[go: up one dir, main page]

JP2951903B2 - Processing equipment - Google Patents

Processing equipment

Info

Publication number
JP2951903B2
JP2951903B2 JP218197A JP218197A JP2951903B2 JP 2951903 B2 JP2951903 B2 JP 2951903B2 JP 218197 A JP218197 A JP 218197A JP 218197 A JP218197 A JP 218197A JP 2951903 B2 JP2951903 B2 JP 2951903B2
Authority
JP
Japan
Prior art keywords
substrate
heat transfer
gas
electrode means
substrate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP218197A
Other languages
Japanese (ja)
Other versions
JPH09199488A (en
Inventor
稔 野口
徹 大坪
進 相内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11522199&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2951903(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP218197A priority Critical patent/JP2951903B2/en
Publication of JPH09199488A publication Critical patent/JPH09199488A/en
Application granted granted Critical
Publication of JP2951903B2 publication Critical patent/JP2951903B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • ing And Chemical Polishing (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Control Of Temperature (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、例えば、半導体ウエハ
などの基板に、ドライエッチングあるいは、蒸着、スパ
ッタリングなどの処理を行う処理装置に関するものであ
る。 【0002】 【従来の技術】たとえば、半導体装置の製造工程におい
て、成膜工程として蒸着あるいはスパッタリングを行う
場合、粒径、反射率、比抵抗及び硬度が適切である良好
な膜質を得るためには、基板のベーキング中、及び、成
膜中の基板温度を適切に制御する必要がある。特に粒
径、反射率は、成膜中の基板の温度の影響が大きい。 【0003】また、上記膜上に露光、現像によりレジス
トパターンを形成し、ドライエッチングで上記膜をレジ
ストパターン通りに食刻する際にも基板の温度の制御が
必要である。これは、基板の温度を制御することで、レ
ジストが耐熱性に乏しいことから生じるレジストの熱的
な損傷を防ぎ、忠実なパターンを食刻することが可能に
なるからである。 【0004】しかし、基板の温度を、基板支持台と同じ
温度にするように制御しても、真空中では基板と支持台
との熱的接触が十分ではないため、真空中で基板の温度
を制御することは難しい。 【0005】そこで、従来から基板と基板支持台との2
面間の熱的接触を大きくするため、基板を支持台に機械
的に押え付けるか、あるいは、静電的な力により基板を
支持台に吸着させるかなどの方法が提案されている。し
かし、このような方法によっても、基板と支持台の2面
間の熱的接触は、2面間に介在する気体分子によるとこ
ろが大きく、純粋な固体間での熱のやりとりは、上記の
押え付け圧力程度では気体分子による熱のやりとりに比
べて無視できる程度に小さいため、十分な効果は得られ
ていない。 【0006】そこで、基板と支持台との間に気体分子を
介在させることにより、熱的接触を大きくしようとする
装置が、特開昭56−103442に提案開示されてい
る。 【0007】この装置における基板の温度制御部は、図
6に示すように、支持台5にスペーサ9を介して基板3
が接近配置され、数個のクリップ4により支持される。
支持台5には、冷却もしくは加熱機構をそなえた温度制
御装置6が設けられている。処理室1は、排気口2を通
して圧力が1Pa程度になるよう排気される。 【0008】同時に、気体導入口7よりアルゴンが導入
され、このガスは温度制御装置6と基板3の間を流れ、
矢印8に示すように処理室1内に流入する。この時、基
板3と温度制御装置6との空間10内の圧力は、10〜
100Paになるように制御される。 【0009】従って、基板3は、温度制御装置6から流
出する100Pa程度の圧力を持つ介在ガスの熱伝達に
助けられ温度制御される。 【0010】 【発明が解決しようとする課題】たとえば、直径100
mm、厚さ0.45mmのシリコン基板を温度制御する
場合、その時定数は20秒程度にもなる。このような状
況で、印加電力500Wのドライエッチングを行なう
と、温度制御装置から流出するガスとシリコン基板表面
との温度差は130°Cにもなり、レジストが熱的損傷
を受け、良好な処理を行うことができない。 【0011】上記の事情に鑑み、本発明の目的は、半導
体装置製造時の食刻、成膜、ベーキング処理において、
処理中に基体温度を効果的に制御して、良好な処理が行
えるようにした処理装置を提供することにある。 【0012】上記の目的を達成するため、本発明におい
ては、内部を真空に排気する排気手段を備えた処理室
と、該処理室の内部に設置されて被処理基板を載置する
上面をほぼ全面に亘って絶縁物で被覆した基板電極手段
と、該基板電極手段に電圧を印加する電圧印加手段と、
前記基板電極手段に載置した被処理基板と前記基板電極
手段の絶縁物との間に熱伝達ガスを供給する熱伝達ガス
供給手段と、前記処理室の内部にガスを供給するガス供
給手段と、前記処理室の内部で前記基板電極手段と対向
して設置された対向電極手段と、該対向電極手段に高周
波電力を印加する高周波電力印加手段とを備え、前記排
気手段で真空に排気した前記処理室の内部に前記ガス供
給手段からガスを供給した状態で前記高周波電力印加手
段で前記対向電極に高周波電力を印加することにより前
記対向電極手段と前記基板電極手段との間に発生させた
プラズマで前記基板電極手段に載置した被処理基板を処
理するときに、前記熱伝達ガス供給手段により前記被処
理基板と前記基板電極手段の絶縁物との間に介在させる
熱伝達ガスの平均自由工程以下の面粗さに表面が形成さ
れた前記絶縁物に前記電圧印加手段により印加した電圧
により前記被処理基板をほぼ全面に亘って静電吸着させ
るとともに前記熱伝達ガス供給手段により前記被処理基
板を前記基板電極手段の絶縁物との間に前記熱伝達ガス
を供給して前記被処理基板を冷却するようにした。 【0013】基体と電極手段との温度差を小さくし、基
体の温度制御の応答速度を速くするためには、基体と電
極手段との間を単位時間、単位温度差当りに流れる熱量
(以下単位熱流量と言う。)を大きくする必要がある。
単位熱流量を大きくするには、圧力を上げ、同時に、2
面間の距離をその圧力下でのその気体の平均自由行程以
下にする必要がある。 【0014】処理中の基体温度は次の式に従って経時変
化する。 (1)Tw=(1−exp(−kt/C))Qi/k+
To ここで、Twは基体温度、Cは基体の熱容量、kは単位
熱流量、Qiは処理時に単位時間当り基体に与えられる
一定熱量、Toは電極手段の温度、tは時間であり、t
=0においてTw=Toとしている。 【0015】また、電極手段の温度が定常値Toにあ
り、基体の初期温度Two≠Toの時は次の式に従う。 (2)Tw=(Two−To)exp(−kt/C)+
To 以上、いずれの場合も、基体の温度制御の応答速度は、
基体の熱容量Cと、2面間の単位熱流量kにのみ依存す
る。Cの値は基体固有の値で、たとえば、直径100m
m、厚さ0.45mmのシリコン基板では約6.2J・
K~1である。従って、基体と電極手段の温度差を小さく
し、基体の温度制御の応答速度を速くするには、単位熱
流量を大きくする必要がある。 【0016】ところで、2面間に窒素を介在させ、その
圧力を変えた時、単位熱流量がどう変化するかを示す実
測値を図5に示す。なお、基体はシリコンで、表面を薄
い酸化シリコンで覆い、その支持材としては、研摩した
アルミニウムを用い、表面を十分に洗浄して、2面間に
は、直径100mm当り1kgの荷重をかけた。 【0017】曲線が、原点を通る直線に近く、この条件
下では純粋に固体間だけの熱伝達は無視できることが証
明される。すなわち、固体2面間に力学的な接触があっ
ても、熱的な接触の大部分は2面間に介在する気体によ
るものである。また、介在気体の圧力を従来装置におけ
る値100Paより大きくすると単位熱流量が増すこと
がわかる。 【0018】以上の実測値は、以下の理論式に従うもの
である。すなわち、2面間を単位時間当りに通過する熱
量「dQ/dt」は次の式に従う。 (3)dQ/dt=k1 (Tw−To)p(e≪λ) (4)dQ/dt=k2 (Tw−To)e(e≫λ) ここで、k1 、k2 は定数、Tw、Toはそれぞれ基
体、支持材の温度、eは2面間の距離、pは介在気体の
圧力、λはその圧力下での平均自由行程である。この式
は、圧力が低く平均自由行程が十分長い条件下では、
「dQ/dt」はpに比例し、圧力が高く平均自由行程
が十分短くなると「dQ/dt」はeに比例することを
示している。 【0019】従って、2面間に介在する気体の圧力を上
げ、かつ、2面間の距離をその圧力下での平均自由行程
程度以下にする機構を設けることによって、単位熱流量
は大きくできる。 【0020】ところで、従来の装置においては、pは1
00Pa程度であるからArの平均自由行程λは約50
μmである。したがって、間隔は50μm程度まで小さ
くすることが望ましいが、図6に示すように、100P
aの圧力差により基板3の中央部が符号11のごとく膨
らむ。例えば、直径100mm厚さ0.45mmのシリ
コンウエハにおいては、100Paの圧力差により中央
部の膨らみ量は150μmに達する。したがって、平均
自由行程である50μmを越え、さらに圧力を上げても
単位熱流量を増すことはできない。 【0021】 【実施の形態】以下、本発明の実施例を図面に基づいて
説明する。まず、基板を例にその温度制御の原理を図1
に基づいて説明する。基板19の支持台17と、基板1
9を保持するための保持手段23と、基板19と支持台
17とで形成される空間20に気体を導入するための気
体導入手段52を有する基板温度制御装置において、支
持台17と基板19との距離を、導入した気体の圧力下
におけるその気体の平均自由行程以下にする機構を設
け、これにより、半導体装置製造時の食刻処理等におい
て、処理中の基板温度を効果的に制御しうる。 【0022】このような原理に基づく装置は、基本的に
は、処理室12、表面が研磨された凸面である下部電極
17及び上部電極16から構成される平行平板型のドラ
イエッチング装置である。本実施例においては下部電極
17が支持台となる。 【0023】処理室12は、排気口13を介して真空排
気系(図示せず)に接続されている。処理室12にはガ
ス導入口24を介して反応ガスが導入される。また、処
理室12には適宜の位置に基板20を出し入れするため
の取入取出口14が設けられている。 【0024】上部電極16と下部電極17との間には高
周波電源25が接続されている。下部電極17には、液
体熱媒体が流れる流路48、ポンプ42、液体熱媒体の
温度制御装置43が設けられている。また、オリフィス
21、バルブ15を介して熱伝達用ガスのガスだめ26
が設けられている。ガスだめ26には、流量調節バルブ
45を介してガスボンベ44が、また流量調節バルブ4
6を介してロータリーポンプ47が接続されている。 【0025】基板の保持手段23はセラミックなどの絶
縁材で作成されていて、バネ39を介してボールネジ4
0及びモータ41に接続されている。基板19と下部電
極17との間にはOリング18が設けられていて、Oリ
ング18は、基板19と下部電極とで形成される空間2
0を処理室12から封止している。 【0026】以上の構成において、下部電極17は、適
切な一定温度に保たれた液体熱媒体が循環されることに
より、一定温度に保たれる。液体熱媒体としては、20
℃に保たれた水を用いるが、目的に応じ、温度制御され
た水以外の流体を用いても良い。また、下部電極17
は、電気抵抗を用いて温度制御しても良い。 【0027】基板19は、モータ41とボールネジ40
とによって昇降する基板保持手段23によって下部電極
17に押えつけられる。この時、バネ39は、基板19
を常に一定の加重で押える役目、すなわち機械的接触を
生じさせる機構をなす。 【0028】また、ガスだめ26は、流量調節バルブ4
5,46、ガスボンベ44及びロータリーポンプ47に
より常に一定の圧力に保たれ、熱伝達用気体で満たされ
ている。空間20には、ガスだめ26からオリフィス2
1を介して熱伝達用ガスが導入される。すなわち、気体
導入手段はガスだめ26と気体導入口となるオリフィス
21とからなっている。 【0029】次に、前記装置における処理中の基板温度
制御がどのように行なわれているか、熱伝達用ガスとし
てヘリウムを用い、基板が直径100mm厚さ0.45
mmのシリコン基板の場合を例にして説明する。 【0030】基板19が載置された後、従来例より1桁
大きい700Pa程度の圧力のガスだめ26からヘリウ
ムガスが導入される。700Paの圧力を持つガスが導
入された時、基板19は中央が、約800μm凸状にふ
くらむ。また、基板中心から半径方向にrの距離にある
点の変化量wは、次の式に従う。 【0031】 【数1】 【0032】ここで、E、νはそれぞれシリコンのヤン
グ率及びポアソン比、h、aはそれぞれ基板19の厚さ
及び半径、pはガスの圧力である。 【0033】そこで、下部電極17の凸面を予め上記の
式に従う形の曲面、あるいは、それ以上ふくらんだ曲面
に加工しておく。この時、基板19は基板支持具23に
より押えられているため凸面に沿って変形し応力を持
つ。 【0034】この時、ガス圧によって基板19が受ける
力は、基板19が持っている応力と等しいかまたは小さ
いため、基板19はガス圧によりすでに持っているひず
み以上のひずみを生じることがなく下部電極17に沿っ
て機械的に接触したままである。また、下部電極17の
表面は、表面粗さ6−S以下に研磨されている。そのた
め、2面間の距離は全面にわたって700Paにおける
ヘリウムの平均自由行程30μmより十分小さく保たれ
る。 【0035】ここで、純粋に固体間の熱的接触は無視で
きることを考えると、熱的接触は全面にわたって均一で
ある。従って、十分な熱的接触が実現し、単位熱流量を
十分大きくできる。 【0036】また、前記装置においては、空間20に熱
伝達用のガスを導入するため導入手段として、オリフィ
ス21を設けている。このオリフィス21は、ヘリウム
に対するコンダクタンスが約1×10~63 /secに
なるように、直径を約40μmにしてある。基板17が
載置されていない場合に、ガスだめ26からこのオリフ
ィスを通して圧力差700Paの処理室12に流出する
ガス量は、7×10~4Pa・m3 /sec程度である。
これは、反応ガス導入口24から導入される反応ガス導
入量8×10~2Pa・m 3/secに対し十分小さい。
したがって、空間20と処理室12との封止に洩れが発
生しても、処理に対し悪影響を及ぼすことがないため、
本実施例による温度制御機構の信頼性が向上することに
なる。また、このオリフィスをつけることで、Oリング
18による封止をなくすことも可能であり、同時に、基
板19の搬入、搬出を処理室12の真空を破壊しないで
行う場合でもバルブ15が不必要になる。 【0037】ここで、基板19が載置された後、空間2
0がガスだめ26と同じ圧力になるまでに要する時間が
十分短い必要がある。空間20の体積をV、オリフィス
のコンダクタンスをC、ガスだめ26内の圧力をPoと
した時、空間20の圧力pは次の式に従う。 【0038】 (6)p=Po(1−exp(−Ct/V)) ここで、空間20は、大きくても厚さ100μmの円筒
であるため、V=7.8×10~73 であるからpの応
答の時定数は約1secとなり、十分早い応答となる。 【0039】前記の装置構成において、200W〜50
0Wの高周波電力を印加した時にプラズマから受ける熱
量によって昇温する基板19の昇温曲線を図2に示す。
ここで、応答速度の時定数は約3secとなり十分良好
な制御特性を示す。また、下部電極17との温度差もそ
れぞれ8°C、20°Cにおさえられている。 【0040】また、レジストの耐熱温度が約120°C
であるから、この装置では、付加高周波電力を2.5K
Wまで大きくすることが可能ということになる。 【0041】本発明の実施例を図3に基づいて説明す
る。この実施例においては、特公昭57−44747号
公報に開示された静電気力による吸引を利用して基板1
9の支持を行っている点、及び、熱伝達用のガスに、液
体固体だめ27内の液体あるいは固体37の蒸気を利用
している。 【0042】静電気による吸引力を利用した装置は、互
いに絶縁された複数(図3においては2つ)の電極3
3、36間に直流電源38から極性の異なる直流電圧を
印加することで、基板19と2つの電極33、36との
間に閉回路が構成され、プラズマを形成することなく基
板19を静電吸着することができる。従って、プラズマ
を使用しない基板19のベーキング工程においても、基
板19を静電吸着することができる。この静電気による
吸引力のために、基板19は全面にわたって約10gc
m~2の力で吸引され、全面にわたって絶縁材30との間
に機械的な接触が生じる。 【0043】この時、基板19と下部電極29上の絶縁
材30との間にできた空間20と処理室12とを封止す
るためのOリング18が設けられていること、及び、空
間20への気体の導入手段としてオリフィス21が設け
られている。本実施の形態では絶縁材30が支持台とな
る。 【0044】ここで、熱伝達用ガスを発生する気体ある
いは固体の蒸気圧が、温度制御された下部電極29と等
温の時、700Pa程度の圧になるよう液体あるいは固
体を選ぶ。 【0045】本実施の形態においては、熱伝達用のガス
として、1、1、2、2−テトラクロルエタンを用いて
いるため、常温で700Pa程度になる。ここで、使用
する液体・固体は1、1、2、2−テトラクロルエタン
に限らず他の蒸気圧を持った液体・固体であっても良
い。 【0046】この時の平均自由行程は3μmとなるの
で、絶縁物30の表面は0.8S以下に研磨しておく必
要がある。また、絶縁材30に軟質の有機化合物を用
い、基板19の下面の形状に沿って柔軟に変形させるこ
とによっても、2面間を平均自由行程より小さくでき
る。 【0047】この時、機械的には接触している2面間に
は、気化したガスが介在し、2面間の距離はこの時のガ
スの平均自由行程である3μmよりも十分小さくなる。
その結果、2面間の熱的接触は十分大きくなり、単位熱
流量も大きくなる。 【0048】また、空間20内を1sec程度で700
Paにするために、オリフィス21の1、1、2、2−
テトラクロルエタンに対するコンダクタンスが1×10
~63 /secになるよう直径90μmにしてある。 【0049】以上の装置における基板19の昇温曲線を
図4に示す。300Wの高周波電力を付加してドライエ
ッチングを行った場合の例である。時定数は5secと
なり十分な値となっている。またこの装置においては熱
伝達用のガスのガス流およびガス圧の制御をする必要が
なく、構造が簡単になるという利点がある。 【0050】また、基板19と支持台との距離を小さく
するための装置として特開昭56−131930号公報
に開示された、ウエハ温度コントロール装置を用いても
同様の効果が期待できる。 【0051】また、支持台もしくは支持台表面を軟質の
有機化合物で構成することは、2面間の距離を小さくす
る上で大きな効果がある。 【0052】以上の2つの例は、いずれも本発明をドラ
イエッチング装置に適用した例であるが、スパッタリン
グ、蒸着などの成膜装置あるいは、基板のベーキング装
置に適用しても同等の効果が期待でき、その他の電極手
段や基板の温度制御を必要とする真空装置にも適用でき
ることは容易に類推できる。 【0053】以上の実施の形態によれば、基板と支持台
との間に介在するガス圧を十分上げた上で、2面間の距
離を、そのガス圧でのガスの平均自由行程より小さくで
きるので、2面間の単位時間、単位面積、単位温度差当
りの熱流量を、従来の50W・K~1・m~2から250W
・K~1・m~2に向上することができる。その結果、処理
時の基板と支持台との温度差と、基板温度制御の時定数
を、それぞれ、従来の値の5分の1程度に小さくするこ
とができる。 【0054】なお当然のことではあるが本発明範囲は以
上の実施例に限定されるものではない。 【0055】 【発明の効果】本発明によれば、半導体装置の食刻,成
膜,ベーキング処理等において、処理中の基体温度を効
果的に制御することができ、良好な処理を行うことがで
きる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a processing apparatus for performing processing such as dry etching, vapor deposition, and sputtering on a substrate such as a semiconductor wafer. 2. Description of the Related Art For example, when vapor deposition or sputtering is performed as a film forming step in a manufacturing process of a semiconductor device, it is necessary to obtain a good film quality having an appropriate particle diameter, reflectance, specific resistance and hardness. It is necessary to appropriately control the substrate temperature during baking of the substrate and during film formation. In particular, the particle diameter and the reflectance are greatly affected by the temperature of the substrate during film formation. Also, when a resist pattern is formed on the film by exposure and development, and the film is etched according to the resist pattern by dry etching, it is necessary to control the temperature of the substrate. This is because by controlling the temperature of the substrate, it is possible to prevent the resist from being thermally damaged due to the poor heat resistance of the resist and to etch a faithful pattern. However, even if the temperature of the substrate is controlled to be the same as that of the substrate support, the thermal contact between the substrate and the support in a vacuum is not sufficient. It is difficult to control. In view of the above, conventionally, a substrate and a substrate support table are used.
In order to increase the thermal contact between the surfaces, there have been proposed methods of mechanically pressing the substrate against the support, or attracting the substrate to the support by electrostatic force. However, even with such a method, the thermal contact between the two surfaces of the substrate and the support base largely depends on gas molecules interposed between the two surfaces, and the exchange of heat between the pure solids depends on the above-described pressing. Since the pressure is about negligibly small compared to the exchange of heat by gas molecules, a sufficient effect has not been obtained. Japanese Patent Application Laid-Open No. Sho 56-103442 discloses a device for increasing thermal contact by interposing gas molecules between a substrate and a support. [0007] As shown in FIG. 6, the substrate temperature control unit in this apparatus is provided on a support base 5 via a spacer 9.
Are closely arranged and supported by several clips 4.
The support table 5 is provided with a temperature control device 6 having a cooling or heating mechanism. The processing chamber 1 is evacuated through the exhaust port 2 so that the pressure becomes about 1 Pa. At the same time, argon is introduced from the gas inlet 7, and this gas flows between the temperature controller 6 and the substrate 3,
It flows into the processing chamber 1 as shown by an arrow 8. At this time, the pressure in the space 10 between the substrate 3 and the temperature control device 6 is 10 to
It is controlled to be 100 Pa. Therefore, the temperature of the substrate 3 is controlled by the heat transfer of the intervening gas having a pressure of about 100 Pa flowing out of the temperature control device 6. [0010] For example, a diameter of 100
When controlling the temperature of a silicon substrate having a thickness of 0.45 mm and a thickness of 0.45 mm, the time constant is as long as about 20 seconds. In such a situation, when dry etching with an applied power of 500 W is performed, the temperature difference between the gas flowing out of the temperature control device and the surface of the silicon substrate becomes as high as 130 ° C., and the resist is thermally damaged. Can not do. In view of the above circumstances, it is an object of the present invention to provide an etching, film forming, and baking process for manufacturing a semiconductor device.
It is an object of the present invention to provide a processing apparatus capable of effectively controlling a substrate temperature during processing so as to perform good processing. In order to achieve the above object, according to the present invention, a processing chamber provided with an exhaust means for evacuating the inside of the processing chamber, and an upper surface on which the substrate to be processed is placed and which is installed inside the processing chamber, are substantially formed. Substrate electrode means coated with an insulator over the entire surface, voltage applying means for applying a voltage to the substrate electrode means,
A heat transfer gas supply means for supplying a heat transfer gas between the insulating material of the substrate and the substrate electrode means placed on the substrate electrode means, a gas supply means for supplying a gas into the processing chamber A counter electrode means disposed inside the processing chamber so as to face the substrate electrode means, and a high-frequency power application means for applying high-frequency power to the counter electrode means, wherein the evacuation means evacuates to a vacuum. Plasma generated between the counter electrode means and the substrate electrode means by applying high frequency power to the counter electrode by the high frequency power applying means in a state where gas is supplied from the gas supply means into the processing chamber. When the substrate to be processed placed on the substrate electrode means is processed by the heat transfer gas supply means,
Between the substrate and the insulator of the substrate electrode means
Surface is formed with surface roughness less than mean free path of heat transfer gas
The insulator of the substrate electrode means the target substrate by the heat transfer gas supply unit together with the electrostatically adsorbed over the ho substrate to be processed URN whole surface by a voltage applied by said voltage applying means to the insulator The heat transfer gas is supplied to cool the substrate to be processed. In order to reduce the temperature difference between the substrate and the electrode means and increase the response speed of temperature control of the substrate, the amount of heat flowing per unit temperature difference between the substrate and the electrode means per unit time (hereinafter referred to as unit) It is necessary to increase the heat flow.)
To increase the unit heat flow, increase the pressure and simultaneously
The distance between the faces must be less than the mean free path of the gas under the pressure. The substrate temperature during processing varies with time according to the following equation: (1) Tw = (1-exp (-kt / C)) Qi / k +
To where Tw is the substrate temperature, C is the heat capacity of the substrate, k is the unit heat flow, Qi is the constant amount of heat applied to the substrate per unit time during processing, To is the temperature of the electrode means, t is time, and t is time.
At 0.0, Tw = To. Further, when the temperature of the electrode means is at the steady value To and the initial temperature of the substrate TwooTo, the following equation is satisfied. (2) Tw = (Two−To) exp (−kt / C) +
In all cases, the response speed of the temperature control of the substrate is:
It depends only on the heat capacity C of the substrate and the unit heat flow k between the two surfaces. The value of C is a value specific to the substrate, for example, 100 m in diameter.
m, about 6.2J · with a silicon substrate 0.45mm thick
K ~ 1 . Therefore, in order to reduce the temperature difference between the base and the electrode means and increase the response speed of temperature control of the base, it is necessary to increase the unit heat flow. FIG. 5 shows actual measured values showing how the unit heat flow rate changes when nitrogen is interposed between the two surfaces and the pressure is changed. The base was covered with silicon, the surface was covered with thin silicon oxide, and polished aluminum was used as a support material, the surface was sufficiently washed, and a load of 1 kg per 100 mm in diameter was applied between the two surfaces. . The curve is close to a straight line passing through the origin, which proves that under these conditions heat transfer purely between solids is negligible. That is, even if there is mechanical contact between the two surfaces of the solid, most of the thermal contact is due to gas interposed between the two surfaces. Further, it can be seen that when the pressure of the intervening gas is made larger than the value of 100 Pa in the conventional apparatus, the unit heat flow rate increases. The above measured values are based on the following theoretical formula. That is, the amount of heat “dQ / dt” that passes between two surfaces per unit time follows the following equation. (3) dQ / dt = k 1 (Tw−To) p (e≪λ) (4) dQ / dt = k 2 (Tw−To) e (e≫λ) where k 1 and k 2 are constants , Tw, and To are the temperatures of the substrate and the support material, e is the distance between the two surfaces, p is the pressure of the intervening gas, and λ is the mean free path under the pressure. This equation shows that under low pressure and long enough mean free path,
“DQ / dt” is proportional to p, and indicates that “dQ / dt” is proportional to e when the pressure is high and the mean free path is sufficiently short. Therefore, the unit heat flow can be increased by providing a mechanism for increasing the pressure of the gas interposed between the two surfaces and reducing the distance between the two surfaces to about the mean free path under the pressure. By the way, in the conventional device, p is 1
The mean free path λ of Ar is about 50
μm. Therefore, it is desirable to reduce the interval to about 50 μm, but as shown in FIG.
Due to the pressure difference a, the central portion of the substrate 3 expands as indicated by reference numeral 11. For example, in the case of a silicon wafer having a diameter of 100 mm and a thickness of 0.45 mm, the bulge amount at the center reaches 150 μm due to a pressure difference of 100 Pa. Therefore, the unit heat flow cannot be increased even if the pressure is increased beyond the mean free path of 50 μm. Embodiments of the present invention will be described below with reference to the drawings. First, the principle of temperature control is shown in FIG.
It will be described based on. The support 17 of the substrate 19 and the substrate 1
In a substrate temperature control device having a holding means 23 for holding the substrate 9 and a gas introduction means 52 for introducing a gas into the space 20 formed by the substrate 19 and the support 17, A mechanism for reducing the distance of the gas below the mean free path of the gas under the pressure of the introduced gas, whereby the substrate temperature during the processing can be effectively controlled in an etching process or the like at the time of manufacturing a semiconductor device. . An apparatus based on such a principle is basically a parallel plate type dry etching apparatus comprising a processing chamber 12, a lower electrode 17 having a polished convex surface, and an upper electrode 16. In this embodiment, the lower electrode 17 serves as a support. The processing chamber 12 is connected to a vacuum exhaust system (not shown) through an exhaust port 13. A reaction gas is introduced into the processing chamber 12 through a gas inlet 24. Further, the processing chamber 12 is provided with an inlet / outlet 14 for taking the substrate 20 in and out of an appropriate position. A high-frequency power supply 25 is connected between the upper electrode 16 and the lower electrode 17. The lower electrode 17 is provided with a flow path 48 through which the liquid heat medium flows, a pump 42, and a temperature control device 43 for the liquid heat medium. Further, the gas reservoir 26 for the heat transfer gas is supplied through the orifice 21 and the valve 15.
Is provided. A gas cylinder 44 is connected to the gas sump 26 via a flow control valve 45, and a gas control valve 4.
6, a rotary pump 47 is connected. The substrate holding means 23 is made of an insulating material such as ceramics, and is provided with a ball screw 4 via a spring 39.
0 and the motor 41. An O-ring 18 is provided between the substrate 19 and the lower electrode 17, and the O-ring 18 is a space 2 formed by the substrate 19 and the lower electrode.
0 is sealed from the processing chamber 12. In the above configuration, the lower electrode 17 is maintained at a constant temperature by circulating a liquid heat medium maintained at an appropriate constant temperature. As a liquid heat carrier, 20
Although water kept at ° C. is used, a fluid other than water whose temperature is controlled may be used according to the purpose. Also, the lower electrode 17
May be controlled by using electric resistance. The substrate 19 comprises a motor 41 and a ball screw 40
Then, the substrate is pressed against the lower electrode 17 by the substrate holding means 23 which moves up and down. At this time, the spring 39 is
, With a constant load, i.e., a mechanism for generating mechanical contact. The gas sump 26 is provided with a flow control valve 4.
5, 46, a gas cylinder 44 and a rotary pump 47 always keep a constant pressure and are filled with a heat transfer gas. The space 20 contains a gas reservoir 26 and an orifice 2
A gas for heat transfer is introduced via 1. That is, the gas introduction means includes the gas reservoir 26 and the orifice 21 serving as a gas introduction port. Next, how the temperature of the substrate is controlled during the processing in the above-mentioned apparatus is described by using helium as a heat transfer gas, a substrate having a diameter of 100 mm and a thickness of 0.45 mm.
The description will be made by taking the case of a silicon substrate of mm as an example. After the substrate 19 is placed, helium gas is introduced from a gas reservoir 26 at a pressure of about 700 Pa, which is one digit larger than that of the conventional example. When a gas having a pressure of 700 Pa is introduced, the center of the substrate 19 bulges at a height of about 800 μm. Further, the change amount w of the point located at a distance of r in the radial direction from the center of the substrate follows the following equation. ## EQU1 ## Here, E and v are the Young's modulus and Poisson's ratio of silicon, h and a are the thickness and radius of the substrate 19, respectively, and p is the gas pressure. Therefore, the convex surface of the lower electrode 17 is processed in advance into a curved surface having a shape according to the above equation or a curved surface which is larger than that. At this time, since the substrate 19 is pressed by the substrate support 23, it is deformed along the convex surface and has a stress. At this time, since the force applied to the substrate 19 by the gas pressure is equal to or smaller than the stress of the substrate 19, the substrate 19 does not generate a strain higher than the strain already existing due to the gas pressure. It remains in mechanical contact along the electrode 17. The surface of the lower electrode 17 is polished to a surface roughness of 6-S or less. Therefore, the distance between the two surfaces is kept sufficiently smaller than the average free path of helium at 700 Pa of 30 μm over the entire surface. Here, considering that the thermal contact between the solids can be neglected, the thermal contact is uniform over the entire surface. Therefore, sufficient thermal contact is realized, and the unit heat flow can be sufficiently increased. In the above-mentioned apparatus, an orifice 21 is provided as an introduction means for introducing a gas for heat transfer into the space 20. The diameter of the orifice 21 is about 40 μm so that the conductance with respect to helium is about 1 × 10 to 6 m 3 / sec. When the substrate 17 is not placed, the amount of gas flowing out of the gas reservoir 26 through the orifice into the processing chamber 12 having a pressure difference of 700 Pa is about 7 × 10 to 4 Pa · m 3 / sec.
This is sufficiently smaller than the reaction gas introduction amount 8 × 10 to 2 Pa · m 3 / sec introduced from the reaction gas introduction port 24.
Therefore, even if the sealing between the space 20 and the processing chamber 12 is leaked, it does not adversely affect the processing.
The reliability of the temperature control mechanism according to the present embodiment is improved. Further, by providing this orifice, it is possible to eliminate the sealing by the O-ring 18, and at the same time, the valve 15 becomes unnecessary even when carrying in and carrying out the substrate 19 without breaking the vacuum of the processing chamber 12. Become. Here, after the substrate 19 is placed, the space 2
The time required for 0 to reach the same pressure as the gas reservoir 26 must be sufficiently short. When the volume of the space 20 is V, the conductance of the orifice is C, and the pressure in the gas reservoir 26 is Po, the pressure p of the space 20 follows the following equation. (6) p = Po (1−exp (−Ct / V)) Here, since the space 20 is a cylinder having a thickness of at most 100 μm, V = 7.8 × 10 to 7 m 3 Therefore, the time constant of the response of p is about 1 sec, which is a sufficiently fast response. In the above-described device configuration, 200 W to 50 W
FIG. 2 shows a temperature rising curve of the substrate 19 which is heated by the amount of heat received from the plasma when the high-frequency power of 0 W is applied.
Here, the time constant of the response speed is about 3 seconds, which indicates a sufficiently good control characteristic. Further, the temperature difference from the lower electrode 17 is also suppressed to 8 ° C. and 20 ° C., respectively. The resist has a heat resistant temperature of about 120 ° C.
Therefore, in this device, the additional high-frequency power is 2.5 K
That is, it can be increased to W. An embodiment of the present invention will be described with reference to FIG. In this embodiment, the substrate 1 is formed by using electrostatic attraction disclosed in Japanese Patent Publication No. 57-47747.
The liquid in the liquid / solid sump 27 or the vapor of the solid 37 is used for the point where the support 9 is performed and for the heat transfer gas. The apparatus utilizing the attractive force of static electricity is composed of a plurality of (two in FIG. 3) electrodes 3 insulated from each other.
By applying DC voltages having different polarities from the DC power supply 38 between the substrates 3 and 36, a closed circuit is formed between the substrate 19 and the two electrodes 33 and 36, and the substrate 19 is electrostatically formed without forming plasma. Can be adsorbed. Therefore, the substrate 19 can be electrostatically attracted even in the baking step of the substrate 19 without using plasma. Due to the attraction force due to the static electricity, the substrate 19 has about 10 gc
It is sucked by a force of m ~ 2 , and mechanical contact occurs with the insulating material 30 over the entire surface. At this time, the O-ring 18 for sealing the space 20 formed between the substrate 19 and the insulating material 30 on the lower electrode 29 and the processing chamber 12 is provided. An orifice 21 is provided as a means for introducing gas into the orifice. In the present embodiment, the insulating material 30 serves as a support. Here, a liquid or a solid is selected so that the vapor pressure of the gas or the solid that generates the heat transfer gas is approximately 700 Pa when the vapor pressure of the gas or the solid is equal to that of the lower electrode 29 whose temperature is controlled. In this embodiment, since 1,1,2,2-tetrachloroethane is used as the heat transfer gas, the pressure is about 700 Pa at room temperature. Here, the liquid / solid used is not limited to 1,1,2,2-tetrachloroethane, and may be a liquid / solid having another vapor pressure. Since the mean free path at this time is 3 μm, the surface of the insulator 30 must be polished to 0.8S or less. Also, by using a soft organic compound for the insulating material 30 and flexibly deforming it along the shape of the lower surface of the substrate 19, the distance between the two surfaces can be made smaller than the mean free path. At this time, a vaporized gas is interposed between the two surfaces that are in mechanical contact with each other, and the distance between the two surfaces is sufficiently smaller than 3 μm, which is the mean free path of the gas at this time.
As a result, the thermal contact between the two surfaces is sufficiently large, and the unit heat flow is also large. In addition, the inside of the space 20 is 700
In order to make Pa, 1, 1, 2, 2-
Conductance to tetrachlorethane is 1 × 10
The diameter is set to 90 μm so as to be ~ 6 m 3 / sec. FIG. 4 shows a temperature rise curve of the substrate 19 in the above apparatus. This is an example of a case where dry etching is performed by applying a high-frequency power of 300 W. The time constant is 5 seconds, which is a sufficient value. Further, in this device, there is no need to control the gas flow and gas pressure of the heat transfer gas, and there is an advantage that the structure is simplified. A similar effect can be expected by using a wafer temperature control device disclosed in Japanese Patent Application Laid-Open No. 56-131930 as a device for reducing the distance between the substrate 19 and the support. The use of the support or the surface of the support with a soft organic compound has a great effect in reducing the distance between the two surfaces. Although the above two examples are examples in which the present invention is applied to a dry etching apparatus, the same effect can be expected even when applied to a film forming apparatus such as sputtering or vapor deposition or a substrate baking apparatus. It can be easily analogized that the present invention can be applied to other electrode means and vacuum devices that require temperature control of the substrate. According to the above embodiment, after the gas pressure between the substrate and the support is sufficiently increased, the distance between the two surfaces is made smaller than the mean free path of the gas at that gas pressure. The heat flow per unit time, unit area, and unit temperature difference between two surfaces can be reduced from the conventional 50 W · K to 1 · m to 2 to 250 W
・ It can be improved to K ~ 1・ m ~ 2 . As a result, the temperature difference between the substrate and the support during processing and the time constant for controlling the substrate temperature can be reduced to about one fifth of the conventional value. It goes without saying that the scope of the present invention is not limited to the above embodiments. According to the present invention, it is possible to effectively control the temperature of the substrate during processing such as etching, film formation, and baking of a semiconductor device, and to perform good processing. it can.

【図面の簡単な説明】 【図1】本発明による基板処理装置の縦断面図 【図2】図1に示す基板処理装置における基板の昇温曲
線を示した特性図 【図3】本発明による基板処理装置の他の形態を示す縦
断面図 【図4】図3に示す基板処理装置における基板の昇温曲
線を示した特性図 【図5】2面間を流れる熱量と介在気体圧力の関係を示
した特性図 【図6】従来の基板温度制御装置の縦断面図 【符号の説明】 1…処理室、3…基板、4…クリップ、5…支持台、6
…温度制御装置、7…気体導入口、8…流れ、9…スペ
ーサ、10…空間、12…処理室、17…支持台(下部
電極)、18…Oリング、19…基板、20…空間、2
1…気体導入口(オリフィス)23…保持手段、26…
ガスだめ、27…液体固体だめ。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view of a substrate processing apparatus according to the present invention. FIG. 2 is a characteristic diagram showing a temperature rise curve of a substrate in the substrate processing apparatus shown in FIG. FIG. 4 is a vertical sectional view showing another embodiment of the substrate processing apparatus. FIG. 4 is a characteristic diagram showing a temperature rising curve of the substrate in the substrate processing apparatus shown in FIG. 3. FIG. FIG. 6 is a longitudinal sectional view of a conventional substrate temperature control device. [Description of References] 1 ... Processing chamber, 3 ... Substrate, 4 ... Clip, 5 ... Support base, 6
... temperature control device, 7 ... gas inlet, 8 ... flow, 9 ... spacer, 10 ... space, 12 ... processing chamber, 17 ... support base (lower electrode), 18 ... O-ring, 19 ... substrate, 20 ... space, 2
DESCRIPTION OF SYMBOLS 1 ... Gas inlet (orifice) 23 ... Holding means, 26 ...
No gas, 27 ... No liquid solid.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/68 H01L 21/68 R (72)発明者 相内 進 神奈川県横浜市戸塚区吉田町292番地株 式会社 日立製作所 生産技術研究所内 (56)参考文献 特開 昭58−213434(JP,A) 特開 昭58−32410(JP,A) 特開 昭58−132937(JP,A) E.J.Egerton 他,Sol id State Technolog y,25[8]p.84−87(1982−8)────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification symbol FI H01L 21/68 H01L 21/68 R (72) Inventor Susumu Aiuchi Hitachi Ltd. 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa (56) References JP-A-58-213434 (JP, A) JP-A-58-32410 (JP, A) JP-A-58-132937 (JP, A) J. Egerton et al., Solid State Technology, 25 [8] p. 84-87 (1982-8)

Claims (1)

(57)【特許請求の範囲】 1.内部を真空に排気する排気手段を備えた処理室と、
該処理室の内部に設置されて被処理基板を載置する上面
をほぼ全面に亘って絶縁物で被覆した基板電極手段と、
該基板電極手段に電圧を印加する電圧印加手段と、前記
基板電極手段に載置した被処理基板と前記基板電極手段
の絶縁物との間に熱伝達ガスを供給する熱伝達ガス供給
手段と、前記処理室の内部にガスを供給するガス供給手
段と、前記処理室の内部で前記基板電極手段と対向して
設置された対向電極手段と、該対向電極手段に高周波電
力を印加する高周波電力印加手段とを備え、前記排気手
段で真空に排気した前記処理室の内部に前記ガス供給手
段からガスを供給した状態で前記高周波電力印加手段で
前記対向電極に高周波電力を印加することにより前記対
向電極手段と前記基板電極手段との間に発生させたプラ
ズマで前記基板電極手段に載置した被処理基板を処理す
るときに、前記熱伝達ガス供給手段により前記被処理基
板と前記基板電極手段の絶縁物との間に介在させる熱伝
達ガスの平均自由工程以下の面粗さに表面が形成された
前記絶縁物に前記電圧印加手段により印加した電圧によ
り前記被処理基板をほぼ全面に亘って静電吸着させると
ともに前記熱伝達ガス供給手段により前記被処理基板を
前記基板電極手段の絶縁物との間に前記熱伝達ガスを供
給して前記被処理基板を冷却することを特徴とする処理
装置。 2.前記熱伝達ガス供給手段により前記被処理基板と前
記基板電極の絶縁物との間に供給される前記熱伝達ガス
の圧力が、100Paよりも大きいことを特徴とする請
求項1に記載の処理装置。 3.前記基板電極手段に電圧を印加する電圧印加手段
が、直流電源を備え、該直流電源により前記基板電極手
段の内部に設けられた電極部に直流電圧を印加すること
を特徴とする請求項1に記載の処理装置。
(57) [Claims] A processing chamber provided with an exhaust means for evacuating the inside to a vacuum,
A substrate electrode means which is provided inside the processing chamber and has an upper surface on which a substrate to be processed is placed, covered with an insulator over substantially the entire surface;
Voltage applying means for applying a voltage to the substrate electrode means, a heat transfer gas supply means for supplying a heat transfer gas between the insulating material of the substrate and the substrate electrode means placed on the substrate electrode means, Gas supply means for supplying a gas into the processing chamber, counter electrode means disposed inside the processing chamber so as to face the substrate electrode means, and high-frequency power application for applying high-frequency power to the counter electrode means Means for supplying high-frequency power to the counter electrode by the high-frequency power applying means in a state in which gas is supplied from the gas supply means to the inside of the processing chamber evacuated to vacuum by the exhaust means. When processing a substrate mounted on the substrate electrode means with plasma generated between the means and the substrate electrode means, the heat transfer gas supply means supplies the substrate to be processed.
Heat transfer between the plate and the insulator of the substrate electrode means
Surface was formed with surface roughness less than mean free path
Wherein the voltage applied by said voltage applying means to the insulating material and the insulating material of the substrate electrode means the target substrate by the heat transfer gas supply means together with said adsorbed treated electrostatically over the substrate to the almost entire surface A processing apparatus, wherein the heat transfer gas is supplied to cool the substrate to be processed. 2. 2. The processing apparatus according to claim 1, wherein a pressure of the heat transfer gas supplied between the substrate to be processed and the insulator of the substrate electrode by the heat transfer gas supply unit is greater than 100 Pa. 3. . 3. The voltage applying means for applying a voltage to the substrate electrode means includes a DC power supply, and the DC power supply applies a DC voltage to an electrode portion provided inside the substrate electrode means. The processing device according to the above.
JP218197A 1997-01-09 1997-01-09 Processing equipment Expired - Lifetime JP2951903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP218197A JP2951903B2 (en) 1997-01-09 1997-01-09 Processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP218197A JP2951903B2 (en) 1997-01-09 1997-01-09 Processing equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP29289895A Division JP2728381B2 (en) 1995-11-10 1995-11-10 Substrate processing method and substrate processing apparatus

Publications (2)

Publication Number Publication Date
JPH09199488A JPH09199488A (en) 1997-07-31
JP2951903B2 true JP2951903B2 (en) 1999-09-20

Family

ID=11522199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP218197A Expired - Lifetime JP2951903B2 (en) 1997-01-09 1997-01-09 Processing equipment

Country Status (1)

Country Link
JP (1) JP2951903B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598227B2 (en) * 1998-12-08 2004-12-08 松下電器産業株式会社 Plasma processing apparatus and method
US7997288B2 (en) 2002-09-30 2011-08-16 Lam Research Corporation Single phase proximity head having a controlled meniscus for treating a substrate
US7675000B2 (en) 2003-06-24 2010-03-09 Lam Research Corporation System method and apparatus for dry-in, dry-out, low defect laser dicing using proximity technology
US8062471B2 (en) 2004-03-31 2011-11-22 Lam Research Corporation Proximity head heating method and apparatus
US7928366B2 (en) 2006-10-06 2011-04-19 Lam Research Corporation Methods of and apparatus for accessing a process chamber using a dual zone gas injector with improved optical access
US8146902B2 (en) 2006-12-21 2012-04-03 Lam Research Corporation Hybrid composite wafer carrier for wet clean equipment
US8464736B1 (en) 2007-03-30 2013-06-18 Lam Research Corporation Reclaim chemistry
US8141566B2 (en) 2007-06-19 2012-03-27 Lam Research Corporation System, method and apparatus for maintaining separation of liquids in a controlled meniscus
JP5227638B2 (en) * 2008-04-03 2013-07-03 株式会社アルバック Vacuum processing equipment
KR102112273B1 (en) * 2013-01-25 2020-05-19 삼성디스플레이 주식회사 Apparatus for supporting substrate
TWI582256B (en) 2013-02-04 2017-05-11 愛發科股份有限公司 Thin substrate processing apparatus
WO2015122979A1 (en) * 2014-02-14 2015-08-20 Applied Materials, Inc. Gas cooled substrate support for stabilized high temperature deposition
CN112663014A (en) * 2021-01-05 2021-04-16 德润特数字影像科技(北京)有限公司 Uniform temperature control device and method for coated substrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4457359A (en) * 1982-05-25 1984-07-03 Varian Associates, Inc. Apparatus for gas-assisted, solid-to-solid thermal transfer with a semiconductor wafer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
E.J.Egerton 他,Solid State Technology,25[8]p.84−87(1982−8)

Also Published As

Publication number Publication date
JPH09199488A (en) 1997-07-31

Similar Documents

Publication Publication Date Title
JP3176305B2 (en) Substrate cooling device, chemical vapor reaction device, and substrate temperature control control method
JP2951903B2 (en) Processing equipment
US5735339A (en) Semiconductor processing apparatus for promoting heat transfer between isolated volumes
US4399016A (en) Plasma device comprising an intermediate electrode out of contact with a high frequency electrode to induce electrostatic attraction
KR101060774B1 (en) Temperature control method of an electrode unit, a substrate processing apparatus, and an electrode unit
JP3699349B2 (en) Wafer adsorption heating device
JP2009239300A (en) Anodized substrate support
JP2005051200A5 (en)
US8372205B2 (en) Reducing electrostatic charge by roughening the susceptor
JP3271352B2 (en) Electrostatic chuck, method of manufacturing the same, substrate processing apparatus, and substrate transfer apparatus
JPS5832410A (en) Method and device for treating structure under gas reduced pressure environment
JPH0614520B2 (en) Processing equipment in low-pressure atmosphere
JPH11330219A (en) Electrostatic chucking device
JP2000252261A (en) Plasma process equipment
JP2951876B2 (en) Substrate processing method and substrate processing apparatus
JP2728381B2 (en) Substrate processing method and substrate processing apparatus
JPH0752749B2 (en) Wafer holding mechanism
JP3913643B2 (en) Wafer processing apparatus and wafer stage
JP3662909B2 (en) Wafer adsorption heating device and wafer adsorption device
JP4602528B2 (en) Plasma processing equipment
JPH0693446B2 (en) Processor
JP3157551B2 (en) Workpiece mounting device and processing device using the same
JP3736103B2 (en) Plasma processing apparatus and processing method thereof
JP3438496B2 (en) Wafer stage, manufacturing method thereof and dry etching apparatus
JP2002231799A (en) Electrostatic chuck, discharge preventing method to recessed parts formed on attracting surface thereof, and substrate fixing, heating and cooling device using the same