[go: up one dir, main page]

JP3008638B2 - Non-aqueous electrolyte secondary battery and its negative electrode active material - Google Patents

Non-aqueous electrolyte secondary battery and its negative electrode active material

Info

Publication number
JP3008638B2
JP3008638B2 JP4034690A JP3469092A JP3008638B2 JP 3008638 B2 JP3008638 B2 JP 3008638B2 JP 4034690 A JP4034690 A JP 4034690A JP 3469092 A JP3469092 A JP 3469092A JP 3008638 B2 JP3008638 B2 JP 3008638B2
Authority
JP
Japan
Prior art keywords
secondary battery
graphite
aqueous electrolyte
negative electrode
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4034690A
Other languages
Japanese (ja)
Other versions
JPH05234592A (en
Inventor
茂雄 小林
和典 原口
健一 森垣
璋 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12421383&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3008638(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP4034690A priority Critical patent/JP3008638B2/en
Publication of JPH05234592A publication Critical patent/JPH05234592A/en
Application granted granted Critical
Publication of JP3008638B2 publication Critical patent/JP3008638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池と
その負極活物質に関するものである。
The present invention relates to a non-aqueous electrolyte secondary battery and its negative electrode active material.

【0002】近年、民生用電子機器のポータブル化、コ
ードレス化が急速に進んでいる。これにつれて駆動用電
源を担う小形、軽量で、かつ高エネルギー密度を有する
二次電池への要望も高まってきている。このような観点
から、非水系二次電池、とくにリチウム二次電池は、と
りわけ高電圧、高エネルギー密度を有する電池としてそ
の期待は大きく、開発が急がれている。
[0002] In recent years, portable and cordless consumer electronic devices have been rapidly advancing. Accordingly, there has been a growing demand for a small, lightweight, and high energy density secondary battery that serves as a driving power supply. From such a viewpoint, non-aqueous secondary batteries, particularly lithium secondary batteries, are particularly expected to be batteries having a high voltage and a high energy density, and their development is urgent.

【0003】[0003]

【従来の技術】従来、前記リチウム二次電池の正極活物
質には、二酸化マンガン、五酸化バナジウム、二硫化チ
タンなどが用いられている。これらの正極と、リチウム
負極および有機電解液とで電池を構成し、充放電を繰り
返していた。ところが、一般にこのような負極活物質に
リチウム金属を用いた二次電池では、充電時に生成する
デンドライト状リチウムによる内部短絡や活物質と電解
液の副反応といった課題が二次電池化への大きな障害と
なっていた。
2. Description of the Related Art Conventionally, manganese dioxide, vanadium pentoxide, titanium disulfide and the like have been used as a positive electrode active material of the above-mentioned lithium secondary battery. A battery was composed of these positive electrodes, a lithium negative electrode and an organic electrolyte, and charging and discharging were repeated. However, in such secondary batteries using lithium metal as the negative electrode active material, problems such as an internal short circuit due to dendritic lithium generated during charging and side reactions between the active material and the electrolyte are major obstacles to the creation of secondary batteries. Had become.

【0004】このため、層状化合物のインターカレーシ
ョン反応を利用した新しいタイプの電極活物質が注目を
集めており、高結晶性の黒鉛層間化合物が非水電解液二
次電池の負極活物質として用いられている。
For this reason, a new type of electrode active material utilizing an intercalation reaction of a layered compound has attracted attention, and a highly crystalline graphite intercalation compound has been used as a negative electrode active material of a non-aqueous electrolyte secondary battery. Have been.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記従
来例のように、高結晶性の黒鉛を負極活物質として用い
た場合、例えばコークスの高温焼成体などは200mA
h/g程度の低い放電容量しか得られなかった。更に
は、電池構成時に高結晶性の黒鉛が電解液に接触し、電
解液が分解してガスが発生し、電池内圧が上昇するとい
う課題を有していた。
However, when high-crystalline graphite is used as the negative electrode active material as in the above-mentioned conventional example, for example, a high-temperature fired body of coke is 200 mA.
Only a discharge capacity as low as h / g was obtained. Further, there is a problem in that when the battery is configured, highly crystalline graphite comes into contact with the electrolyte, the electrolyte is decomposed, gas is generated, and the internal pressure of the battery increases.

【0006】本発明は、上記のような従来の課題を解決
するもので、負極活物質として表面を賦活処理した炭素
材料からなる黒鉛を用いることにより、高容量を有し、
しかも電解液の分解が少ない非水電解液二次電池を提供
することを目的としている。
The present invention solves the above-mentioned conventional problems, and has a high capacity by using graphite made of a carbon material having a surface activated as an anode active material.
Moreover, it is an object of the present invention to provide a non-aqueous electrolyte secondary battery in which the decomposition of the electrolyte is small.

【0007】[0007]

【課題を解決するための手段】これらの課題を解決する
ため本発明の非水電解液二次電池は、非水電解液と、充
放電可能な正極と負極とを備えた非水電解液二次電池に
おいて、負極活物質として表面を賦活処理した炭素材料
からなる黒鉛を用いることを特徴とする。
In order to solve these problems, a non-aqueous electrolyte secondary battery according to the present invention comprises a non-aqueous electrolyte comprising a non-aqueous electrolyte, a chargeable and dischargeable positive electrode and a negative electrode. The secondary battery is characterized in that graphite made of a carbon material having a surface activated is used as a negative electrode active material.

【0008】また、本発明の非水電解液二次電池用負極
活物質は黒鉛からなる非水電解液二次電池用負極活物質
であって前記黒鉛として表面を賦活処理した炭素材料か
らなる黒鉛を用いることを特徴とする。
Further, the negative electrode active material for a non-aqueous electrolyte secondary battery of the present invention is a negative electrode active material for a non-aqueous electrolyte secondary battery comprising graphite, wherein the graphite comprises a carbon material whose surface has been activated. Is used.

【0009】尚、前記炭素材料としては球状黒鉛を用い
るのが好ましい。また、前記賦活処理条件と放電容量と
の間には次に説明するような関係がある。図3に炭素収
率と放電容量の関係曲線を示す。収率とは賦活処理の程
度を示す因子で賦活ガスの種類と組成、賦活温度、賦活
時間によりきまる。即ち、炭素と賦活ガスとの反応によ
り一酸化炭素と水素が発生して炭素の重量が減少する。
その炭素の残量を収率で表現している。図3から収率8
0〜95%であれば放電容量が優れていることがわか
る。縦軸の容量は後記する実施例の電池構成によって得
られた放電結果である。収率80〜95%が優れている
理由は、80%未満では黒鉛の層状構造部が破壊されリ
チウムのインタカレートする部分が減少し、一方95%
を越えると表面の微細構造の成長が少ないためである。
It is preferable to use spherical graphite as the carbon material. Further, there is a relationship described below between the activation processing conditions and the discharge capacity. FIG. 3 shows a relationship curve between the carbon yield and the discharge capacity. The yield is a factor indicating the degree of the activation treatment and is determined by the type and composition of the activation gas, the activation temperature and the activation time. That is, carbon monoxide and hydrogen are generated by the reaction between carbon and the activation gas, and the weight of carbon is reduced.
The remaining amount of carbon is expressed in yield. From FIG. 3, yield 8
It can be seen that the discharge capacity is excellent if it is 0 to 95%. The capacity on the vertical axis is a discharge result obtained by the battery configuration of the example described later. The reason why the yield of 80 to 95% is excellent is that if the yield is less than 80%, the layered structure of graphite is destroyed and the portion where lithium intercalates is reduced, while 95%
This is because, when it exceeds, the growth of the fine structure on the surface is small.

【0010】図4に収率と賦活時間の関係を示す。図4
は水蒸気を5〜10体積%含む二酸化炭素の混合ガス雰
囲気の収率と賦活時間の関係を示す。斜線部Aが放電容
量の高い部分である。即ち、斜線部は放電容量が550
mAh以上の領域である。この図から賦活処理条件は賦
活温度750〜900°C、賦活時間30分〜1時間で
高容量を示すことが明らかである。
FIG. 4 shows the relationship between the yield and the activation time. FIG.
Shows the relationship between the yield and the activation time in a mixed gas atmosphere of carbon dioxide containing 5 to 10% by volume of water vapor. A hatched portion A is a portion having a high discharge capacity. That is, the hatched portion has a discharge capacity of 550.
The area is equal to or larger than mAh. From this figure, it is clear that the activation treatment conditions show a high capacity at an activation temperature of 750 to 900 ° C. and an activation time of 30 minutes to 1 hour.

【0011】[0011]

【作用】前記賦活処理を施された黒鉛を負極に用いる
と、この黒鉛にインタカレートおよびデインタカレート
するリチウム量が多くなり高容量の非水電解液二次電池
を実現することができると共に、黒鉛と電解液の接触に
よる電解液の分解が少なくなり電池内圧の上昇が少ない
非水電解液二次電池を実現することができる。
When the activated graphite is used for the negative electrode, the amount of lithium intercalated and deintercalated in the graphite increases, and a high-capacity nonaqueous electrolyte secondary battery can be realized. In addition, it is possible to realize a nonaqueous electrolyte secondary battery in which the decomposition of the electrolyte due to the contact between graphite and the electrolyte is reduced and the internal pressure of the battery is less increased.

【0012】本発明の黒鉛が高容量である理由は、賦活
により炭素表面が浸食され、表面に微細孔構造ができる
ことにより黒鉛の層状構造の層間にリチウムがインタカ
レート、デインタカレートしやすくなり、その量が増え
るからである。
The graphite of the present invention has a high capacity because the carbon surface is eroded by activation and a microporous structure is formed on the surface, so that lithium can be easily intercalated and deintercalated between layers of the graphite layered structure. Because the amount increases.

【0013】[0013]

【実施例】以下、本発明の実施例について、図を参照し
ながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings.

【0014】まず、炭素材料の賦活処理法を以下のよう
にして行い、負極活物質を得た。賦活される炭素材料と
しては2800℃で焼成した黒鉛化の高い層状構造をし
た球状黒鉛を用いた。賦活ガスは水蒸気を10体積%含
む二酸化炭素を用いた。処理温度は800℃、処理時間
は1時間の処理条件で賦活処理を行った。
First, a method of activating a carbon material was performed as follows to obtain a negative electrode active material. As the activated carbon material, spheroidal graphite fired at 2800 ° C. and having a highly graphitized layered structure was used. As the activation gas, carbon dioxide containing 10% by volume of water vapor was used. The activation treatment was performed at a treatment temperature of 800 ° C. and a treatment time of 1 hour.

【0015】図1に本実施例で用いた円筒形電池の縦断
面図を示す。図において1は耐有機電解液性のステンレ
ス鋼板を加工した電池ケース、2は安全弁を設けた封口
板、3は絶縁パッキングを示す。4は極板群であり、正
極および負極がセパレータを介して複数回渦巻状に巻回
されて収納されている。そして上記正極からは正極リー
ド5が引き出されて封口板2に接続され、負極からは負
極リード6が引き出されて電池ケースの底部1に接続さ
れている。7は絶縁リングで極板群の上下部にそれぞれ
設けられている。以下、正、負極板、電解液等について
詳しく説明する。
FIG. 1 is a longitudinal sectional view of a cylindrical battery used in this embodiment. In the figure, reference numeral 1 denotes a battery case processed from a stainless steel sheet having resistance to organic electrolyte, 2 denotes a sealing plate provided with a safety valve, and 3 denotes an insulating packing. Reference numeral 4 denotes an electrode group, in which a positive electrode and a negative electrode are spirally wound a plurality of times via a separator and housed. A positive electrode lead 5 is drawn out from the positive electrode and connected to the sealing plate 2, and a negative electrode lead 6 is drawn out from the negative electrode and connected to the bottom 1 of the battery case. Reference numeral 7 denotes an insulating ring provided on the upper and lower portions of the electrode group. Hereinafter, the positive and negative electrode plates, the electrolytic solution and the like will be described in detail.

【0016】正極はLi2 CO3 とCoCO3 とを混合
し、900℃で10時間焼成して合成したLiCoO2
の粉末100重量部に、アセチレンブラック3重量部、
グラファイト4重量部、フッ素樹脂系結着剤7重量部を
混合し、カルボキシメチルセルロース水溶液に懸濁させ
て、ペースト状にした。このペーストを厚さ0.03m
mのアルミ箔の両面に塗着し、乾燥後圧延して厚さ0.
19mm、幅40mm、長さ250mmの極板とした。
合剤重量は5gであった。
The positive electrode is LiCoO 2 synthesized by mixing Li 2 CO 3 and CoCO 3 and firing at 900 ° C. for 10 hours.
100 parts by weight of powder, 3 parts by weight of acetylene black,
4 parts by weight of graphite and 7 parts by weight of a fluororesin-based binder were mixed and suspended in an aqueous solution of carboxymethylcellulose to form a paste. 0.03m thick paste
m, dried and rolled after drying.
The electrode plate was 19 mm, 40 mm in width, and 250 mm in length.
The mixture weight was 5 g.

【0017】負極は前述した本発明の賦活処理を施した
球状黒鉛を用いる。本発明の黒鉛100重量部にフッ素
樹脂系結着剤10重量部を混合し、カルボキシメチルセ
ルロース水溶液に懸濁させて、ペースト状にした。この
ペーストを厚さ0.02mmの銅箔の両面に塗着し、乾
燥後圧延して厚さ0.20mm、幅40mm、長さ26
0mmの極板とした。合剤重量は2.5gであった。
For the negative electrode, spherical graphite which has been subjected to the above-described activation treatment of the present invention is used. 10 parts by weight of a fluororesin binder was mixed with 100 parts by weight of the graphite of the present invention, and suspended in an aqueous solution of carboxymethyl cellulose to form a paste. This paste was applied to both sides of a copper foil having a thickness of 0.02 mm, dried and rolled, and then dried to a thickness of 0.20 mm, a width of 40 mm, and a length of 26.
A 0 mm electrode plate was used. The mixture weight was 2.5 g.

【0018】そして、正、負極板それぞれにリードを取
りつけ、厚さ0.025mm、幅46mm、長さ700
mmのポリプロピレン製のセパレータを介して渦巻状に
巻回し、直径13.8mm、高さ50mmの電池ケース
内に収容した。電解液には炭酸プロピレンと炭酸エチレ
ンの等容積混合溶媒に、過塩素酸リチウムを1モル/リ
ットルの割合で溶解したものを用いた。
Then, a lead was attached to each of the positive and negative electrode plates, and the thickness was 0.025 mm, the width was 46 mm, and the length was 700.
It was spirally wound via a polypropylene separator of 1 mm and housed in a battery case having a diameter of 13.8 mm and a height of 50 mm. As the electrolytic solution, a solution prepared by dissolving lithium perchlorate at a ratio of 1 mol / liter in a mixed solvent of equal volumes of propylene carbonate and ethylene carbonate was used.

【0019】比較例 負極に2800℃で熱処理を施した黒鉛化の高い層状構
造の球状黒鉛を用いたこと以外は前記実施例の電池と同
一条件で構成を行い、比較例の電池とした。
Comparative Example A battery according to a comparative example was prepared under the same conditions as the battery of the above example, except that the negative electrode was subjected to a heat treatment at 2800 ° C. and used spherical graphite having a highly graphitized layered structure.

【0020】上述の実施例の電池および比較例の電池を
充放電電流100mA、充電終止電圧4.1V、放電終
止電圧3.0Vの条件で定電流充放電試験を行った。そ
の10サイクル目の充放電曲線の比較を図2に示した。
A constant current charge / discharge test was performed on the batteries of the above-described examples and the comparative example under the conditions of a charge / discharge current of 100 mA, a charge end voltage of 4.1 V, and a discharge end voltage of 3.0 V. FIG. 2 shows a comparison of the charge and discharge curves at the tenth cycle.

【0021】図2より明らかなように、本実施例の電池
は650mAhの高い容量を示した。これに対して比較
例の電池は450mAhの少ない容量を示した。
As is clear from FIG. 2, the battery of this example exhibited a high capacity of 650 mAh. In contrast, the battery of the comparative example exhibited a small capacity of 450 mAh.

【0022】さらに本発明の電池と比較例の電池を比べ
ると、電池組み立て時の電池内圧に大きな差があった。
即ち、本発明の電池では1気圧で内圧の上昇が見られな
いが、比較例では13気圧と高い内圧を示した。
Further, when the battery of the present invention and the battery of the comparative example were compared, there was a large difference in battery internal pressure during battery assembly.
That is, the internal pressure of the battery of the present invention did not increase at 1 atm, but the internal pressure of the comparative example was as high as 13 atm.

【0023】以上のように本実施例によれば表面を賦活
処理した炭素材料からなる黒鉛を負極に用いることによ
り、高容量で且つ電解液との接触によるガス発生の少な
い非水電解液二次電池が実現できる。
As described above, according to this embodiment, by using graphite made of a carbon material whose surface has been activated for the negative electrode, the secondary battery of the non-aqueous electrolyte having a high capacity and less generation of gas due to contact with the electrolyte can be obtained. A battery can be realized.

【0024】[0024]

【発明の効果】本発明は、負極として表面を賦活処理し
た炭素材料からなる黒鉛を用いることにより、高容量で
且つ電解液との接触によるガス発生の少ない非水電解液
二次電池を提供できるという効果を有する。
According to the present invention, a non-aqueous electrolyte secondary battery having a high capacity and little gas generation due to contact with an electrolyte can be provided by using graphite made of a carbon material whose surface has been activated as the negative electrode. It has the effect of.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明と従来例の円筒形非水電解液二次電池の
縦断面図
FIG. 1 is a longitudinal sectional view of a cylindrical non-aqueous electrolyte secondary battery of the present invention and a conventional example.

【図2】本発明と従来例の電池の10サイクル目の充放
電曲線の比較を示す図
FIG. 2 is a diagram showing a comparison of charge / discharge curves at the 10th cycle between the batteries of the present invention and a conventional example.

【図3】電池放電容量と収率の関係を示す図FIG. 3 is a diagram showing the relationship between battery discharge capacity and yield.

【図4】水蒸気混合ガス雰囲気における収率と賦活時間
の関係を示す図
FIG. 4 is a diagram showing the relationship between the yield and the activation time in a steam mixed gas atmosphere.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 5 正極リード 6 負極リード 7 絶縁リング DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulation packing 4 Electrode group 5 Positive electrode lead 6 Negative electrode lead 7 Insulation ring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 璋 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平5−139712(JP,A) 特開 昭64−48371(JP,A) 特開 昭64−45057(JP,A) 特開 昭64−1219(JP,A) 特開 昭60−194514(JP,A) 特開 昭60−170172(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 H01M 4/02 H01M 10/40 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sho Ota 1006 Kazuma Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-5-139712 (JP, A) JP-A 64- 48371 (JP, A) JP-A-64-45057 (JP, A) JP-A-64-1219 (JP, A) JP-A-60-194514 (JP, A) JP-A-60-170172 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01M 4/58 H01M 4/02 H01M 10/40

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 非水電解液と、充放電可能な正極と負極
とを備えた非水電解液二次電池において、負極活物質と
して表面を賦活処理した炭素材料からなる黒鉛を用いる
ことを特徴とする非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte, a chargeable / dischargeable positive electrode and a negative electrode, characterized in that graphite comprising a carbon material whose surface has been activated is used as a negative electrode active material. Non-aqueous electrolyte secondary battery.
【請求項2】 上記炭素材料として球状黒鉛を用いるこ
とを特徴とする請求項1記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein spheroidal graphite is used as said carbon material.
【請求項3】 上記黒鉛として収率95〜80%の賦活
処理を施した炭素材料からなる黒鉛を用いることを特徴
とする請求項1又は2記載の非水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the graphite is a graphite made of a carbon material that has been activated at a yield of 95 to 80%.
【請求項4】 上記黒鉛として水蒸気を5〜15体積%
含む混合ガス雰囲気中、750〜900℃、30分〜1
時間の処理条件で賦活処理を施した炭素材料からなる黒
鉛を用いることを特徴とする請求項1乃至3の何れかに
記載の非水電解液二次電池。
4. A method according to claim 1, wherein said graphite is water vapor of 5 to 15% by volume.
750-900 ° C, 30 min-1
The non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein graphite made of a carbon material that has been activated under a treatment condition of time is used.
【請求項5】 表面を賦活処理した球状黒鉛を用いるこ
とを特徴とする非水電解液二次電池用負極活物質。
5. A negative electrode active material for a non-aqueous electrolyte secondary battery, characterized by using spherical graphite whose surface has been activated .
【請求項6】 上記黒鉛として収率95〜80%の賦活
処理を施した球状黒鉛を用いることを特徴とする請求項
5記載の非水電解液二次電池用負極活物質。
6. Activation of the graphite with a yield of 95 to 80%.
6. The negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 5, wherein treated spherical graphite is used.
JP4034690A 1992-02-21 1992-02-21 Non-aqueous electrolyte secondary battery and its negative electrode active material Expired - Fee Related JP3008638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4034690A JP3008638B2 (en) 1992-02-21 1992-02-21 Non-aqueous electrolyte secondary battery and its negative electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4034690A JP3008638B2 (en) 1992-02-21 1992-02-21 Non-aqueous electrolyte secondary battery and its negative electrode active material

Publications (2)

Publication Number Publication Date
JPH05234592A JPH05234592A (en) 1993-09-10
JP3008638B2 true JP3008638B2 (en) 2000-02-14

Family

ID=12421383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4034690A Expired - Fee Related JP3008638B2 (en) 1992-02-21 1992-02-21 Non-aqueous electrolyte secondary battery and its negative electrode active material

Country Status (1)

Country Link
JP (1) JP3008638B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4187076B2 (en) * 1997-07-04 2008-11-26 日立粉末冶金株式会社 Graphite powder for negative electrode of lithium ion secondary battery and method for producing the same
WO2014157630A1 (en) * 2013-03-29 2014-10-02 日本電気株式会社 Negative electrode carbon material for lithium secondary battery and method of producing same, and negative electrode for lithium secondary battery, and lithium secondary battery
CN114243141B (en) * 2021-11-22 2024-05-28 陕西合义智能制造有限公司 Fine disassembly and recovery method for waste power lithium ion batteries

Also Published As

Publication number Publication date
JPH05234592A (en) 1993-09-10

Similar Documents

Publication Publication Date Title
JP2884746B2 (en) Non-aqueous electrolyte secondary battery
JP2855877B2 (en) Non-aqueous electrolyte secondary battery
JP4507284B2 (en) Non-aqueous electrolyte secondary battery
JP3033175B2 (en) Non-aqueous electrolyte secondary battery
US6114065A (en) Secondary battery
JP3440638B2 (en) Non-aqueous electrolyte secondary battery
JP3062304B2 (en) Non-aqueous solvent secondary battery
JP3133318B2 (en) Rechargeable battery
JP3003431B2 (en) Non-aqueous electrolyte secondary battery
US6165647A (en) Secondary battery comprising a polymerizable material in its electrolyte solution
JP3309719B2 (en) Non-aqueous electrolyte secondary battery
JP2847885B2 (en) Lithium secondary battery
JPH0737618A (en) Nonaqueous electrolyte secondary battery
JP3008638B2 (en) Non-aqueous electrolyte secondary battery and its negative electrode active material
JP3049973B2 (en) Non-aqueous electrolyte secondary battery
JP3082116B2 (en) Non-aqueous electrolyte secondary battery
JP3424419B2 (en) Method for producing negative electrode carbon material for non-aqueous electrolyte secondary battery
JPH05174872A (en) Nonaqueous electrolyte secondary battery
JPH08138743A (en) Nonaqeuous electrolyte secondary battery
JP3568247B2 (en) Non-aqueous electrolyte secondary battery
JPH05314977A (en) Nonaqueous electrolytic secondary battery
JP2730641B2 (en) Lithium secondary battery
JPH01294372A (en) Nonaqueous electrolyte secondary battery
JP3010973B2 (en) Non-aqueous electrolyte secondary battery
JP3010861B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees