[go: up one dir, main page]

JP2828979B2 - Crystal growth method - Google Patents

Crystal growth method

Info

Publication number
JP2828979B2
JP2828979B2 JP62311915A JP31191587A JP2828979B2 JP 2828979 B2 JP2828979 B2 JP 2828979B2 JP 62311915 A JP62311915 A JP 62311915A JP 31191587 A JP31191587 A JP 31191587A JP 2828979 B2 JP2828979 B2 JP 2828979B2
Authority
JP
Japan
Prior art keywords
crystal
crystal growth
growth method
zinc
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62311915A
Other languages
Japanese (ja)
Other versions
JPH01154511A (en
Inventor
正彦 近藤
重量 皆川
俊 梶村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62311915A priority Critical patent/JP2828979B2/en
Publication of JPH01154511A publication Critical patent/JPH01154511A/en
Priority to US08/063,054 priority patent/US5300793A/en
Application granted granted Critical
Publication of JP2828979B2 publication Critical patent/JP2828979B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、結晶成長方法に関する。この方法は半導体
レーザ装置等のヘテロ接合を用いた半導体装置に利用さ
れる。 〔従来の技術〕 化合物半導体及びその混晶半導体の結晶構造は閃亜鉛
鉱型とウルツ鉱型の2つがあるが実際に半導体デバイス
に用いられている結晶のほとんどが閃亜鉛鉱型である。
一方、ウルツ鉱型結晶は広いバンドギヤツプを持つたも
のが多く、可視光レーザ等の材料として期待される。し
かし、それらの結晶構造を持つ材料を組み合せてデバイ
スを設計しようとした場合、その構造の違いから積層欠
陥等のない良好なヘテロ接合を作製する事は、特に(11
1)面以外の接合面では、不可能であり非常に実現性の
低いものである。 こうした例は応用物理学会82年春の予稿集,p748柊元
宏に示されている。 〔発明が解決しようとする問題点〕 閃亜鉛鉱及びウルツ鉱の結晶構造を第1図及び第2図
に示す。閃亜鉛鉱型結晶の(100)面上にウルツ鉱型結
晶をヘテロ接合する場合を考えてみる、閃亜鉛鉱型結晶
の接合面は第3図に示す様な原子配置をとるが、ウルツ
鉱型結晶にはこの様な原子配置の面は存在せずコヒーレ
ントなヘテロ接合は出来なかつた。 本発明は、本来結晶構造の異なる物質間でのヘテロ接
合を可能とすることにある。 〔問題点を解決するための手段〕 上記目的は、アニオンとカチオンを時間的に交互に固
相の結晶成長界面に供給する事による1原子層ずつ結晶
成長させる所望原子層エピタキシヤル成長方法(Atomic
Layer Epitaxy;以下ALE法と略す。)を用いる事によ
り、エピタキシヤル層の結晶構造を基板の結晶構造と同
じ物に変える事が可能となり、達成される。 〔作用〕 閃亜鉛鉱構造とウルツ鉱構造はともに正四面体配位を
していて、第4図に示す様にその違いは単に第2最近接
原子の位置が60度回転しただけである。それぞれの構造
における自由エネルギーの差はあまり大きくなくその安
定性に大きな違いはない。事実、ZnS,CdS,BN等は両方の
結晶構造をとる。また、エネルギー帯構造も、主に最近
接原子間の相互作用によつて決定されるので両方の結晶
構造において大きな違いはない。ZnSの場合、閃亜鉛鉱
型とウルツ鉱型は共に直接遷移型であり、バンドギヤツ
プはそれぞれ3.6eVと3.8eVである。 閃亜鉛鉱型結晶の(100)面は第1図に示した様にア
ニオンとカチオンの単原子層が交互に積層されている。
今、(100)面の表面がアニオンによつて形成されてい
る場合を考えるとこの面に本来ウルツ鉱型構造を持つ材
料のカチオンが到達してくるとウルツ鉱型構造をとるボ
ンドは出ていないので閃亜鉛鉱構造のカチオンの格子位
置に取り込まれる。この様にして、アニオンとカチオン
を時間的に交互に成長界面に供給する事により本来ウル
ツ型のものが基板の結晶構造である閃亜鉛鉱型に変わり
良好なヘテロ結合が可能となる。 〔実施例〕 以下、本発明の実施例を第5図により説明する。51は
閃亜鉛鉱型構造をとる(100)GaAs基板、52はALE法によ
りヘテロ接合面がウエハ全体で均一なアニオン面(もし
くはカチオン面)となる様に調整したGaAsバツフア層、
53はGaAsと等しいボンド長を持つCd0.58Zn0.42SをALE
法により成長させたエピタキシヤル層である。52及び53
は、基本的には排気系を強化したMBE装置であるALE装置
により連続的に成長させた。そしてエピタキシヤル層を
X線回折により構造解析した結果、閃亜鉛鉱型構造をし
ている事が明らかになつた。本実施例ではエピタキシヤ
ル層をII族原子を供給する際に混合してCd0.58Zn0.42
結晶半導体としたが、例えば(CdS),(ZnS),(Cd
S),(ZnS),(CdS),(ZnS),(CdS),(CdS)を
1周期とする様な超格子半導体で構成しても良い。 第6図は、本発明を用いて結晶成長させたダブルヘテ
ロ構造のウエハの断面図である。61はGaAs基板、62はGa
Asバツフア層(0.1μm)、63はCd0.58Zn0.42Sクラツ
ド層(1μm)、64はGaAs活性層(0.1μm)である。
このウエハを30×250μm2に劈開して5145Åのアルゴン
イオンレーザで光励光する事によりGaAs活性層からのレ
ーザ光を観測する事が出来た。 第1表に、本発明によつてヘテロ接合が可能となる基
板とエピタキシヤル層の組み合せ例を示す。〔発明の効果〕 本発明によれば、本来良好なヘテロ接合が得られない
結晶構造の異なる材料間でのヘテロ接合が可能となり、
ヘテロ接合を用いた半導体装置を設計する際の制限の1
つを取り除く事が可能となる。
Description: TECHNICAL FIELD The present invention relates to a crystal growth method. This method is used for a semiconductor device using a heterojunction such as a semiconductor laser device. [Prior Art] There are two crystal structures of a compound semiconductor and a mixed crystal semiconductor thereof, a zinc blende type and a wurtzite type, but most of crystals actually used in semiconductor devices are the zinc blende type.
On the other hand, many wurtzite crystals have a wide band gap and are expected as materials for visible light lasers and the like. However, when designing a device by combining materials having these crystal structures, it is particularly difficult to fabricate a good heterojunction without stacking faults due to the difference in the structure (11).
1) It is impossible and extremely feasible at the joint surface other than the surface. An example of this is shown in the Abstracts of the Japan Society of Applied Physics Spring 82, p748 Motohiro Hiiragi. [Problems to be Solved by the Invention] FIGS. 1 and 2 show crystal structures of sphalerite and wurtzite. Consider the case where a wurtzite-type crystal is hetero-joined on the (100) plane of a zinc-blende-type crystal. The bonding surface of the zinc-blende-type crystal has an atomic arrangement as shown in FIG. Such a crystal arrangement does not have a plane having such an atomic arrangement, and a coherent heterojunction cannot be formed. An object of the present invention is to enable a heterojunction between substances having originally different crystal structures. [Means for Solving the Problems] The object of the present invention is to provide a desired atomic layer epitaxy growth method (Atomic layer) in which anions and cations are alternately and temporally supplied to a solid phase crystal growth interface to grow crystals one atomic layer at a time.
Layer Epitaxy; hereinafter abbreviated as ALE method. By using (), it becomes possible and possible to change the crystal structure of the epitaxial layer to the same as the crystal structure of the substrate. [Effect] Both the sphalerite structure and the wurtzite structure have a tetrahedral coordination, and the difference is merely that the position of the second nearest atom is rotated by 60 degrees as shown in FIG. The difference in free energy in each structure is not so large, and there is no significant difference in its stability. In fact, ZnS, CdS, BN, etc. have both crystal structures. The energy band structure is also determined mainly by the interaction between the closest atoms, so that there is no significant difference between the two crystal structures. In the case of ZnS, both sphalerite and wurtzite are direct transition types, and the bandgap is 3.6 eV and 3.8 eV, respectively. As shown in FIG. 1, the (100) plane of the sphalerite-type crystal has monolayers of anions and cations alternately stacked.
Considering the case where the surface of the (100) plane is formed by anions, when a cation of a material originally having a wurtzite structure reaches this surface, a bond having a wurtzite structure has appeared. Since it does not exist, it is taken into the lattice position of the cation of the sphalerite structure. In this way, by supplying anions and cations alternately to the growth interface over time, a wurtzite type is originally changed to a zincblende type, which is a crystal structure of a substrate, and a good hetero bond becomes possible. Embodiment An embodiment of the present invention will be described below with reference to FIG. 51 is a (100) GaAs substrate having a zinc-blende structure, 52 is a GaAs buffer layer adjusted by the ALE method so that the heterojunction surface becomes a uniform anion surface (or cation surface) over the entire wafer,
53 ALE Cd 0.58 Zn 0.42 S with bond length equal to GaAs
It is an epitaxial layer grown by a method. 52 and 53
Was grown continuously by the ALE system, which is basically an MBE system with an enhanced exhaust system. As a result of structural analysis of the epitaxy layer by X-ray diffraction, it was found that the layer had a zinc blende type structure. In the present embodiment, the epitaxial layer is mixed when supplying the group II atoms, and Cd 0.58 Zn 0.42 S
Although a crystalline semiconductor was used, for example, (CdS), (ZnS), (CdS
A superlattice semiconductor in which S), (ZnS), (CdS), (ZnS), (CdS), and (CdS) have one cycle may be used. FIG. 6 is a sectional view of a wafer having a double hetero structure grown by using the present invention. 61 is a GaAs substrate, 62 is Ga
As buffer layer (0.1 μm), 63 is a Cd 0.58 Zn 0.42 S cladding layer (1 μm), and 64 is a GaAs active layer (0.1 μm).
Laser light from the GaAs active layer could be observed by cleaving this wafer to 30 × 250 μm 2 and photoexciting it with a 5145 ° argon ion laser. Table 1 shows an example of a combination of a substrate and an epitaxial layer capable of forming a heterojunction according to the present invention. [Effects of the Invention] According to the present invention, heterojunction between materials having different crystal structures from which a good heterojunction is not originally obtained becomes possible,
One of the limitations in designing a semiconductor device using a heterojunction
One can be removed.

【図面の簡単な説明】 第1図及び第2図はそれぞれ閃亜鉛鉱型及びウルツ鉱型
結晶構造図、第3図は閃亜鉛鉱型構造結晶の(100)面
における原子配置図、第4図は閃亜鉛鉱型及びウルツ鉱
型構造における第2最近接原子位置の関係を表す図、第
5図は実施例におけるヘテロ構造の断面図、第6図は実
施例における半導体レーザ用ダブルヘテロウエハの断面
図である。 51……(100)GaAs基板、52……GaAsバツフア層、53…
…Cd0.58Zn0.42Sエピタキシヤル層、61……GaAs基板、
62……GaAsバツフア層、63……Cd0.58Zn0.42Sクラツド
層、64……GaAs活性層。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 and FIG. 2 are zinc-blende-type and wurtzite-type crystal structures, respectively. FIG. 3 is an atomic arrangement diagram on the (100) plane of the zinc-blende-type structure crystal. FIG. 5 is a diagram showing the relationship between the position of the second nearest atom in the zinc-blende and wurtzite structure, FIG. 5 is a cross-sectional view of the heterostructure in the embodiment, and FIG. FIG. 51 ... (100) GaAs substrate, 52 ... GaAs buffer layer, 53 ...
... Cd 0.58 Zn 0.42 S epitaxial layer, 61 ... GaAs substrate,
62: GaAs buffer layer, 63: Cd 0.58 Zn 0.42 S cladding layer, 64: GaAs active layer.

Claims (1)

(57)【特許請求の範囲】 1.閃亜鉛鉱型の結晶構造を有する半導体基板上に本来
ウルツ鉱型の結晶構造を有するCdZnS混晶半導体,CdSeS,
又はInGaNからなる半導体材料を閃亜鉛鉱構造を有する
結晶としてエピタキシャル成長させる結晶成長方法であ
って、 上記半導体材料の結晶成長界面に該半導体材料を構成す
るアニオン原子とカチオン原子を時間的に交互に供給し
て該アニオン原子及び該カチオン原子からなる層を夫々
1原子層毎に成長させることを特徴とする結晶成長方
法。 2.上記半導体材料からなる閃亜鉛鉱構造の結晶は、上
記半導体基板の(100)面に成長させることを特徴とす
る特許請求の範囲第1項に記載の結晶成長方法。 3.上記半導体基板は、GaAsであることを特徴とする特
許請求の範囲第1項又は第2項に記載の結晶成長方法。
(57) [Claims] CdZnS mixed crystal semiconductor, CdSeS, which originally has a wurtzite crystal structure on a zinc-blende-type semiconductor substrate
Or a crystal growth method for epitaxially growing a semiconductor material made of InGaN as a crystal having a zinc blende structure, wherein an anion atom and a cation atom constituting the semiconductor material are alternately supplied to a crystal growth interface of the semiconductor material over time. And growing a layer comprising said anion atom and said cation atom for each atomic layer. 2. 2. The crystal growth method according to claim 1, wherein the crystal having a zinc blende structure made of the semiconductor material is grown on a (100) plane of the semiconductor substrate. 3. 3. The crystal growth method according to claim 1, wherein the semiconductor substrate is GaAs.
JP62311915A 1987-12-11 1987-12-11 Crystal growth method Expired - Lifetime JP2828979B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62311915A JP2828979B2 (en) 1987-12-11 1987-12-11 Crystal growth method
US08/063,054 US5300793A (en) 1987-12-11 1993-05-19 Hetero crystalline structure and semiconductor device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62311915A JP2828979B2 (en) 1987-12-11 1987-12-11 Crystal growth method

Publications (2)

Publication Number Publication Date
JPH01154511A JPH01154511A (en) 1989-06-16
JP2828979B2 true JP2828979B2 (en) 1998-11-25

Family

ID=18022951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62311915A Expired - Lifetime JP2828979B2 (en) 1987-12-11 1987-12-11 Crystal growth method

Country Status (1)

Country Link
JP (1) JP2828979B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7405158B2 (en) 2000-06-28 2008-07-29 Applied Materials, Inc. Methods for depositing tungsten layers employing atomic layer deposition techniques
US7101795B1 (en) 2000-06-28 2006-09-05 Applied Materials, Inc. Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer
US6551929B1 (en) 2000-06-28 2003-04-22 Applied Materials, Inc. Bifurcated deposition process for depositing refractory metal layers employing atomic layer deposition and chemical vapor deposition techniques
US6998579B2 (en) 2000-12-29 2006-02-14 Applied Materials, Inc. Chamber for uniform substrate heating
US6765178B2 (en) 2000-12-29 2004-07-20 Applied Materials, Inc. Chamber for uniform substrate heating
US6951804B2 (en) 2001-02-02 2005-10-04 Applied Materials, Inc. Formation of a tantalum-nitride layer
US6878206B2 (en) 2001-07-16 2005-04-12 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US6734020B2 (en) 2001-03-07 2004-05-11 Applied Materials, Inc. Valve control system for atomic layer deposition chamber
US7211144B2 (en) 2001-07-13 2007-05-01 Applied Materials, Inc. Pulsed nucleation deposition of tungsten layers
US6936906B2 (en) 2001-09-26 2005-08-30 Applied Materials, Inc. Integration of barrier layer and seed layer
US6916398B2 (en) 2001-10-26 2005-07-12 Applied Materials, Inc. Gas delivery apparatus and method for atomic layer deposition
US6833161B2 (en) 2002-02-26 2004-12-21 Applied Materials, Inc. Cyclical deposition of tungsten nitride for metal oxide gate electrode
US7439191B2 (en) 2002-04-05 2008-10-21 Applied Materials, Inc. Deposition of silicon layers for active matrix liquid crystal display (AMLCD) applications
US7262133B2 (en) 2003-01-07 2007-08-28 Applied Materials, Inc. Enhancement of copper line reliability using thin ALD tan film to cap the copper line
US7211508B2 (en) 2003-06-18 2007-05-01 Applied Materials, Inc. Atomic layer deposition of tantalum based barrier materials

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158912A (en) * 1982-03-16 1983-09-21 Agency Of Ind Science & Technol High mobility semiconductor material
JPS59190295A (en) * 1983-04-06 1984-10-29 Sanyo Electric Co Ltd Method for growing zns single crystal film
JPS6039820A (en) * 1983-08-12 1985-03-01 Fujitsu Ltd Manufacturing method of semiconductor device
JPS6445113A (en) * 1987-08-13 1989-02-17 Shigeo Shiotani Semiconductor superlattice structure

Also Published As

Publication number Publication date
JPH01154511A (en) 1989-06-16

Similar Documents

Publication Publication Date Title
JP2828979B2 (en) Crystal growth method
Guha et al. Structural quality and the growth mode in epitaxial ZnSe/GaAs (100)
GB1457585A (en) Semiconductor superlattice crystals
JPH0812844B2 (en) (III) -Group V compound semiconductor and method for forming the same
JPH05182906A (en) Heteroepitaxial growth method
US5714006A (en) Method of growing compound semiconductor layer
US5300793A (en) Hetero crystalline structure and semiconductor device using it
KR20190115699A (en) Epitaxy structure using graphene sacrificial layer and method for manufacturing the same
JP2803722B2 (en) Semiconductor device and manufacturing method thereof
EP0425244B1 (en) Semiconductor device having a heteroepitaxial substrate
JPH07147461A (en) Semiconductor device and manufacturing method thereof
JP3143526B2 (en) Method for manufacturing compound semiconductor device
JP2674043B2 (en) Epitaxial growth method
JP2946280B2 (en) Semiconductor crystal growth method
Harbison et al. Metallic quantum wells grown by molecular‐beam epitaxy
JPS63184320A (en) Semiconductor device
JPH02163928A (en) How to form quantum wire or quantum box
JPH0372680A (en) Semiconductor material, photoelectric integrated circuit element, and crystal growth method of material
JP2587404B2 (en) Semiconductor superlattice structure
JP3580988B2 (en) Epitaxial film growth method
JP2803375B2 (en) Semiconductor structure
JPH03247597A (en) Epitaxial growth method of iii-v compound semiconductor on silicon substrate
JP2576127B2 (en) Method for growing III-V compound semiconductor crystal on Si substrate
Horikoshi Surface process in migration. Enhanced epitaxy.
Mishra et al. Structural properties of semiconductors