[go: up one dir, main page]

JP3736103B2 - Plasma processing apparatus and processing method thereof - Google Patents

Plasma processing apparatus and processing method thereof Download PDF

Info

Publication number
JP3736103B2
JP3736103B2 JP03994798A JP3994798A JP3736103B2 JP 3736103 B2 JP3736103 B2 JP 3736103B2 JP 03994798 A JP03994798 A JP 03994798A JP 3994798 A JP3994798 A JP 3994798A JP 3736103 B2 JP3736103 B2 JP 3736103B2
Authority
JP
Japan
Prior art keywords
substrate
electrode
processed
heat transfer
transfer gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03994798A
Other languages
Japanese (ja)
Other versions
JPH11238596A (en
Inventor
潤 青江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP03994798A priority Critical patent/JP3736103B2/en
Publication of JPH11238596A publication Critical patent/JPH11238596A/en
Application granted granted Critical
Publication of JP3736103B2 publication Critical patent/JP3736103B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置や液晶表示装置(LCD)などの製造に用いられるドライエッチング装置、スパッタ装置、CVD装置等のプラズマ処理装置およびその処理方法に関するものである。
【0002】
【従来の技術】
近年、シリコン基板等の被処理基板をプラズマ処理する際、基板を冷却したり、または加熱する手段を用いて処理温度を安定化するプラズマ処理装置が利用されるようになってきた。
【0003】
以下、従来のプラズマ処理装置について説明する。
図2は従来のプラズマ処理装置の断面を示すものである。図2において、21は処理槽、22は真空排気ポンプ、23は反応ガス吹き出し口を有する上部電極であり、上部電極23はアース24で接地されている。25はシリコン基板やガラス基板等の被処理基板、26は凸面形状の下部電極であり、下部電極26の表面は絶縁膜27で覆われている。下部電極26は絶縁板28上に置かれ、高周波電源29に接続されている。
【0004】
下部電極26の中心部に伝熱ガス供給口30が設けられ、下部電極26の内部には冷却水の配管31があり、冷却水が循環している。下部電極26の周囲にはクランプリング32が設けられている。
【0005】
以上のように構成されたプラズマ処理装置について、以下その動作を説明する。
【0006】
まず、被処理基板25を下部電極26の上に載せ、クランプリング32にて被処理基板25と下部電極26を密着させる。次に、真空ポンプ22で処理槽21内を排気してから反応ガスを処理槽21内に導入し、伝熱ガス供給口30よりヘリウムガスを供給し、被処理基板25と下部電極26の間に充満する。次に、高周波電源29により高周波電力を印加することにより下部電極26と上部電極23の間にプラズマを発生させる。このとき、プラズマの発生によって雰囲気が高温になるために、被処理基板25が加熱される。しかし、下部電極26は配管31内の冷却水にて一定に温度制御されており、熱伝導性の優れているヘリウムガスにより被処理基板25の熱を下部電極26に伝えることによって、被処理基板25の温度を一定に保つ。
【0007】
【発明が解決しようとする課題】
しかしながら上記の従来の構成では、絶縁膜27の絶縁によって、下部電極26に対して絶縁されフローティングとなっている被処理基板25は、プラズマの発生によって電荷が蓄積され、−300〜−400Vの電位となる。このとき、伝熱ガス供給口30内には一定圧力のヘリウムガスで満たされた空間が存在するので、負電位に帯電された被処理基板25と高周波電源29の高周波電力が印加された下部電極26との間で異常放電が発生し、被処理基板25に損傷を与えるという欠点を有していた。
【0008】
本発明は上記従来の問題点を解決するもので、被処理基板と電極間の異常放電を防止するプラズマ処理装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
この目的を達成するために本発明のプラズマ処理装置およびその処理方法は、処理槽の内部に設けられ表面を絶縁膜で覆われた第1の電極と、前記処理槽の内部に設けられた第2の電極と、被処理基板の中心部を反らせた状態で前記被処理基板の端部を前記第 1 の電極上に固定する基板クランプ手段と、前記第1の電極の中心部に設けられると共に、前記被処理基板の反りによって構成された前記第1の電極と前記被処理基板との間の空間に伝熱ガスを供給する伝熱ガス供給口とを有し、前記第1の電極または前記第2の電極の何れかに高周波電力を供給してプラズマを発生する。更に、前記伝熱ガス供給口に埋め込まれた多孔質絶縁物を介して前記空間に伝熱ガスを供給する構成を有している。
【0010】
この構成によって、伝熱ガス供給口の電気絶縁が図れ、下部電極と被処理基板との間の異常放電を防止することができる。
【0011】
【発明の実施の形態】
以下、本発明の一実施形態について、図面を参照しながら説明する。
【0012】
図1は本発明の一実施形態におけるプラズマ処理装置の断面を示す図である。図1において、1は処理槽、2は真空排気ポンプ、3は反応ガス吹き出し口を有する上部電極であり、上部電極3はアース4で接地されている。5は被処理基板としてのシリコン基板、6は凸面形状の下部電極であり、下部電極6の表面は絶縁膜7で覆われている。下部電極6は絶縁板8上に置かれ、高周波電源9に電気的に接続されている。下部電極6の中心部には伝熱ガス供給口10が設けられており、伝熱ガス供給口10内はセラミックスなどの通気性のある多孔質絶縁物11を埋め込んである。下部電極6の内部には冷却水の配管12があり、冷却水が循環している。下部電極6の周囲にはクランプリング13が設けられ、クランプリング13はシリコン基板5を反らせた状態で下部電極6上に固定する。
【0013】
以上のように構成されたプラズマ処理装置について、その動作を説明する。
まず、シリコン基板5と下部電極6との間に空間が生じるように、クランプリング13によってシリコン基板5を反らせて下部電極6上に固定させる。次に、真空ポンプ2で処理槽1内を排気してから、上部電極3の反応ガス吹き出し口から反応ガスを処理槽1内に導入する。また、伝熱ガス供給口10の多孔質絶縁物11を通してヘリウムガス(伝熱ガス)を供給し、シリコン基板5と下部電極6の間にヘリウムガスを充満させる。次に、高周波電源9の高周波電力を下部電極6に印加し、下部電極6と上部電極3の間にプラズマを発生させる。このとき、プラズマの発生によってシリコン基板5が加熱されるが、シリコン基板5の熱は熱伝導性の優れているヘリウムガスによって下部電極に伝達される。更に、その下部電極6は、配管12内を還流する冷却水で一定に温度制御される。従って、プラズマ発生によって周囲温度が上昇しても、シリコン基板5は温度を一定に保つことができる。
【0014】
この構成によれば、シリコン基板5と下部電極6との間の電気的絶縁は、下部電極6の表面に被覆された絶縁膜7と、伝熱ガス供給口10内に埋め込まれた多孔質絶縁物11とによってなされ、シリコン基板5の裏面と下部電極6間での異常放電の発生を防止できる。
【0015】
【発明の効果】
以上のように本発明のプラズマ処理装置およびその処理方法は、下部電極の伝熱ガス供給口内に埋め込まれた多孔質絶縁物を介して伝熱ガスを供給するから、下部電極と被処理基板との絶縁が良好になり、被処理基板裏面と下部電極の間での異常放電を防止すると共に、被処理基板の温度を一定に保って、プラズマ処理を安定に行うことができる。
【図面の簡単な説明】
【図1】本発明の一実施形態におけるプラズマ処理装置の断面構造図
【図2】従来のプラズマ処理装置の縦断面図
【符号の説明】
1 処理槽
2 真空排気ポンプ
3 上部電極
4 アース
5 シリコン基板
6 下部電極
7 絶縁膜
8 絶縁板
9 高周波電源
10 伝熱ガス供給口
11 多孔質絶縁物
12 冷却水の配管
13 クランプリング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plasma processing apparatus such as a dry etching apparatus, a sputtering apparatus, and a CVD apparatus used for manufacturing a semiconductor device, a liquid crystal display (LCD), and the like, and a processing method thereof .
[0002]
[Prior art]
In recent years, when plasma processing is performed on a substrate to be processed such as a silicon substrate, a plasma processing apparatus that uses a means for cooling or heating the substrate to stabilize the processing temperature has been used.
[0003]
Hereinafter, a conventional plasma processing apparatus will be described.
FIG. 2 shows a cross section of a conventional plasma processing apparatus. In FIG. 2, 21 is a processing tank, 22 is an evacuation pump, 23 is an upper electrode having a reactive gas outlet, and the upper electrode 23 is grounded by a ground 24. Reference numeral 25 denotes a substrate to be processed such as a silicon substrate or a glass substrate, 26 denotes a convex lower electrode, and the surface of the lower electrode 26 is covered with an insulating film 27. The lower electrode 26 is placed on an insulating plate 28 and connected to a high frequency power source 29.
[0004]
A heat transfer gas supply port 30 is provided at the center of the lower electrode 26, and a cooling water pipe 31 is provided inside the lower electrode 26 to circulate the cooling water. A clamp ring 32 is provided around the lower electrode 26.
[0005]
The operation of the plasma processing apparatus configured as described above will be described below.
[0006]
First, the substrate 25 to be processed is placed on the lower electrode 26, and the substrate 25 to be processed and the lower electrode 26 are brought into close contact with the clamp ring 32. Next, after the processing tank 21 is evacuated by the vacuum pump 22, the reaction gas is introduced into the processing tank 21, helium gas is supplied from the heat transfer gas supply port 30, and the space between the substrate 25 and the lower electrode 26 is processed. To charge. Next, plasma is generated between the lower electrode 26 and the upper electrode 23 by applying high frequency power from a high frequency power source 29. At this time, since the atmosphere becomes high due to the generation of plasma, the substrate to be processed 25 is heated. However, the temperature of the lower electrode 26 is constantly controlled by the cooling water in the pipe 31, and the heat of the substrate 25 to be processed is transmitted to the lower electrode 26 by the helium gas having excellent thermal conductivity. The temperature of 25 is kept constant.
[0007]
[Problems to be solved by the invention]
However, in the above-described conventional configuration, the substrate to be processed 25 that is insulative and floating with respect to the lower electrode 26 due to the insulation of the insulating film 27 accumulates electric charges due to the generation of plasma, and has a potential of −300 to −400V. It becomes. At this time, since there is a space filled with helium gas at a constant pressure in the heat transfer gas supply port 30, the substrate 25 to be processed charged to a negative potential and the lower electrode to which the high frequency power of the high frequency power source 29 is applied. An abnormal discharge occurs between the substrate 26 and the substrate to be processed 25, which is damaged.
[0008]
The present invention solves the above-described conventional problems, and an object thereof is to provide a plasma processing apparatus that prevents abnormal discharge between a substrate to be processed and an electrode.
[0009]
[Means for Solving the Problems]
In order to achieve this object, a plasma processing apparatus and a processing method thereof according to the present invention include a first electrode provided in a processing tank and having a surface covered with an insulating film, and a first electrode provided in the processing tank. and second electrode, that is provided in the center of the substrate clamping means for securing an end of the substrate to be processed on the first electrode in a state where the arched central portion of the substrate, the first electrode And a heat transfer gas supply port for supplying a heat transfer gas to a space between the first electrode configured by warpage of the substrate to be processed and the substrate to be processed, and the first electrode or Plasma is generated by supplying high-frequency power to any of the second electrodes . Further, the heat transfer gas is supplied to the space through a porous insulator embedded in the heat transfer gas supply port.
[0010]
With this configuration, the heat transfer gas supply port can be electrically insulated, and abnormal discharge between the lower electrode and the substrate to be processed can be prevented.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0012]
FIG. 1 is a view showing a cross section of a plasma processing apparatus according to an embodiment of the present invention. In FIG. 1, 1 is a treatment tank, 2 is an evacuation pump, 3 is an upper electrode having a reactive gas outlet, and the upper electrode 3 is grounded by a ground 4. 5 is a silicon substrate as a substrate to be processed, 6 is a convex lower electrode, and the surface of the lower electrode 6 is covered with an insulating film 7. The lower electrode 6 is placed on the insulating plate 8 and is electrically connected to the high frequency power source 9. A heat transfer gas supply port 10 is provided at the center of the lower electrode 6, and a porous insulator 11 having air permeability such as ceramics is embedded in the heat transfer gas supply port 10. Inside the lower electrode 6 is a cooling water pipe 12 through which cooling water circulates. A clamp ring 13 is provided around the lower electrode 6, and the clamp ring 13 is fixed on the lower electrode 6 with the silicon substrate 5 being warped.
[0013]
The operation of the plasma processing apparatus configured as described above will be described.
First, the silicon substrate 5 is warped by the clamp ring 13 and fixed on the lower electrode 6 so that a space is generated between the silicon substrate 5 and the lower electrode 6. Next, after the inside of the processing tank 1 is evacuated by the vacuum pump 2, the reaction gas is introduced into the processing tank 1 from the reaction gas outlet of the upper electrode 3. Further, helium gas (heat transfer gas) is supplied through the porous insulator 11 of the heat transfer gas supply port 10 to fill the space between the silicon substrate 5 and the lower electrode 6 with helium gas. Next, high frequency power from a high frequency power source 9 is applied to the lower electrode 6 to generate plasma between the lower electrode 6 and the upper electrode 3. At this time, the silicon substrate 5 is heated by the generation of plasma, but the heat of the silicon substrate 5 is transmitted to the lower electrode by helium gas having excellent thermal conductivity. Further, the temperature of the lower electrode 6 is controlled to be constant with cooling water that circulates in the pipe 12. Therefore, even if the ambient temperature rises due to plasma generation, the silicon substrate 5 can keep the temperature constant.
[0014]
According to this configuration, electrical insulation between the silicon substrate 5 and the lower electrode 6 is achieved by the insulating film 7 coated on the surface of the lower electrode 6 and the porous insulation embedded in the heat transfer gas supply port 10. The abnormal discharge between the back surface of the silicon substrate 5 and the lower electrode 6 can be prevented.
[0015]
【The invention's effect】
As described above, the plasma processing apparatus and the processing method according to the present invention supply the heat transfer gas through the porous insulator embedded in the heat transfer gas supply port of the lower electrode. Insulation of the substrate is improved, abnormal discharge between the back surface of the substrate to be processed and the lower electrode can be prevented, and the temperature of the substrate to be processed can be kept constant, and plasma processing can be performed stably.
[Brief description of the drawings]
FIG. 1 is a sectional view of a plasma processing apparatus according to an embodiment of the present invention. FIG. 2 is a longitudinal sectional view of a conventional plasma processing apparatus.
DESCRIPTION OF SYMBOLS 1 Processing tank 2 Vacuum exhaust pump 3 Upper electrode 4 Ground 5 Silicon substrate 6 Lower electrode 7 Insulating film 8 Insulating plate 9 High frequency power supply 10 Heat transfer gas supply port 11 Porous insulator 12 Cooling water piping 13 Clamp ring

Claims (2)

処理槽の内部に設けられ表面を絶縁膜で覆われた第1の電極と、前記処理槽の内部に設けられた第2の電極と、被処理基板の中心部を反らせた状態で前記被処理基板の端部を前記第 1 の電極上に固定する基板クランプ手段と、前記第1の電極の中心部に設けられると共に、前記被処理基板の反りによって構成された前記第1の電極と前記被処理基板との間の空間に伝熱ガスを供給する伝熱ガス供給口とを有し、前記第1の電極または前記第2の電極の何れかに高周波電力を供給してプラズマを発生するプラズマ処理装置であって
前記伝熱ガス供給口に埋め込まれた多孔質絶縁物を介して前記空間に伝熱ガスを供給することを特徴とするプラズマ処理装置。
A first electrode provided inside the processing tank and having a surface covered with an insulating film, a second electrode provided inside the processing tank, and the substrate to be processed in a state where the central portion of the substrate to be processed is warped. wherein a substrate clamping means for securing an end of the substrate on the first electrode, provided in the center portion of the first electrode Rutotomoni, the said first electrode constituted by the flexure of the substrate to be processed A heat transfer gas supply port for supplying a heat transfer gas to a space between the substrate to be processed and generating high-frequency power to either the first electrode or the second electrode to generate plasma a plasma processing apparatus,
A plasma processing apparatus, wherein a heat transfer gas is supplied to the space through a porous insulator embedded in the heat transfer gas supply port.
処理槽の内部に設けられ表面を絶縁膜で覆われた第1の電極と、前記処理槽の内部に設けられた第2の電極と、被処理基板の中心部を反らせた状態で前記被処理基板の端部を前記第A first electrode provided inside the processing tank and having a surface covered with an insulating film, a second electrode provided inside the processing tank, and the substrate to be processed in a state where the central portion of the substrate to be processed is warped. The edge of the substrate 11 の電極上に固定する基板クランプ手段と、前記第1の電極の中心部に設けられると共に、前記被処理基板の反りによって構成された前記第1の電極と前記被処理基板との間の空間に伝熱ガスを供給する伝熱ガス供給口とを有し、前記第1の電極または前記第2の電極の何れかに高周波電力を供給してプラズマを発生するプラズマ処理装置の処理方法であって、A substrate clamping means for fixing on the first electrode, and a space between the first electrode and the substrate to be processed, which is provided at the center of the first electrode and is configured by warping of the substrate to be processed. A processing method of a plasma processing apparatus, comprising a heat transfer gas supply port for supplying a heat transfer gas, and generating plasma by supplying high-frequency power to either the first electrode or the second electrode. ,
前記伝熱ガス供給口に埋め込まれた多孔質絶縁物を介して前記空間に伝熱ガスを供給することを特徴とするプラズマ処理方法。A plasma processing method, wherein a heat transfer gas is supplied to the space through a porous insulator embedded in the heat transfer gas supply port.
JP03994798A 1998-02-23 1998-02-23 Plasma processing apparatus and processing method thereof Expired - Fee Related JP3736103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03994798A JP3736103B2 (en) 1998-02-23 1998-02-23 Plasma processing apparatus and processing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03994798A JP3736103B2 (en) 1998-02-23 1998-02-23 Plasma processing apparatus and processing method thereof

Publications (2)

Publication Number Publication Date
JPH11238596A JPH11238596A (en) 1999-08-31
JP3736103B2 true JP3736103B2 (en) 2006-01-18

Family

ID=12567164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03994798A Expired - Fee Related JP3736103B2 (en) 1998-02-23 1998-02-23 Plasma processing apparatus and processing method thereof

Country Status (1)

Country Link
JP (1) JP3736103B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4684403B2 (en) * 2000-10-24 2011-05-18 東京エレクトロン株式会社 Plasma processing equipment
TW561515B (en) * 2001-11-30 2003-11-11 Tokyo Electron Ltd Processing device, and gas discharge suppressing member
JP4519576B2 (en) * 2004-08-30 2010-08-04 住友精密工業株式会社 Base for plasma etching apparatus and plasma etching apparatus provided with the same
JP5087561B2 (en) * 2007-02-15 2012-12-05 株式会社クリエイティブ テクノロジー Electrostatic chuck
TWI582256B (en) 2013-02-04 2017-05-11 愛發科股份有限公司 Thin substrate processing apparatus
JP6994981B2 (en) * 2018-02-26 2022-01-14 東京エレクトロン株式会社 Manufacturing method of plasma processing equipment and mounting table

Also Published As

Publication number Publication date
JPH11238596A (en) 1999-08-31

Similar Documents

Publication Publication Date Title
KR101060774B1 (en) Temperature control method of an electrode unit, a substrate processing apparatus, and an electrode unit
TWI789585B (en) Substrate support carrier with improved bond layer protection
JP3374033B2 (en) Vacuum processing equipment
KR100193376B1 (en) Liquid level detection device and processing device using the same
TW200837865A (en) Substrate processing apparatus and focus ring
JP2002280378A (en) Batch type remote plasma processing equipment
JP3970815B2 (en) Semiconductor device manufacturing equipment
JP2001267297A (en) Plasma treatment system
JP3736103B2 (en) Plasma processing apparatus and processing method thereof
JP2951903B2 (en) Processing equipment
JP4456218B2 (en) Plasma processing equipment
JPH01200625A (en) Semiconductor wafer processing equipment
JPH07147273A (en) Etching treatment
JP4602528B2 (en) Plasma processing equipment
JP4890313B2 (en) Plasma CVD equipment
JP2951876B2 (en) Substrate processing method and substrate processing apparatus
JPH0845911A (en) Electrodes for plasma processing equipment
JP4632515B2 (en) Plasma process equipment
JP4515652B2 (en) Plasma processing equipment
JPH0670984B2 (en) Sample temperature control method and apparatus
JP4290207B2 (en) Semiconductor element manufacturing apparatus and semiconductor element manufacturing method
JP2001237222A (en) Vacuum-treating device
JP3662101B2 (en) Plasma processing equipment
KR20090115310A (en) Electrostatic chuck device and substrate processing device having the same
JP3657089B2 (en) Plasma processing method and apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees