[go: up one dir, main page]

JP3075056B2 - Scanning optical system - Google Patents

Scanning optical system

Info

Publication number
JP3075056B2
JP3075056B2 JP05322556A JP32255693A JP3075056B2 JP 3075056 B2 JP3075056 B2 JP 3075056B2 JP 05322556 A JP05322556 A JP 05322556A JP 32255693 A JP32255693 A JP 32255693A JP 3075056 B2 JP3075056 B2 JP 3075056B2
Authority
JP
Japan
Prior art keywords
lens
scanning
scanning lens
deflector
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05322556A
Other languages
Japanese (ja)
Other versions
JPH07174965A (en
Inventor
理 小野
弘 中村
Original Assignee
ミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミノルタ株式会社 filed Critical ミノルタ株式会社
Priority to JP05322556A priority Critical patent/JP3075056B2/en
Priority to US08/296,020 priority patent/US5563729A/en
Publication of JPH07174965A publication Critical patent/JPH07174965A/en
Priority to US08/620,103 priority patent/US5721631A/en
Priority to US08/948,852 priority patent/US5926306A/en
Priority to US08/949,921 priority patent/US5828480A/en
Application granted granted Critical
Publication of JP3075056B2 publication Critical patent/JP3075056B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ポリゴンミラー等の偏
向器によって等角速度で偏向される収束光を被走査面上
に結像させるとともに、被走査面を実質的に等速度で走
査する走査光学系に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning method for forming convergent light deflected at a constant angular speed by a deflector such as a polygon mirror on a surface to be scanned, and for scanning the surface to be scanned at a substantially constant speed. Optical system.

【0002】[0002]

【従来技術】従来より、レーザビームプリンタ等に用い
られるレーザ走査光学系において、レーザ光源より射出
された発散ビームをコリメ−タレンズ等で収束させた
後、ポリゴンミラー等の偏向器により等角速度で偏向走
査し、そのビームを走査レンズ系により被走査面上にレ
ーザビームスポットとして結像するとともに、実質的に
等速度で被走査面を走査するものが知られている。そし
て、この走査レンズ系として複数枚のレンズから構成さ
れたものを用いた走査光学系が、数多く提案され実用化
されている。
2. Description of the Related Art Conventionally, in a laser scanning optical system used for a laser beam printer or the like, a divergent beam emitted from a laser light source is converged by a collimator lens or the like, and then deflected at a constant angular velocity by a deflector such as a polygon mirror. There is known a device which scans, forms an image of the beam as a laser beam spot on a surface to be scanned by a scanning lens system, and scans the surface to be scanned at substantially constant speed. Many scanning optical systems using a plurality of lenses as this scanning lens system have been proposed and put into practical use.

【0003】これに対し、より簡素なものとして、単玉
の走査レンズを用いた走査光学系が特開平3−2138
12号、特開平4−50908号において提案されてい
る。特開平3−213812号に開示された走査光学系
は、走査レンズとして単一の両凸レンズ、または、正メ
ニスカスレンズを用いている。両凸レンズを用いた例で
は、両凸レンズにより最大偏向角(偏向角は偏向面で反
射した光束と光軸とが成す画角であり、最大偏向角はこ
の画角が最大のもの)付近のコマ収差が抑えられ、ま
た、レンズ第2面を非球面とすることにより歪曲収差、
および、主走査方向の像面湾曲を補正している。また、
正メニスカスレンズを用いた例では、凸面を偏向器側に
向けるとともに、第2面を非球面にしたメニスカスレン
ズを用いることにより、歪曲収差および主走査方向の像
面湾曲を補正している。
On the other hand, as a simpler, a scanning optical system using a single-lens scanning lens is disclosed in Japanese Patent Laid-Open Publication No. Hei 3-2138.
No. 12 and JP-A-4-50908. The scanning optical system disclosed in JP-A-3-213812 uses a single biconvex lens or a positive meniscus lens as a scanning lens. In the example using a biconvex lens, the biconvex lens causes a frame near the maximum deflection angle (the deflection angle is the angle of view formed by the light beam reflected by the deflection surface and the optical axis, and the maximum deflection angle is the maximum angle of view). Aberration is suppressed, and by making the lens second surface an aspheric surface, distortion,
In addition, the field curvature in the main scanning direction is corrected. Also,
In the example using the positive meniscus lens, the distortion and the curvature of field in the main scanning direction are corrected by using a meniscus lens having a convex surface directed toward the deflector and an aspheric second surface.

【0004】一方、特開平4−50908号に開示され
た走査光学系は、両面が非球面の走査レンズを用いてい
る。なお、両公報に開示された走査光学系において、走
査レンズに収束光束を入射させているのは、平行光束を
入射させた場合には主走査方向の屈折力を得るために主
走査方向の面形状を規定しなければならず、歪曲収差、
および、主走査方向の像面湾曲を充分に補正しきれなく
なるからである。
On the other hand, the scanning optical system disclosed in JP-A-4-50908 uses a scanning lens having aspherical surfaces on both sides. In the scanning optical systems disclosed in both publications, the convergent light beam is made incident on the scanning lens because, when a parallel light beam is made incident, a surface in the main scanning direction is obtained in order to obtain a refractive power in the main scanning direction. The shape must be specified, distortion,
Also, this is because the curvature of field in the main scanning direction cannot be sufficiently corrected.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特開平
3−213812号の走査光学系は、走査レンズの第2
面を非球面とすることにより主走査方向の像面湾曲を十
分補正しているものの、歪曲収差の補正が不十分であり
性能が悪い。また、走査レンズの偏肉差(最大偏向角付
近のレンズの芯厚と光軸上のレンズの芯厚との差)が大
きいという問題がある。つまり、この走査レンズを成形
加工した場合、偏肉差が大きいため、加工後のレンズ面
精度が得られない、レンズ内部の物性を均質にできな
い、温度上昇時・湿度上昇時のレンズの面形状や屈折率
の変化により生じる像面のシフト量が大きくなるといっ
た問題がある。なお、走査レンズを樹脂製にした場合、
特にこれらの問題は顕著となる。また、特開平3−21
3812号の走査レンズのように、ガラス製のレンズを
用いれば、レンズが高コスト化するという問題もある。
一方、特開平4−50908号に開示の走査光学系は、
両面の形状が非常に複雑な非球面である走査レンズを用
いているため、成形加工が非常に困難であるという問題
がある。
However, the scanning optical system disclosed in Japanese Unexamined Patent Publication No. 3-213812 discloses a second type of scanning lens.
Although the surface is made aspherical, the curvature of field in the main scanning direction is sufficiently corrected, but the distortion is insufficiently corrected and the performance is poor. In addition, there is a problem that the deviation in thickness of the scanning lens (the difference between the core thickness of the lens near the maximum deflection angle and the core thickness of the lens on the optical axis) is large. In other words, when this scanning lens is formed and processed, the difference in wall thickness is large, so that the lens surface accuracy after processing cannot be obtained, the physical properties inside the lens cannot be homogenized, and the surface shape of the lens when the temperature and humidity rise. There is a problem that the shift amount of the image plane caused by the change in the refractive index and the change in the refractive index increases. When the scanning lens is made of resin,
In particular, these problems become remarkable. Also, Japanese Patent Application Laid-Open No.
If a glass lens is used like the scanning lens of No. 3812, there is also a problem that the cost of the lens increases.
On the other hand, the scanning optical system disclosed in JP-A-4-50908 is
Since a scanning lens having a very complicated aspherical surface on both sides is used, there is a problem that molding is very difficult.

【0006】[0006]

【目的】本発明の走査光学系は、上記課題を解決するた
めのものであり、成形加工が容易で、偏肉差を抑えると
ともに低コストの走査レンズを有した走査光学系を提供
することを目的としている。さらに、本発明の走査光学
系は、歪曲収差および主走査方向の像面湾曲が良好に補
正されたものとすることを目的としている。
An object of the present invention is to provide a scanning optical system having a low-cost scanning lens which can be easily formed, suppresses uneven thickness, and has a low cost. The purpose is. A further object of the present invention is to provide a scanning optical system in which distortion and curvature of field in the main scanning direction are satisfactorily corrected.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明の走査光学系は、偏向器と、偏向器によって
等角速度で偏向される収束光を被走査面上に結像すると
ともに被走査面上を実質的に等速度で走査する単一の走
査レンズとを備えた走査光学系であって、走査レンズ
は、屈折率が1.6以下の材料で構成された両凸レンズ
であり、偏向器側の第1面における主走査方向の主曲線
が円、被走査面側の第2面における主走査方向の主曲線
が主走査方向の画角が大きくなるに従って曲率半径が大
きくなる曲線であり、さらに以下の条件を満たすもので
ある。 (1)−5<(−nf/c)+(f/s)<−2 (2)−0.41<(−c/f)<−0.25 (3)d1/d3<1 但し、 f:走査レンズの主走査方向の焦点距離 n:走査レンズの屈折率 d1:偏向器の偏向面から走査レンズの第1面までの軸
上面間隔 d3:走査レンズの第2面から被走査面までの軸上面間
隔 s:走査レンズの前側主点から収束光の自然収束点まで
の距離 c:偏向器の偏向面から走査レンズの前側主点までの距
離 さらに、上記課題を解決するための短の本発明の走査光
学系は、偏向器と、偏向器によって等角速度で偏向され
る収束光を被走査面上に結像するとともに被走査面上を
実質的に等速度で走査する単一の走査レンズとを備えた
走査光学系であって、走査レンズは、屈折率が1.6以
下の材料で構成され、偏向器側に凸面を向けた正メニス
カスレンズであり、偏向器側の第1面における主走査方
向の主曲線が円、被走査面側の第2面における主走査方
向の主曲線が主走査方向の画角が大きくなるに従って曲
率半径が小さくなる曲線であり、さらに以下の条件を満
たすものである。 (4)−7<(−nf/c)+(f/s)<−3 (5)−0.41<(−c/f)<−0.13 (6)d1/d3<1 但し、 f:走査レンズの主走査方向の焦点距離 n:走査レンズの屈折率 d1:偏向器の偏向面から走査レンズの第1面までの軸
上面間隔 d3:走査レンズの第2面から被走査面までの軸上面間
隔 s:走査レンズの前側主点から収束光の自然収束点まで
の距離 c:偏向器の偏向面から走査レンズの前側主点までの距
In order to solve the above problems, a scanning optical system according to the present invention forms an image on a surface to be scanned while forming a deflector and convergent light deflected by the deflector at an equal angular velocity. A single scanning lens that scans the scanning surface at a substantially uniform speed, wherein the scanning lens is a biconvex lens made of a material having a refractive index of 1.6 or less; The main curve in the main scanning direction on the first surface on the deflector side is a circle, and the main curve in the main scanning direction on the second surface on the scanned surface is a curve in which the radius of curvature increases as the angle of view in the main scanning direction increases. And satisfy the following conditions. (1) -5 <(-nf / c) + (f / s) <-2 (2) -0.41 <(-c / f) <-0.25 (3) d1 / d3 <1 f: focal length of the scanning lens in the main scanning direction n: refractive index of the scanning lens d1: axial top surface distance from the deflecting surface of the deflector to the first surface of the scanning lens d3: from the second surface of the scanning lens to the surface to be scanned S: The distance from the front principal point of the scanning lens to the natural convergence point of the convergent light c: The distance from the deflecting surface of the deflector to the front principal point of the scanning lens The scanning optical system according to the present invention includes a deflector and a single scan that forms convergent light deflected by the deflector at a constant angular speed on the surface to be scanned and scans the surface to be scanned at substantially the same speed. A scanning optical system comprising: a lens having a refractive index of 1.6 or less; A positive meniscus lens having a convex surface facing the director, the main curve in the main scanning direction on the first surface on the deflector side is a circle, and the main curve in the main scanning direction on the second surface on the scanned surface is the main scanning direction. Is a curve in which the radius of curvature becomes smaller as the angle of view becomes larger, and further satisfies the following conditions. (4) −7 <(− nf / c) + (f / s) <− 3 (5) −0.41 <(− c / f) <− 0.13 (6) d1 / d3 <1 f: focal length of the scanning lens in the main scanning direction n: refractive index of the scanning lens d1: axial top surface distance from the deflecting surface of the deflector to the first surface of the scanning lens d3: from the second surface of the scanning lens to the surface to be scanned S: Distance from the front principal point of the scanning lens to the natural convergence point of the convergent light c: Distance from the deflecting surface of the deflector to the front principal point of the scanning lens

【0008】[0008]

【作用】上記構成により、歪曲収差および主走査方向の
像面湾曲が良好に補正される。しかも、走査レンズの面
形状はシンプルであるため、加工が容易である。
According to the above arrangement, distortion and curvature of field in the main scanning direction are satisfactorily corrected. Moreover, since the surface shape of the scanning lens is simple, processing is easy.

【0009】[0009]

【実施例】以下、本発明の実施例について説明する。図
1、7は、本発明を適用した走査光学系の構成を示す図
である。1はLDやLED等の発光素子からなる光源で
あり、発散光束を発光する。2は光源1からの発散光束
を収束させるコリメータレンズ、3は収束された光束を
線状に収束させるシリンドリカルレンズ、4は線状に収
束された光束を回転によって偏向走査するポリゴンミラ
ーである。
Embodiments of the present invention will be described below. 1 and 7 are diagrams showing a configuration of a scanning optical system to which the present invention is applied. Reference numeral 1 denotes a light source including a light emitting element such as an LD or an LED, and emits a divergent light beam. Reference numeral 2 denotes a collimator lens that converges a divergent light beam from the light source 1, 3 denotes a cylindrical lens that converges the converged light beam linearly, and 4 denotes a polygon mirror that deflects and scans the converged light beam by rotation.

【0010】ポリゴンミラー4によって等角速度で偏向
される光束は、走査レンズ5を通過し、被走査面6上に
結像される。走査レンズ5は、ポリゴンミラー4によっ
て等角速度で偏向された光束が被走査面6上を実質的に
等速で走査するように作用する。尚、ここでポリゴンミ
ラー4の回転に伴う被走査面6上における光束(光スポ
ット)の移動方向を主走査方向と呼び、この主走査方向
と垂直な方向を副走査方向と呼ぶ。
The light beam deflected at a constant angular velocity by the polygon mirror 4 passes through the scanning lens 5 and forms an image on the surface 6 to be scanned. The scanning lens 5 acts so that the light beam deflected at a constant angular velocity by the polygon mirror 4 scans the scanned surface 6 at a substantially constant velocity. Here, the moving direction of the light beam (light spot) on the scanned surface 6 due to the rotation of the polygon mirror 4 is called a main scanning direction, and a direction perpendicular to the main scanning direction is called a sub-scanning direction.

【0011】以下、第1、2実施例を説明する。第1、
2実施例における走査レンズ5は、図1、2に示すよう
に、ポリゴンミラー4と被走査面6の間に位置してい
る。また、走査レンズ5は、主走査方向において両凸レ
ンズであり、ポリゴンミラー4側の第1面r1が球面、
被走査面6側の第2面r2が非球面である。つまり、走
査レンズ5は、加工が容易なシンプルな形状となってい
る。また、走査レンズ5は、後述する条件式(3)や
(6)に示すように、ポリゴンミラー4の偏向面と走査
レンズ5の第1面r1の軸上面間隔d1が走査レンズ5
の第2面r2と被走査面6との間隔d3より小さくなる
ように配置されている。このような配置をとることによ
って、走査光学系の小型化、延いてはプリントヘッドの
小型化が図られる。
The first and second embodiments will be described below. First,
The scanning lens 5 in the second embodiment is located between the polygon mirror 4 and the surface to be scanned 6 as shown in FIGS. The scanning lens 5 is a biconvex lens in the main scanning direction, and the first surface r1 on the polygon mirror 4 side is spherical.
The second surface r2 on the surface 6 to be scanned is an aspheric surface. That is, the scanning lens 5 has a simple shape that is easy to process. Further, as shown in conditional expressions (3) and (6) described later, the scanning lens 5 has an axial upper surface distance d1 between the deflecting surface of the polygon mirror 4 and the first surface r1 of the scanning lens 5.
The distance d3 between the second surface r2 and the surface to be scanned 6 is smaller than the distance d3. With this arrangement, the size of the scanning optical system can be reduced, and the size of the print head can be reduced.

【0012】この第1、2実施例における走査レンズ5
は、単一の両凸レンズであり、その第1面r1の主走査
方向の主曲線(走査面上で、レンズ面頂点を通るレンズ
面に沿った曲線)は円となるように形成されている。ま
た、第2面r1の主走査方向の主曲線は、主走査方向の
画角が大きくなるに従って、主走査方向の曲率半径が大
きくなる曲線で形成されている。このように構成するこ
とにより、走査レンズ5を被走査面6よりもポリゴンミ
ラー4の方に近い位置に配置した場合の、主走査方向の
像面湾曲および歪曲収差が良好に補正される。また、走
査レンズ5は、屈折率1.6以下である樹脂製であるた
め、通常のガラス製に比べて、レンズ内の物性の均質化
やレンズ面精度が問題となる。このような問題を解消す
るため、走査レンズ5は、レンズの軸上面間隔tを25
mm以下、最大偏向角付近のレンズの芯厚tmin を4m
m以上にし、走査レンズ5の偏肉比(芯厚tmin と光軸
上のレンズの芯厚d2との比)を小さくしている。な
お、偏肉比(d2/tmin)は、4以下が好ましい。
The scanning lens 5 in the first and second embodiments
Is a single biconvex lens, and the main curve of the first surface r1 in the main scanning direction (the curve along the lens surface passing through the vertex of the lens surface on the scanning surface) is formed to be a circle. . The main curve in the main scanning direction of the second surface r1 is formed as a curve in which the radius of curvature in the main scanning direction increases as the angle of view in the main scanning direction increases. With this configuration, when the scanning lens 5 is arranged at a position closer to the polygon mirror 4 than the surface 6 to be scanned, the field curvature and distortion in the main scanning direction are satisfactorily corrected. Further, since the scanning lens 5 is made of a resin having a refractive index of 1.6 or less, homogeneity of physical properties in the lens and accuracy of the lens surface pose a problem as compared with ordinary glass. In order to solve such a problem, the scanning lens 5 is required to set the distance t between the upper surfaces of the lenses to 25.
mm, the core thickness tmin of the lens near the maximum deflection angle is 4 m
m or more, and the thickness deviation ratio (ratio between the core thickness tmin and the core thickness d2 of the lens on the optical axis) of the scanning lens 5 is reduced. The thickness deviation ratio (d2 / tmin) is preferably 4 or less.

【0013】さらに、第1、2実施例の走査光学系は、
以下の条件式(1)〜(3)を満たしている。 (1)−5<(−nf/c)+(f/s)<−2 (2)−0.41<(−c/fH)<−0.25 (3)d1/d3<1 上記条件式において、nは走査レンズの屈折率、fは走
査レンズの焦点距離、d1はポリゴンミラー4の偏向面
と走査レンズ5の第1面r1との軸上面間隔、d3は走
査レンズ5の第2面r2と被走査面6との軸上面間隔、
cはポリゴンミラー4の偏向面から走査レンズ5の前側
主点Hまでの距離、sは走査レンズ5の前側主点Hから
収束光束の自然収束点(走査レンズ5がない場合の収束
光束の収束点)までの距離である。条件式(1)の上
限、下限を越えると、第2面r2の非球面形状を変えて
も像面湾曲の補正ができなくなる。また、条件式(2)
の上限、下限を越えると、低屈折率で偏肉比をおさえた
走査レンズ5では歪曲収差の補正が困難となる。
Further, the scanning optical systems of the first and second embodiments are
The following conditional expressions (1) to (3) are satisfied. (1) -5 <(-nf / c) + (f / s) <-2 (2) -0.41 <(-c / fH) <-0.25 (3) d1 / d3 <1 The above condition In the equation, n is the refractive index of the scanning lens, f is the focal length of the scanning lens, d1 is the axial upper surface distance between the deflecting surface of the polygon mirror 4 and the first surface r1 of the scanning lens 5, and d3 is the second distance of the scanning lens 5. The axial upper surface distance between the surface r2 and the surface 6 to be scanned,
c is the distance from the deflecting surface of the polygon mirror 4 to the front principal point H of the scanning lens 5, and s is the natural convergence point of the convergent light flux from the front principal point H of the scanning lens 5 (convergence of the convergent light flux when there is no scanning lens 5). Point). If the upper and lower limits of conditional expression (1) are exceeded, it will not be possible to correct the field curvature even if the aspherical shape of the second surface r2 is changed. Also, conditional expression (2)
Exceeds the upper and lower limits, it becomes difficult to correct distortion with the scanning lens 5 having a low refractive index and a reduced thickness ratio.

【0014】次に、第3〜8実施例を説明する。第3〜
8実施例における走査レンズ5は、図7、8に示すよう
に、ポリゴンミラー4と被走査面6の間に位置してい
る。走査レンズ5は、主走査方向においてポリゴンミラ
ー4側に凸面をむけた正メニスカスレンズであり、ポリ
ゴンミラー4側の第1面r1が球面、被走査面6側の第
2面r2が非球面である。つまり、走査レンズ5は、加
工が容易なシンプルな形状となっている。また、走査レ
ンズ5は、後述する条件式(3)や(6)に示すよう
に、ポリゴンミラー4の偏向面と走査レンズ5の第1面
r1の軸上面間隔d1が走査レンズ5の第2面r2と被
走査面6との間隔d3より小さくなるように配置されて
いる。このような配置をとることによって、走査光学系
の小型化、延いてはプリントヘッドの小型化が図られ
る。
Next, third to eighth embodiments will be described. 3rd ~
The scanning lens 5 in the eighth embodiment is located between the polygon mirror 4 and the surface 6 to be scanned, as shown in FIGS. The scanning lens 5 is a positive meniscus lens having a convex surface facing the polygon mirror 4 in the main scanning direction. The first surface r1 on the polygon mirror 4 side is spherical, and the second surface r2 on the scanned surface 6 side is aspheric. is there. That is, the scanning lens 5 has a simple shape that is easy to process. Further, as shown in conditional expressions (3) and (6) described later, the axial distance d1 between the deflecting surface of the polygon mirror 4 and the first surface r1 of the scanning lens 5 is equal to the second distance of the scanning lens 5. It is arranged to be smaller than the distance d3 between the surface r2 and the surface 6 to be scanned. With this arrangement, the size of the scanning optical system can be reduced, and the size of the print head can be reduced.

【0015】この第3〜8実施例における走査レンズ5
は、ポリゴンミラー4側に凸面を向けた、単一の正メニ
スカスレンズからなり、その第1面r1の主走査方向の
主曲線は円となるように形成されている。また、第2面
r2の主走査方向の主曲線は主走査方向の画角が大きく
なるに従って主走査方向の曲率半径が小さくなる曲線で
形成されている。このように構成することにより、走査
レンズ5を被走査面6よりもポリゴンミラー4の方に近
くした場合においても主走査方向の像面湾曲および歪曲
収差を良好に補正できる。また、走査レンズ5は、屈折
率1.6以下の樹脂製であるため、通常のガラス製に比
べて、レンズ内の物性の均質化やレンズ面精度が問題と
なる。このような問題を解消するため、走査レンズは、
レンズの軸上面間隔tを25mm以下、最大偏向角付近
のレンズの芯厚tmin を4mm以上にし、走査レンズの
偏肉比(芯厚tmin と光軸上の芯厚d2との比)を小さ
くしている。なお、偏肉比(d2/tmin)は、4以下
が好ましい。
The scanning lens 5 in the third to eighth embodiments
Is composed of a single positive meniscus lens with the convex surface facing the polygon mirror 4 side, and the first surface r1 is formed such that the main curve in the main scanning direction is a circle. The main curve in the main scanning direction of the second surface r2 is formed as a curve in which the radius of curvature in the main scanning direction decreases as the angle of view in the main scanning direction increases. With this configuration, even when the scanning lens 5 is closer to the polygon mirror 4 than the surface to be scanned 6, the field curvature and distortion in the main scanning direction can be corrected well. Further, since the scanning lens 5 is made of a resin having a refractive index of 1.6 or less, homogeneity of physical properties in the lens and accuracy of the lens surface pose a problem as compared with ordinary glass. In order to solve such a problem, the scanning lens is
The distance t between the upper surfaces of the lenses is set to 25 mm or less, the core thickness tmin of the lens near the maximum deflection angle is set to 4 mm or more, and the thickness deviation ratio (ratio between the core thickness tmin and the core thickness d2 on the optical axis) of the scanning lens is reduced. ing. The thickness deviation ratio (d2 / tmin) is preferably 4 or less.

【0016】さらに、第3〜8実施例の走査光学系は、
以下の条件式(4)〜(6)を満たしている。 (4)−7<(−nf/c)+(f/s)<−3 (5)−0.41<(−c/f)<−0.13 (6)d1/d3<1 但し、各記号は第1、2実施例と同様である。条件式
(4)の上限、下限を越えると、低屈折率で偏肉比をお
さえた走査レンズ5では像面湾曲の補正ができなくな
る。また、条件式(5)の上限、下限を越えると歪曲収
差の補正が困難となる。
Further, the scanning optical systems of the third to eighth embodiments are
The following conditional expressions (4) to (6) are satisfied. (4) −7 <(− nf / c) + (f / s) <− 3 (5) −0.41 <(− c / f) <− 0.13 (6) d1 / d3 <1 Each symbol is the same as in the first and second embodiments. If the upper and lower limits of conditional expression (4) are exceeded, it is no longer possible to correct the field curvature with the scanning lens 5 having a low refractive index and a reduced thickness ratio. If the upper and lower limits of conditional expression (5) are exceeded, it becomes difficult to correct distortion.

【0017】以下、具体的に各実施例を示す。各実施例
において、d1はポリゴンミラー4の偏向面と走査レン
ズ5の第1面r1との軸上面間隔、d2は走査レンズ5
の第1面r1と第2面r2との軸上面間隔、d3は走査
レンズ5の第2面r2と被走査面6との軸上面間隔、r
1は走査レンズ5の第1面r1の主走査方向の曲率半径
(光軸上)、r2は走査レンズ5の第2面r2の主走査
方向の曲率半径(光軸上)、nは走査レンズ5の屈折
率、fは走査レンズ5の主走査方向の焦点距離、cはポ
リゴンミラー4の偏向面から走査レンズ5の前側主点H
までの距離、sは走査レンズ5の前側主点Hから収束ビ
ームの自然収束点までの距離、s1はポリゴンミラー4
の偏向面から収束光の自然収束点までの距離、Lはポリ
ゴンミラー4の偏向面から被走査面6までの距離、Yは
走査幅、ωは走査レンズ5の画角である。
Hereinafter, each embodiment will be specifically described. In each embodiment, d1 is the axial upper surface distance between the deflection surface of the polygon mirror 4 and the first surface r1 of the scanning lens 5, and d2 is the scanning lens 5
, The axial distance between the first surface r1 and the second surface r2, d3 is the axial distance between the second surface r2 of the scanning lens 5 and the scanned surface 6, and r
1 is a radius of curvature of the first surface r1 of the scanning lens 5 in the main scanning direction (on the optical axis), r2 is a radius of curvature of the second surface r2 of the scanning lens 5 in the main scanning direction (on the optical axis), and n is a scanning lens. 5, f is the focal length of the scanning lens 5 in the main scanning direction, and c is the front principal point H of the scanning lens 5 from the deflection surface of the polygon mirror 4.
, S is the distance from the front principal point H of the scanning lens 5 to the natural convergence point of the convergent beam, and s1 is the polygon mirror 4
, L is the distance from the deflecting surface of the polygon mirror 4 to the surface 6 to be scanned, Y is the scanning width, and ω is the angle of view of the scanning lens 5.

【0018】また、走査レンズ5の面に非球面を用いた
場合の非球面の形状は、次式で表される。 x=(CoΦ2)/(1+(1−εCo2 Φ2)1/2) +ΣAiΦi 但し、xはレンズ面頂点から光軸方向の座標、Coは非
球面のレンズ面の近軸曲率、Φは光軸からの高さ、Ai
(i=2〜10)は高次パラメータ、εは2次曲面パラ
メータを示す。
The shape of the aspherical surface when an aspherical surface is used for the surface of the scanning lens 5 is expressed by the following equation. x = (CoΦ2) / (1+ (1-εCo2Φ2) 1/2) + AiΦi, where x is a coordinate from the vertex of the lens surface to the optical axis, Co is a paraxial curvature of the aspherical lens surface, and Φ is a value from the optical axis. Height, Ai
(I = 2 to 10) indicates a higher-order parameter, and ε indicates a quadratic surface parameter.

【0019】尚、各実施例において、副走査方向のレン
ズ面形状は規定していないが、走査レンズ5の第1面r
1は主走査方向の曲率半径の球面とし、走査レンズ5の
第2面r2を主走査方向の画角が大きくなるに従って、
副走査方向の曲率半径が変化するような非球面で構成し
てもよい。このように構成することにより、主走査方向
の画角によって変化する副走査方向の湾曲が補正可能と
なる。
In each embodiment, the lens surface shape in the sub-scanning direction is not specified, but the first surface r of the scanning lens 5 is not defined.
Reference numeral 1 denotes a spherical surface having a radius of curvature in the main scanning direction, and the second surface r2 of the scanning lens 5 becomes larger as the angle of view in the main scanning direction increases.
An aspherical surface whose radius of curvature in the sub-scanning direction changes may be used. With this configuration, it is possible to correct the curvature in the sub-scanning direction that changes depending on the angle of view in the main scanning direction.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【表4】 [Table 4]

【0024】[0024]

【表5】 [Table 5]

【0025】[0025]

【表6】 [Table 6]

【0026】[0026]

【表7】 [Table 7]

【0027】[0027]

【表8】 [Table 8]

【0028】各実施例における条件式(1)、(2)、
(4)、(5)における数値を次表にまとめて示す。ま
た、参考までに、偏肉比(t/tmin)も次表に示す。
In each embodiment, the conditional expressions (1), (2),
The numerical values in (4) and (5) are summarized in the following table. For reference, the uneven thickness ratio (t / tmin) is also shown in the following table.

【0029】[0029]

【表9】 [Table 9]

【0030】[0030]

【発明の効果】以上の説明から明らかなように、本発明
によれば、低屈折率の樹脂製で成形加工が容易で、偏肉
比の小さい形状の単一の走査レンズにおいても、歪曲収
差、主走査方向の像面湾曲の補正を良好に行うことがで
きる。さらに、偏向面と走査レンズの第1面の軸上面間
隔d1がレンズ第2面と被走査面との間隔d3より小さ
くしているため、走査光学系の小型化を図ることができ
る。
As is clear from the above description, according to the present invention, distortion can be obtained even in a single scanning lens having a low refractive index resin, which can be easily formed and has a small thickness deviation ratio. Thus, it is possible to favorably correct the curvature of field in the main scanning direction. Further, since the axial distance d1 between the deflecting surface and the first surface of the scanning lens is smaller than the distance d3 between the second lens surface and the surface to be scanned, the size of the scanning optical system can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1、2実施例における走査光学系の
構成を示す図。
FIG. 1 is a diagram showing a configuration of a scanning optical system according to first and second embodiments of the present invention.

【図2】本発明の第1、2実施例における走査レンズの
構成と配置を示す図。
FIG. 2 is a diagram showing a configuration and an arrangement of a scanning lens according to the first and second embodiments of the present invention.

【図3】第1実施例における走査レンズの収差図。FIG. 3 is an aberration diagram of a scanning lens in the first embodiment.

【図4】第1実施例における走査レンズの構成を示す
図。
FIG. 4 is a diagram showing a configuration of a scanning lens in the first embodiment.

【図5】第2実施例における走査レンズの収差図。FIG. 5 is an aberration diagram of a scanning lens in the second embodiment.

【図6】第2実施例における走査レンズの構成を示す
図。
FIG. 6 is a diagram illustrating a configuration of a scanning lens according to a second embodiment.

【図7】本発明の第3〜8実施例における走査光学系の
構成を示す図。
FIG. 7 is a diagram showing a configuration of a scanning optical system according to third to eighth embodiments of the present invention.

【図8】本発明の第3〜8実施例における走査レンズの
構成と配置を示す図。
FIG. 8 is a diagram showing a configuration and an arrangement of a scanning lens according to third to eighth embodiments of the present invention.

【図9】第3実施例における走査レンズの収差図。FIG. 9 is an aberration diagram of a scanning lens in the third embodiment.

【図10】第3実施例における走査レンズの構成を示す
図。
FIG. 10 is a diagram showing a configuration of a scanning lens in a third embodiment.

【図11】第4実施例における走査レンズの収差図。FIG. 11 is an aberration diagram of a scanning lens in the fourth embodiment.

【図12】第4実施例における走査レンズの構成を示す
図。
FIG. 12 is a diagram illustrating a configuration of a scanning lens according to a fourth embodiment.

【図13】第5実施例における走査レンズの収差図。FIG. 13 is an aberration diagram of a scanning lens in the fifth embodiment.

【図14】第5実施例における走査レンズの構成を示す
図。
FIG. 14 is a diagram illustrating a configuration of a scanning lens according to a fifth embodiment.

【図15】第6実施例における走査レンズの収差図。FIG. 15 is an aberration diagram of a scanning lens in the sixth embodiment.

【図16】第6実施例における走査レンズの構成を示す
図。
FIG. 16 is a diagram illustrating a configuration of a scanning lens according to a sixth embodiment.

【図17】第7実施例における走査レンズの収差図。FIG. 17 is an aberration diagram of a scanning lens in the seventh embodiment.

【図18】第7実施例における走査レンズの構成を示す
図。
FIG. 18 is a diagram illustrating a configuration of a scanning lens according to a seventh embodiment.

【図19】第8実施例における走査レンズの収差図。FIG. 19 is an aberration diagram of a scanning lens in the eighth embodiment.

【図20】第8実施例における走査レンズの構成を示す
図。
FIG. 20 is a diagram showing a configuration of a scanning lens in an eighth embodiment.

【符号の説明】[Explanation of symbols]

1・・・光源 2・・・コリメータレンズ 3・・・シリンドリカルレンズ 4・・・ポリゴンミラー 5・・・走査レンズ 6・・・被走査面 DESCRIPTION OF SYMBOLS 1 ... Light source 2 ... Collimator lens 3 ... Cylindrical lens 4 ... Polygon mirror 5 ... Scanning lens 6 ... Scanning surface

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02B 9/00 - 17/08 G02B 21/02 - 21/04 G02B 25/00 - 25/04 G02B 26/10 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) G02B 9/00-17/08 G02B 21/02-21/04 G02B 25/00-25/04 G02B 26 / Ten

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 偏向器と、偏向器によって等角速度で偏
向される収束光を被走査面上に結像するとともに被走査
面上を実質的に等速度で走査する単一の走査レンズとを
備えた走査光学系であって、 走査レンズは、屈折率が1.6以下の材料で構成された
両凸レンズであり、偏向器側の第1面における主走査方
向の主曲線が円、被走査面側の第2面における主走査方
向の主曲線が主走査方向の画角が大きくなるに従って曲
率半径が大きくなる曲線であり、さらに以下の条件を満
たすことを特徴とする走査光学系。 (1)−5<(−nf/c)+(f/s)<−2 (2)−0.41<(−c/f)<−0.25 (3)d1/d3<1 但し、 f :走査レンズの主走査方向焦点距離 n :走査レンズ屈折率 d1:偏向器の偏向面から走査レンズの第1面までの軸
上面間隔 d3:走査レンズの第2面から被走査面までの軸上面間
隔 s :走査レンズの前側主点から収束光の自然収束点ま
での距離 c :偏向器の偏向面から走査レンズの前側主点までの
距離
1. A deflector and a single scanning lens that forms convergent light deflected by the deflector at a constant angular speed on a surface to be scanned and scans the surface to be scanned at a substantially constant speed. A scanning optical system, wherein the scanning lens is a biconvex lens made of a material having a refractive index of 1.6 or less, the main curve in the main scanning direction on the first surface on the deflector side is circular, A scanning optical system, characterized in that a main curve in the main scanning direction on the second surface on the surface side is a curve in which the radius of curvature increases as the angle of view in the main scanning direction increases, and further satisfies the following conditions. (1) -5 <(-nf / c) + (f / s) <-2 (2) -0.41 <(-c / f) <-0.25 (3) d1 / d3 <1 f: focal length of the scanning lens in the main scanning direction n: refractive index of the scanning lens d1: axial top surface distance from the deflecting surface of the deflector to the first surface of the scanning lens d3: axis from the second surface of the scanning lens to the surface to be scanned Upper surface interval s: distance from the front principal point of the scanning lens to the natural convergence point of the convergent light c: distance from the deflecting surface of the deflector to the front principal point of the scanning lens
【請求項2】 偏向器と、偏向器によって等角速度で偏
向される収束光を被走査面上に結像するとともに被走査
面上を実質的に等速度で走査する単一の走査レンズとを
備えた走査光学系であって、 走査レンズは、屈折率が1.6以下の材料で構成され、
偏向器側に凸面を向けた正メニスカスレンズであり、偏
向器側の第1面における主走査方向の主曲線が円、被走
査面側の第2面における主走査方向の主曲線が主走査方
向の画角が大きくなるに従って曲率半径が小さくなる曲
線であり、さらに以下の条件を満たすことを特徴とする
走査光学系。 (4)−7<(−nf/c)+(f/s)<−3 (5)−0.41<(−c/f)<−0.13 (6)d1/d3<1 但し、 f:走査レンズの主走査方向の焦点距離 n:走査レンズの屈折率 d1:偏向器の偏向面から走査レンズの第1面までの軸
上面間隔 d3:走査レンズの第2面から被走査面までの軸上面間
隔 s:走査レンズの前側主点から収束光の自然収束点まで
の距離 c:偏向器の偏向面から走査レンズの前側主点までの距
2. A deflector, and a single scanning lens that forms convergent light deflected by the deflector at a constant angular speed on a surface to be scanned and scans the surface to be scanned at a substantially constant speed. A scanning optical system comprising: a scanning lens made of a material having a refractive index of 1.6 or less;
A positive meniscus lens having a convex surface facing the deflector side, the main curve in the main scanning direction on the first surface on the deflector side is a circle, and the main curve in the main scanning direction on the second surface on the scanned surface side is the main scanning direction. A scanning optical system characterized in that the curvature radius decreases as the angle of view increases, and further satisfies the following conditions. (4) −7 <(− nf / c) + (f / s) <− 3 (5) −0.41 <(− c / f) <− 0.13 (6) d1 / d3 <1 f: focal length of the scanning lens in the main scanning direction n: refractive index of the scanning lens d1: axial top surface distance from the deflecting surface of the deflector to the first surface of the scanning lens d3: from the second surface of the scanning lens to the surface to be scanned S: distance from the front principal point of the scanning lens to the natural convergence point of the convergent light c: distance from the deflecting surface of the deflector to the front principal point of the scanning lens
JP05322556A 1993-08-30 1993-12-21 Scanning optical system Expired - Fee Related JP3075056B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP05322556A JP3075056B2 (en) 1993-12-21 1993-12-21 Scanning optical system
US08/296,020 US5563729A (en) 1993-08-30 1994-08-25 Image forming light scanning apparatus
US08/620,103 US5721631A (en) 1993-08-30 1996-03-21 Image forming light scanning apparatus
US08/948,852 US5926306A (en) 1993-08-30 1997-10-10 Image forming light scanning apparatus
US08/949,921 US5828480A (en) 1993-08-30 1997-10-14 Image forming light scanning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05322556A JP3075056B2 (en) 1993-12-21 1993-12-21 Scanning optical system

Publications (2)

Publication Number Publication Date
JPH07174965A JPH07174965A (en) 1995-07-14
JP3075056B2 true JP3075056B2 (en) 2000-08-07

Family

ID=18145000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05322556A Expired - Fee Related JP3075056B2 (en) 1993-08-30 1993-12-21 Scanning optical system

Country Status (1)

Country Link
JP (1) JP3075056B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2362527C2 (en) * 2004-12-20 2009-07-27 Ска Хайджин Продактс Аб Absorbent product carrying one or more patterns

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100601648B1 (en) * 2003-12-05 2006-07-14 삼성전자주식회사 Gwangju Yarn Equipment
BE1017992A3 (en) * 2008-02-12 2010-03-02 Dumoulin Marc Storage cabinet for storing and cooling goods, has heat exchanger connected to external water source via external supply portion, inlet arranged in wall of cabinet, and water buffer fitted with cabinet
KR102534548B1 (en) * 2019-03-14 2023-05-18 나럭스 컴퍼니 리미티드 scanning optics and scanning lenses

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2362527C2 (en) * 2004-12-20 2009-07-27 Ска Хайджин Продактс Аб Absorbent product carrying one or more patterns

Also Published As

Publication number Publication date
JPH07174965A (en) 1995-07-14

Similar Documents

Publication Publication Date Title
JP3466863B2 (en) Scanning optical device and image recording device using the same
JP3117524B2 (en) Scanning optical system with surface tilt correction function
JP3075056B2 (en) Scanning optical system
JP3486508B2 (en) Optical scanning optical device
US5808773A (en) Scanning optical system
US5148304A (en) Optical beam scanning system
JP5269000B2 (en) Multi-beam scanning optical apparatus and laser beam printer having the same
JP2956169B2 (en) Scanning optical device
JP3121452B2 (en) Optical scanning device
JPH0563777B2 (en)
KR100631220B1 (en) Gwangju Yarn Equipment
JP3018852B2 (en) Scanning device
JPH11281911A (en) Optical scanning optical system
JP3804886B2 (en) Imaging optical system for optical scanning device
JP3484308B2 (en) Scanning imaging lens system
JP3721487B2 (en) Scanning imaging lens and optical scanning device
JP2925339B2 (en) High resolution scanning optical system
JP3081535B2 (en) Optical scanning device
JP3364525B2 (en) Scanning imaging lens and optical scanning device
JP2000221434A (en) Light scanning optical device and image forming device using it
JPH09281422A (en) Scanning optical device
US5648875A (en) Optical scannng system having error correction
JP3604881B2 (en) Optical scanning optical device and laser beam printer
JP3037962B2 (en) Optical scanning device
JPH10319317A (en) Scanning and image forming lens system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees