 | Shin-Etsu Chemical Co., Ltd. | Lithium ion secondary battery negative electrode material, production method therefor, and lithium ion secondary battery |
-
1998
- 1998-07-29 JP JP21460398A patent/JP3918311B2/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8734991B2 (en) | 2007-11-12 | 2014-05-27 | Sanyo Electric Co., Ltd. | Negative electrode material for nonaqueous electrolyte secondary battery |
US8105718B2 (en) | 2008-03-17 | 2012-01-31 | Shin-Etsu Chemical Co., Ltd. | Non-aqueous electrolyte secondary battery, negative electrode material, and making method |
EP2104175A2 (en) | 2008-03-17 | 2009-09-23 | Shin-Etsu Chemical Co., Ltd. | Non-aqueous electrolyte secondary battery, negative electrode material, and making method |
US9142858B2 (en) | 2008-08-26 | 2015-09-22 | Shin-Etsu Chemical Co., Ltd. | Non-aqueous electrolyte secondary battery, negative electrode, negative electrode material, and preparation of Si—O—Al composite |
KR20110128246A (en) | 2010-05-21 | 2011-11-29 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Silicon oxide for nonaqueous electrolyte secondary battery negative electrode material and its manufacturing method, and negative electrode, lithium ion secondary battery, and electrochemical capacitor |
KR20120115116A (en) | 2011-04-08 | 2012-10-17 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Method for producing cathode active material for nonaqueous electrolyte secondary battery, cathode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
EP2509139A1 (en) | 2011-04-08 | 2012-10-10 | Shin-Etsu Chemical Co., Ltd. | Method for manufacturing negative electrode active material for use in non-aqueous electrolyte secondary battery, negative electrode material for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
WO2013054476A1 (en) | 2011-10-14 | 2013-04-18 | 信越化学工業株式会社 | Silicon oxide for negative electrode material of nonaqueous electroltye secondary cell, method for producing same, lithium ion secondary cell, and electrochemical capacitor |
US9553309B2 (en) | 2012-05-16 | 2017-01-24 | Shin-Etsu Chemical Co., Ltd. | Silicon oxide particles, making method, lithium ion secondary battery, and electrochemical capacitor |
US9281129B2 (en) | 2012-05-16 | 2016-03-08 | Shin-Etsu Chemical Co., Ltd. | Silicon oxide particles, making method, lithium ion secondary battery, and electrochemical capacitor |
US9293763B2 (en) | 2012-10-23 | 2016-03-22 | Shin-Etsu Chemical Co., Ltd. | Silicon oxide, making method, negative electrode, lithium ion secondary battery, and electrochemical capacitor |
KR20140051783A (en) | 2012-10-23 | 2014-05-02 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Silicon oxide, making method, negative electrode, lithium ion secondary battery, and electrochemical capacitor |
EP2724982A2 (en) | 2012-10-23 | 2014-04-30 | Shin-Etsu Chemical Co., Ltd. | Silicon oxide, making method, negative electrode, lithium ion secondary battery, and electrochemical capacitor. |
KR20140074837A (en) | 2012-12-10 | 2014-06-18 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Silicon oxide and method for producing the same, negative electrode, and lithium ion secondary battery and electrochemical capacitor |
US9484159B2 (en) | 2012-12-10 | 2016-11-01 | Shin-Etsu Chemical Co., Ltd. | Silicon oxide material, making method, negative electrode, lithium ion secondary battery, and electrochemical capacitor |
KR20160101932A (en) | 2013-12-25 | 2016-08-26 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same |
WO2015097990A1 (en) | 2013-12-25 | 2015-07-02 | 信越化学工業株式会社 | Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same |
US10050272B2 (en) | 2013-12-25 | 2018-08-14 | Shin-Etsu Chemical Co., Ltd. | Negative electrode active material for non-aqueous electolyte secondary battery and method of producing the same |
EP3480875A1 (en) | 2013-12-25 | 2019-05-08 | Shin-Etsu Chemical Co., Ltd. | Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JPH11102705A (en) | 1999-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3918311B2 (en) | Negative electrode material and non-aqueous electrolyte secondary battery using the same | |
US6066414A (en) | Material of negative electrode and nonaqueous-electrolyte secondary battery using the same | |
JP3713900B2 (en) | Negative electrode material and non-aqueous electrolyte secondary battery using the same | |
JP4186507B2 (en) | Carbon-containing lithium iron composite oxide for positive electrode active material of lithium secondary battery and method for producing the same | |
JP3598153B2 (en) | Non-aqueous electrolyte secondary battery | |
JP5017778B2 (en) | Positive electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery | |
JP3624578B2 (en) | Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery | |
JP2003017060A (en) | Positive electrode active material and non-aqueous electrolyte battery | |
JP2002083597A (en) | Lithium secondary battery | |
JP2003317705A (en) | Battery | |
JP2974213B1 (en) | Positive electrode active material for lithium secondary battery, method for producing the same and use thereof | |
US7097938B2 (en) | Negative electrode material and battery using the same | |
JPH1131513A (en) | Nonaqueous electrolyte secondary battery | |
JP4650774B2 (en) | Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same | |
JP2003068300A (en) | Positive electrode active material for use in lithium secondary battery and lithium secondary battery using the same | |
JPH0935712A (en) | Positive electrode active material, its manufacture and nonaqueous electrolyte secondary battery using it | |
JP2004063270A (en) | Manufacturing method of positive electrode active material, and manufacturing method of nonaqueous electrolyte battery | |
JP2000156224A (en) | Nonaqueous electrolyte battery | |
JP2001297750A (en) | Power generation element for lithium secondary battery and lithium secondary battery using the same | |
JP2002151065A (en) | Negative electrode active material and non-aqueous electrolyte battery | |
JP4172443B2 (en) | Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
JP2024519879A (en) | Positive electrode additive for lithium secondary battery, its manufacturing method, positive electrode and lithium secondary battery including the additive | |
JP3079613B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3144832B2 (en) | Non-aqueous solvent secondary battery | |
JP2003157843A (en) | Positive electrode material, its manufacturing method, and battery using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050304 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060901 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061024 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070123 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070205 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100223 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110223 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120223 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130223 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130223 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140223 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |