JP3037962B2 - Optical scanning device - Google Patents
Optical scanning deviceInfo
- Publication number
- JP3037962B2 JP3037962B2 JP02138831A JP13883190A JP3037962B2 JP 3037962 B2 JP3037962 B2 JP 3037962B2 JP 02138831 A JP02138831 A JP 02138831A JP 13883190 A JP13883190 A JP 13883190A JP 3037962 B2 JP3037962 B2 JP 3037962B2
- Authority
- JP
- Japan
- Prior art keywords
- optical scanning
- light beam
- lens
- curvature
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003287 optical effect Effects 0.000 title claims description 123
- 210000001747 pupil Anatomy 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 4
- 230000005499 meniscus Effects 0.000 description 4
- 230000002349 favourable effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- NEAPKZHDYMQZCB-UHFFFAOYSA-N N-[2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]ethyl]-2-oxo-3H-1,3-benzoxazole-6-carboxamide Chemical compound C1CN(CCN1CCNC(=O)C2=CC3=C(C=C2)NC(=O)O3)C4=CN=C(N=C4)NC5CC6=CC=CC=C6C5 NEAPKZHDYMQZCB-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
Landscapes
- Mechanical Optical Scanning Systems (AREA)
- Lenses (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は光走査装置に関する。Description: TECHNICAL FIELD The present invention relates to an optical scanning device.
[従来の技術] 光ビームを光偏向装置により偏向させて被走査面を光
走査する光走査装置は、レーザープリンターやデジタル
複写装置、レーザーファクシミリ等に関連して良く知ら
れている。2. Description of the Related Art An optical scanning device that optically scans a surface to be scanned by deflecting a light beam by an optical deflecting device is well known in relation to a laser printer, a digital copying machine, a laser facsimile, and the like.
光走査用レンズは、このような光走査装置に於いて、
光偏向装置により偏向された光束を光スポットとして被
走査面上に結像させるためのレンズであり、従来から種
々のfθレンズが提案されている。The optical scanning lens is used in such an optical scanning device.
A lens for forming an image on a surface to be scanned with a light beam deflected by a light deflector as a light spot, and various fθ lenses have been conventionally proposed.
出願人は先に、近似的なfθ機能を持つ単レンズを提
案した(特願昭62-304737号)。The applicant has previously proposed a single lens having an approximate fθ function (Japanese Patent Application No. 62-304737).
[発明が解決しようとする課題] 上記近似的なfθ機能を持つ単レンズは広域光走査を
可能としているが、光スポットによる光走査の等速性と
像面湾曲補正とを単レンズで実現しているため光走査の
等速性即ちリニアリティを高めると像面湾曲を十分に補
正できず、光走査の高密度化が難しいという問題があ
る。[Problems to be Solved by the Invention] Although the single lens having the approximate fθ function enables wide-area optical scanning, the uniformity of the optical scanning by the light spot and the correction of the field curvature are realized by the single lens. Therefore, if the uniformity, that is, the linearity of the optical scanning is increased, the field curvature cannot be sufficiently corrected, and it is difficult to increase the density of the optical scanning.
本発明は上述した事情に鑑みてなされたものであっ
て、その目的とする所は上記近似的なfθ機能を持つ単
レンズをさらに改良し、リニアリティにすぐれ且つ像面
湾曲の良好な補正を可能とした新規な光走査用レンズを
用いる光走査装置の提供を目的とする。The present invention has been made in view of the above-mentioned circumstances, and a purpose thereof is to further improve the single lens having the approximate fθ function described above, thereby achieving excellent linearity and excellent correction of field curvature. It is an object of the present invention to provide an optical scanning device using a novel optical scanning lens.
[課題を解決するための手段] 以下、本発明を説明する。[Means for Solving the Problems] Hereinafter, the present invention will be described.
本発明の光走査装置は、光束を放射する光源装置と、
この光源装置からの光束を集束光束にするための集束光
学系と、この集束光学系による集束光束を等角速度的に
偏向させる偏向装置と、この偏向装置により偏向される
集束光束を更に集束させて被走査面上に光スポット状に
結像せしめ略等速的に走査させるための光走査用レンズ
とを有するものである。An optical scanning device according to the present invention includes a light source device that emits a light beam,
A focusing optical system for converting the light beam from the light source device into a focused light beam, a deflecting device for deflecting the focused light beam by the focusing optical system at a constant angular velocity, and further focusing the focused light beam deflected by the deflecting device. A light scanning lens for forming an image on the surface to be scanned in the form of a light spot and scanning at substantially constant speed.
光走査用レンズは「等角速度的に偏向される集束光束
をさらに集束させて被走査面上に光スポットとして結像
せしめ被走査面を略等速的に光走査させるためのレン
ズ」であって、「屈折率nの材質により焦点距離fの単
一レンズ」として構成される。The optical scanning lens is "a lens for further converging a converged light beam deflected at a constant angular velocity to form an image as a light spot on the surface to be scanned, and for optically scanning the surface to be scanned substantially uniformly". , "A single lens having a focal length f of a material having a refractive index n".
請求項1の光走査装置における光走査用レンズは球面
レンズであって、第1図(I)に符号5Aにより示すよう
に第1面(集束光束の入射する側の面:以下同じ)の曲
率半径をR1、第2面(結像光束の射出する側の面:以下
同じ)の曲率半径をR2とすると、R1>0で且つ|R1|<
|R2|であり、前側主点から測った入射瞳距離をt、前
側主点から入射集束光の自然集束点までの距離をsとす
るとき、 (1-I) −8.0<(nf/t)+(f/s)<−3.5 (1-II) −0.4<(t/f)<−0.15 なる条件を満足する。The optical scanning lens in the optical scanning device according to claim 1, wherein the optical scanning lens is a spherical lens, and has a curvature of a first surface (a surface on which a focused light beam is incident: the same applies hereinafter) as indicated by reference numeral 5A in FIG. Assuming that the radius is R 1 and the radius of curvature of the second surface (the surface on the side where the imaging light flux exits: the same applies hereinafter) is R 2 , R 1 > 0 and | R 1 | <
| R 2 |, where t is the entrance pupil distance measured from the front principal point, and s is the distance from the front principal point to the natural focal point of the incident focused light: (1-I) −8.0 <(nf / t) + (f / s) <− 3.5 (1-II) −0.4 <(t / f) <− 0.15
請求項2の光走査装置における光走査用レンズは第1
図(II)に符号5Bで示すように、第1面の曲率半径を
R1,第2面の光軸上曲率半径をR2とするときR2>0で且
つ|R1|>|R2であり、前側主点から測った入射瞳距離
をt、前側主点から入射集束光の自然集束点までの距離
をsとするとき、 (2-I) −7<(nf/t)+(f/s)<−0.6 (2-II) −0.41<(t/f)<−0.13 なる条件を満足する。The optical scanning lens in the optical scanning device according to claim 2 is a first lens.
As shown by reference numeral 5B in FIG. (II), the radius of curvature of the first surface is
R 1 , when the radius of curvature of the second surface on the optical axis is R 2 , R 2 > 0 and | R 1 |> | R 2 , the entrance pupil distance measured from the front principal point is t, and the front principal point Where s is the distance from to the natural focal point of the incident focused light: (2-I) -7 <(nf / t) + (f / s) <-0.6 (2-II) -0.41 <(t / f) Satisfies the condition of <−0.13.
また第2面は非球面でありこの非球面における円錐定
数Kと4次の非球面係数A4とが、 (2-III) 0.8×10-8<(A4/K)<3.0×10-8 なる条件を満足する。The second surface are aspherical and the conical constant K and the fourth-order aspherical coefficients A 4 in this aspherical surface, (2-III) 0.8 × 10 -8 <(A 4 /K)<3.0×10 - 8 conditions are satisfied.
請求項3の光走査装置における光走査用レンズは第1
図(III)に符号5Cで示すように、第1面の曲率半径をR
1、第2面の光軸上曲率半径をR2とするときR1>0で且
つ|R1|<|R2|であり、前側主点から測った入射瞳距
離をt、前側主点から入射集束光の自然集束点までの距
離をsとするとき、 (3-I) −8<(nf/t)+(f/s)<−3.5 (3-II) −0.4<(t/f)<−0.15 なる条件を満足する。The optical scanning lens in the optical scanning device according to claim 3 is a first lens.
As shown by reference numeral 5C in FIG. (III), the radius of curvature of the first surface is R
1, the radius of curvature the optical axis of the second face and in R 1> 0 when the R 2 | R 1 | <| R 2 | a is the entrance pupil distance measured from the front principal point t, front principal point Where s is the distance from to the natural focal point of the incident focused light: (3-I) -8 <(nf / t) + (f / s) <-3.5 (3-II) -0.4 <(t / f) Satisfies the condition of <−0.15.
また第1面は非球面でありこの非球面における円錐定
数Kと4次の非球面係数A4とが (3-III) −0.6×10-8<(A4/K)<−0.3×10-8 なる条件を満足する。The first surface is aspherical and the conical constant K and the fourth-order aspherical coefficients A 4, in this non-spherical (3-III) -0.6 × 10 -8 <(A 4 /K)<-0.3×10 -8 is satisfied.
なお「光軸上曲率半径」とは言うまでもなく「光軸と
レンズ面との交点に於いて同レンズ面に接する接球面の
半径」を意味する。なお、条件(2-III),(3-III)に
おける数値の単位はmm-3である。Needless to say, "radius of curvature on the optical axis" means "radius of a tangent sphere contacting the lens surface at the intersection of the optical axis and the lens surface." The unit of the numerical value in the conditions (2-III) and (3-III) is mm- 3 .
請求項1〜3の光走査装置は第2図に具体的な1例と
して概略的に示すように、光束を放射する光源装置Q
と、この光源装置からの光束を集束光束にするための集
束光学系2と、この集束光学系2による集束光束を等角
速度的に偏向させる偏向装置(符号3によりその偏向反
射面を示す)と、この偏向装置により偏向される集束光
束を更に集束させて被走査面6上に光スポット状に結像
せしめ略等速的に走査させるための光走査用レンズ5と
を有する。そしてこの光走査用レンズ5が第1図に即し
て説明した光走査用レンズ5A,5B,5Cの何れかである。The light scanning device according to any one of claims 1 to 3 emits a light beam as schematically shown in FIG.
A focusing optical system 2 for converting a light beam from the light source device into a focused light beam, and a deflecting device (denoted by 3 to indicate a deflecting / reflecting surface thereof) for deflecting the focused light beam by the focusing optical system 2 at a constant angular velocity. An optical scanning lens 5 for further converging the converged light beam deflected by the deflector to form an image on the surface 6 to be scanned in the form of a light spot so as to scan at substantially constant speed. The optical scanning lens 5 is one of the optical scanning lenses 5A, 5B, and 5C described with reference to FIG.
請求項4の光走査装置は第3図に具体的1例として概
略的に示すように、光束を放射する光源装置Qと、この
光源装置Qからの光束を集束光束にするための集束光学
系2と、この集束光学系2による集束光束を等角速度的
に偏向させる偏向装置(符号3によりその偏向反射面を
示す)と、この偏向装置により偏向される集束光束を更
に集束させて被走査面6上に光スポット状に結像せしめ
略等速的に走査させるための光走査用レンズ5とを有す
る。そして上記光走査用レンズ5が図1に示した光走査
用レンズ5A,5B,5Cの何れかであり、光走査用レンズ5と
被走査面6との間に、副走査方向の像面湾曲を補正する
ための補正光学系として長尺シリンドリカルレンズ8を
有する。The light scanning device according to claim 4, as schematically shown as a specific example in FIG. 3, a light source device Q for emitting a light beam, and a focusing optical system for converting the light beam from the light source device Q into a focused light beam. 2, a deflecting device (denoted by 3 for a deflecting and reflecting surface) for deflecting the converged light beam by the converging optical system 2 at a constant angular velocity, and further converges the converged light beam deflected by the deflector to scan the surface to be scanned. And an optical scanning lens 5 for forming an image in the form of a light spot and scanning at substantially constant speed. The optical scanning lens 5 is one of the optical scanning lenses 5A, 5B, and 5C shown in FIG. 1, and a field curvature in the sub scanning direction is provided between the optical scanning lens 5 and the surface 6 to be scanned. Has a long cylindrical lens 8 as a correction optical system for correcting.
[作用] 第2図は請求項1〜3の光走査装置を光源から被走査
面まで主光線の光路にそって展開し、主走査方向が上下
方向となるようにして描いた図である。従って、この図
に於いて図面に直交する方向が副走査方向に対応する。[Operation] FIG. 2 is a drawing in which the optical scanning device of claims 1 to 3 is developed along the optical path of the principal ray from the light source to the surface to be scanned, and the main scanning direction is the vertical direction. Therefore, in this drawing, the direction orthogonal to the drawing corresponds to the sub-scanning direction.
図に於いて符号Qは光源装置を示す。光源装置Qとし
てはLDやLEDが用いられるが、ここではLDを想定する。
符号1は光源装置Qの発光部を通り光軸に直交する面、
即ち物体面を示す。In the figure, reference symbol Q indicates a light source device. As the light source device Q, an LD or an LED is used. Here, an LD is assumed.
Reference numeral 1 denotes a surface passing through the light emitting portion of the light source device Q and orthogonal to the optical axis;
That is, it indicates the object plane.
光源装置Qから放射された発散性の光は集束光学系と
しての集光レンズ2により集束光束に変換され、偏向装
置の偏向反射面3により偏向されて光走査用レンズ5に
入射する.偏向装置としては回転多面鏡やピラミダルミ
ラー等が用いられる。The divergent light emitted from the light source device Q is converted into a convergent light beam by a converging lens 2 as a converging optical system, deflected by a deflecting / reflecting surface 3 of a deflecting device, and incident on an optical scanning lens 5. A rotating polygon mirror, a pyramidal mirror, or the like is used as the deflecting device.
集光レンズ2による集束光束は光走査用レンズ5がな
ければ集光レンズ2の像面7上の「自然集束点」Q'の位
置に集束する。そして偏向装置の作用により集光光束が
偏向すると、集束点は円弧4上を移動する。.偏向装置
が回転多面鏡であるときは偏向光束はその偏向起点が光
軸上で若干変動するので集束点の軌跡は完全な円弧には
ならないが円弧4に近い形状となる。If there is no light scanning lens 5, the light beam converged by the condenser lens 2 is focused at the position of the “natural focal point” Q ′ on the image plane 7 of the condenser lens 2. When the condensed light beam is deflected by the operation of the deflecting device, the focal point moves on the arc 4. . When the deflecting device is a rotary polygon mirror, the deflecting light beam has a deflecting origin slightly fluctuating on the optical axis, so that the trajectory of the convergence point does not become a complete arc but has a shape close to the arc 4.
光走査用レンズ5は偏向反射面3と被走査面6の間に
配備される。光走査用レンズ5は正の屈折力を持ち、入
射してくる集束光束をさらに集束させ、実質的に被走査
面6上に光スポットとして結像させる。換言すれば光走
査用レンズ5は理想的には集光レンズ2による自然集束
点の「偏向による移動軌跡」を虚光源物体位置とし、こ
の虚光源物体位置と被走査面6とを共役関係に結びつけ
る機能を有する。The optical scanning lens 5 is provided between the deflecting / reflecting surface 3 and the scanned surface 6. The optical scanning lens 5 has a positive refractive power, further focuses the incident convergent light beam, and forms an image substantially as a light spot on the surface 6 to be scanned. In other words, the optical scanning lens 5 ideally sets the “movement trajectory by deflection” of the natural focal point by the condenser lens 2 as an imaginary light source object position, and conjugates the imaginary light source object position with the surface 6 to be scanned. It has the function of linking.
従って第2図のように光走査用レンズ5の前側主点H
から像面7までの距離を矢印の向きに測ってs、後側主
点H'から被走査面6までの距離を矢印の向きに測ってs'
とすれば、光走査用レンズ5の焦点距離をfとして、 (1/s)−(1/s')=−1/f なる関係が成立つ。Accordingly, as shown in FIG. 2, the front principal point H of the optical scanning lens 5 is formed.
S 'by measuring the distance from the rear principal point H' to the surface 6 to be scanned in the direction of the arrow.
Then, assuming that the focal length of the optical scanning lens 5 is f, a relationship of (1 / s) − (1 / s ′) = − 1 / f is established.
また前側主点Hから入射瞳の位置(偏向反射面3によ
る偏向の起点)までを矢印の向きに測ってtとする。さ
らに光走査用レンズ5の材質の屈折率をnとする。上記
距離s,s',tの符号は幾何光学の規約に従う。The distance from the front principal point H to the position of the entrance pupil (the starting point of deflection by the deflecting and reflecting surface 3) is measured in the direction of the arrow, and is represented by t. Further, the refractive index of the material of the optical scanning lens 5 is represented by n. The signs of the distances s, s', and t follow the rules of geometric optics.
請求項1の光走査用レンズの各面の曲率半径R1,R2は
R1>0、且つ|R1|<|R2|であり、上記距離t,sは前
述の条件(1-I),(1-II)を満足する。The curvature radii R 1 and R 2 of each surface of the optical scanning lens of claim 1 are
R 1 > 0 and | R 1 | <| R 2 |, and the distances t and s satisfy the above-mentioned conditions (1-I) and (1-II).
R1>0且つ|R11|<|R2|であるから第1面は凸面形
状であり第2面は平面・凸面・凹面の何れも可能であ
る。従って請求項1の光走査用レンズのレンズ形態とし
ては凸平・両凸・凸メニスカス形態が可能である。Since R 1 > 0 and | R 11 | <| R 2 |, the first surface has a convex shape, and the second surface can be any of a flat surface, a convex surface, and a concave surface. Therefore, as the lens form of the optical scanning lens of the first aspect, a convex flat / biconvex / convex meniscus form is possible.
条件(1-I)は被走査面を光走査する光スポットの主
走査方向の径を均一化するための条件である。下限を越
えると主走査方向の像面湾曲が中間像高でアンダー側に
大きく脹らんだ形になり主走査方向の光スポット径を均
一に保つことが出来ない。上限を越えると主走査方向の
像面湾曲が全像高でアンダー側に倒れ、やはり主走査方
向の光スポット径を均一に保つことが出来ない。The condition (1-I) is a condition for making the diameter of the light spot for optically scanning the surface to be scanned uniform in the main scanning direction. If the lower limit is exceeded, the curvature of field in the main scanning direction greatly expands toward the underside at the intermediate image height, and the light spot diameter in the main scanning direction cannot be kept uniform. If the upper limit is exceeded, the curvature of field in the main scanning direction falls to the underside at the entire image height, and the light spot diameter in the main scanning direction cannot be kept uniform.
条件(1-II)の下限を越えると光走査用レンズが大き
くなりすぎて実用性が失われてしまう。上限を越えると
リニアリティが悪化し、光走査の際に等速性からのずれ
を電気的な信号処理で補正しきれなくなる。光走査の際
に等速性からのずれを電気的な信号処理で補正できる範
囲が本発明における「略等速的」を意味する。When the value goes below the lower limit of the condition (1-II), the optical scanning lens becomes too large and practicality is lost. If the upper limit is exceeded, the linearity deteriorates, and it becomes impossible to correct the deviation from the constant velocity by electrical signal processing during optical scanning. The range in which the deviation from the uniform velocity during the optical scanning can be corrected by electrical signal processing means “substantially constant velocity” in the present invention.
請求項2の光走査用レンズの各面の曲率半径R1,R2は
R2<0、且つ|R1|>|R2|であり、上記距離t,sは前
述の条件(1-I),(1-II)を満足する。The curvature radii R 1 and R 2 of each surface of the optical scanning lens according to claim 2 are:
R 2 <0 and | R 1 |> | R 2 |, and the distances t and s satisfy the above-mentioned conditions (1-I) and (1-II).
R2<0、且つ|R1|>|R2|であるから、第2面は凸
面形状であり第1面は平面・凸面・凹面の何れも可能で
ある。従って請求項2の光走査用レンズのレンズ形態と
しては平凸・両凸・凸メニスカス形態が可能である。Since R 2 <0 and | R 1 |> | R 2 |, the second surface has a convex shape, and the first surface can be any of a flat surface, a convex surface, and a concave surface. Therefore, as the lens form of the optical scanning lens of the second aspect, a plano-convex, bi-convex, convex meniscus form is possible.
請求項2の光走査用レンズでは第2面が非球面であっ
てその円錐定数Kと4次の非球面係数A4は前述の条件
(2-III)を満足する。In the optical scanning lens as claimed in claim 2 is the conic constant K and the fourth-order aspherical coefficients A 4 second surface is a non-spherical surface satisfies the above conditions (2-III).
非球面は周知の如くyを光軸からの距離、xを非球面
量とするとき、光軸上曲率半径をRとして なる曲線を光軸のまわりに回転した曲面であり、円錐定
数は上記式中のKでありA4はy4の係数である。As is well known, when y is the distance from the optical axis and x is the amount of aspheric surface, the radius of curvature on the optical axis is R. Is a curved surface obtained by rotating the curve around the optical axis, the conic constant is K in the above equation, and A 4 is a coefficient of y 4 .
条件(2-I),(2-III)は何れも光スポットの主走査
方向の径の変動を小さくし、同方向に於ける径を均一化
するための条件である。Each of the conditions (2-I) and (2-III) is a condition for reducing the fluctuation of the diameter of the light spot in the main scanning direction and making the diameter in the same direction uniform.
条件(2-I)の下限を越えると主走査方向の像面湾曲
が中間像高で大きくアンダー側に脹らんだ形状となり、
上限を越えると主走査方向の像面湾曲が全像高でアンダ
ー側に倒れてしまう。When the lower limit of the condition (2-I) is exceeded, the field curvature in the main scanning direction becomes a shape which is greatly expanded to an underside at an intermediate image height, and
If the upper limit is exceeded, the curvature of field in the main scanning direction falls to the under side at the entire image height.
また条件(2-III)の下限を越えると主走査方向の像
面湾曲は全像高でオーバー側に倒れ、上限を越えると走
査方向の像面湾曲は全像高でアンダー側に倒れる。If the lower limit of the condition (2-III) is exceeded, the field curvature in the main scanning direction falls to the over side at the entire image height, and if the upper limit is exceeded, the field curvature in the scanning direction falls to the under side at the full image height.
従って条件(2-I),(2-III)の範囲を外れると主走
査方向の像面湾曲のため、光スポットの主走査方向の径
を均一に保つことができない。Therefore, if the values are out of the range of the conditions (2-I) and (2-III), the diameter of the light spot in the main scanning direction cannot be kept uniform because of the curvature of field in the main scanning direction.
また上記条件(2-II)の下限を越えると光走査用レン
ズが大きくなりすぎて実用性を失ってしまう。条件(2-
II)の上限を越えると光走査のリニアリティが悪くな
り、等速性からのずれを電気的な信号処理で補正しきれ
なくなる。If the lower limit of the above condition (2-II) is exceeded, the optical scanning lens becomes too large and loses practicality. Condition (2-
If the upper limit of II) is exceeded, the linearity of optical scanning deteriorates, and the deviation from the uniform velocity cannot be corrected by electrical signal processing.
請求項3の光走査用レンズの率半径R1、R2はR1>0、
且つ|R1|<|R2|であり、上記距離t,sは前述の条件
(3-I),(3-II)を満足する。The rate radii R 1 and R 2 of the optical scanning lens according to claim 3 are R 1 > 0,
And | R 1 | <| R 2 |, and the distances t and s satisfy the above-mentioned conditions (3-I) and (3-II).
R1>0、且つ|R1|<|R2|であるから第1面は凸面
形状であり第2面は平面、凸面、凹面の何れも可能であ
る。従って請求項3の光走査用レンズのレンズ形態とし
ては凸平・両凸・凸メニスカス形態が可能である。Since R 1 > 0 and | R 1 | <| R 2 |, the first surface has a convex shape, and the second surface can be any of a flat surface, a convex surface, and a concave surface. Therefore, the lens form of the optical scanning lens according to the third aspect can be a convex flat / biconvex / convex meniscus form.
請求項3の光走査用レンズでは第1面が非球面であっ
てその円錐定数Kと4次の非球面係数A4は前述の条件
(3-III)を満足する。In the optical scanning lens as claimed in claim 3 is the conic constant K and the fourth-order aspherical coefficients A 4 first surface a non-spherical surface satisfies the above conditions (3-III).
条件(3-I),(3-III)は何れも光スポットの主走査
方向の径の変動を小さくし、同方向に於ける径を均一化
するための条件である。Each of the conditions (3-I) and (3-III) is a condition for reducing the fluctuation of the diameter of the light spot in the main scanning direction and making the diameter in the same direction uniform.
条件(3-I)の下限を越えると主走査方向の像面湾曲
が中間像高で大きくアンダーの側に脹らんだ形状とな
り、上限を越えると主走査方向の像面湾曲が全像高でア
ンダー側に倒れてしまう。When the lower limit of the condition (3-I) is exceeded, the field curvature in the main scanning direction becomes large at the intermediate image height and expands to the under side, and when the upper limit is exceeded, the field curvature in the main scanning direction becomes the full image height. It falls to the under side.
また条件(3-III)の下限を越えると主走査方向の像
面湾曲は全像高でアンダー側に倒れ、上限を越えると主
走査方向の像面湾曲は全像高でオーバー側に倒れる。If the lower limit of the condition (3-III) is exceeded, the field curvature in the main scanning direction falls to the under side at the entire image height, and if the upper limit is exceeded, the field curvature in the main scanning direction falls to the over side at the full image height.
従って、条件(3-I),(3-III)の範囲を外れると主
走査方向の像面湾曲のため、光スポットの主走査方向の
径を均一に保つことができない。Therefore, if the values deviate from the ranges of the conditions (3-I) and (3-III), the diameter of the light spot in the main scanning direction cannot be kept uniform because of the curvature of field in the main scanning direction.
また上記条件(3-II)の下限を越えると光走査用レン
ズが大きくなりすぎて実用性を失ってしまう。条件(3-
II)の上限を越えると光走査のリニアリティが悪くな
り、等速性からのずれを電気的な信号処理で補正しきれ
なくなる。If the lower limit of the above condition (3-II) is exceeded, the optical scanning lens becomes too large and loses practicality. Condition (3-
If the upper limit of II) is exceeded, the linearity of optical scanning deteriorates, and the deviation from the uniform velocity cannot be corrected by electrical signal processing.
[実施例] 以下、具体的な実施例を挙げる。[Examples] Specific examples will be described below.
各実施例とも第1図に示すように光走査用レンズの第
1面の曲率半径をR1、第2面の曲率半径をR2、これらレ
ンズ面の間隔をd1とする。また光走査用レンズの材料の
屈折率をnとする。さらに偏向装置の偏向反射面3と第
1面との間隔をd0、第2面と被走査面6との距離をDと
する。なおレンズ面が非球面の場合には上記曲率半径は
勿論光軸上曲率半径を意味する。In each embodiment, as shown in FIG. 1 , the radius of curvature of the first surface of the optical scanning lens is R 1 , the radius of curvature of the second surface is R 2 , and the distance between these lens surfaces is d 1 . The refractive index of the material of the optical scanning lens is n. Further, the distance between the deflecting reflecting surface 3 of the deflecting device and the first surface is d 0 , and the distance between the second surface and the scanned surface 6 is D. When the lens surface is an aspherical surface, the above-mentioned radius of curvature means, of course, the radius of curvature on the optical axis.
またXをもって条件(1-I),(2-I),(3-I)におけ
るパラメーター:(nf/t)+(f/s)を表し、Yをもっ
て条件(1-II),(2-II),(3-II)のパラメーター:t
/fを表す。さらにZをもって条件(2-III),(3-III)
のパラメーター:A4/Kを表す・ f,s,tは第2図に即して説明した距離である。光源装
置Qおよび集光レンズ2に就ては各実施例の数値を満足
する範囲内で任意に設定できる。Also, X represents the parameter in the conditions (1-I), (2-I), and (3-I): (nf / t) + (f / s), and Y represents the condition (1-II), (2-I). II), (3-II) parameters: t
Represents / f. In addition, Z is the condition (2-III), (3-III)
Represents A 4 / K. F, s, t are the distances described with reference to FIG. The light source device Q and the condenser lens 2 can be set arbitrarily within a range that satisfies the numerical values of each embodiment.
まず第2図に示す光走査装置に用いる光走査用レンズ
の具体例を3例挙げる。光走査用レンズは実施例1では
凸平レンズ、実施例2では凸メニスカスレンズ、実施例
3では両凸レンズである。First, three specific examples of the optical scanning lens used in the optical scanning device shown in FIG. 2 will be described. The optical scanning lens is a convex flat lens in the first embodiment, a convex meniscus lens in the second embodiment, and a biconvex lens in the third embodiment.
実施例1 f=326.349,S=160,t=−70, X=−6.19,Y=−0.214 R1 R2 d0 d1 D n 250 ∞ 70 20 93.538 1.766 最大全偏向角:80度,光走査幅:217.1 リニアリテイ:7.7%以下 第4図に実施例1の主走査方向の像面湾曲を示す。Example 1 f = 326.349, S = 160, t = −70, X = −6.19, Y = −0.214 R 1 R 2 d 0 d 1 D n 250 ∞ 70 20 93.538 1.766 Maximum total deflection angle: 80 degrees, light Scanning width: 217.1 Linearity: 7.7% or less FIG. 4 shows field curvature in the main scanning direction of the first embodiment.
実施例2 f=430.157,s=103.732,t=−66.268, X=−7.32,Y=−0.154 R1 R2 d0 d1 D n 250 1000 70 20 66.65 1.766 最大全偏向角:85度,光走査幅:217.1 リニアリティ:18.2%以下 第5図に実施例2の主走査方向の像面湾曲を示す。Example 2 f = 430.157, s = 103.732, t = −66.268, X = −7.32, Y = −0.154 R 1 R 2 d 0 d 1 D n 250 1000 70 20 66.65 1.766 Maximum total deflection angle: 85 °, light Scanning width: 217.1 Linearity: 18.2% or less FIG. 5 shows field curvature in the main scanning direction of the second embodiment.
実施例3 f=221.408,S=214.238,t=−75.762, X=−4.13,Y=−0.342 R1 R2 d0 d1 D n 250 −500 70 30 97.357 1.766 最大全偏向角:90度,光走査幡:217.1 リニアリティ:32.2%以下 第6図に実施例3の主走査方向の像面湾曲を示す。Example 3 f = 221.408, S = 214.238, t = −75.762, X = −4.13, Y = −0.342 R 1 R 2 d 0 d 1 D n 250 −500 70 30 97.357 1.766 Maximum total deflection angle: 90 degrees, Optical scanning: 217.1 Linearity: 32.2% or less FIG. 6 shows the field curvature in the main scanning direction of the third embodiment.
これらの実施例1〜3では、主走査方向の像面湾曲は
良好に補正されているが、図示されない副走査方向の像
面湾曲は若干大きすぎる。しかしこのような副走査方向
の像面湾曲は請求項4の光走査装置のように長尺シリン
ドリカルレンズを補正光学系として用いることにより良
好に補正することができる。以下、請求項4の光走査装
置の実施例を挙げる。前述のように請求項4の光走査装
置は概略第3図に示す如くである。In the first to third embodiments, the field curvature in the main scanning direction is satisfactorily corrected, but the field curvature in the sub-scanning direction (not shown) is slightly too large. However, such field curvature in the sub-scanning direction can be satisfactorily corrected by using a long cylindrical lens as a correction optical system as in the optical scanning device of the fourth aspect. Hereinafter, an embodiment of the optical scanning device according to claim 4 will be described. As described above, the optical scanning device according to the fourth aspect is roughly as shown in FIG.
光走査用レンズ5の射出側レンズ面と長尺シリンドリ
カルレンズ8の入射側レンズ面との面間隔をd2、長尺シ
リンドリカルレンズ8の肉厚をd3、長尺シリンドリカル
レンズ8の射出側レンズ面と被走査面との距離をd4とす
る。The surface distance between the exit side lens surface of the optical scanning lens 5 and the entrance side lens surface of the long cylindrical lens 8 is d 2 , the thickness of the long cylindrical lens 8 is d 3 , and the exit side lens of the long cylindrical lens 8. the distance between the surface and the scan surface and d 4.
また長尺シリンドリカルレンズ8の入・射出側レンズ
面の曲率半径を主走査方向についてR3X,R4X、副走査方
向についてR3Y,R4Yとし、焦点距離を上記各方向に対し
てfX,fY、レンズ材料の屈折率をn'とする。The radius of curvature of the entrance / exit side lens surface of the long cylindrical lens 8 is R 3X , R 4X in the main scanning direction, R 3Y , R 4Y in the sub scanning direction, and the focal length is f X , Let f Y be the refractive index of the lens material n ′.
実施例4は、請求項4の光走査装置の実施例である。 Embodiment 4 is an embodiment of the optical scanning device according to claim 4.
実施例4 f=326.349,s=160,t=−70,X=−6.19,Y=−0.214 R1 R2 d0 d1 n 250 ∞ 70 20 1.766 R3X R3Y R4X R4Y n' d2 d3 d4 ∞ 12.0 ∞ ∞ 1.485 67.0 3.0 24.518 fX=∞,fY=24.742 最大全偏向角:80度,光走査幅:217.1 リニアリティ:7.6%以下 この実施例4に関する主・副走査方向の像面湾曲を第
7図に示す。実線が副走査方向の像面湾曲を示す。主走
査方向と同様に副走査方向の像面湾曲も良好に補正され
ている。Example 4 f = 326.349, s = 160, t = −70, X = −6.19, Y = −0.214 R 1 R 2 d 0 d 1 n 250 ∞ 70 20 1.766 R 3X R 3Y R 4X R 4Y n ′ d 2 d 3 d 4 ∞ 12.0 ∞ 485 1.485 67.0 3.0 24.518 f X = ∞, f Y = 24.742 Maximum total deflection angle: 80 degrees, optical scanning width: 217.1 Linearity: 7.6% or less Main and sub scanning directions according to the fourth embodiment FIG. 7 shows the curvature of field. The solid line indicates the field curvature in the sub-scanning direction. Similarly to the main scanning direction, the curvature of field in the sub-scanning direction is well corrected.
次に、請求項2の光走査装置の実施例を3例あげる。 Next, three embodiments of the optical scanning device according to claim 2 will be described.
また第2面の非球面に於いてA4以外の非球面係数は全
て0である。The aspheric coefficients other than A 4 In aspherical second surface all zero.
実施例5 f=200,s=300,t=−66.111, X=−4.78,Y=−0.33056,Z=2.33×10-8 R1 R2 d0 d1 D n ∞ −160.0 55 20 120 1.8 非球面 K=−3.43,A4=−8.0×10-8 最大偏向角:108度、有効主走査幅:286.0、リニアリテ
ィ:8%以下 第8図にこの実施例の主走査方向の像面湾曲を示す。
リニアリティは些か低いが、この程度であれば光走査の
等速性からのずれは電気的に十分に補正できる。リニア
リティをこの程度とすると主走査方向の像面湾曲は第8
図のように極めて良好に補正される。Example 5 f = 200, s = 300, t = −66.111, X = −4.78, Y = −0.33056, Z = 2.33 × 10 −8 R 1 R 2 d 0 d 1 D n ∞−160.0 55 20 120 1.8 Aspherical surface K = −3.43, A 4 = −8.0 × 10 −8 Maximum deflection angle: 108 degrees, effective main scanning width: 286.0, linearity: 8% or less FIG. 8 shows the field curvature in the main scanning direction of this embodiment. Is shown.
Although the linearity is slightly low, the deviation from the constant speed of the optical scanning can be sufficiently corrected electrically at this level. With this degree of linearity, the field curvature in the main scanning direction is the eighth
It is corrected very well as shown in the figure.
実施例6 f=200,s=301.811,t=−70.489, X=−4.44,Y=−0.35245,Z=1.15×10-8 R1 R2 d0 d1 D n 800 −197.778 61.5 20 118.067 1.8 非球面 K=4.0,A4=−4.6×10-8 最大偏向角:85.6度、有効主走査幅:222.8、 リニアリテイ:−1.4〜2.5% 第9図に、この実施例の主走査方向の像面湾曲を示
す。Example 6 f = 200, s = 301.811, t = −70.489, X = −4.44, Y = −0.35245, Z = 1.15 × 10 −8 R 1 R 2 d 0 d 1 Dn 800 −197.778 61.5 20 118.067 1.8 Aspheric surface K = 4.0, A 4 = −4.6 × 10 −8 Maximum deflection angle: 85.6 degrees, effective main scanning width: 222.8, linearity: −1.4 to 2.5% FIG. 9 shows an image of this embodiment in the main scanning direction. Shows surface curvature.
実施例7 f=200,s=301.811,t=−70.489, X=−4.44,Y=−0.35245,Z=1.0×10-8 R1 R2 d0 d1 D n 800 −197.778 61.5 20 118.067 1.8 非球面 K=−1.0,A4=−1×10-8 最大偏向角:85.6度、有効主走査幅:222.0、 リニアリティ:−1.0〜1.8% 第10図に、この実施例の主走査方向の像面湾曲を示
す。Example 7 f = 200, s = 301.811, t = −70.489, X = −4.44, Y = −0.35245, Z = 1.0 × 10 −8 R 1 R 2 d 0 d 1 Dn 800 −197.778 61.5 20 118.067 1.8 Aspherical surface K = −1.0, A 4 = −1 × 10 −8 Maximum deflection angle: 85.6 degrees, effective main scanning width: 222.0, linearity: −1.0 to 1.8% FIG. 10 shows the main scanning direction of this embodiment. Fig. 4 shows field curvature.
実施例5〜7とも主走査方向の像面湾曲は良好に補正
されており、光スポットの主走査方向の径を有効に均一
化できる。In all of Examples 5 to 7, the curvature of field in the main scanning direction is well corrected, and the diameter of the light spot in the main scanning direction can be effectively made uniform.
比較のために第1、第2面とも球面を用いてリニアリ
ティを−1.0〜0.6%としたときの主走査方向の像面湾曲
の1例を第11図に示す。第1、第2面とも球面とした場
合にはリニアリティを上記程度にすると主走査方向の像
面湾曲は一般的に第11図に示すのと同程度となってしま
う。この比較例のリニアリティは上記実施例7と同程度
であるが実施例7では非球面の利用により主走査方向の
像面湾曲が更に良好に補正されている。For comparison, FIG. 11 shows an example of the curvature of field in the main scanning direction when the first and second surfaces are spherical surfaces and the linearity is -1.0 to 0.6%. When the first and second surfaces are spherical, if the linearity is set to the above level, the curvature of field in the main scanning direction will generally be almost the same as that shown in FIG. The linearity of this comparative example is almost the same as that of the seventh embodiment, but in the seventh embodiment, the curvature of field in the main scanning direction is corrected more favorably by using an aspheric surface.
なお実施例5〜7とも主走査方向の像面湾曲を良好に
補正したことに伴い、副走査方向の像面湾油は若干大き
くなるが、副走査方向の像面湾曲は上記主走査方向の像
面湾曲の良好性に影響を与えることなく種々の方法、例
えば補正用の長尺シリンドリカルレンズや長尺ドロイダ
ルレンズの使用により補正することができるので実際上
の問題はない。In each of the fifth to seventh embodiments, the field curvature in the sub-scanning direction is slightly increased due to the favorable correction of the field curvature in the main scanning direction. There is no practical problem because the correction can be made by various methods, for example, by using a long cylindrical lens or a long toroidal lens for correction without affecting the good field curvature.
以下、請求項3の光走査装置の 実施例を3例あげ
る。Hereinafter, three examples of the optical scanning device according to claim 3 will be described.
第1面の非球面に於いてA4以外の非球面係数は何れも
0である。Aspherical coefficients other than A 4 In aspherical first surface are both zero.
実施例8 f=326.349,s=160,t=−70 X=−6.19,Y=−0.214,Z=−0.33×10-8 R1 R2 d0 d1 D n 250 ∞ 70 20 93.538 1.766 非球面 K=−14.0,A4=4.65×10-8 最大偏向角:80度、有効主走査幅:223.6、 リニアリティ:7.5%以下 第12図に、この実施例の主走査方向の像面湾曲を示
す。リニアリティをこの程度とすると主走査方向の像面
湾曲は第3図のように極めて良好に補正される。Example 8 f = 326.349, s = 160, t = −70 X = −6.19, Y = −0.214, Z = −0.33 × 10 −8 R 1 R 2 d 0 d 1 Dn 250 ∞ 70 20 93.538 1.766 Non spherical K = -14.0, a 4 = 4.65 × 10 -8 maximum deflection angle: 80 degrees, the effective main scanning width: 223.6, linearity: 7.5% or less Fig. 12, the main scanning direction of the field curvature of this embodiment Show. With this degree of linearity, the curvature of field in the main scanning direction is corrected very well as shown in FIG.
実施例9 f=326.349,s=160,t=−70 X=−6.19,Y=−0.214,Z=−0.4×10-8 R1 R2 d0 d1 D n 250 ∞ 70 20 93.538 1.766 非球面 K=−10,A4=4.0×10-8 最大偏向角:80度、有効主走査幅:221.4、 リニアリティ:−0.9〜5.5% 第13図に、この実施例の主走査方向の像面湾曲を示
す。Example 9 f = 326.349, s = 160, t = −70 X = −6.19, Y = −0.214, Z = −0.4 × 10 −8 R 1 R 2 d 0 d 1 Dn 250 ∞ 70 20 93.538 1.766 Non Spherical surface K = −10, A 4 = 4.0 × 10 −8 Maximum deflection angle: 80 degrees, effective main scanning width: 221.4, linearity: −0.9 to 5.5% FIG. 13 shows the image plane in the main scanning direction of this embodiment. Indicates curvature.
実施例10 f=221.408,s=214.238,t=−75.762 X=−4.13,Y=−0.342,Z=−0.5×10-8 R1 R2 d0 d1 D n 250 −500 70 30 97.357 1.766 非球面 K=−7.0,A4=3.5×10-8 最大偏向角:88度、有効主走査幅:216.4、 リニアリテイ:27.4%以下 第14図に、この実施例の主走査方向の像面湾曲を示
す。リニアリティは些か低いが、この程度であれば光走
査の等速性からのずれは電気的に十分に補正できる。Example 10 f = 221.408, s = 214.238, t = −75.762 X = −4.13, Y = −0.342, Z = −0.5 × 10 −8 R 1 R 2 d 0 d 1 Dn 250 −500 70 30 97.357 1.766 aspheric K = -7.0, a 4 = 3.5 × 10 -8 maximum deflection angle: 88 degrees, the effective main scanning width: 216.4, Riniaritei: 27.4% or less Figure 14, the image plane in the main scanning direction of this embodiment curvature Is shown. Although the linearity is slightly low, the deviation from the constant speed of the optical scanning can be sufficiently corrected electrically at this level.
各実施例とも光走査方向の像面湾曲は良好に補正され
ており、光スポットの主走査方向の径を有効に均一化で
きる。In each embodiment, the curvature of field in the light scanning direction is well corrected, and the diameter of the light spot in the main scanning direction can be effectively made uniform.
比較のために、第1、第2面とも球面を用いてリニア
リティを−1.1〜0.6%としたときの主走査方向の像面湾
曲の1例を第15図に示す。第1、第2面とも球面とした
場合にはリニアリティを上記程度にすると主走査方向の
像面湾曲は一般的に第11図に示すのと同程度となってし
まう。For comparison, FIG. 15 shows an example of the curvature of field in the main scanning direction when the first and second surfaces use spherical surfaces and the linearity is -1.1 to 0.6%. When the first and second surfaces are spherical, if the linearity is set to the above level, the curvature of field in the main scanning direction will generally be almost the same as that shown in FIG.
この比較例のリニアリティは上記実施例9と同程度で
あるが、実施例2では非球面の利用により主走査方向の
像面湾曲が更に良好に補正されている。The linearity of this comparative example is almost the same as that of the ninth embodiment, but in the second embodiment, the curvature of field in the main scanning direction is more favorably corrected by using an aspheric surface.
なお実施例8〜10とも主走査方向の像面湾曲を良好に
補正したことに伴い副走査方向の像面湾曲は若干大きく
なるが、副走査方向の像面湾曲は主走査方向の像面湾曲
の良好性に影響を与えることなく種々の方法、例えば補
正用の長尺シリンドリカルレンズや長尺ドロイダルレン
ズの使用により補正することができるので実際上の問題
はない。In each of the eighth to tenth embodiments, the field curvature in the sub-scanning direction is slightly increased due to the favorable correction of the field curvature in the main scanning direction. There is no practical problem because the correction can be made by various methods without affecting the goodness of the present invention, for example, by using a long cylindrical lens or a long toroidal lens for correction.
[発明の効果] 以上、本発明によれば新規な光走査装置を提供でき
る。[Effects of the Invention] As described above, according to the present invention, a novel optical scanning device can be provided.
本発明の光走査装置では、光走査用レンズが上記の如
く構成されているので主走査方向の像面湾曲を良好に補
正できる。従ってこの光走査用レンズを用いて光走査装
置を構成することにより光スポットの主走査方向の径を
均一化でき、高密度の光走査を実現できる。In the optical scanning device of the present invention, since the optical scanning lens is configured as described above, the field curvature in the main scanning direction can be satisfactorily corrected. Therefore, by configuring an optical scanning device using this optical scanning lens, the diameter of the light spot in the main scanning direction can be made uniform, and high-density optical scanning can be realized.
第1図は、本発明の光走査装置に用いられる光走査用レ
ンズをを説明するための図、第2図及び第3図は本発明
の光走査装置を説明するための図、第4図ないし第6図
は実施例1〜3のそれぞれに関する主走査方向の像面湾
曲を示す図、第7図は実施例4に関する主・副走査方向
の像面湾曲を示す図、第8図ないし第10図は実施例5〜
7のそれぞれに関する主走査方向の像面湾曲を示す図、
第11図は請求項2の光走査用レンズの比較例に関する主
走査方向の像面汚曲を示す図、第12図ないし第14図は実
施例8〜10のそれぞれに関する主走査方向の像面湾曲を
示す図、第15図は請求項3の光走査用レンズの比較例に
関する主走査方向の像面湾曲を示す図である。 Q……光源装置、2……集光レンズ、3……偏向反射
面、5A,5B,5C……光走査用レンズ、6……被走査面、Q'
……自然集束点FIG. 1 is a diagram for explaining an optical scanning lens used in the optical scanning device of the present invention. FIGS. 2 and 3 are diagrams for explaining the optical scanning device of the present invention. 6 to 6 are diagrams showing the field curvature in the main scanning direction for each of the first to third embodiments, FIG. 7 is a diagram showing the field curvature in the main and sub-scanning directions for the fourth embodiment, and FIGS. FIG. 10 shows Example 5
7 is a diagram showing field curvature in the main scanning direction for each of No. 7;
FIG. 11 is a diagram showing image surface curvature in the main scanning direction according to a comparative example of the optical scanning lens according to claim 2, and FIGS. 12 to 14 are image surfaces in the main scanning direction according to Examples 8 to 10, respectively. FIG. 15 is a view showing curvature, and FIG. 15 is a view showing curvature of field in the main scanning direction according to a comparative example of the optical scanning lens of claim 3. Q: light source device, 2: condensing lens, 3: deflecting / reflecting surface, 5A, 5B, 5C: optical scanning lens, 6: scanned surface, Q '
…… Natural focusing point
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭54−98627(JP,A) 特開 昭61−147211(JP,A) 特開 平1−99013(JP,A) 特開 昭58−93021(JP,A) 特開 昭61−172109(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 9/00 - 17/08 G02B 21/02 - 21/04 G02B 25/00 - 25/04 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-54-98627 (JP, A) JP-A-61-147211 (JP, A) JP-A-1-99013 (JP, A) JP-A-58-1983 93021 (JP, A) JP-A-61-172109 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02B 9/00-17/08 G02B 21/02-21/04 G02B 25/00-25/04
Claims (4)
からの光束を集束光束にするための集束光学系と、この
集束光学系による集束光束を等角速度的に偏向させる偏
向装置と、この偏向装置により偏向される集束光束を更
に集束させて被走査面上に光スポット状に結像せしめ略
等速的に走査させるための光走査用レンズとを有し、 上記光走査用レンズが、 屈折率nの材質により焦点距離fの単一レンズとして構
成され、第1面の曲率半径をR1、第2面の曲率半径をR2
とするとき、R1>0、且つ|R1|<|R2|であり、 上記光走査用レンズの前側主点から測った入射瞳距離を
t、上記前側主点から入射集束光の自然集束点までの距
離をsとするとき、 (1-I) −8.0<(nf/t)+(f/s)<−3.5 (1-II) −0.4<(t/f)<−0.15 なる条件を満足することを特徴とする光走査装置。1. A light source device for emitting a light beam, a focusing optical system for converting a light beam from the light source device into a focused light beam, a deflecting device for deflecting the focused light beam by the focusing optical system at an equal angular velocity, and An optical scanning lens for further converging the converged light beam deflected by the deflecting device, forming an image on the surface to be scanned in a light spot shape, and scanning at a substantially constant speed, and wherein the optical scanning lens has A single lens having a focal length f is formed of a material having a refractive index n. The radius of curvature of the first surface is R 1 , and the radius of curvature of the second surface is R 2.
Where R 1 > 0 and | R 1 | <| R 2 |, and the entrance pupil distance measured from the front principal point of the optical scanning lens is t, and the natural value of the incident focused light from the front principal point is t. Assuming that the distance to the focal point is s, the following expression holds: (1-I) -8.0 <(nf / t) + (f / s) <-3.5 (1-II) -0.4 <(t / f) <-0.15 An optical scanning device, which satisfies a condition.
からの光束を集束光束にするための集束光学系と、この
集束光学系による集束光束を等角速度的に偏向させる偏
向装置と、この偏向装置により偏向される集束光束を更
に集束させて被走査面上に光スポット状に結像せしめ略
等速的に走査させるための光走査用レンズとを有し、 上記光走査用レンズが、 屈折率nの材質により焦点距離fの単一レンズとして構
成され、第2面が非球面であり、第1面の曲率半径を
R1、上記第2面の光軸上曲率半径をR2とするとき、R2<
0、且つ|R1|>|R2|であり、上記第2面の非球面に
おける円錐定数Kと4次の非球面係数A4とが、 (2-III) 0.8×10-8(mm-3)<(A4/K)<3.0×10-8(mm
-3) なる条件を満足し、 上記光走査用レンズの前側主点から測った入射瞳距離を
t、上記前側主点から入射集束光の自然集束点までの距
離をsとするとき、 (2-I) −7<(nf/t)+(f/s)<−0.6 (2-II) −0.41<(t/f)<−0.13 なる条件を満足することを特徴とする光走査装置。2. A light source device for emitting a light beam, a focusing optical system for converting a light beam from the light source device into a focused light beam, a deflecting device for deflecting the focused light beam by the focusing optical system at an equal angular velocity, and An optical scanning lens for further converging the converged light beam deflected by the deflecting device, forming an image on the surface to be scanned in a light spot shape, and scanning at a substantially constant speed, and wherein the optical scanning lens has A single lens having a focal length f is formed of a material having a refractive index n, the second surface is aspheric, and the radius of curvature of the first surface is
R 1 , when the radius of curvature of the second surface on the optical axis is R 2 , R 2 <
0, and | R 1 |> | R 2 |, and the conic constant K and the fourth-order aspheric coefficient A 4 of the aspheric surface of the second surface are: (2-III) 0.8 × 10 −8 (mm -3 ) <(A 4 /K)<3.0×10 -8 (mm
-3 ) When the following condition is satisfied, the entrance pupil distance measured from the front principal point of the optical scanning lens is t, and the distance from the front principal point to the natural focal point of the incident focused light is s. -I) An optical scanning device characterized by satisfying a condition of -7 <(nf / t) + (f / s) <-0.6 (2-II) -0.41 <(t / f) <-0.13.
からの光束を集束光束にするための集束光学系と、この
集束光学系による集束光束を等角速度的に偏向させる偏
向装置と、この偏向装置により偏向される集束光束を更
に集束させて被走査面上に光スポット状に結像せしめ略
等速的に走査させるための光走査用レンズとを有し、 上記光走査用レンズが、 屈折率nの材質により焦点距離fの単一レンズとして構
成され、第1面が非球面であり、第1面の光軸上曲率半
径をR1、上記第2面の曲率半径をR2とするとき、R1>
0、且つ|R1|<|R2|であり、上記第1面の非球面に
おける円錐定数Kと4次の非球面係数A4とが、 (3-III) −0.6×10-8(mm-3)<(A4/K)<−0.3×10
-8(mm-3) なる条件を満足し、 上記光走査用レンズの前側主点から測った入射瞳距離を
t、上記前側主点から入射集束光の自然集束点までの距
離をsとするとき、 (3-I) −8<(nf/t)+(f/s)<−3.5 (3-II) −0.4<(t/f)<−0.15 なる条件を満足することを特徴とする光走査装置。3. A light source device for emitting a light beam, a focusing optical system for converting the light beam from the light source device into a focused light beam, a deflecting device for deflecting the focused light beam by the focusing optical system at an equal angular velocity, and An optical scanning lens for further converging the converged light beam deflected by the deflecting device, forming an image on the surface to be scanned in a light spot shape, and scanning at a substantially constant speed, and wherein the optical scanning lens has The first surface is aspherical, the radius of curvature of the first surface on the optical axis is R 1 , the radius of curvature of the second surface is R 2, and the first surface is aspherical. When R 1 >
0, and | R 1 | <| R 2 |, and the conic constant K and the fourth-order aspheric coefficient A 4 in the aspheric surface of the first surface are: (3-III) −0.6 × 10 −8 ( mm -3 ) <(A 4 /K)<−0.3×10
-8 (mm -3 ) is satisfied, and the entrance pupil distance measured from the front principal point of the optical scanning lens is t, and the distance from the front principal point to the natural focal point of the incident focused light is s. Wherein (3-I) -8 <(nf / t) + (f / s) <-3.5 (3-II) -0.4 <(t / f) <-0.15 Optical scanning device.
置において、 光走査用レンズと被走査面との間に、副走査方向の像面
湾曲を補正するための補正光学系として、長尺シリンド
リカルレンズを有することを特徴とする光走査装置。4. The optical scanning device according to claim 1, wherein a correction optical system for correcting curvature of field in the sub-scanning direction is provided between the optical scanning lens and the surface to be scanned. An optical scanning device comprising a length cylindrical lens.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/566,165 US5128795A (en) | 1989-08-14 | 1990-08-10 | Scanning lens and scanning apparatus using scanning lens |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1-209837 | 1989-08-14 | ||
JP20983789 | 1989-08-14 | ||
JP1-304331 | 1989-11-22 | ||
JP1-304330 | 1989-11-22 | ||
JP30433089 | 1989-11-22 | ||
JP30433189 | 1989-11-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03213812A JPH03213812A (en) | 1991-09-19 |
JP3037962B2 true JP3037962B2 (en) | 2000-05-08 |
Family
ID=27329062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02138831A Expired - Lifetime JP3037962B2 (en) | 1989-08-14 | 1990-05-29 | Optical scanning device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3037962B2 (en) |
-
1990
- 1990-05-29 JP JP02138831A patent/JP3037962B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03213812A (en) | 1991-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3337510B2 (en) | Optical scanning device | |
US5005928A (en) | Optical scanning system | |
JPH08240767A (en) | Scanning and imaging lens and optical scanner | |
US4934772A (en) | Light beam scanning lens and light beam scanning device | |
US4850663A (en) | Light scanning system | |
JP3546898B2 (en) | Optical scanning device | |
US5128795A (en) | Scanning lens and scanning apparatus using scanning lens | |
US4755030A (en) | Lens for facsimile or laser printer | |
US6850350B2 (en) | Optical scanner | |
JP3037962B2 (en) | Optical scanning device | |
JP2567929B2 (en) | Optical scanning lens and optical scanning device | |
EP1376195B1 (en) | Optical scanner | |
JP3121452B2 (en) | Optical scanning device | |
JP3075056B2 (en) | Scanning optical system | |
JP3003065B2 (en) | Optical scanning device | |
JP2618040B2 (en) | Optical scanning device | |
JP2982041B2 (en) | Aspherical reflecting mirror and light beam scanning optical system | |
JP3018852B2 (en) | Scanning device | |
JP2775434B2 (en) | Scanning optical system | |
JPH05127077A (en) | Cylindrical lens system | |
JP2925339B2 (en) | High resolution scanning optical system | |
JPH0545580A (en) | Lens for optical scanning and optical scanning device | |
JP2840340B2 (en) | Telecentric fθ lens | |
JP3386206B2 (en) | Telecentric fθ lens and optical scanning device | |
JP3658439B2 (en) | Scanning imaging lens and optical scanning device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080225 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090225 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100225 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110225 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110225 Year of fee payment: 11 |