[go: up one dir, main page]

JP3070311B2 - Piezoelectric laminate - Google Patents

Piezoelectric laminate

Info

Publication number
JP3070311B2
JP3070311B2 JP4335862A JP33586292A JP3070311B2 JP 3070311 B2 JP3070311 B2 JP 3070311B2 JP 4335862 A JP4335862 A JP 4335862A JP 33586292 A JP33586292 A JP 33586292A JP 3070311 B2 JP3070311 B2 JP 3070311B2
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric plate
internal electrodes
fibers
internal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4335862A
Other languages
Japanese (ja)
Other versions
JPH06188473A (en
Inventor
守 石切山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP4335862A priority Critical patent/JP3070311B2/en
Publication of JPH06188473A publication Critical patent/JPH06188473A/en
Application granted granted Critical
Publication of JP3070311B2 publication Critical patent/JP3070311B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は積層型圧電アクチュエー
タ等に利用される圧電積層体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric laminate used for a laminated piezoelectric actuator or the like.

【0002】[0002]

【従来の技術】近年、各種の機械的駆動素子として、電
磁力を利用したアクチュエータに代わって、チタン酸ジ
ルコン酸鉛(PZT)磁器などのセラミックスの圧電効
果を利用した積層型圧電アクチュエータが多用されてい
る。この積層型圧電アクチュエータは発熱が少なく、ま
た小型で高速駆動が可能であり、しかも高精度な電圧−
変位特性を期待できるため、各種の機械的駆動素子とし
て極めて有望である。ただ圧電効果による機械的変位は
本質的に極めて小さいので、大きな変位量を得るために
圧電板と電極とを交互に多重に積層し絶縁保護層で被覆
された構造の圧電積層体として提供されている。
2. Description of the Related Art In recent years, instead of actuators utilizing electromagnetic force, multilayer piezoelectric actuators utilizing the piezoelectric effect of ceramics such as lead zirconate titanate (PZT) have been widely used as various mechanical drive elements. ing. This laminated piezoelectric actuator generates less heat, is small in size, can be driven at high speed, and has a highly accurate voltage-
Since the displacement characteristics can be expected, it is extremely promising as various mechanical drive elements. However, since mechanical displacement due to the piezoelectric effect is extremely small in nature, it is provided as a piezoelectric laminate having a structure in which piezoelectric plates and electrodes are alternately and multiplexed and covered with an insulating protective layer in order to obtain a large displacement. I have.

【0003】例えば、以下のように製造された圧電積層
体よりなる積層型圧電アクチュエータが知られている。
まず、チタン酸ジルコン酸鉛よりなる円板状の圧電板の
表裏両面に、銀ペーストを塗布した後、焼き付けて圧電
板の両面に銀電極を形成する。この銀電極を形成した圧
電板と、SUS等の金属板よりなる電極板とを交互に複
数枚積層して積層体とする。この積層体を絶縁保護層で
被覆し、さらに分極処理することにより、圧電板と内部
電極とが交互に積層されて一体化された積層型圧電アク
チュエータとされる。なお上記分極処理は、一般に室温
〜150℃の雰囲気中で内部電極を介して圧電素子に所
定の電圧を印加することにより行われる。この積層型圧
電アクチュエータは、上記内部電極への通電により上記
圧電板が軸方向(積層方向)に伸びてアクチュエータと
して作動する。
For example, a laminated piezoelectric actuator comprising a piezoelectric laminated body manufactured as follows is known.
First, a silver paste is applied to both front and back surfaces of a disk-shaped piezoelectric plate made of lead zirconate titanate, and then baked to form silver electrodes on both surfaces of the piezoelectric plate. A plurality of piezoelectric plates on which the silver electrodes are formed and electrode plates made of a metal plate such as SUS are alternately laminated to form a laminate. This laminated body is covered with an insulating protective layer and further subjected to a polarization treatment, whereby a laminated piezoelectric actuator is obtained in which piezoelectric plates and internal electrodes are alternately laminated and integrated. Note that the above-mentioned polarization treatment is generally performed by applying a predetermined voltage to the piezoelectric element via an internal electrode in an atmosphere at room temperature to 150 ° C. In the laminated piezoelectric actuator, the piezoelectric plate extends in the axial direction (the laminating direction) when the internal electrodes are energized, and operates as an actuator.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来の積
層型圧電アクチェータにおいて、電圧の印加を繰り返し
た場合に、圧電板に内部応力が繰り返し発生するため
に、圧電板に亀裂が発生して圧電板が破損するおそれが
ある。つまり圧電板は、電圧の印加により、軸方向に伸
びるとともに、半径方向に縮む。このとき、各圧電板間
に介在する内部電極は電圧が印加されても変形しないた
め、半径方向に縮もうとする圧電板を内部電極が拘束
し、圧電板の変形が抑えられる。このため、圧電板には
剪断による内部応力が発生し、この結果圧電板に亀裂が
発生することとなる。
However, in the above-described conventional laminated piezoelectric actuator, when the application of a voltage is repeated, internal stress is repeatedly generated in the piezoelectric plate. The board may be damaged. That is, the piezoelectric plate expands in the axial direction and contracts in the radial direction by applying a voltage. At this time, since the internal electrodes interposed between the piezoelectric plates are not deformed even when a voltage is applied, the internal electrodes restrain the piezoelectric plates that are about to shrink in the radial direction, and the deformation of the piezoelectric plates is suppressed. For this reason, internal stress due to shearing occurs in the piezoelectric plate, and as a result, cracks occur in the piezoelectric plate.

【0005】このように圧電板が亀裂、破損すると、ア
クチュエータとしての変位特性が低下したり、短絡を生
じたりする問題が起こる。そこで、実開平2−2775
5号公報には、上記内部電極として、半径方向に変位が
可能となるように形状を工夫した電極板を用いて、圧電
板の亀裂等を抑制した積層型圧電アクチュエータが開示
されている。しかし、この電極板は、銅の薄板を、波状
の曲線部をもつ多重の環状帯と、この環状帯を連結する
直線状短片とを有する形状に打ち抜き成形したものであ
る。このため、内部電極が局部的に存在するので、駆動
時において、該内部電極により圧電板に積層方向の圧力
が局部的にかかり、これに起因して圧電板が割れたり、
圧電板に作用する電界が不均一となって高精度な電圧−
変位特性を得られないといった欠点がある。
[0005] When the piezoelectric plate is cracked or broken in this way, there arise problems that the displacement characteristics of the actuator are degraded or a short circuit is caused. Therefore, 2-2775
Japanese Patent Application Laid-Open No. 5 (1999) -2005 discloses a laminated piezoelectric actuator in which cracks and the like of a piezoelectric plate are suppressed by using an electrode plate whose shape is designed to be displaceable in a radial direction as the internal electrode. However, this electrode plate is formed by stamping a thin copper plate into a shape having multiple annular bands having wavy curved portions and straight short pieces connecting the annular bands. For this reason, since the internal electrodes are locally present, during driving, the pressure in the laminating direction is locally applied to the piezoelectric plate by the internal electrodes, and as a result, the piezoelectric plate is broken,
The electric field acting on the piezoelectric plate becomes non-uniform and a high-precision voltage
There is a disadvantage that displacement characteristics cannot be obtained.

【0006】本発明は上記実情に鑑みてなされたもので
あり、内部電極を局部的に存在させることなく半径方向
に変位可能として、圧電板の亀裂、割れ等を効果的に抑
制することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has an object to effectively suppress cracks and cracks of a piezoelectric plate by allowing internal electrodes to be displaced in a radial direction without being locally present. It is assumed that.

【0007】[0007]

【課題を解決するための手段】上記課題を解決する本第
1発明は、圧電板と内部電極とが交互に多重に積層され
た圧電積層体において、前記内部電極が、放射状に配向
され、かつ、周方向に均一に分布されて、該配向方向に
伸縮可能とされた導電性繊維からなることを特徴とする
ものである。
According to a first aspect of the present invention, there is provided a piezoelectric laminate in which piezoelectric plates and internal electrodes are alternately multiplexed and stacked, wherein the internal electrodes are radially oriented, and The conductive fibers are made of conductive fibers that are uniformly distributed in the circumferential direction and can be expanded and contracted in the orientation direction.

【0008】また上記課題を解決する本第2発明は、圧
電板と内部電極とが交互に多重に積層された圧電積層体
において、前記内部電極が、放射状に配向され、かつ、
周方向に均一に分布されて、該配向方向に伸縮可能とさ
れた繊維と、該繊維の表面上に接合された導電性粒子と
からなることを特徴とするものである。
According to a second aspect of the present invention, there is provided a piezoelectric laminated body in which piezoelectric plates and internal electrodes are alternately and multiply laminated, wherein the internal electrodes are radially oriented, and
It is characterized by comprising fibers distributed uniformly in the circumferential direction and capable of expanding and contracting in the orientation direction, and conductive particles bonded on the surface of the fibers.

【0009】[0009]

【作用】本第1発明では、内部電極が、放射状に配向さ
れて該配向方向に伸縮可能とされた導電性繊維により形
成されているので、駆動時に圧電板が軸方向に伸縮して
放射方向(半径方向)に伸縮したときに、内部電極、つ
まり導電性繊維自身もこれにほぼ追従して伸縮する。こ
のため、内部電極によって、放射方向(半径方向)に伸
縮する圧電板が拘束されて圧電板の変形が抑えられるこ
とがない。したがって、圧電板に剪断による内部応力が
発生することも抑えられ、この結果圧電板に亀裂、割れ
が発生することも抑えられる。なお、本第1発明では、
導電性繊維を介して、圧電板に電圧が印加される。
According to the first aspect of the present invention, since the internal electrodes are formed of conductive fibers that are radially oriented and extend and contract in the orientation direction, the piezoelectric plate expands and contracts in the axial direction during driving, so that the radial direction is increased. When it expands and contracts in the (radial direction), the internal electrode, that is, the conductive fiber itself also expands and contracts substantially following this. For this reason, the piezoelectric plate that expands and contracts in the radial direction (radial direction) is not restrained by the internal electrode, and the deformation of the piezoelectric plate is not suppressed. Therefore, generation of internal stress due to shearing in the piezoelectric plate is also suppressed, and as a result, cracks and cracks in the piezoelectric plate are also suppressed. In the first invention,
A voltage is applied to the piezoelectric plate via the conductive fibers.

【0010】本第2発明においても、駆動時に圧電板が
軸方向に伸縮して放射方向(半径方向)に伸縮したとき
に、放射状に配向されて該配向方向に伸縮可能とされた
繊維がこれにほぼ追従して伸縮する。このため、上記と
同様に、圧電板に亀裂や割れが発生することが抑えられ
る。なお、本第2発明では、繊維の表面に接合された導
電性粒子を介して、圧電板に電圧が印加される。
According to the second aspect of the present invention, when the piezoelectric plate expands and contracts in the axial direction and expands and contracts in the radial direction (radial direction) during driving, the fibers which are radially oriented and can expand and contract in the alignment direction are formed. It almost follows and expands and contracts. For this reason, similarly to the above, generation of cracks and cracks in the piezoelectric plate is suppressed. In the second invention, a voltage is applied to the piezoelectric plate via the conductive particles bonded to the surface of the fiber.

【0011】また、本第1発明及び第2発明において
は、内部電極を構成する繊維が周方向に均一に分布され
ているので、内部電極が局部的に存在することに起因し
て圧電板が割れたり、圧電板に作用する電界が不均一と
なることがない。
In the first and second aspects of the present invention, since the fibers constituting the internal electrodes are uniformly distributed in the circumferential direction, the piezoelectric plate is formed due to the local existence of the internal electrodes. There is no cracking or non-uniform electric field acting on the piezoelectric plate.

【0012】[0012]

【実施例】以下、本発明の圧電積層体を積層型圧電アク
チュエータに適用した実施例を具体的に説明する。 (実施例1)本実施例の積層型圧電アクチェータは、図
3の断面図に示すように、圧電板1と内部電極2とが交
互に多重に積層され、その積層体の外周側面が樹脂絶縁
層3で被覆されている。そして各内部電極2の接合部2
aは、図示しないリード線にそれぞれ接続された外部電
極4、4に一枚置きに接合されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the piezoelectric laminate of the present invention is applied to a laminated piezoelectric actuator will be specifically described below. (Embodiment 1) As shown in the sectional view of FIG. 3, the laminated piezoelectric actuator of this embodiment has piezoelectric plates 1 and internal electrodes 2 alternately multiplexed and the outer peripheral side surface of the laminated body is resin-insulated. Coated with layer 3. And a joint 2 of each internal electrode 2
a is joined to every other one of the external electrodes 4 connected to lead wires (not shown).

【0013】上記圧電板1は、PZT(PbZrO3
PbTiO3 )系セラミックス製のもので、直径15m
m、厚さ0.5mmの円板形状を有している。上記内部
電極2は、図1に示すように、直径15mm、厚さ0.
05〜0.1mmの円形状で、周方向の一部分に遠心方
向に3〜5mm突出した接合部2aを有している。そし
て、この内部電極2は、図1及び図2に示すように、圧
電板1の中心から外周に向かって連続してほぼ均一に放
射状に配向され、かつ、周方向に均一に分布された繊維
21と、この繊維21の表面に主に焼き付けられて接合
された導電性粒子22と、主に繊維21と導電性粒子2
2との接着強度を高めるガラス(図示せず)とから構成
されている。また、内部電極2の接合部2aも、繊維2
1と、この繊維21の表面に接合された導電性粒子22
と、主に繊維21と導電性粒子22との接着強度を高め
るガラス(図示せず)とから構成されている。なお、導
電性粒子22の中には、繊維21の表面に接合されず
に、繊維21間に存在して導電性粒子22同士で点接合
されているもの、圧電板1の表面に点接合されているも
のもある。いずれにせよ、内部電極2の構造としては、
最密構造をとっておらず、導電性粒子22間の間隙の存
在により、繊維21の放射方向(半径方向)の伸縮は可
能とされている。
The piezoelectric plate 1 is made of PZT (PbZrO 3.
It is made of PbTiO 3 ) ceramics and has a diameter of 15 m.
m and a disk shape with a thickness of 0.5 mm. As shown in FIG. 1, the internal electrode 2 has a diameter of 15 mm and a thickness of 0.1 mm.
It has a circular shape of 0.5 to 0.1 mm, and has a joining portion 2a projecting 3 to 5 mm in the centrifugal direction at a part in the circumferential direction. As shown in FIGS. 1 and 2, the internal electrodes 2 are fibers which are continuously and substantially radially oriented from the center of the piezoelectric plate 1 toward the outer periphery and are uniformly distributed in the circumferential direction. 21, conductive particles 22 mainly baked and bonded to the surface of the fibers 21, and mainly the fibers 21 and the conductive particles 2.
And glass (not shown) for increasing the adhesive strength with the glass. Also, the joint 2a of the internal electrode 2 is
1 and conductive particles 22 bonded to the surface of the fiber 21
And glass (not shown) that mainly increases the bonding strength between the fibers 21 and the conductive particles 22. Some of the conductive particles 22 are not bonded to the surface of the fiber 21 but are present between the fibers 21 and are point-joined to each other by the conductive particles 22. Some are. In any case, the structure of the internal electrode 2 is as follows.
The fibers 21 do not have a close-packed structure, and the fibers 21 can expand and contract in the radial direction (radial direction) due to the existence of the gaps between the conductive particles 22.

【0014】本実施例の積層型圧電アクチュエータは、
以下のようにして製造した。原料粉末としてのPbO、
ZrO2 、TiO2 をPb(Ti0.52Zr0.48)O 3
組成となるように秤量後、ボールミルで湿式混合した
後、乾燥し、800℃で1時間仮焼きした。そして、再
びボールミルで湿式粉砕した後、乾燥した。この粉末に
バインダとしてのPVA(ポリビニルアルコール)を約
5重量%加えて造粒後、98MPaの圧力で、直径18
mm、厚さ1mmの円板状の成形体を形成した。
The laminated piezoelectric actuator of this embodiment is
It was manufactured as follows. PbO as raw material powder,
ZrOTwo, TiOTwoTo Pb (Ti0.52Zr0.48) O Threeof
After weighing so as to become the composition, it was wet mixed with a ball mill
Thereafter, it was dried and calcined at 800 ° C. for 1 hour. And re
And wet-pulverized with a ball mill and then dried. To this powder
About PVA (polyvinyl alcohol) as binder
After adding 5% by weight and granulating, at a pressure of 98 MPa, a diameter of 18 was obtained.
A disk-shaped molded body having a thickness of 1 mm and a thickness of 1 mm was formed.

【0015】得られた成形体を、ZrO2 粉末を充填し
たAl2 3 のさやに入れ、昇温速度300℃/hrで
昇温し、大気炉内1250℃で2時間焼成した。一方、
径約0.05mmの炭素繊維(導電性繊維)をほぼ均一
に放射状に配向させつつ、上記接合部2aを有する所定
の円板形状に3次元織りした。この繊維の織物を、導電
性粒子としてのAg粒子(粒径:0.1μm):30重
量部、ガラスフリット:5重量部、及びエタノール:6
5重量部の導電性ペースト中に約30〜60分間浸漬し
た。
The obtained compact was placed in a sheath of Al 2 O 3 filled with ZrO 2 powder, heated at a heating rate of 300 ° C./hr, and fired at 1250 ° C. for 2 hours in an atmospheric furnace. on the other hand,
A carbon fiber (conductive fiber) having a diameter of about 0.05 mm was three-dimensionally woven into a predetermined disc shape having the above-mentioned joint 2a while radially orientating the carbon fiber almost uniformly. A woven fabric of this fiber was prepared by using 30 parts by weight of Ag particles (particle diameter: 0.1 μm) as conductive particles, 5 parts by weight of glass frit, and 6 parts of ethanol.
It was immersed in 5 parts by weight of the conductive paste for about 30 to 60 minutes.

【0016】そして、導電性ペーストが含浸された炭素
繊維の織物と、上記圧電セラミックスの焼成体とを交互
に積層し、500℃の温度で約30分保持して焼き付け
て、圧電板1と内部電極2とが交互に積層された積層体
を形成した。なお、圧電板1の積層枚数は60枚であ
る。さらに、この積層体をエポキシ系樹脂中に浸漬し
て、積層体の外周側面に樹脂絶縁層3を形成した。そし
て、樹脂絶縁層3から突出する内部電極2の接合部2a
を、金属薄板よりなる外部電極4に溶接により接合し
た。
Then, the carbon fiber fabric impregnated with the conductive paste and the fired body of the piezoelectric ceramic are alternately laminated, and are baked at a temperature of 500 ° C. for about 30 minutes to be baked. A laminate in which the electrodes 2 were alternately laminated was formed. The number of stacked piezoelectric plates 1 is 60. Further, this laminate was immersed in an epoxy resin to form a resin insulating layer 3 on the outer peripheral side surface of the laminate. Then, the joint 2a of the internal electrode 2 protruding from the resin insulating layer 3
Was joined to the external electrode 4 made of a thin metal plate by welding.

【0017】最後に、100℃の温度で1.5KV程度
の電圧を印加して分極処理を施して、本実施例の積層型
圧電アクチュエータを完成した。本実施例の積層型圧電
アクチュエータは、内部電極2が半径方向に伸縮可能な
ので、駆動時に、圧電板1にほぼ追従して半径方向に変
位する。このため、圧電板1に剪断により内部応力が発
生することもなく、これに起因する圧電板1の割れ等の
発生を抑えることができる。また、半径方向に変位しな
い従来の内部電極の場合、圧電板1が半径方向に伸びた
ときに、圧電板1よりも内部電極が小さくなって、圧電
板1に十分な電圧をかけることができない場合がある。
しかし、本実施例に係る内部電極2は圧電板1にほぼ追
従して半径方向に変形するので、圧電板1よりも内部電
極2が小さくなることはなく、常に圧電板1に十分な電
圧をかけることが可能である。
Finally, a voltage of about 1.5 KV was applied at a temperature of 100 ° C. to perform a polarization treatment, thereby completing the multilayer piezoelectric actuator of this embodiment. In the laminated piezoelectric actuator of the present embodiment, the internal electrode 2 can be expanded and contracted in the radial direction, so that it is displaced in the radial direction substantially following the piezoelectric plate 1 during driving. Therefore, no internal stress is generated in the piezoelectric plate 1 due to shearing, and it is possible to suppress the occurrence of cracks or the like of the piezoelectric plate 1 due to the internal stress. In the case of a conventional internal electrode that does not displace in the radial direction, when the piezoelectric plate 1 extends in the radial direction, the internal electrode becomes smaller than the piezoelectric plate 1 and a sufficient voltage cannot be applied to the piezoelectric plate 1. There are cases.
However, since the internal electrode 2 according to the present embodiment substantially follows the piezoelectric plate 1 and is deformed in the radial direction, the internal electrode 2 does not become smaller than the piezoelectric plate 1 and a sufficient voltage is always applied to the piezoelectric plate 1. It is possible to call.

【0018】また本実施例のアクチュエータでは、圧電
板1の伸縮に伴って内部電極2のヤング率が変化するの
で、アクチュエータの変位損失を抑制することができ
る。つまり、圧電板1は軸方向に伸びる時に半径方向に
は縮むわけだが、この圧電板1の変形に伴って内部電極
2も半径方向に縮む。これにより、内部電極2を構成す
る繊維21も半径方向に縮み、内部電極2のヤング率が
向上する。このため、駆動時、圧電板1が軸方向に伸び
た際、内部電極2が軸方向に弾性変形してアクチュエー
タとしての軸方向変位を吸収することが抑えられ、これ
に起因する変位損失を抑えることができる。
Further, in the actuator of the present embodiment, the Young's modulus of the internal electrode 2 changes as the piezoelectric plate 1 expands and contracts, so that the displacement loss of the actuator can be suppressed. That is, when the piezoelectric plate 1 expands in the axial direction, it contracts in the radial direction, but with the deformation of the piezoelectric plate 1, the internal electrode 2 also contracts in the radial direction. Accordingly, the fibers 21 constituting the internal electrode 2 also shrink in the radial direction, and the Young's modulus of the internal electrode 2 is improved. Therefore, when the piezoelectric plate 1 is extended in the axial direction during driving, the internal electrode 2 is suppressed from being elastically deformed in the axial direction to absorb the axial displacement as an actuator, and the displacement loss caused by this is suppressed. be able to.

【0019】さらに本実施例では、内部電極2を構成す
る繊維21が周方向に均一に分布され、内部電極2が圧
電板1の全面に均一に形成されているので、圧電板に積
層方向の圧力が局部的にかかることに起因して圧電板が
割れたり、圧電板に作用する電界が不均一となって高精
度な電圧−変位特性を得られないといった欠点がない。
Further, in the present embodiment, the fibers 21 constituting the internal electrodes 2 are uniformly distributed in the circumferential direction, and the internal electrodes 2 are uniformly formed on the entire surface of the piezoelectric plate 1. There are no drawbacks such as the piezoelectric plate being cracked due to the local application of pressure, and the electric field acting on the piezoelectric plate being non-uniform, making it impossible to obtain highly accurate voltage-displacement characteristics.

【0020】さらに本実施例では、内部電極2が1層構
造であるため、圧電板の両面に塗布、焼き付けて形成し
た電極と、SUS等の金属の電極板とよりなる従来の3
層構造の内部電極と比べて、電極部の厚さを薄くするこ
とができる。このため、アクチュエータ全体の軸方向長
さを小さくすることができる。また、内部電極2による
アクチュエータのヤング率の低下を抑えることができ
る。
Further, in this embodiment, since the internal electrode 2 has a one-layer structure, a conventional three-layer structure comprising an electrode formed by applying and baking on both sides of a piezoelectric plate and an electrode plate of a metal such as SUS is used.
The thickness of the electrode portion can be reduced as compared with the internal electrode having a layer structure. Therefore, the axial length of the entire actuator can be reduced. In addition, a decrease in the Young's modulus of the actuator due to the internal electrode 2 can be suppressed.

【0021】さらに本実施例では、内部電極2を構成す
るAg粒子が圧電板1の微細な凹凸表面に点接合してい
るため、圧電板1と内部電極2との間で大きな接触面積
が確保されており、内部電極2から圧電板1に効果的に
電圧をかけることが可能である。さらにまた、本実施例
では、内部電極2の接合部2aも伸縮可能であるため、
外部電極4に対して積層体が軸方向や半径方向に相対変
位したときも、この変位を接合部2aが吸収する。この
ため、内部電極2の接合部2aと外部電極4との切断を
効果的に防止することができる。
Further, in this embodiment, since the Ag particles constituting the internal electrode 2 are point-joined to the fine uneven surface of the piezoelectric plate 1, a large contact area is secured between the piezoelectric plate 1 and the internal electrode 2. Therefore, it is possible to effectively apply a voltage to the piezoelectric plate 1 from the internal electrodes 2. Furthermore, in this embodiment, since the joint 2a of the internal electrode 2 is also expandable,
Even when the laminate is displaced relative to the external electrode 4 in the axial direction or the radial direction, the joint 2a absorbs this displacement. For this reason, it is possible to effectively prevent disconnection between the joint 2a of the internal electrode 2 and the external electrode 4.

【0022】(耐久試験)本実施例の積層型圧電アクチ
ュエータ10個について、電圧:−200〜600V、
プリセット面圧:28MPa、雰囲気温度:130℃の
条件で繰り返し駆動させる耐久試験を行った。その結果
を良品率として図4に示す。なお、これは、試験後のア
クチュエータにおいて圧電板1が1枚でも亀裂、破損し
ていたら、破壊品として数え、良品率(%)={1−
(破壊品数)/(試験総数)}×100の計算式より求
めた。
(Durability test) With respect to ten laminated piezoelectric actuators of this embodiment, a voltage: -200 to 600 V,
A durability test was performed in which the device was repeatedly driven under the conditions of a preset surface pressure: 28 MPa and an ambient temperature: 130 ° C. The results are shown in FIG. This means that if even one piezoelectric plate 1 is cracked or broken in the actuator after the test, it is counted as a broken product, and the non-defective product rate (%) = {1−
It was determined from the formula of (number of broken products) / (total number of tests) x 100.

【0023】比較のため、積層体の内部電極を、圧電板
の表裏面に焼き付け形成した銀ペースト電極と、SUS
よりなる電極板とにより構成すること以外は本実施例と
同様の比較例の積層型圧電アクチュエータについても、
同様に耐久試験を行った。その結果を図4に併せて示
す。図4からも明らかなように、比較例に係る積層型圧
電アクチュエータは、3×108 回の駆動回数後に良品
率が70%程度まで低下したのに対し、本実施例に係る
ものは、3×108 回の駆動回数後においても良品率が
ほぼ100%を維持していた。したがって、本発明の内
部電極2の構造により、圧電板1の破損等を効果的に抑
制できることが確認された。
For comparison, a silver paste electrode formed by baking on the front and back surfaces of a piezoelectric plate and a SUS
A multilayer piezoelectric actuator of a comparative example similar to the present example except that the piezoelectric actuator is constituted by an electrode plate made of
A durability test was performed in the same manner. The results are shown in FIG. As is clear from FIG. 4, the non-defective product ratio of the laminated piezoelectric actuator according to the comparative example was reduced to about 70% after the number of driving times of 3 × 10 8 times, whereas that of the laminated piezoelectric actuator according to this example was 3%. Even after the driving of × 10 8 , the non-defective rate was maintained at almost 100%. Therefore, it was confirmed that the structure of the internal electrode 2 of the present invention can effectively suppress breakage of the piezoelectric plate 1 and the like.

【0024】なお、上記実施例では、繊維の織物に導電
性ペーストを含浸させる方法として、導電性ペースト中
に繊維の織物を浸漬する方法を採用したが、これの代わ
りに繊維の織物に導電性ペーストを圧力をかけながら注
入する方法も採用することが可能である。また、上記実
施例では、予め焼成した圧電板1を形成しておき、この
圧電板1とAg粒子を含浸した繊維の織物とを積層した
後に、焼き付けて積層体とする方法を採用したが、これ
の代わりに、所定形状に成形した圧電セラミックスのグ
リーンシートと、導電性粒子を含浸した繊維の織物とを
積層し、圧電セラミックスの焼成温度に焼成して積層体
とすることも可能である。ただしこの場合は、導電性粒
子及び繊維として上記焼成温度に耐え得るものを選択す
る必要がある。
In the above embodiment, as a method of impregnating the conductive fabric with the conductive paste, the method of immersing the conductive fabric in the conductive paste is used. It is also possible to adopt a method of injecting the paste while applying pressure. Further, in the above-described embodiment, a method is adopted in which the piezoelectric plate 1 is formed in advance, the piezoelectric plate 1 is laminated with a fiber woven fabric impregnated with Ag particles, and then baked to form a laminate. Instead of this, it is also possible to laminate a green sheet of a piezoelectric ceramic formed into a predetermined shape and a woven fabric of fibers impregnated with conductive particles, and fire the same at the firing temperature of the piezoelectric ceramic to form a laminate. However, in this case, it is necessary to select conductive particles and fibers that can withstand the above firing temperature.

【0025】さらに上記実施例では、導電性粒子とし
て、Ag粒子を用いたが、これの代わりにAu,Ni,
Al,Pt,Pd等の他の導電性粒子を用いることも可
能である。 (実施例2)上記実施例1では、内部電極2の形成方法
として、3次元織りにより繊維の織物を予め形成し、こ
れに導電性ペーストを含浸させる方法を採用したが、本
実施例2はこれの代わりに以下の方法により内部電極2
を形成した。また、上記実施例1では、繊維21として
導電性繊維である炭素繊維を用いたが、本実施例2では
これの代わりに非導電性繊維としてのガラス繊維を用い
た。
Furthermore, in the above embodiment, Ag particles were used as the conductive particles, but instead of Au, Ni,
Other conductive particles such as Al, Pt, and Pd can be used. (Embodiment 2) In Embodiment 1, as a method for forming the internal electrode 2, a method of forming a fiber woven fabric in advance by three-dimensional weaving and impregnating the fabric with a conductive paste was employed. Instead of this, the internal electrode 2 is formed by the following method.
Was formed. In the first embodiment, the carbon fibers which are the conductive fibers are used as the fibers 21, but in the second embodiment, the glass fibers are used as the non-conductive fibers instead.

【0026】まず、導電性粒子としてのAg粒子(粒
径:0.1μm):30重量部、ガラスフリット:5重
量部、及びエタノール:65重量部よりなる導電性ペー
ストを準備した。この導電性ペースト中に、長さ1m
m、径0.01〜0.5mmのガラス繊維(導電性ペー
スト100重量部に対して50重量部)を入れ、ボール
ミルで48時間、十分に攪拌、分散して分散液とした。
First, a conductive paste composed of 30 parts by weight of Ag particles (particle size: 0.1 μm), 5 parts by weight of glass frit, and 65 parts by weight of ethanol as conductive particles was prepared. 1m long in this conductive paste
m, glass fiber having a diameter of 0.01 to 0.5 mm (50 parts by weight with respect to 100 parts by weight of the conductive paste) was put therein, and sufficiently stirred and dispersed by a ball mill for 48 hours to obtain a dispersion.

【0027】また、中心孔を有し、この中心孔に注入用
管(径3mm)が突設されたディスク(直径50mm)
を準備した。このディスクを上記実施例1と同様にして
得た圧電セラミックスの焼成体の上に、0.05〜0.
1mm程度離して保持した状態で、注入用管から上記分
散液を圧力をかけながら10分程度注入した。これによ
り、分散液が焼成体の中心から放射状に流れて、外周か
ら流れ出るので、分散液中の各繊維が放射状に配向し
た。そして、上記ガラス繊維を長手方向に配向させつつ
所定形状(5mm×2mm)に3次元織りした接合部2
aを、繊維の配向方向が同じとなるように所定位置に配
設した。
A disk (50 mm in diameter) having a center hole, into which an injection tube (3 mm in diameter) protrudes.
Was prepared. This disk was placed on a fired body of piezoelectric ceramic obtained in the same manner as in Example 1 above, and was placed in the range of 0.05 to 0.1.
The dispersion was injected from the injection tube for about 10 minutes while applying pressure while being held at a distance of about 1 mm. As a result, the dispersion liquid radially flows from the center of the fired body and flows out from the outer periphery, so that each fiber in the dispersion liquid is radially oriented. Then, the joining portion 2 is formed by three-dimensionally weaving the glass fiber into a predetermined shape (5 mm × 2 mm) while orienting the glass fiber in the longitudinal direction.
a was disposed at a predetermined position so that the orientation directions of the fibers were the same.

【0028】この後、このように形成した分散液付の焼
成体を60枚積層し、500℃の温度で約30分保持し
て焼き付けて、圧電板1と内部電極2とが交互に積層さ
れた積層体を形成した。そして、上記実施例1と同様に
積層型圧電アクチュエータとした。なお、上記実施例2
では、非導電性繊維としてガラス繊維を用いたが、これ
の代わりにアラミド繊維やポリエチレン繊維等の他の非
導電性繊維を用いることも可能である。
Thereafter, 60 pieces of the fired bodies with the dispersion liquid formed as described above are laminated, baked at a temperature of 500 ° C. for about 30 minutes, and the piezoelectric plates 1 and the internal electrodes 2 are alternately laminated. A laminated body was formed. Then, similarly to the first embodiment, a laminated piezoelectric actuator was obtained. In addition, the second embodiment
In the above, glass fiber was used as the non-conductive fiber, but another non-conductive fiber such as aramid fiber or polyethylene fiber may be used instead.

【0029】(実施例3)本実施例3の積層型圧電アク
チュエータは、内部電極2を導電性繊維のみから構成し
たものである。つまり、本実施例3に係る内部電極2
は、圧電板1の中心から外周に向かって連続してほぼ均
一に放射状に配向された繊維21のみから構成されてい
る。
(Embodiment 3) In the laminated piezoelectric actuator of Embodiment 3, the internal electrodes 2 are formed only of conductive fibers. That is, the internal electrode 2 according to the third embodiment
Is composed of only the fibers 21 which are radially oriented substantially uniformly continuously from the center of the piezoelectric plate 1 toward the outer periphery.

【0030】本実施例の積層型圧電アクチュエータは、
上記実施例1で準備した炭素繊維の織物と、同じく上記
実施例1で準備した圧電セラミックスの焼成体とを交互
に積層し、不活性雰囲気中500℃の温度で約30分保
持して焼き付けて、圧電板1と内部電極2とが交互に積
層された積層体を形成した。そして、上記実施例1と同
様に積層型圧電アクチュエータとした。
The laminated piezoelectric actuator of this embodiment is
The carbon fiber fabric prepared in Example 1 and the piezoelectric ceramic fired body similarly prepared in Example 1 are alternately laminated, and baked in an inert atmosphere at a temperature of 500 ° C. for about 30 minutes. Then, a laminate in which the piezoelectric plates 1 and the internal electrodes 2 were alternately laminated was formed. Then, similarly to the first embodiment, a laminated piezoelectric actuator was obtained.

【0031】上記実施例2及び実施例3の積層型圧電ア
クチュエータについても、上記実施例1と同様の耐久試
験を行った結果、ほぼ同様の結果が得られた。
With respect to the laminated piezoelectric actuators of Examples 2 and 3, a durability test similar to that of Example 1 was performed. As a result, almost the same results were obtained.

【0032】[0032]

【発明の効果】以上詳述したように本発明の圧電積層体
は、内部電極が放射方向に伸縮可能であるため、圧電板
の放射方向の変位に追従して内部電極が変位する。この
ため、圧電板の放射方向の変位が内部電極で拘束され
て、圧電板に剪断による内部応力が発生することがな
い。したがって、圧電板に亀裂や割れが発生することを
効果的に防止することができる。
As described in detail above, in the piezoelectric laminate of the present invention, since the internal electrodes can expand and contract in the radial direction, the internal electrodes are displaced following the radial displacement of the piezoelectric plate. For this reason, the radial displacement of the piezoelectric plate is not restricted by the internal electrodes, and no internal stress is generated in the piezoelectric plate due to shearing. Therefore, it is possible to effectively prevent the piezoelectric plate from cracking or cracking.

【0033】また、本発明の圧電積層体は、内部電極を
構成する繊維が周方向に均一に分布されているので、局
部的に内部電極から圧電板に積層方向の圧力がかかって
圧電板が割れたり、圧電板に作用する電界が不均一とな
って高精度な電圧−変位特性を得られないといった不都
合がない。さらに、本発明の圧電積層体は、駆動時に内
部電極が圧電板の伸縮に伴って内部電極のヤング率が変
化するので、アクチュエータの変位損失を抑制すること
ができる。
Further, in the piezoelectric laminate of the present invention, since the fibers constituting the internal electrodes are uniformly distributed in the circumferential direction, the pressure in the laminating direction is locally applied to the piezoelectric plate from the internal electrodes, so that the piezoelectric plate is pressed. There is no inconvenience that the electric field acting on the piezoelectric plate is broken and the voltage-displacement characteristics with high accuracy cannot be obtained. Further, in the piezoelectric laminate of the present invention, the internal electrode changes in Young's modulus of the internal electrode as the piezoelectric plate expands and contracts during driving, so that the displacement loss of the actuator can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例に係る内部電極を模式的に示す平面図
である。
FIG. 1 is a plan view schematically showing an internal electrode according to the present embodiment.

【図2】本実施例に係る内部電極を模式的に示す拡大断
面図である。
FIG. 2 is an enlarged sectional view schematically showing an internal electrode according to the present embodiment.

【図3】本実施例に係る圧電積層体を模式的に示す断面
図である。
FIG. 3 is a cross-sectional view schematically illustrating a piezoelectric laminate according to the present embodiment.

【図4】本実施例及び比較例の圧電積層体について、耐
久試験を行った結果を示す線図である。
FIG. 4 is a diagram showing the results of a durability test performed on the piezoelectric laminates of this example and a comparative example.

【符号の説明】[Explanation of symbols]

1は圧電板、2は内部電極、21は繊維、22は導電性
粒子である。
1 is a piezoelectric plate, 2 is an internal electrode, 21 is a fiber, and 22 is a conductive particle.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧電板と内部電極とが交互に多重に積層
された圧電積層体において、 前記内部電極は、放射状に配向され、かつ、周方向に均
一に分布されて、該配向方向に伸縮可能とされた導電性
繊維からなることを特徴とする圧電積層体。
1. A piezoelectric laminate in which a plurality of piezoelectric plates and internal electrodes are alternately stacked, wherein the internal electrodes are radially oriented and uniformly distributed in a circumferential direction, and expand and contract in the alignment direction. A piezoelectric laminate comprising conductive fibers made possible.
【請求項2】 圧電板と内部電極とが交互に多重に積層
された圧電積層体において、 前記内部電極は、放射状に配向され、かつ、周方向に均
一に分布されて、該配向方向に伸縮可能とされた繊維
と、該繊維の表面上に接合された導電性粒子とからなる
ことを特徴とする圧電積層体。
2. In a piezoelectric laminate in which piezoelectric plates and internal electrodes are alternately stacked in multiple layers, the internal electrodes are radially oriented and uniformly distributed in a circumferential direction, and expand and contract in the orientation direction. A piezoelectric laminate comprising a fiber made possible and conductive particles bonded on the surface of the fiber.
JP4335862A 1992-12-16 1992-12-16 Piezoelectric laminate Expired - Fee Related JP3070311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4335862A JP3070311B2 (en) 1992-12-16 1992-12-16 Piezoelectric laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4335862A JP3070311B2 (en) 1992-12-16 1992-12-16 Piezoelectric laminate

Publications (2)

Publication Number Publication Date
JPH06188473A JPH06188473A (en) 1994-07-08
JP3070311B2 true JP3070311B2 (en) 2000-07-31

Family

ID=18293216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4335862A Expired - Fee Related JP3070311B2 (en) 1992-12-16 1992-12-16 Piezoelectric laminate

Country Status (1)

Country Link
JP (1) JP3070311B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1179860A1 (en) * 2000-08-09 2002-02-13 Piezomechanik GmbH Contact for piezoelectric actuators
FR2959877B1 (en) * 2010-05-06 2013-06-14 Renault Sa METHOD OF MANUFACTURING A STACK ACTUATOR WITH ALTERNATE ELECTRODE LAYER LAYERS AND PIEZOELECTRIC MATERIAL
JP7293898B2 (en) * 2019-06-18 2023-06-20 Tdk株式会社 Piezoelectric element

Also Published As

Publication number Publication date
JPH06188473A (en) 1994-07-08

Similar Documents

Publication Publication Date Title
US5196756A (en) Stack-type piezoelectric element, process for producing the same, and stack-type piezoelectric device
WO2005029603A1 (en) Multilayer piezoelectric device
JP3070311B2 (en) Piezoelectric laminate
JP3668072B2 (en) Multilayer piezoelectric actuator
JP2003197991A (en) Multilayer piezoelectric element and injection device
JPH11186626A (en) Multilayer piezoelectric actuator
JP2003101092A (en) Laminated piezoelectric element, method for producing the same, and injection device
JP3506609B2 (en) Multilayer piezoelectric actuator
JP2001244514A (en) Multilayer piezoelectric actuator and injection device using the same
JP2002289932A (en) Laminated piezoelectric element, method for producing the same, and injection device
JP6809822B2 (en) Piezoelectric actuator
JP3506614B2 (en) Multilayer piezoelectric actuator
JPH05206534A (en) Multilayer piezoelectric element
JP3894680B2 (en) Multilayer piezoelectric actuator
JP2892672B2 (en) Stacked displacement element
JP3850163B2 (en) Multilayer piezoelectric actuator and manufacturing method thereof
JP2002299708A (en) Actuator and injection device
JP6927848B2 (en) Piezoelectric actuator
JPH02132870A (en) Laminated piezoelectric element
JPH02267976A (en) Laminated ceramic element and manufacture thereof
JPH11274589A (en) Multilayer piezoelectric actuator and method of manufacturing the same
JPH11238918A (en) Multilayer piezoelectric actuator
JP2001068750A (en) Multilayer piezoelectric actuator
JPH03174782A (en) Laminated piezoelectric actuator element
JPH05275764A (en) Piezoelectric laminate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080526

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees