JP2877534B2 - Total reflection X-ray fluorescence analysis method and analyzer - Google Patents
Total reflection X-ray fluorescence analysis method and analyzerInfo
- Publication number
- JP2877534B2 JP2877534B2 JP2347991A JP2347991A JP2877534B2 JP 2877534 B2 JP2877534 B2 JP 2877534B2 JP 2347991 A JP2347991 A JP 2347991A JP 2347991 A JP2347991 A JP 2347991A JP 2877534 B2 JP2877534 B2 JP 2877534B2
- Authority
- JP
- Japan
- Prior art keywords
- ray
- sample
- total reflection
- fluorescent
- rays
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 8
- 238000000624 total reflection X-ray fluorescence spectroscopy Methods 0.000 title 1
- 230000003287 optical effect Effects 0.000 claims description 16
- 230000035945 sensitivity Effects 0.000 claims description 12
- 230000001678 irradiating effect Effects 0.000 claims description 11
- 238000004876 x-ray fluorescence Methods 0.000 claims description 11
- 238000002441 X-ray diffraction Methods 0.000 claims description 7
- 238000004458 analytical method Methods 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims description 3
- 239000013078 crystal Substances 0.000 description 23
- 238000010894 electron beam technology Methods 0.000 description 13
- 239000003507 refrigerant Substances 0.000 description 13
- 238000012929 ultra trace analysis Methods 0.000 description 6
- 230000010287 polarization Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 238000002083 X-ray spectrum Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000002826 coolant Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000441 X-ray spectroscopy Methods 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000005461 Bremsstrahlung Effects 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 230000005469 synchrotron radiation Effects 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、全反射型蛍光X線分析
方法及び分析装置に係り、特にX線光学系の改良に関
し、試料表面にある微量な物質の検出を高感度で行なう
のに好適な全反射型蛍光X線分析方法及び分析装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a total reflection type fluorescent X-ray analysis method and analyzer, and more particularly to an improvement in an X-ray optical system, which is used to detect a trace substance on a sample surface with high sensitivity. The present invention relates to a suitable total reflection type fluorescent X-ray analysis method and analyzer.
【0002】[0002]
【従来の技術】全反射型蛍光X線分析装置は、X線源、
モノクロメ−タ、蛍光X線検出器、試料測定条件設定機
構、これらを取付けるための真空容器及び真空排気装置
と装置全体の動作制御とデ−タ処理をする制御装置とか
ら構成される。全反射型蛍光X線超微量分析の感度性能
は、主に試料を照射するX線ビ−ム強度の向上と試料か
ら発生するX線の散乱量の抑制で決定される。従来の装
置では例えば「X線分析の進歩」19,p237−24
9(1988)にあるように、X線源からのビ−ムをコ
リメ−タを通して直接試料に入射するか、あるいは「日
本結晶学会誌」27,p61−72(1985)にある
ように、X線源からのビ−ムを平板結晶で分光し、X線
ビ−ムの電気ベクトルを試料表面と並行の条件で試料に
入射していた。この条件で試料表面から数mm離れた位
置に蛍光X線検出器を設置し試料表面から放出される蛍
光X線を測定し、微量な物質の元素の同定及び存在量の
定量分析を行なっていた。2. Description of the Related Art A total reflection type fluorescent X-ray analyzer comprises an X-ray source,
It is composed of a monochrome meter, a fluorescent X-ray detector, a sample measurement condition setting mechanism, a vacuum vessel and a vacuum evacuation device for mounting these components, and a control device for controlling the operation of the entire device and performing data processing. The sensitivity performance of the ultra-trace analysis of the total reflection type fluorescent X-ray is mainly determined by improving the intensity of the X-ray beam irradiating the sample and suppressing the amount of X-ray generated from the sample. In the conventional apparatus, for example, “Progress of X-ray analysis” 19, p237-24
9 (1988), a beam from an X-ray source is directly incident on the sample through a collimator, or as described in “Journal of the Crystallographic Society of Japan” 27, p61-72 (1985). The beam from the source was split by a flat crystal, and the electric vector of the X-ray beam was incident on the sample under conditions parallel to the sample surface. Under these conditions, a fluorescent X-ray detector was installed at a position several mm away from the sample surface, the fluorescent X-rays emitted from the sample surface were measured, and elements of trace substances were identified and quantitative analysis of the abundance was performed. .
【0003】このような分析方法及び装置構成では、超
微量分析の感度を上昇させるための手段として、X線源
に大形の回転陽極型を用いるか、あるいはシンクロトロ
ン放射光を用い、試料に入射するX線ビ−ムの強度を大
きくとる以外には方法がなかった。ところが、このよう
な方法を用いると必然的にX線源から試料までの距離が
長くなり、大形のX線源を用いても線源の能力増加が結
果的に照射X線ビ−ムの強度増加に充分反映されない。
また、試料表面での散乱X線量が増加することによる蛍
光X線検出器の飽和時間増加による検出効率の低下があ
り、充分な感度上昇にはつながらないという欠点があっ
た。In such an analysis method and apparatus configuration, a large rotating anode type X-ray source or a synchrotron radiation is used as an X-ray source to increase the sensitivity of ultra-trace analysis. There was no method other than increasing the intensity of the incident X-ray beam. However, when such a method is used, the distance from the X-ray source to the sample is inevitably increased, and even when a large-sized X-ray source is used, the capability of the source is increased. Not sufficiently reflected in the increase in strength.
In addition, there is a disadvantage that the detection efficiency is reduced due to an increase in the saturation time of the fluorescent X-ray detector due to an increase in the amount of scattered X-rays on the sample surface, and the sensitivity is not sufficiently increased.
【0004】[0004]
【発明が解決しようとする課題】したがって、本発明の
目的は上記従来の問題点を解消することにあり、その第
1の目的は、従来と同等な出力のX線源を用いた場合で
も、X線の分光光学系を改良し、試料に入射するX線ビ
−ムの強度を実質的に従来より増大すると共に、X線ビ
−ムの電気ベクトルを試料表面に垂直な成分を支配的に
することにより、試料表面での散乱X線強度を抑制し、
従来技術より超微量分析の感度を上昇させることのでき
る改良された全反射型蛍光X線分析方法を提供すること
にあり、第2の目的は、その分析装置を提供することに
ある。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned conventional problems, and a first object of the present invention is to provide an X-ray source having the same output as the conventional one. By improving the X-ray spectroscopic optical system, the intensity of the X-ray beam incident on the sample is substantially increased, and the electric vector of the X-ray beam is controlled by the component perpendicular to the sample surface. By suppressing the scattered X-ray intensity on the sample surface,
It is an object of the present invention to provide an improved total reflection type fluorescent X-ray analysis method capable of increasing the sensitivity of ultra-trace analysis compared to the prior art, and a second object is to provide an analyzer thereof.
【0005】[0005]
【課題を解決するための手段】本発明では、試料に照射
するX線ビ−ム系として複数のX線ビ−ムが試料の分析
位置で交差するような照射光学系とすることにより、試
料に入射するX線ビ−ムの強度を実質的に増大させ上記
目的を達成するものである。さらにまた、本発明では、
モノクロメ−タ−としてX線源から放射されるX線ビ−
ムを単色化し、しかも集光可能な湾曲型分光結晶を用
い、単色化を行なう際の回折現象で定まる偏光選択性を
利用して、X線ビ−ムの電気ベクトルを試料表面に垂直
な成分を支配的にすることにより、試料表面での散乱X
線強度を抑制し、超微量分析の感度を上昇させるもので
ある。なお、複数のX線ビ−ムを取り出す手段として
は、同一のX線源にそれぞれ異なる複数個の取り出し口
を設けて取り出すようにしてもよいし、予めそれぞれ独
立の異なるX線源を設けて、複数個のX線ビ−ムを取り
出すようにしてもよい。According to the present invention, an X-ray beam system for irradiating a sample is constituted by an irradiation optical system in which a plurality of X-ray beams intersect at an analysis position of the sample. The above-mentioned object is achieved by substantially increasing the intensity of the X-ray beam incident on the substrate. Furthermore, in the present invention,
X-ray beam emitted from X-ray source as monochrome meter
Using a curved dispersive crystal that can monochromate and condense the light, and using the polarization selectivity determined by the diffraction phenomenon when monochromatizing, the electric vector of the X-ray beam is converted to a component perpendicular to the sample surface. , The scattering X on the sample surface
It suppresses the line intensity and increases the sensitivity of ultra-trace analysis. As means for taking out a plurality of X-ray beams, the same X-ray source may be provided with a plurality of different outlets, or may be provided with different independent X-ray sources in advance. Alternatively, a plurality of X-ray beams may be taken out.
【0006】[0006]
【作用】本発明の試料に照射するX線光学系は、同一の
X線源の複数個のX線取り出し口から得られる、もしく
は予めそれぞれ独立に設けられた複数個の異なるX線源
から得られるX線ビ−ムを、X線モノクロメ−タ−を用
いて単色化させた上、試料上で交差させ、この交差部分
のX線強度を大きくとることで、交差させたX線ビ−ム
の数だけ試料へのX線照射強度を大きくすることがで
き、その結果として分析感度を上昇させることができ
る。また、X線源から取り出したX線ビ−ムを単色化
し、かつ集光する湾曲型モノクロメ−タ−を使用するこ
とで、X線ビ−ムの電気ベクトルが試料表面の垂直方向
成分を最大とするような光学系を構成することができ、
蛍光X線検出器に入射する試料からの散乱X線量を減少
させ、分析感度を上昇させることができる。The X-ray optical system for irradiating the sample of the present invention can be obtained from a plurality of X-ray extraction ports of the same X-ray source, or obtained from a plurality of different X-ray sources independently provided in advance. The obtained X-ray beam is made monochromatic using an X-ray monochromator, then crossed over the sample, and the X-ray beam at the crossing portion is increased to obtain a crossed X-ray beam. , The X-ray irradiation intensity on the sample can be increased, and as a result, the analysis sensitivity can be increased. In addition, by using a curved monochrome meter for monochromaticizing and condensing the X-ray beam extracted from the X-ray source, the electric vector of the X-ray beam maximizes the vertical component of the sample surface. An optical system such as
The amount of scattered X-rays from the sample incident on the X-ray fluorescence detector can be reduced, and the analysis sensitivity can be increased.
【0007】本発明の全反射型蛍光X線分析装置におい
て、X線ビ−ムの行路を真空容器内に設置し、X線源の
位置、モノクロメ−タ−の位置及び試料の位置を真空容
器外部から移動制御できるような制御機構を備えたこと
により、外部からの光学系の調整が容易となる。また、
試料表面を照射するX線ビ−ムの位置と蛍光X線検出器
に対し試料位置を真空容器外部から水平あるいは回転移
動できるような制御機構を備えたことにより、大面積試
料の面分析が高感度で行なえる。In the total reflection type fluorescent X-ray analyzer of the present invention, the path of the X-ray beam is set in a vacuum vessel, and the position of the X-ray source, the position of the monochromator and the position of the sample are defined by the vacuum vessel. By providing a control mechanism capable of controlling the movement from the outside, it is easy to adjust the optical system from the outside. Also,
By providing a control mechanism that allows the position of the X-ray beam irradiating the sample surface and the X-ray fluorescence detector to move the sample position horizontally or rotationally from the outside of the vacuum vessel, surface analysis of a large-area sample is improved. Can be done with sensitivity.
【0008】[0008]
【実施例】以下、本発明の一実施例を図面により具体的
に説明する。 (1)原理説明 図1及び図2は、本発明の原理説明図を示したもので、
以下これらに従って説明する。図1において、1はX線
発生装置、2は実際にX線を発生するX線源である。X
線源2で発生したX線ビ−ム3はX線発生装置1とその
外部とを真空遮断するX線透過窓4及び不要なX線を遮
断するためのスリット5を通して、X線源2を中心とし
て発散的に湾曲型分光結晶6に入射する。なお、X線ビ
−ム3の取り出し窓となるX線透過窓4は、図示のよう
に2ヵ所に設けられ2本のX線ビ−ムが取り出せるよう
に構成されている。ここで湾曲型分光結晶6の凹面部に
入射したX線ビ−ム3は、湾曲型分光結晶6で回折さ
れ、単色化されて波長λのみからなるX線ビ−ム7とな
り、分光結晶等から発生する蛍光X線を抑制するスリッ
ト8を通して収束点9に向かう。収束点9を通過した
後、X線ビ−ム7と同様な経路を通過してきたもう一方
のX線ビ−ム10と交差し、この交差部分のX線強度を
大きくとることができる。そして試料は、図示されてい
ないがこの交差部分を含む位置に設置される。DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be specifically described below with reference to the drawings. (1) Explanation of Principle FIGS. 1 and 2 show explanatory views of the principle of the present invention.
Hereinafter, description will be made in accordance with these. In FIG. 1, 1 is an X-ray generator, and 2 is an X-ray source that actually generates X-rays. X
The X-ray beam 3 generated by the X-ray source 2 passes through the X-ray source 2 through an X-ray transmission window 4 for vacuum shutting off the X-ray generator 1 and the outside and a slit 5 for cutting off unnecessary X-rays. The light divergently enters the curved dispersive crystal 6 as the center. The X-ray transmission windows 4 serving as extraction windows for the X-ray beams 3 are provided at two locations as shown in the figure so that two X-ray beams can be extracted. Here, the X-ray beam 3 incident on the concave surface of the curved-type dispersive crystal 6 is diffracted by the curved-type dispersive crystal 6 and converted into a monochromatic X-ray beam 7 having only the wavelength λ. To the convergence point 9 through the slit 8 for suppressing the fluorescent X-rays generated from. After passing through the convergence point 9, it crosses the other X-ray beam 10 that has passed through the same path as the X-ray beam 7, and the X-ray intensity at the intersection can be increased. Then, the sample is set at a position not shown but including this intersection.
【0009】本実施例では1つのX線源2から得られる
2本のX線ビ−ムを使用する例を示したが、それぞれ独
立に設けられた複数のX線源から放出されたX線ビ−ム
がそれぞれのX線光学系を経て交差する構成としても同
様に交差部分のX線強度を大きくとることができる。次
に、図2を用いて、湾曲型分光結晶によるX線の分光と
収束について説明する。X線源2から発散的に放射され
たX線ビ−ムは湾曲型分光結晶6の凹面部に入射する。
湾曲型分光結晶6は厚さ方向の原子面の周期dをもつ単
結晶を半径2Rで弾性変形させた後半径Rで内面を切削
したものである。このようにX線の回折に関与する原子
面を円筒面とすると、湾曲型分光結晶6の円筒面内面に
対してX線源2の1点から放出されるX線で円筒面の内
面全面で次式1に示すブラッグの法則が満足される幾何
学的条件が成立する光路を通り、収束点9に到達する。In this embodiment, an example is shown in which two X-ray beams obtained from one X-ray source 2 are used, but X-rays emitted from a plurality of independently provided X-ray sources are shown. Even when the beams cross each other via the respective X-ray optical systems, the X-ray intensity at the intersection can be similarly increased. Next, X-ray spectroscopy and convergence by the curved dispersive crystal will be described with reference to FIG. The X-ray beam divergently radiated from the X-ray source 2 is incident on the concave surface of the curved dispersive crystal 6.
The curved dispersive crystal 6 is obtained by elastically deforming a single crystal having a period d of the atomic plane in the thickness direction with a radius of 2R and then cutting the inner surface with a radius of R. Assuming that the atomic planes involved in the X-ray diffraction are cylindrical surfaces, X-rays emitted from one point of the X-ray source 2 with respect to the inner surface of the curved dispersive crystal 6 cover the entire inner surface of the cylindrical surface. The light beam reaches the convergence point 9 through an optical path that satisfies the geometrical condition that satisfies the Bragg's law shown in the following equation 1.
【0010】[0010]
【数1】2d・sinθ=n・λ ……(1) ここで、θは回折角を意味し、波長λは試料を照射する
X線の波長であり、nは回折の次数である。このとき、
X線源2、湾曲型分光結晶6及び収束点9の幾何学的関
係は図2に示すようになり半径Rの円周上に位置する。
ここで、湾曲型分光結晶6がX線源2及び収束点9に張
る角度φは、湾曲型分光結晶6の円周上の弧の長さΛと
すると次式2のような関係になる。2d · sin θ = n · λ (1) Here, θ means a diffraction angle, wavelength λ is the wavelength of X-rays irradiating the sample, and n is the order of diffraction. At this time,
The geometrical relationship between the X-ray source 2, the curved dispersive crystal 6, and the convergence point 9 is as shown in FIG.
Here, the angle φ formed by the curved dispersive crystal 6 at the X-ray source 2 and the convergence point 9 has a relationship represented by the following expression 2 when the arc length 上 の on the circumference of the curved dispersive crystal 6 is satisfied.
【0011】[0011]
【数2】φ(ラジアン)=Λ/4R ……(2) 本実施例では、湾曲型分光結晶6をNi単結晶で構成
し、弧の長さΛを100mm、半径Rを200mmとし
て、X線源2が発生するX線ビ−ムの1/8ラジアンを
分光収束し、2つの光学系(X線ビ−ム3、10)を使
用することにより平面内2πラジアンに発散するビ−ム
のうち1/4ラジアンを試料位置に分光収束する。X線
源2が発生するX線ビ−ムは特性X線の他、波長が連続
的な制動輻射によるX線も含まれるが、スリット8を通
して分光収束光学系を通過させることにより、式1で選
択される波長λのみが図示されていない試料に照射され
る。## EQU2 ## In this embodiment, the curved dispersive crystal 6 is composed of a Ni single crystal, the arc length is 100 mm, the radius R is 200 mm, and X 1/8 radian of the X-ray beam generated by the source 2 is spectrally converged, and the beam diverges to 2π radian in a plane by using two optical systems (X-ray beams 3 and 10). Of them are spectrally converged at the sample position. The X-ray beam generated by the X-ray source 2 includes not only characteristic X-rays but also X-rays due to bremsstrahlung radiation having a continuous wavelength. Only the selected wavelength λ is applied to the sample (not shown).
【0012】今、ここで使用する試料に照射するX線の
波長をAuのLα線(λ=0.12764nm)とし、
湾曲型分光結晶の原子面をNi単結晶の<311>とす
ると周期はd=0.10624nmであるから、式1に
より回折角はθ=36.921°となる。X線源2から
放射されるX線ビ−ムは偏光性が無いが、分光結晶6で
回折されると、回折に関与する原子面に垂直な方向の電
気ベクトルの成分は減少する。この偏光性を含めた回折
後のX線強度は次式3で表され偏光因子pと呼ばれる。Now, the wavelength of the X-ray irradiating the sample used here is Lα ray of Au (λ = 0.12764 nm),
Assuming that the atomic plane of the curved-type dispersive crystal is <311> of a Ni single crystal, the period is d = 0.10624 nm. Therefore, according to Equation 1, the diffraction angle is θ = 36.921 °. The X-ray beam emitted from the X-ray source 2 has no polarization, but when diffracted by the spectral crystal 6, the component of the electric vector in the direction perpendicular to the atomic plane involved in the diffraction decreases. The X-ray intensity after diffraction including this polarization is expressed by the following equation 3 and is called a polarization factor p.
【数3】p=(1+cos2θ)/2 ……(3)## EQU3 ## p = (1 + cos2θ) / 2 (3)
【0013】本実施例によれば、回折角θから原子面に
垂直な方向の電気ベクトルの成分は全X線強度の25%
程度まで減少する。この値は、偏光性を考慮しないX線
光学系を使用した場合の1/3程度となる。これによ
り、試料面に垂直な方向の電気ベクトルが増し、水平な
方向の電気ベクトルが減少し、試料表面での入射X線ビ
−ムの散乱強度を小さく抑制することができる。本実施
例では、X線をAuLα線としたが、X線はFe,C
o,Cu,Mo,AgのKα線あるいはKβ線,又はT
a,W,Re,Os,Ir,PtのLα線あるいはLβ
線等でも同様な効果が得られる。同様に、湾曲型分光結
晶6はNi単結晶としたが、その他、例えばCu,S
i,Ge,SiO2,LiF等の単結晶を使用すること
が可能である。According to this embodiment, the component of the electric vector in the direction perpendicular to the atomic plane from the diffraction angle θ is 25% of the total X-ray intensity.
To a degree. This value is about 1/3 of the case where an X-ray optical system that does not consider the polarization is used. As a result, the electric vector in the direction perpendicular to the sample surface increases, and the electric vector in the horizontal direction decreases, so that the scattering intensity of the incident X-ray beam on the sample surface can be reduced. In this embodiment, the X-rays are AuLα rays, but the X-rays are Fe, C
o, Cu, Mo, Ag Kα ray or Kβ ray, or T
a, W, Re, Os, Ir, Pt Lα ray or Lβ
A similar effect can be obtained with a wire or the like. Similarly, the curved-type dispersive crystal 6 is a Ni single crystal.
It is possible to use a single crystal such as i, Ge, SiO 2 or LiF.
【0014】(2)X線発生装置の説明 (2)−1 回転陽極部について 次に本実施例に用いたX線発生装置1の回転陽極部につ
いて、図3に示した縦断正面図により説明する。冷媒1
4の流路を設けた二重中空回転軸15を有する回転陽極
16は電子ビ−ム照射面17の裏側の部分で充分な冷媒
の流速が得られるよう仕切板18が設けられている。こ
の回転陽極16は、所望のX線が得られる金属単体ある
いは、熱伝導性能の高い下地金属の表面に所望のX線が
得られる金属膜を施した積層体で構成された円筒形状を
成している。ハウジング19のフランジ20より回転陽
極側は高真空中に設置されるため、回転真空シ−ル21
により高真空と大気とを隔絶する。二重中空回転軸15
を保持する軸受22は、軸受取付け枠23に内設され回
転真空シ−ル21の近傍位置に設置する。(2) Description of X-ray generator (2) -1 Rotating anode section Next, the rotating anode section of the X-ray generator 1 used in the present embodiment will be described with reference to the vertical sectional front view shown in FIG. I do. Refrigerant 1
A rotary anode 16 having a double hollow rotary shaft 15 provided with four flow paths is provided with a partition plate 18 at a portion on the back side of the electron beam irradiation surface 17 so as to obtain a sufficient flow rate of the refrigerant. The rotating anode 16 has a cylindrical shape composed of a single metal capable of obtaining desired X-rays or a laminate formed by applying a metal film capable of obtaining desired X-rays on the surface of a base metal having high heat conductivity. ing. Since the rotating anode side from the flange 20 of the housing 19 is installed in a high vacuum, the rotating vacuum seal 21
Isolates high vacuum from the atmosphere. Double hollow rotary shaft 15
Is installed in a bearing mounting frame 23 at a position near the rotary vacuum seal 21.
【0015】電動機の回転子24は二重中空回転軸15
の中央部付近に直接固定される。電動機の固定子25は
回転子24を取り囲むようにハウジング19の内側に設
置される。回転電極26は回転陽極16で捕らえた電子
ビ−ムの電流が、ブラシ27及びブラシ抑え用バネ及び
ネジ28及びハウジング19を通して図3には記載して
ない電子ビ−ム用高電圧電源の接地電位側に接続される
よう設置されたものである。The rotor 24 of the electric motor has a double hollow rotary shaft 15.
Is fixed directly near the center of the. The stator 25 of the electric motor is installed inside the housing 19 so as to surround the rotor 24. The rotating electrode 26 receives the current of the electron beam captured by the rotating anode 16 through a brush 27, a brush holding spring, a screw 28, and a housing 19, and grounds a high-voltage power supply for the electron beam not shown in FIG. It is installed to be connected to the potential side.
【0016】軸受22と対を成す軸受29は軸受取付け
枠30に内設される。冷媒回転シ−ル31及び32は、
それぞれ、冷媒出口マウント33及び冷媒入口マウント
34に内設され、冷媒が漏洩することを防ぐ。冷媒外部
放出用円板35は、冷媒回転シ−ル31が損傷して二重
中空回転軸15の外周に沿って漏洩が生じたとき、回転
により、冷媒をハウジング19の外部に放出するための
安全機構である。更に、冷媒外部放出用円板35には、
永久磁石小片36が設置され、回転検出機構37によ
り、回転陽極16の回転の状態が把握できるようになっ
ており、回転速度が低いときあるいは、事故により回転
が不能になったとき、回転陽極16への電子ビ−ム照射
を遮断できるようになっている。A bearing 29, which forms a pair with the bearing 22, is provided inside a bearing mounting frame 30. The refrigerant rotary seals 31 and 32 are
Each is provided in the refrigerant outlet mount 33 and the refrigerant inlet mount 34 to prevent the refrigerant from leaking. The coolant external discharge disk 35 is used to discharge the coolant to the outside of the housing 19 by rotation when the coolant rotary seal 31 is damaged and leaks along the outer periphery of the double hollow rotary shaft 15. It is a safety mechanism. Further, the refrigerant external discharge disk 35 includes:
A permanent magnet piece 36 is provided, and the rotation detecting mechanism 37 can detect the state of rotation of the rotating anode 16. When the rotating speed is low or when rotation becomes impossible due to an accident, the rotating anode 16 is rotated. It is possible to shut off the irradiation of the electron beam to the device.
【0017】陽極16への電子ビ−ム照射可能最大電力
Gは、陽極材料の融点をTm、熱伝導率をg、比熱を
C、回転陽極直径をD、回転速度をNとすると次式4の
ように表わされる。The maximum power G that can irradiate the electron beam to the anode 16 is given by the following equation (4), where Tm is the melting point of the anode material, g is the thermal conductivity, C is the specific heat, D is the rotating anode diameter, and N is the rotating speed. It is represented as
【数4】 ここで、aは比例係数を意味する。式4の定数のうち、
Tm、g、Cは陽極材料を決めると一義的に決定される
ものであり、装置設計上で決定できるものはNおよびD
である。(Equation 4) Here, a means a proportionality coefficient. Of the constants in Equation 4,
Tm, g, and C are uniquely determined when the anode material is determined, and N and D can be determined on the device design.
It is.
【0018】ここで、陽極直径Dを大きくとるとX線発
生管が大形となる。従来装置では、プ−リ−等の回転駆
動機構を介して回転陽極を駆動していたため、振動等の
問題から充分な回転速度が得られず、陽極の直径を大き
くして電子ビ−ム照射電力Gを大きくとるようにしてい
た。本発明では回転陽極16の回転軸15と駆動電動機
(回転子24)が一体となっているため、回転数を大き
くとっても振動等の問題が発生しない。従って、Nを大
きくとることにより小形でも従来と同等以上の電子ビ−
ム照射電力Gを得ることが可能となっている。本実施例
ではDを70mmとして、インバ−タ−モ−タ−(高周
波モ−タ−)を用いて回転速度Nを9000回転毎分と
することにより、回転軸方向の電子ビ−ム照射長1m
m、回転軸直交方向の電子ビ−ム照射長0.4mmで約
5kWの電子ビ−ム照射電力を得ている。この電力値は
同等のDをもつ従来装置の約2倍の値である。Here, when the diameter D of the anode is increased, the X-ray generating tube becomes large. In the conventional apparatus, since the rotating anode is driven via a rotary drive mechanism such as a pulley, a sufficient rotation speed cannot be obtained due to problems such as vibration, and the diameter of the anode is increased to irradiate the electron beam. The power G was increased. In the present invention, since the rotating shaft 15 of the rotating anode 16 and the drive motor (rotor 24) are integrated, no problem such as vibration occurs even if the rotation speed is increased. Therefore, by increasing N, even if it is small, the electron beam is equal to or more than the conventional one.
It is possible to obtain the beam irradiation power G. In this embodiment, D is set to 70 mm, and the rotation speed N is set to 9000 revolutions per minute using an inverter motor (high-frequency motor), so that the irradiation length of the electron beam in the rotation axis direction is increased. 1m
m, an electron beam irradiation power of about 5 kW is obtained with an electron beam irradiation length of 0.4 mm in the direction perpendicular to the rotation axis. This power value is about twice the value of the conventional device having the same D.
【0019】(2)−2 X線発生装置の構成について 次に、図4を用いて本実施例のX線発生装置1の構成に
ついて説明する。図4において、16は回転陽極、39
は回転陽極に電子ビ−ムを照射するための電子銃、40
は電子銃から電子ビ−ムを放射するための高電圧電源、
41は回転陽極16及び電子銃39を取付けるための真
空容器、42は真空容器を高真空に保持するための真空
排気装置である。本実施例では電子銃39の熱電子放射
源には回転陽極への汚染が少ないLaB6を用いた。ま
た真空排気装置42には中真空から高真空領域で排気速
度が大きいタ−ボ分子ポンプを用いた。(2) -2 Configuration of X-ray Generator Next, the configuration of the X-ray generator 1 of the present embodiment will be described with reference to FIG. In FIG. 4, 16 is a rotating anode, 39
Is an electron gun for irradiating the rotating anode with an electron beam;
Is a high voltage power supply for emitting electron beams from the electron gun,
Reference numeral 41 denotes a vacuum container for mounting the rotary anode 16 and the electron gun 39, and reference numeral 42 denotes a vacuum exhaust device for maintaining the vacuum container at a high vacuum. In this embodiment, LaB 6 that causes little contamination of the rotating anode was used as the thermionic emission source of the electron gun 39. Further, a turbo molecular pump having a high evacuation speed in a medium vacuum to high vacuum region was used as the vacuum evacuation device 42.
【0020】(3)全反射型蛍光X線分析装置の構成例 次に、図5を用いて本実施例の全反射型蛍光X線分析装
置について説明する。図5において、1はX線発生装
置、44は分光収束X線光学系、45は超微量分析を行
なう試料、46は試料をX線の全反射条件に設定しかつ
試料のX線ビ−ム照射位置を自由に選択できる試料設定
機構、47は全反射条件を求めるための反射X線強度検
出器、48は全反射条件の試料から放出される蛍光X線
を測定するための蛍光X線検出器、49は反射X線強度
検出器及び蛍光X線検出器のデ−タを基にX線発生装置
1、分光収束X線光学系44、試料設定機構46を制御
するためのデ−タ処理制御装置、50はX線の全経路を
真空に保つための真空容器である。ここで、蛍光X線検
出器48は、試料から放出され検出器に入射するX線の
エネルギ−に比例した電圧パルスを出す型のものであ
る。本実施例では、Si(Li)検出器を用いた。この
検出器は、蛍光X線エネルギ−の分解能を0.2keV
より高くとることができ、この検出器の出力をデ−タ処
理制御装置49のアナログ−デジタル(A/D)変換器
を通してマルチチャネルメモリ−に積算することによ
り、蛍光X線スペクトルを得ることができる。(3) Configuration Example of Total Reflection X-ray Fluorescence Spectrometer Next, the total reflection X-ray fluorescence spectrometer of this embodiment will be described with reference to FIG. In FIG. 5, 1 is an X-ray generator, 44 is a spectrally convergent X-ray optical system, 45 is a sample to be subjected to ultra-trace analysis, 46 is an X-ray beam which sets the sample to X-ray total reflection conditions, and A sample setting mechanism for freely selecting an irradiation position; 47, a reflected X-ray intensity detector for obtaining total reflection conditions; 48, a fluorescent X-ray detection for measuring fluorescent X-rays emitted from a sample under total reflection conditions And 49, data processing for controlling the X-ray generator 1, the spectral convergent X-ray optical system 44, and the sample setting mechanism 46 based on the data of the reflected X-ray intensity detector and the fluorescent X-ray detector. The control device 50 is a vacuum container for keeping the entire X-ray path in a vacuum. Here, the fluorescent X-ray detector 48 is of a type that emits a voltage pulse proportional to the energy of X-rays emitted from the sample and incident on the detector. In this example, a Si (Li) detector was used. This detector has a fluorescent X-ray energy resolution of 0.2 keV.
By integrating the output of this detector through an analog-to-digital (A / D) converter of the data processing controller 49 into a multi-channel memory, a fluorescent X-ray spectrum can be obtained. it can.
【0021】(4)試料分析結果 本実施例では、試料を励起するためのX線ビ−ムとして
AuのLα線を用いたが、そのX線の波長とエネルギ−
は0.12764nm及び9.712keVである。従
って、元素のK殻励起の蛍光X線としてはZn(8.6
30keV)より小さな原子番号の元素について測定が
可能である。例えば、Fe(6.398keV),Co
(6.924keV),Ni(7.471keV)及び
Cu(8.040keV)等を充分区別可能な蛍光X線
スペクトルを得ることができる。試料に含まれるこれら
元素の量は図6に示す各蛍光X線ピ−クの積分強度に比
例しマルチチャンネルメモリ−に積算されたスペクトル
を解析することにより、微量な元素の存在量を測定する
ことができる。このとき、試料からの散乱X線強度が大
きいと、エネルギ−9.712keVの試料を励起する
ためのX線ビ−ムが蛍光X線検出器48に入射し、微量
な蛍光X線の検出を困難にすることがある。とくにZn
(8.630keV)の蛍光X線は、図6に示すように、
測定された蛍光X線スペクトル上で入射X線の巨大な散
乱ピ−クにより精密な積分強度が得難くなる。また、散
乱X線強度が大きいとA/D変換のための時間が無用な
散乱強度測定に使用され、検出器及びA/D変換器の不
感時間が長くなるため、実質的な感度が低下することに
なる。(4) Results of Sample Analysis In this embodiment, the Lα ray of Au was used as an X-ray beam for exciting the sample, but the wavelength and energy of the X-ray were used.
Is 0.12764 nm and 9.712 keV. Therefore, as the fluorescent X-ray excited by K-shell excitation of the element, Zn (8.6
It is possible to measure an element having an atomic number smaller than 30 keV). For example, Fe (6.398 keV), Co
(6.924 keV), a fluorescent X-ray spectrum capable of sufficiently distinguishing Ni (7.471 keV), Cu (8.040 keV) and the like can be obtained. The amounts of these elements contained in the sample are proportional to the integrated intensities of the respective fluorescent X-ray peaks shown in FIG. 6, and the amounts of the trace elements are measured by analyzing the spectra integrated in the multi-channel memory. be able to. At this time, if the intensity of the scattered X-rays from the sample is high, an X-ray beam for exciting the sample having an energy of 9.712 keV is incident on the fluorescent X-ray detector 48, and detection of a small amount of fluorescent X-rays is performed. It can be difficult. Especially Zn
(8.630 keV) fluorescent X-ray, as shown in FIG.
On the measured fluorescent X-ray spectrum, a large integrated peak of the incident X-ray makes it difficult to obtain a precise integrated intensity. Also, if the scattered X-ray intensity is high, the time for A / D conversion is used for useless measurement of the scattered intensity, and the dead time of the detector and the A / D converter becomes longer, so that the substantial sensitivity is reduced. Will be.
【0022】[0022]
【発明の効果】以上説明したように、本発明によれば、
従来と同出力のX線源を用いた場合でも、高能率なX線
分光光学系により、試料に入射するX線ビ−ムの強度を
従来より大きくとるとともに、X線ビ−ムの電気ベクト
ルを試料表面に垂直な成分を支配的にすることにより、
試料表面での散乱X線強度を抑制し、従来技術より超微
量分析の感度を格段に上昇させることができる。As described above, according to the present invention,
Even when an X-ray source having the same output as the conventional one is used, the intensity of the X-ray beam incident on the sample is increased by the high-efficiency X-ray spectroscopic optical system and the electric vector of the X-ray beam is increased. By dominating the component perpendicular to the sample surface,
The intensity of scattered X-rays on the sample surface can be suppressed, and the sensitivity of ultra-trace analysis can be remarkably increased as compared with the prior art.
【図1】本発明の原理を説明する複数X線ビ−ムを利用
した分光収束型光学系の概念図である。FIG. 1 is a conceptual diagram of a spectral focusing optical system using a plurality of X-ray beams for explaining the principle of the present invention.
【図2】湾曲型分光結晶によるX線の分光と収束につい
ての原理説明図である。FIG. 2 is a diagram illustrating the principle of X-ray spectroscopy and convergence by a curved-type spectroscopic crystal.
【図3】本発明の一実施例に用いたX線発生装置の回転
陽極部についての縦断正面図である。FIG. 3 is a vertical sectional front view of a rotating anode part of the X-ray generator used in one embodiment of the present invention.
【図4】本発明の一実施例となるX線発生装置の構成例
を示す一部破断正面図である。FIG. 4 is a partially cutaway front view showing a configuration example of an X-ray generator according to one embodiment of the present invention.
【図5】本発明の一実施例となる全反射型蛍光X線分析
装置の概略構成を示すブロック図である。FIG. 5 is a block diagram showing a schematic configuration of a total reflection X-ray fluorescence spectrometer according to an embodiment of the present invention.
【図6】本発明の一実施例により測定された蛍光X線ス
ペクトル曲線図である。FIG. 6 is an X-ray fluorescence spectrum curve measured according to an example of the present invention.
1…X線発生装置 2…X線源 3、10…X線ビ−ム 4…X線透過窓 5…スリット 6…湾曲型分光結晶 7…X線ビ−ム 8…スリット 9…収束点 14…冷媒 15…二重中空回転軸 16…回転陽極 17…電子ビ−ム照射面 18…仕切板 19…ハウジング 20…フランジ 21…回転真空シ−ル 22…軸受 23…軸受取付け枠 24…電動機の回転子 25…電動機の固定子 26…回転電極 27…ブラシ 28…ブラシ抑え用バネ及びネジ 29…軸受 30…軸受取付け枠 31…冷媒回転シ−ル 32…冷媒回転シ−ル 33…冷媒出口マウント 34…冷媒入口マウント 35…冷媒外部放出用円板 36…永久磁石小片 37…回転検出機構 39…電子銃 40…高電圧電源 41…真空容器 42…真空排気装置 44…分光収束X線光学系 45…試料 46…試料設定機構 47…反射X線強度検出器 48…蛍光X線検出器 49…デ−タ処理制御装置 50…真空容器。 DESCRIPTION OF SYMBOLS 1 ... X-ray generator 2 ... X-ray source 3, 10 ... X-ray beam 4 ... X-ray transmission window 5 ... Slit 6 ... Curved dispersive crystal 7 ... X-ray beam 8 ... Slit 9 ... Convergence point 14 ... refrigerant 15 ... double hollow rotating shaft 16 ... rotating anode 17 ... electron beam irradiation surface 18 ... partition plate 19 ... housing 20 ... flange 21 ... rotating vacuum seal 22 ... bearing 23 ... bearing mounting frame 24 ... motor Rotor 25 ... Motor stator 26 ... Rotating electrode 27 ... Brush 28 ... Brush suppressing spring and screw 29 ... Bearing 30 ... Bearing mounting frame 31 ... Refrigerant rotating seal 32 ... Refrigerant rotating seal 33 ... Refrigerant outlet mount 34 ... Refrigerant inlet mount 35 ... Refrigerant outside discharge disk 36 ... Permanent magnet small piece 37 ... Rotation detection mechanism 39 ... Electron gun 40 ... High voltage power supply 41 ... Vacuum container 42 ... Vacuum exhaust device 44 ... Spectral focusing X-ray optical system 45 … Fee 46 ... sample setting mechanism 47 ... reflection X-ray intensity detectors 48 ... fluorescent X-ray detector 49 ... de - data processing control unit 50 ... vacuum vessel.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01N 23/223 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01N 23/223
Claims (7)
出器に入射する散乱X線量を減少させることにより、試
料表面の微量物質を分析する全反射型蛍光X線分析方法
において、前記試料に照射するX線ビ−ムを複数個準備
すると共に、前記各X線ビ−ムをX線モノクロメ−タ−
を用いてそれぞれ単色化し、前記試料上で交差させて照
射する段階を有して成る全反射型蛍光X線分析方法。1. A total reflection type fluorescent X-ray analysis method for analyzing a trace substance on a sample surface by totally reflecting X-rays on a sample surface and reducing the amount of scattered X-rays incident on a fluorescent X-ray detector, A plurality of X-ray beams for irradiating the sample are prepared, and each of the X-ray beams is converted to an X-ray monochrome meter.
A total reflection type fluorescent X-ray analysis method, which comprises the steps of: irradiating each sample with a single color and crossing over the sample.
検出器に入射する散乱X線の量を減少させることによ
り、前記試料表面の微量物質を分析する手段を備えた全
反射型蛍光X線分析装置において、複数個のX線ビ−ム
を各々X線モノクロメ−タ−を用いて単色化させ、それ
らを前記試料上で交差させて照射する手段を有して成る
全反射型蛍光X線分析装置。2. A total reflection device having means for analyzing a trace substance on the sample surface by totally reflecting X-rays on the surface of the sample and reducing the amount of scattered X-rays incident on the X-ray fluorescence detector. Type X-ray fluorescence spectrometer, wherein a plurality of X-ray beams are monochromatized using an X-ray monochromator, and a means for irradiating them with crossing on the sample is provided. X-ray fluorescence analyzer.
それぞれ異なる取り出し口から取り出す手段を有して成
る請求項2記載の全反射型蛍光X線分析装置。3. A total reflection X-ray fluorescence analyzer according to claim 2, further comprising means for extracting the plurality of X-ray beams from different extraction ports of the same X-ray source.
異なるX線源から取り出す手段を有して成る請求項2記
載の全反射型蛍光X線分析装置。4. The total reflection type fluorescent X-ray analyzer according to claim 2, further comprising means for extracting the plurality of X-ray beams from independent X-ray sources.
色化し、かつ集光する湾曲型モノクロメ−タ−をX線ビ
−ム行路内に具備して、X線ビ−ムの電気ベクトルが試
料表面の垂直方向成分を最大とするような光学系を構成
することにより、蛍光X線検出器に入射する試料からの
散乱X線量を減少させ、分析感度を上昇させるようにし
て成る請求項2乃至4何れか記載の全反射型蛍光X線分
析装置。5. An X-ray beam path is provided with a curved monochrome meter for monochromaticizing and condensing the X-ray beam taken out of the X-ray source. By configuring an optical system in which the electric vector maximizes the vertical component of the sample surface, the amount of scattered X-rays from the sample incident on the X-ray fluorescence detector is reduced, and the analysis sensitivity is increased. The total reflection type fluorescent X-ray analyzer according to claim 2.
し、X線源の位置、X線モノクロメ−タ−の位置及び試
料の位置を、それぞれ真空容器外部から移動制御できる
制御機構を具備して成る請求項2乃至5何れか記載の全
反射型蛍光X線分析装置。6. The X-ray beam path is provided in a vacuum vessel, and the position of an X-ray source, the position of an X-ray monochromator, and the position of a sample can be controlled from outside the vacuum vessel. The total reflection type fluorescent X-ray analyzer according to any one of claims 2 to 5, further comprising a control mechanism.
光X線検出器に対し試料位置を真空容器外部から水平も
しくは回転移動制御できる制御機構を具備して成る請求
項6記載の全反射型蛍光X線分析装置。7. The apparatus according to claim 6, further comprising a control mechanism capable of controlling the position of the X-ray beam for irradiating the sample surface and the position of the sample with respect to the fluorescent X-ray detector from the outside of the vacuum vessel either horizontally or rotationally. Total reflection type fluorescent X-ray analyzer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2347991A JP2877534B2 (en) | 1991-02-18 | 1991-02-18 | Total reflection X-ray fluorescence analysis method and analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2347991A JP2877534B2 (en) | 1991-02-18 | 1991-02-18 | Total reflection X-ray fluorescence analysis method and analyzer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06118034A JPH06118034A (en) | 1994-04-28 |
JP2877534B2 true JP2877534B2 (en) | 1999-03-31 |
Family
ID=12111668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2347991A Expired - Lifetime JP2877534B2 (en) | 1991-02-18 | 1991-02-18 | Total reflection X-ray fluorescence analysis method and analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2877534B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002195963A (en) * | 2000-12-25 | 2002-07-10 | Ours Tex Kk | X-ray spectroscope apparatus and x-ray analyzing apparatus |
JP4537149B2 (en) * | 2004-08-11 | 2010-09-01 | 株式会社リガク | X-ray fluorescence analysis method |
EP4201328A1 (en) * | 2021-12-21 | 2023-06-28 | Universität Hamburg | X-ray irradiation apparatus, including a spectrally shaping x-ray optic and a spectral filter aperture device, for x-ray imaging |
-
1991
- 1991-02-18 JP JP2347991A patent/JP2877534B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06118034A (en) | 1994-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3919548A (en) | X-Ray energy spectrometer system | |
US7680243B2 (en) | X-ray measurement of properties of nano-particles | |
US6041095A (en) | X-ray fluorescence analyzer | |
Iida et al. | Synchrotron radiation excited X-ray fluorescence analysis using total reflection of X-rays | |
CN1829910A (en) | Method and apparatus for implement XANES analysis | |
Szlachetko et al. | Wavelength-dispersive spectrometer for X-ray microfluorescence analysis at the X-ray microscopy beamline ID21 (ESRF) | |
CA1155561A (en) | Laser exafs | |
Streli et al. | Total reflection X-ray fluorescence analysis of light elements with synchrotron radiation and special X-ray tubes | |
JP2001133421A (en) | X-ray spectrometer and x-ray diffractometer | |
Szalóki et al. | A novel confocal XRF-Raman spectrometer and FPM model for analysis of solid objects and liquid substances | |
Sanyal et al. | Drastic improvement in detection limits in energy dispersive X-ray fluorescence geometry utilizing micro-focused bremsstrahlung excitation in thin-film sample specimen | |
JP2877534B2 (en) | Total reflection X-ray fluorescence analysis method and analyzer | |
JP2003098126A (en) | X-ray analyzer for both fluorescence and diffraction | |
JP2000504422A (en) | X-ray analyzer having two collimator masks | |
Streli et al. | Total reflection X-ray fluorescence analysis of light elements using synchrotron radiation | |
Revenko | X-RAY FLUORESCENCE ANALYSIS: STATE-OF-THE-ART | |
Yang et al. | A high precision flat crystal spectrometer compatible for ultra-high vacuum light source | |
CN113218975A (en) | Surface X-ray absorption spectrum measuring device | |
EP0697109B1 (en) | X-ray spectrometer with a grazing take-off angle | |
Vasin et al. | X‐ray fluorescence analysis with sample excitation using radiation from a secondary target | |
JP2001194325A (en) | Device and method for x-ray analysis | |
JP5846469B2 (en) | Total reflection X-ray fluorescence analyzer and total reflection X-ray fluorescence analysis method | |
JPH0798285A (en) | X-ray evaluation device | |
US12247934B2 (en) | Polarized, energy dispersive x-ray fluorescence system and method | |
JPH07286977A (en) | X-ray analysis device and x-ray analyzing method |