JP2764787B2 - High strength and high conductivity copper alloy for electronic equipment - Google Patents
High strength and high conductivity copper alloy for electronic equipmentInfo
- Publication number
- JP2764787B2 JP2764787B2 JP6075422A JP7542294A JP2764787B2 JP 2764787 B2 JP2764787 B2 JP 2764787B2 JP 6075422 A JP6075422 A JP 6075422A JP 7542294 A JP7542294 A JP 7542294A JP 2764787 B2 JP2764787 B2 JP 2764787B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- strength
- weight ratio
- alloy
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims description 17
- 239000013078 crystal Substances 0.000 claims description 15
- 229910052742 iron Inorganic materials 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 11
- 229910052738 indium Inorganic materials 0.000 claims description 10
- 239000010949 copper Substances 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims description 9
- 229910052749 magnesium Inorganic materials 0.000 claims description 8
- 229910052718 tin Inorganic materials 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 description 33
- 239000000956 alloy Substances 0.000 description 33
- 238000005452 bending Methods 0.000 description 28
- 239000000463 material Substances 0.000 description 24
- 230000000694 effects Effects 0.000 description 19
- 238000004080 punching Methods 0.000 description 16
- 229910000679 solder Inorganic materials 0.000 description 14
- 238000007747 plating Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- 230000003252 repetitive effect Effects 0.000 description 11
- 238000005530 etching Methods 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 6
- 230000002411 adverse Effects 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000002250 progressing effect Effects 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229910017526 Cu-Cr-Zr Inorganic materials 0.000 description 1
- 229910017810 Cu—Cr—Zr Inorganic materials 0.000 description 1
- 241001124569 Lycaenidae Species 0.000 description 1
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Lead Frames For Integrated Circuits (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、トランジスタや集積
回路(IC)等のような半導体機器のリ−ド材として好
適な、高い強度や電気伝導性等に加えて優れた曲げ加工
性及びプレス打抜き性をも備えた電子機器用高力高導電
性銅合金に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to excellent bending workability and pressability in addition to high strength and electrical conductivity, which are suitable as a lead material for semiconductor devices such as transistors and integrated circuits (ICs). The present invention relates to a high-strength, high-conductivity copper alloy for electronic equipment having punching properties.
【0002】[0002]
【従来技術とその課題】近年のICパッケ−ジの動向は
“軽薄短小化”に象徴されてきたが、最近、表面パッケ
−ジの普及によってその傾向は益々促進され、更にIC
チップの高機能化に伴う多ピン化及び低発熱化も同時に
進んでいる。一方、ICパッケ−ジの形態に係る具体的
な変遷過程を見ると、従来はDIPに代表されるピン挿
入型パッケ−ジが多用されてきたが、実装密度向上を目
的とした“表面実装”が主流になるにつれてSOJ,S
OP,QFP等の表面実装型への移行が進んでいる。そ
して、最近では、多ピン化に伴ってリ−ドピッチを縮小
したファインピッチQFPが増加し、更にTSOP,T
QFP等に代表される薄板化が進行している。2. Description of the Related Art In recent years, the trend of IC packages has been symbolized by "miniaturization and lightness". Recently, however, the trend has been further promoted by the spread of surface packages.
At the same time, the increase in the number of pins and the reduction in heat generation accompanying the enhancement of the functions of the chip are also progressing. On the other hand, looking at a specific transition process relating to the form of an IC package, a pin insertion type package represented by DIP has been frequently used in the past. Becomes more mainstream, SOJ, S
The shift to surface mount types such as OP and QFP is progressing. Recently, fine pitch QFPs, in which the lead pitch has been reduced, have increased with the increase in the number of pins.
Thinning such as QFP is progressing.
【0003】ところで、多ピン,狭ピッチのフレ−ムの
大半はエッチング加工により作られるのが一般的である
が、最近、プレス微細加工技術の飛躍的な向上に裏打ち
されて部分的には生産性の良いプレス加工を取り入れる
試みも進められている。[0003] By the way, most of the multi-pin, narrow-pitch frames are generally made by etching, but recently, partly because of the dramatic improvement in press micromachining technology, the production has been partially completed. Attempts are being made to incorporate good press working.
【0004】何れにしても、上述のようなリ−ドフレ−
ムの薄板化やリ−ドの狭小化はリ−ド強度を低下させ、
アセンブリ−工程中やデバイス実装時におけるリ−ドの
変形を引き起こす。そこで、このような問題を解決する
ためには使用されるリ−ドフレ−ム材料の強度をできる
だけ向上させる必要がある。また、ICの高集積化や多
ピン化が進むと、これに伴い消費電力も大きくなってチ
ップから発生する熱の放散対策が無視できない重要な問
題となる。[0004] In any case, the lead frame as described above is used.
The thinning of the arm and the narrowing of the lead lower the lead strength,
The lead may be deformed during the assembly process or device mounting. Therefore, in order to solve such a problem, it is necessary to improve the strength of the lead frame material used as much as possible. Further, as the integration of ICs and the number of pins increase, power consumption increases, and measures to dissipate heat generated from chips become an important problem that cannot be ignored.
【0005】このように、半導体機器のリ−ドフレ−ム
材には一般に次のような多岐多用な特性が要求されてい
る。 a) リ−ドが容易に変形することがない機械的強度を有
すること, b) リ−ドフレ−ムのパタ−ン形成に必要な優れたエッ
チング性及びプレス加工性を有すること, c) チップの発熱に対して効率良く熱放散させるための
高い熱伝導率を有すること, d) 電気的特性に優れていること, e) デバイス実装時における半田付け性に優れ、かつ半
田接合部の信頼性が高いこと, f) ボンディングのためのAgメッキ性に優れること, g) 加熱工程で表面が酸化することのない優れた耐酸化
性を有していること, h) 繰り返し曲げ性に優れていること, i) 価格が安価であること。As described above, the lead frame material of semiconductor equipment is generally required to have the following various characteristics. a) The lead must have mechanical strength so that it is not easily deformed. b) It shall have the excellent etching and press workability required for forming the lead frame pattern. c) Chips High thermal conductivity to efficiently dissipate the heat generated by the device, d) excellent electrical characteristics, e) excellent solderability when mounting devices, and reliability of solder joints F) Ag plating for bonding, g) Excellent oxidation resistance without oxidizing the surface during the heating process, h) Excellent repetitive bendability I) The price is low.
【0006】しかしながら、これら各種の要求特性に対
し、従来より使用されてきたリン青銅等の銅合金や42
アロイ(42wt%Ni-Fe)には何れも一長一短があり、前記
特性の全てを満足し得るものはなかった。特に、リ−ド
の多ピン化,小型化の進展に伴って形状の複雑化やピン
の狭小化が進み、リ−ドフレ−ム材料等に一層良好な強
度,曲げ加工性,プレス打抜き性及びエッチング性が求
められていることを考慮すれば、上記従来材はこれらの
点で十分な性能を有しているとは言い難かった。However, in response to these various required characteristics, copper alloys such as phosphor bronze and the like which have been used in the past have been used.
All alloys (42 wt% Ni-Fe) had advantages and disadvantages, and none could satisfy all of the above characteristics. In particular, with the increase in the number of pins and miniaturization of leads, the complexity of the shape and the narrowing of the pins have advanced, and lead frame materials have better strength, bending workability, press punching properties, and the like. Considering that the etching property is required, it was difficult to say that the above-mentioned conventional material had sufficient performance in these points.
【0007】このようなことから、本発明が目的とする
のは、半導体機器のリ−ドフレ−ム材等として要求され
る前記各特性の何れをも満たす材料、特にビッカ−ス硬
さで約200以上の強度(引張強度で65kgf/mm2 以
上)を有すると共に50%IACS(42アロイの約15倍
程度)以上の導電率を示し、かつ曲げ加工性及びプレス
打抜き性等にも十分に優れた金属材料を提供することで
ある。Accordingly, an object of the present invention is to provide a material which satisfies all of the above-mentioned characteristics required as a lead frame material of a semiconductor device or the like, in particular, a Vickers hardness of about 10%. It has a strength of 200 or more (65 kgf / mm 2 or more in tensile strength) and a conductivity of more than 50% IACS (about 15 times that of 42 alloy), and also has sufficiently excellent bending workability and press punching properties. It is to provide a metal material.
【0008】[0008]
【課題を解決するための手段】本発明者等は、上記目的
を達成すべく鋭意検討を行ったところ、まず次のような
結論に達した。即ち、元来熱伝導度が非常に良好である
銅をベ−スとした銅合金は熱放散性において他のリ−ド
フレ−ム材料に比べ非常に有利である上、電気的特性,
Agめっき性,半田付け性,耐酸化性,延性等の面でも比
較的良好な特性を確保することができる。従って、これ
らの特性を損なうことなく薄板化に対応可能な強度と繰
り返し曲げ性、並びにプレス打抜き性等を付与して従来
の銅合金の持つ欠点を改良できれば、これからの半導体
機器のリ−ドフレ−ム材や導電性ばね材等として優れた
材料を実現できると考えられる。Means for Solving the Problems The present inventors have conducted intensive studies in order to achieve the above object, and have reached the following conclusion. That is, a copper alloy based on copper, which originally has a very good thermal conductivity, is very advantageous in heat dissipation as compared with other lead frame materials, and has excellent electrical characteristics and properties.
Relatively good characteristics can be secured in terms of Ag plating properties, solderability, oxidation resistance, ductility, and the like. Therefore, if the strength, repetitive bending property, press punching property, etc., which can cope with thinning without impairing these characteristics can be improved to improve the drawbacks of the conventional copper alloy, the lead free of the future semiconductor equipment will be improved. It is considered that an excellent material such as a rubber material or a conductive spring material can be realized.
【0009】そこで、固溶型銅合金に比べ導電率を低下
させずに高強度化が可能な、析出型銅合金の一つである
Cu−Cr−Zr合金に着目して研究を行った結果、以下に示
す知見を得ることができた。 (a) Cr及びZrは銅合金の高強度化に非常に効果的な元
素であり、しかもCrは電気伝導性の向上にも資する成分
であるが、これらの添加だけではリ−ドフレ−ム材や導
電性ばね材等として十分に満足できる強度を確保するこ
とができず、その強度を更に向上させるのにTi及びFeの
添加が有効である。 (b) ただ、Ti,Feは合金の強度向上に非常に有効であ
るものの、それらの含有量はエッチング性や電気伝導度
等に大きく影響するので無秩序な添加は慎まなければな
らない。しかし、Ti及びFeを添加した前記銅合金におい
て、Cr,Zr,Ti及びFe等の合金成分及び合金成分比を厳
密に制御すると、強度,電気伝導性及びエッチング性等
の諸特性を高いレベルでバランスさせることができるよ
うになる。 (c) ただ、これらの成分を添加しただけでは今後のリ
−ドフレ−ム材等として十分に満足できるプレス打抜き
性を確保することができない。ところが、上記銅合金に
対し、伸びに著しい悪影響を及ぼすとして敬遠されるS
を厳密に規制された濃度で含有させると、伸びを始めと
した所要特性に実害を及ぼす程に悪影響することなくプ
レス打抜き性が顕著に改善される。 (d) しかも、その溶体化処理温度を選定することによ
り平均結晶粒径を60μm以下に制御すると、前記諸特
性と共に曲げ加工性をも高いレベルでバランスさせるこ
とができる。 (e) 更に、この合金に所定量のZn,Sn,In,Mn,P,M
gあるいはSiの添加を行うことで、その半田接合部の信
頼性や合金の強度特性を更に改善することが可能であ
る。[0009] Therefore, it is one of the precipitation-type copper alloys capable of increasing the strength without lowering the conductivity as compared with the solid-solution-type copper alloy.
As a result of conducting research focusing on Cu-Cr-Zr alloy, the following findings were obtained. (a) Cr and Zr are very effective elements for increasing the strength of copper alloys, and Cr is a component that also contributes to the improvement of electrical conductivity. A sufficiently satisfactory strength cannot be ensured as a material or a conductive spring material, and the addition of Ti and Fe is effective for further improving the strength. (b) However, although Ti and Fe are very effective in improving the strength of the alloy, their contents greatly affect the etching properties and the electric conductivity, and so the disorderly addition must be avoided. However, in the copper alloy to which Ti and Fe are added, when the alloy components such as Cr, Zr, Ti, and Fe and the alloy component ratio are strictly controlled, various properties such as strength, electric conductivity, and etching property are at a high level. You will be able to balance. (c) However, the addition of these components alone cannot ensure sufficient press punching properties as a future lead frame material or the like. However, for the above copper alloy, S which is avoided as having a significant adverse effect on elongation is considered.
Is contained in a strictly regulated concentration, the press punching property is remarkably improved without adversely affecting the required properties such as elongation. (d) In addition, when the average crystal grain size is controlled to 60 μm or less by selecting the solution treatment temperature, the bending properties as well as the above-mentioned properties can be balanced at a high level. (e) Further, a predetermined amount of Zn, Sn, In, Mn, P, M
By adding g or Si, it is possible to further improve the reliability of the solder joint and the strength characteristics of the alloy.
【0010】本発明は、上記知見事項等を基にしてなさ
れたもので、「電子機器用銅合金を、 Cr:0.05〜0.40%(以降、 成分割合を表す%は重量割合
とする),Zr:0.03〜0.25%, Fe:0.10〜1.80%,
Ti:0.10〜0.80%,S:0.0005以上0.0080%未満 を含むか、 あるいは更に Zn:0.05〜2.0 %,Sn,In,Mn,P,Mg及びSiの1種以
上:総量で0.01〜1% のうちの1種又は2種以上を含有すると共に、 “0.10%
≦Ti≦0.60%”ではFe/Ti重量比が0.66〜2.6 を満足
し、 また“0.60%<Ti≦0.80%”ではFe/Ti重量比が1.
1 〜2.6 を満足していて残部がCu及び不可避的不純物か
ら成り、 かつ平均結晶粒径が60μm以下に調整されて
成る構成とすることによって、 強度,電気伝導度,曲げ
加工性,プレス打抜き性及び半田接合部の信頼性等の諸
性質を高いレベルでバランスさせ得るようにした点」に
大きな特徴を有している。The present invention has been made on the basis of the above findings and the like. "The copper alloy for electronic equipment is made of Cr: 0.05 to 0.40% (hereinafter,% representing the component ratio is referred to as a weight ratio), Zr : 0.03 to 0.25%, Fe: 0.10 to 1.80%,
Ti: 0.10 to 0.80%, S: 0.0005 to less than 0.0080%, or Zn: 0.05 to 2.0%, one or more of Sn, In, Mn, P, Mg, and Si: 0.01 to 1% in total amount Containing one or more of these, and a "0.10%
≦ Ti ≦ 0.60% ”, the Fe / Ti weight ratio satisfies 0.66 to 2.6, and“ 0.60% <Ti ≦ 0.80% ”, the Fe / Ti weight ratio is 1.
The strength, electric conductivity, bending workability, press punching property are satisfied by satisfying 1 to 2.6, with the balance consisting of Cu and unavoidable impurities and having an average crystal grain size adjusted to 60 μm or less. And that various properties such as the reliability of the solder joints can be balanced at a high level. "
【0011】次に、本発明において“合金の成分組成及
び結晶粒径を前記の如くに数値限定した理由”をその作
用と共に詳述する。 A) 成分組成 (a) Cr Crは、合金の溶体化処理に次ぐ時効処理によって母相中
に析出し、その強度及び電気伝導性を向上させる作用を
発揮するが、Cr含有量が0.05%未満では前記作用による
所望の効果が得られない。一方、Cr含有量が0.30%付近
を超えると溶体化処理後にも未溶解Crが母相中に残留す
るようになり、更にCr含有量が0.40%を超えるとプレス
加工後のカスが発生し易くなって安定したプレス打抜き
性を著しく阻害する。従って、Cr含有量は0.05〜0.40%
と定めた。Next, the "reason for limiting the component composition and crystal grain size of the alloy as described above" in the present invention will be described in detail together with its operation. A) Ingredient composition (a) Cr Cr precipitates in the mother phase by aging treatment following the solution treatment of the alloy, and exhibits the effect of improving its strength and electric conductivity, but the Cr content is less than 0.05% In this case, the desired effect cannot be obtained by the above operation. On the other hand, if the Cr content exceeds about 0.30%, undissolved Cr will remain in the matrix even after the solution treatment, and if the Cr content exceeds 0.40%, scum is likely to be generated after press working. This significantly impairs stable press punching. Therefore, the Cr content is 0.05-0.40%
It was decided.
【0012】(b) Zr Zrは、時効処理によりCuと化合物を形成して母相中に析
出しこれを強化する作用を発揮するが、Zr含有量が0.03
%未満では前記作用による所望の効果が得られず、一
方、0.25%を超えて含有させると溶体化処理後にも未溶
解Zrが母相中に残留し電気伝導度及び曲げ加工性を低下
させることから、Zr含有量は0.03〜0.25%と定めた。(B) Zr Zr forms a compound with Cu by aging treatment and precipitates in a matrix to exert an effect of strengthening it.
If the content is less than 0.2%, the desired effect of the above-mentioned effect cannot be obtained. On the other hand, if the content exceeds 0.25%, undissolved Zr remains in the matrix even after the solution treatment, which lowers the electrical conductivity and bending workability. Therefore, the Zr content was determined to be 0.03 to 0.25%.
【0013】(c) Ti及びFe Ti及びFeは、合金を時効処理した時に母相中にTiとFeと
の金属間化合物を形成し、その結果として合金強度を更
に向上させる作用を発揮するが、これらの含有量がそれ
ぞれ0.01%未満では前記作用による所望の効果が得られ
ない。一方、Ti含有量が0.80%を超えたり、Fe含有量が
1.80%を超える場合には、TiとFeを主成分とする未溶解
介在物が5μm以上の大きさとなってエッチング性を著
しく阻害する。ここで、注目すべきは、合金の強度と電
気伝導性に及ぼすTi含有量,Fe含有量の影響であり、合
金の強度と電気伝導性は同一のTi含有量あるいは同一の
Fe含有量であってもFe/Ti重量比により大きく変化する
という点である。即ち、「0.10%≦Ti≦0.60%」の範囲
ではFe/Ti重量比が0.66未満である場合に、また「0.60
%<Ti≦0.80%」の範囲ではFe/Ti重量比が1.1 未満で
あると何れも電気伝導性は著しく低下する。これに対
し、合金の強度は「0.10%≦Ti≦0.80%」の全Ti含有量
範囲においてFe/Ti重量比がが2.6 を超えると減少す
る。つまり、電気伝導性と強度はFe/Ti重量比に対して
相反する関係にあって、両者を高位にバランスさせる最
適なFe/Ti重量比は、「0.10%≦Ti≦0.60%」では0.66
〜2.6 に、また「0.60%<Ti≦0.80%」では1.1 〜2.6
ということになる。以上のことを踏まえて、合金の強
度,電気伝導性及びエッチング性を満足させるべくTi含
有量は0.10〜0.80%、Fe含有量は0.10〜1.8 %とそれぞ
れ定め、かつ「0.10%≦Ti≦0.60%」ではFe/Ti重量比
を0.66〜2.6 に、また「0.60%<Ti≦0.80%」ではFe/
Ti重量比を1.1 〜2.6 にそれぞれ限定した。(C) Ti and Fe Ti and Fe form an intermetallic compound of Ti and Fe in the parent phase when the alloy is aged, and as a result, exhibit an effect of further improving the strength of the alloy. If the content of each of them is less than 0.01%, desired effects due to the above-mentioned effects cannot be obtained. On the other hand, if the Ti content exceeds 0.80% or the Fe content
If it exceeds 1.80%, undissolved inclusions containing Ti and Fe as main components have a size of 5 μm or more and significantly impair the etching property. What should be noted here is the effect of the Ti content and the Fe content on the strength and electric conductivity of the alloy. The strength and electric conductivity of the alloy are the same or the same.
The point is that even with the Fe content, it greatly changes depending on the Fe / Ti weight ratio. That is, in the range of “0.10% ≦ Ti ≦ 0.60%”, when the Fe / Ti weight ratio is less than 0.66, or “0.60%
% <Ti ≦ 0.80% ”, the electrical conductivity remarkably decreases in any case where the Fe / Ti weight ratio is less than 1.1. On the other hand, the strength of the alloy decreases when the Fe / Ti weight ratio exceeds 2.6 in the entire Ti content range of “0.10% ≦ Ti ≦ 0.80%”. That is, the electrical conductivity and the strength are in an inverse relationship with respect to the Fe / Ti weight ratio, and the optimal Fe / Ti weight ratio that balances the two at a high level is 0.66 in “0.10% ≦ Ti ≦ 0.60%”.
To 2.6, and 1.1 to 2.6 for "0.60% <Ti ≤ 0.80%"
It turns out that. Based on the above, the Ti content is set to 0.10 to 0.80% and the Fe content is set to 0.10 to 1.8% to satisfy the strength, electric conductivity and etching property of the alloy, respectively, and "0.10% ≦ Ti ≦ 0.60%”. % ”, The Fe / Ti weight ratio is 0.66 to 2.6, and“ 0.60% <Ti ≦ 0.80% ”
The Ti weight ratio was limited to 1.1 to 2.6, respectively.
【0014】(d) S Sは銅中において非金属介在物を形成するが、その含有
量が高くなるとそれに伴って非金属介在物を起点とした
亀裂が入り易くなり材料の伸びは減少する。しかしなが
ら、このことはプレス成形時における材料のせん断面の
面積率が増加することを意味し、そのためバリ及びダレ
の発生が抑えられて製品精度が向上するなどプレス打抜
き性の著しい改善につながる。ただ、S含有量が0.0005
%未満では所望のプレス打抜き性改善効果を確保でき
ず、一方、S含有量が0.0080%以上になると延性が低下
して繰り返し曲げ性も著しく劣化するほか、Agめっき性
にも悪影響が出てくる。従って、プレス打抜き性を改善
するSの含有量は0.0005%以上0.0080%未満と定めた。(D) S S forms non-metallic inclusions in copper, but as the content increases, cracks originating from the non-metallic inclusions tend to occur and the elongation of the material decreases. However, this means that the area ratio of the sheared surface of the material at the time of press forming increases, and therefore, the occurrence of burrs and sagging is suppressed, which leads to remarkable improvement in press punching properties such as improvement in product accuracy. However, the S content is 0.0005
%, The desired effect of improving the press punching property cannot be secured, while if the S content is 0.0080% or more, the ductility is reduced, the repetitive bending property is significantly deteriorated, and the Ag plating property is also adversely affected. . Therefore, the content of S for improving the press punching property is determined to be 0.0005% or more and less than 0.0080%.
【0015】(e) Zn 本発明に係る合金においてZnは半田の耐熱剥離性を向上
させる作用を発揮し、そのため必要に応じて含有せしめ
られる成分であるが、その含有量が0.05%以下では前記
作用による所望の効果が得られず、一方、2.0 %を超え
て含有させると導電率の低下を招くことから、Zn含有量
は0.05〜2.0 %と定めた。(E) Zn In the alloy according to the present invention, Zn exerts an action of improving the heat-peeling resistance of the solder, and is therefore a component that can be added if necessary. The desired effect due to the action cannot be obtained. On the other hand, if the content exceeds 2.0%, the conductivity will be reduced. Therefore, the Zn content is determined to be 0.05 to 2.0%.
【0016】(f) Sn,In,Mn,P,Mg及びSi 本発明に係る合金において、Sn,In,Mn,P,Mg及びSi
は何れも合金の導電率を大きく低下させずに主として固
溶強化により強度を向上させる作用を発揮するため、必
要に応じてこれらの1種又は2種以上が添加されるが、
それらの含有量が総量で0.01%未満であると前記作用に
よる所望の効果が得られない。一方、これらの含有量が
総量で1.0 %を超えると合金の導電率及び曲げ加工性が
劣化すると共に、プレス打抜き性にも悪影響が及んでバ
リを発生するようになる。従って、Sn,In,Mn,P,Mg
あるいはSiの含有量は総量で0.01〜1%と定めた。(F) Sn, In, Mn, P, Mg and Si In the alloy according to the present invention, Sn, In, Mn, P, Mg and Si
In any case, one or two or more of these are added as necessary to exert the effect of improving strength mainly by solid solution strengthening without significantly lowering the conductivity of the alloy.
If their contents are less than 0.01% in total, the desired effects due to the above effects cannot be obtained. On the other hand, if their contents exceed 1.0% in total, the conductivity and bending workability of the alloy are deteriorated, and the punching property is adversely affected, and burrs are generated. Therefore, Sn, In, Mn, P, Mg
Alternatively, the total content of Si is set to 0.01 to 1%.
【0017】B) 結晶粒径 合金の結晶粒度は曲げ加工性に著しく大きな影響を与
え、結晶粒度が小さいほど曲げ加工性(即ち繰り返し曲
げ性)が向上する。なお、結晶粒度は溶体化温度により
調整できるが、平均結晶粒径が60μmを超えると繰り
返し曲げ回数が著しく減少することから、本発明におい
ては平均結晶粒径を60μm以下に調整することと定め
た。B) Crystal Grain Size The crystal grain size of the alloy has a remarkable influence on bending workability, and the smaller the crystal grain size, the better the bending workability (ie, the repetitive bending property). The crystal grain size can be adjusted by the solution temperature. However, when the average crystal grain size exceeds 60 μm, the number of times of repeated bending is significantly reduced. Therefore, in the present invention, the average crystal grain size is determined to be adjusted to 60 μm or less. .
【0018】続いて、本発明の効果を実施例によって更
に具体的に説明する。Next, the effects of the present invention will be described more specifically with reference to examples.
【実施例】電気銅を原料として高周波溶解炉で表1及び
表2に示す各種成分組成の銅合金を1200℃で溶製
し、インゴットに鋳造した。そして、このインゴットを
面削した後、950℃に1時間加熱し、熱間圧延によっ
て8mm厚の板材とした。次に、この板材に900℃で溶
体化処理を施し、更に冷間圧延によって0.3 mm厚の板材
としてから、更に440℃で12〜24時間の時効処理
と0.15mm厚への冷間圧延を行い、最後に500℃での歪
み取り焼鈍を施した。このようにして得られた各板材の
結晶粒度(平均結晶粒径)を調査したが、その結果を表
1及び表2に併せて示す。EXAMPLES Copper alloys having various component compositions shown in Tables 1 and 2 were melted at 1200 ° C. in a high frequency melting furnace using electrolytic copper as a raw material, and cast into ingots. Then, the ingot was chamfered, heated at 950 ° C. for 1 hour, and hot-rolled to obtain a sheet material having a thickness of 8 mm. Next, this sheet material is subjected to a solution treatment at 900 ° C., and further a cold-rolled sheet material having a thickness of 0.3 mm is further subjected to aging treatment at 440 ° C. for 12 to 24 hours and cold rolling to a thickness of 0.15 mm. Finally, a strain relief annealing at 500 ° C. was performed. The crystal grain size (average crystal grain size) of each plate material thus obtained was examined. The results are shown in Tables 1 and 2.
【0019】[0019]
【表1】 [Table 1]
【0020】[0020]
【表2】 [Table 2]
【0021】次いで、得られたこれら板材につき、リ−
ドフレ−ム材としての評価項目として“引張強度", "伸
び", "電気伝導性", "繰り返し曲げ性", "半田付け性",
"半田耐熱剥離性", "Agめっき性" 及び "プレス成形
性" を調べた。Next, the obtained sheet materials were released.
The evaluation items for the dough frame material are “tensile strength”, “elongation”, “electrical conductivity”, “repeated bending property”, “solderability”,
"Solder heat peeling resistance", "Ag plating property" and "press formability" were examined.
【0022】ここで、“引張強度" と "伸び" は引張試
験によって測定し、 "電気伝導性"は導電率(%IACS) に
より評価した。なお、引張強度と導電率の評価基準は、
引張強度については65kgf/mm2 以上を可とし、導電率
については50%IACS以上を可とした。"繰り返し曲げ
性" は、「(曲げ半径)/(板厚)=1」の曲げ条件で
同一方向の90度繰り返し曲げ試験を行い、往復を1回
と数える方法で破断するまでの回数を数えて評価した。
なお、繰り返し曲げ性の評価基準は、曲げ回数4回以上
を可(○)とし、曲げ回数4回未満を否(×)とした。Here, "tensile strength" and "elongation" were measured by a tensile test, and "electric conductivity" was evaluated by electrical conductivity (% IACS). The evaluation criteria for tensile strength and conductivity are as follows:
The tensile strength was 65 kgf / mm 2 or more, and the conductivity was 50% IACS or more. "Repeatable bendability" is defined as the number of times to break by performing a 90 ° repetitive bending test in the same direction under the bending condition of “(bending radius) / (plate thickness) = 1” and counting back and forth once. Was evaluated.
In addition, the evaluation criteria of the repetitive bendability were evaluated as acceptable (o) when the number of times of bending was 4 or more, and as negative (x) when the number of times of bending was less than 4 times.
【0023】"半田濡れ性" は、ソルダ−チェッカ−を
用いメニスコグラフによる表面張力法でゼロクロス時間
を測定して評価した。なお、半田は 60%Sn-40%Pbを用
い、半田浴槽温度は230±5℃に設定したが、この
時、ゼロクロス時間が1秒未満を可(○)とし、1秒以
上を否(×)と評価した。"半田耐熱剥離性" は、試料
に約5μm厚の 90%Sn-10%Pb半田メッキを施してから1
50℃の大気中で1000時間まで保持し、この間10
0時間毎に取り出して「(曲げ半径)/(板厚)=1」
の曲げ条件で90度曲げを往復一回行い、曲げ部のめっ
き剥離の有無を調べて評価した。なお、半田耐熱剥離性
の評価基準は、剥離開始時間が500時間を超える場合
は可(○)とし、500時間以下を否(×)とした。"Solder wettability" was evaluated by measuring the zero-cross time by a surface tension method using a meniscograph using a solder checker. The solder used was 60% Sn-40% Pb, and the temperature of the solder bath was set at 230 ± 5 ° C. At this time, the zero-crossing time was allowed to be less than 1 second (○), and the zero-crossing time was not allowed to be more than 1 second (× ). "Solder heat peelability" is measured by applying 90% Sn-10% Pb solder plating of about 5μm thickness to the sample.
Hold in air at 50 ° C for up to 1000 hours,
Take out every 0 hours, "(bending radius) / (plate thickness) = 1"
Under the above bending conditions, 90-degree bending was performed once in a reciprocating manner, and the presence or absence of plating peeling at the bent portion was examined and evaluated. The evaluation criteria for the solder heat-peelability were acceptable (可) when the peeling start time exceeded 500 hours, and negative (x) when the peeling time was 500 hours or less.
【0024】"銀めっき性" は、試料表面に厚さ約5μ
mの銀めっきを施し、この試料を大気中にて350℃で
3分間加熱した後、銀めっき表面の膨れの有無を観察し
て評価した。なお、銀めっき性の評価基準は、膨れの発
生しなかった場合を可(○)とし、膨れが発生した場合
を否(×)とした。そして、 "プレス打抜き性" は、試
料をプレスで破断させた後にその表面を光学顕微鏡で観
察し、せん断面面積率とバリ発生の有無によって評価し
た。なお、プレス打抜き性の評価基準は、せん断面面積
率についてはせん断面面積率が80%以上を可(○),
せん断面面積率が80%未満を否(×)とし、バリ発生
についてはバリが発生した場合を否(×),バリの発生
しなかった場合を可(○)とした。ここで、せん断面面
積率は、 と定義した。これらの評価結果を、表3及び表4に示
す。"Silver plating property" means that a thickness of about 5 μm
m, and the sample was heated in the air at 350 ° C. for 3 minutes, and then evaluated by observing the presence or absence of swelling on the surface of the silver plating. In addition, the evaluation criteria of the silver plating property were evaluated as acceptable (○) when no blistering occurred, and as negative (x) when blistering occurred. The “press punching property” was evaluated by observing the surface of the sample with an optical microscope after breaking the sample with a press, and evaluating the shear surface area ratio and the occurrence of burrs. In addition, the evaluation criteria of the press punching property are as follows.
If the area ratio of the shear surface was less than 80%, the result was evaluated as "poor" (x). Here, the shear surface area ratio is Defined. Tables 3 and 4 show the evaluation results.
【0025】[0025]
【表3】 [Table 3]
【0026】[0026]
【表4】 [Table 4]
【0027】さて、表3及び表4に示される結果からは
次のことが明らかである。即ち、本発明合金1〜16は、
何れも65kgf/mm2 以上の引張強度,50%IACS以上の
導電性を有し、更にせん断面面積率が大きくてバリ発生
がない上、繰り返し曲げ性,半田付け性,半田耐熱剥離
性,Agめっき性及びエッチング性の全てに優れているこ
とが分かる。The following is clear from the results shown in Tables 3 and 4. That is, the present invention alloys 1 to 16,
All have a tensile strength of 65 kgf / mm 2 or more, a conductivity of 50% IACS or more, a large shear surface area ratio, no burrs, repetitive bendability, solderability, solder heat resistance peeling, Ag It can be seen that the plating property and the etching property are all excellent.
【0028】これに対して、比較合金17〜49はSを含有
していないため何れもせん断面面積率が低くてバリが発
生している。比較合金50及び52〜64は、S含有量が本発
明で規定する上限値を超えており、せん断面面積率が良
好でバリ発生も無いが、繰り返し曲げ性及びAgめっき性
が劣化している。比較合金65及び70は、S含有量が本発
明で規定する上限値を超えている上に、Sn,In,Mn,
P,Mg及びSiの含有量の総和も本発明で規定する上限値
を上回っているため、バリが発生し、繰り返し曲げ性及
びAgめっき性が劣化している。比較合金51は、S含有量
が本発明で規定する下限値を下回っているためバリが発
生してプレス打抜き性の改善効果がない。On the other hand, since the comparative alloys 17 to 49 do not contain S, any of them has a low shear surface area ratio and burrs are generated. Comparative alloys 50 and 52 to 64 have an S content exceeding the upper limit specified in the present invention, have a good shear surface area ratio and no burr, but have deteriorated repeated bending property and Ag plating property. . Comparative alloys 65 and 70 had Sn contents exceeding the upper limit specified in the present invention, and had Sn, In, Mn,
Since the sum of the contents of P, Mg and Si is also higher than the upper limit specified in the present invention, burrs are generated and the repetitive bending property and Ag plating property are deteriorated. In the comparative alloy 51, since the S content is lower than the lower limit specified in the present invention, burrs are generated and there is no effect of improving the press punching property.
【0029】比較合金31及び32はCr含有量又はZr含有量
も本発明で規定する上限値を上回っており、繰り返し曲
げ性が劣化すると共にバリが発生している。比較合金51
及び52は、Cr含有量が本発明で規定する下限値を下回っ
てもいるため、強度が65kgf/mm2 未満と低い。また、
比較合金33及び54はZr含有量が本発明で規定する下限値
を下回ってもいるため、強度が65kgf/mm2 未満と低
い。In the comparative alloys 31 and 32, the Cr content or the Zr content also exceeded the upper limit specified in the present invention, and the repetitive bending property deteriorated and burrs were generated. Comparative alloy 51
And 52 have a low Cr content of less than 65 kgf / mm 2 because the Cr content is below the lower limit specified in the present invention. Also,
The comparative alloys 33 and 54 have a low strength of less than 65 kgf / mm 2 because the Zr content is lower than the lower limit specified in the present invention.
【0030】比較合金37,38,40,58及び59はFe/Ti重
量比が本発明で規定する上限値を上回っているので強度
が65kgf/mm2 未満と低い。比較合金36,39,60及び62
は、Fe/Ti重量比が本発明で規定する下限値未満である
ため導電率が50%IACS未満と低くなっている。The comparative alloys 37, 38, 40, 58 and 59 have a low strength of less than 65 kgf / mm 2 because the Fe / Ti weight ratio exceeds the upper limit specified in the present invention. Comparative alloys 36, 39, 60 and 62
Since the Fe / Ti weight ratio is less than the lower limit specified in the present invention, the electrical conductivity is as low as less than 50% IACS.
【0031】比較合金42及び63は、Zn含有量が本発明で
規定する上限値を超えているために導電率が50%IACS
未満と低くなっている。比較合金44〜47及び49は、Sn,
In,Mn,P,Mg及びSiの総量が本発明で規定する上限値
を上回っているため、導電率が低下すると共に繰り返し
曲げ性が劣化している。そして、比較合金35は、結晶粒
径が60μmを超えていて本発明の規定範囲を外れてい
るため繰り返し曲げ性が劣化している。The comparative alloys 42 and 63 have a conductivity of 50% IACS because the Zn content exceeds the upper limit specified in the present invention.
It is lower than less. Comparative alloys 44-47 and 49 are Sn,
Since the total amount of In, Mn, P, Mg, and Si exceeds the upper limit specified in the present invention, the electrical conductivity decreases and the repetitive bending property deteriorates. The comparative alloy 35 has a crystal grain size exceeding 60 μm and is out of the range specified in the present invention, so that the repetitive bending property is deteriorated.
【0032】[0032]
【効果の総括】以上に説明した如く、この発明によれ
ば、引張強度,伸び,電気伝導性,曲げ加工性,プレス
打抜き性,Agめっき性,半田付け性及び半田耐熱剥離性
が高く、表面特性や信頼性にも優れた“リ−ドフレ−ム
材や導電性ばね材等の電子機器用として好適な高力高導
電性銅合金”を提供することが可能となり、電子機器の
性能向上に大きく寄与し得るなど、産業上極めて有用な
効果がもたらされる。[Summary of effects] As described above, according to the present invention, the tensile strength, elongation, electrical conductivity, bending workability, press punching property, Ag plating property, solderability and solder heat-peelability are high, and the surface It is possible to provide "high strength and high conductivity copper alloy suitable for electronic equipment such as lead frame material and conductive spring material" which has excellent characteristics and reliability, and improves the performance of electronic equipment. Industrially extremely useful effects such as a large contribution can be obtained.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−51674(JP,A) 特開 昭63−130737(JP,A) V.A.CALLCUT ET A L., ”COPPERS FOR E LECTRICAL PURPOSE S”,IEE PROCEEDING S,JUNE 1986,VOL.133,P ART A,NO.4,P.174−201 (58)調査した分野(Int.Cl.6,DB名) C22C 9/00 - 9/10 H01L 23/48 H01L 23/50────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-51674 (JP, A) JP-A-63-130737 (JP, A) A. CALLCUT ET AL. , "COPPERS FOR E LECTRICAL PURPOSE S", IEEE PROCEEDING S, JUNE 1986, VOL. 133, P ART A, NO. 4, p. 174-201 (58) Field surveyed (Int.Cl. 6 , DB name) C22C 9/00-9/10 H01L 23/48 H01L 23/50
Claims (4)
10〜1.80%,Ti:0.10〜0.80%, S:0.0005%以上
0.0080%未満 を含有すると共に、「0.10%≦Ti≦0.60%」ではFe/Ti
重量比が0.66〜2.6 を満足し、また「0.60%<Ti≦0.80
%」ではFe/Ti重量比が1.1 〜2.6 を満足していて残部
がCu及び不可避的不純物から成り、かつ平均結晶粒径が
60μm以下に調整されていることを特徴とする、電子
機器用高力高導電性銅合金。(1) Cr: 0.05 to 0.40%, Zr: 0.03 to 0.25%, Fe: 0.
10 to 1.80%, Ti: 0.10 to 0.80%, S: 0.0005% or more
In addition to containing less than 0.0080%, “0.10% ≦ Ti ≦ 0.60%”
The weight ratio satisfies 0.66 to 2.6, and “0.60% <Ti ≦ 0.80
% ", The Fe / Ti weight ratio satisfies 1.1 to 2.6, the balance consists of Cu and unavoidable impurities, and the average crystal grain size is adjusted to 60 μm or less. Highly conductive copper alloy.
10〜1.80%,Ti:0.10〜0.80%, S:0.0005%以上
0.0080%未満,Zn:0.05〜2.0 % を含有すると共に、「0.10%≦Ti≦0.60%」ではFe/Ti
重量比が0.66〜2.6 を満足し、また「0.60%<Ti≦0.80
%」ではFe/Ti重量比が1.1 〜2.6 を満足していて残部
がCu及び不可避的不純物から成り、かつ平均結晶粒径が
60μm以下に調整されていることを特徴とする、電子
機器用高力高導電性銅合金。2. Cr: 0.05 to 0.40%, Zr: 0.03 to 0.25%, Fe: 0.
10 to 1.80%, Ti: 0.10 to 0.80%, S: 0.0005% or more
Less than 0.0080%, Zn: 0.05 to 2.0%, and “0.10% ≦ Ti ≦ 0.60%”, Fe / Ti
The weight ratio satisfies 0.66 to 2.6, and “0.60% <Ti ≦ 0.80
% ", The Fe / Ti weight ratio satisfies 1.1 to 2.6, the balance consists of Cu and unavoidable impurities, and the average crystal grain size is adjusted to 60 μm or less. Highly conductive copper alloy.
10〜1.80%,Ti:0.10〜0.80%, S:0.0005%以上
0.0080%未満 を含み、更に Sn,In,Mn,P,Mg及びSiの1種以上:総量で0.01〜1
% を含有すると共に、「0.10%≦Ti≦0.60%」ではFe/Ti
重量比が0.66〜2.6 を満足し、また「0.60%<Ti≦0.80
%」ではFe/Ti重量比が1.1 〜2.6 を満足していて残部
がCu及び不可避的不純物から成り、かつ平均結晶粒径が
60μm以下に調整されていることを特徴とする、電子
機器用高力高導電性銅合金。(3) Cr: 0.05 to 0.40%, Zr: 0.03 to 0.25%, Fe: 0.
10 to 1.80%, Ti: 0.10 to 0.80%, S: 0.0005% or more
Less than 0.0080%, and at least one of Sn, In, Mn, P, Mg and Si: 0.01 to 1 in total
%, And in “0.10% ≦ Ti ≦ 0.60%”, Fe / Ti
The weight ratio satisfies 0.66 to 2.6, and “0.60% <Ti ≦ 0.80
% ", The Fe / Ti weight ratio satisfies 1.1 to 2.6, the balance consists of Cu and unavoidable impurities, and the average crystal grain size is adjusted to 60 μm or less. Highly conductive copper alloy.
10〜1.80%,Ti:0.10〜0.80%, S:0.0005%以上
0.0080%未満,Zn:0.05〜2.0 % を含み、更に Sn,In,Mn,P,Mg及びSiの1種以上:総量で0.01〜1
% を含有すると共に、「0.10%≦Ti≦0.60%」ではFe/Ti
重量比が0.66〜2.6 を満足し、また「0.60%<Ti≦0.80
%」ではFe/Ti重量比が1.1 〜2.6 を満足していて残部
がCu及び不可避的不純物から成り、かつ平均結晶粒径が
60μm以下に調整されていることを特徴とする、電子
機器用高力高導電性銅合金。(4) Cr: 0.05 to 0.40%, Zr: 0.03 to 0.25%, Fe: 0.
10 to 1.80%, Ti: 0.10 to 0.80%, S: 0.0005% or more
Less than 0.0080%, Zn: 0.05 to 2.0%, and at least one of Sn, In, Mn, P, Mg and Si: 0.01 to 1 in total amount
%, And in “0.10% ≦ Ti ≦ 0.60%”, Fe / Ti
The weight ratio satisfies 0.66 to 2.6, and “0.60% <Ti ≦ 0.80
% ", The Fe / Ti weight ratio satisfies 1.1 to 2.6, the balance consists of Cu and unavoidable impurities, and the average crystal grain size is adjusted to 60 μm or less. Highly conductive copper alloy.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6075422A JP2764787B2 (en) | 1994-03-22 | 1994-03-22 | High strength and high conductivity copper alloy for electronic equipment |
KR1019950003410A KR0175968B1 (en) | 1994-03-22 | 1995-02-22 | Copper alloy suited for electrical components and high strength electric conductivity |
GB9713358A GB2311297B (en) | 1994-03-22 | 1995-03-17 | Copper alloy suited for electrical components and having high strength and high electric conductivity |
GB9505455A GB2287716B (en) | 1994-03-22 | 1995-03-17 | Copper alloy suited for electrical components and having high strength and high electric conductivity |
CN95103009A CN1042350C (en) | 1994-03-22 | 1995-03-22 | Copper alloy suited for electrical components and having high strength and high electric conductivity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6075422A JP2764787B2 (en) | 1994-03-22 | 1994-03-22 | High strength and high conductivity copper alloy for electronic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07258774A JPH07258774A (en) | 1995-10-09 |
JP2764787B2 true JP2764787B2 (en) | 1998-06-11 |
Family
ID=13575750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6075422A Expired - Lifetime JP2764787B2 (en) | 1994-03-22 | 1994-03-22 | High strength and high conductivity copper alloy for electronic equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2764787B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6344171B1 (en) | 1999-08-25 | 2002-02-05 | Kobe Steel, Ltd. | Copper alloy for electrical or electronic parts |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63130737A (en) * | 1986-11-19 | 1988-06-02 | Nippon Mining Co Ltd | Copper alloy for semiconductor device |
JPH07122108B2 (en) * | 1991-08-21 | 1995-12-25 | 日鉱金属株式会社 | High-strength and high-conductivity copper alloy for electronic devices with excellent bendability and stress relaxation properties |
-
1994
- 1994-03-22 JP JP6075422A patent/JP2764787B2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
V.A.CALLCUT ET AL., "COPPERS FOR ELECTRICAL PURPOSES",IEE PROCEEDINGS,JUNE 1986,VOL.133,PART A,NO.4,P.174−201 |
Also Published As
Publication number | Publication date |
---|---|
JPH07258774A (en) | 1995-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920001627B1 (en) | Copper alloy and method of manufacturing the same | |
JP3550233B2 (en) | Manufacturing method of high strength and high conductivity copper base alloy | |
KR950004935B1 (en) | Copper alloy for electronic instruments | |
JP2542370B2 (en) | Copper alloy for semiconductor leads | |
KR950013290B1 (en) | Material for conductive parts of electronic and electric appliances | |
JP2732355B2 (en) | Manufacturing method of high strength and high conductivity copper alloy material for electronic equipment | |
JPH09157775A (en) | Copper alloy for electronic equipment | |
JP3049137B2 (en) | High strength copper alloy excellent in bending workability and method for producing the same | |
KR0175968B1 (en) | Copper alloy suited for electrical components and high strength electric conductivity | |
JP3459520B2 (en) | Copper alloy for lead frame | |
JP2732490B2 (en) | Manufacturing method of high strength and high conductivity copper alloy for electronic equipment | |
JP2764787B2 (en) | High strength and high conductivity copper alloy for electronic equipment | |
JP2673781B2 (en) | Method for producing high strength and high conductivity copper alloy material for electronic equipment | |
JPH02122039A (en) | High strength and high conductivity copper alloy having excellent adhesion of oxidized film | |
JPH034612B2 (en) | ||
JPH07258775A (en) | High tensile strength and high conductivity copper alloy for electronic equipment | |
KR0160342B1 (en) | Production of high-strength and high-conductivity copper alloy material for electronic equipment | |
JP2733117B2 (en) | Copper alloy for electronic parts and method for producing the same | |
JPH0551674A (en) | High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property | |
JPH07258776A (en) | High strength and high electrical conductivity copper alloy for electronic appliance | |
JPH10183274A (en) | Copper alloy for electronic equipment | |
JP2662209B2 (en) | Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method | |
JPH06172896A (en) | High-strength and high-conductivity copper alloy | |
JP2576853B2 (en) | Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method | |
JPS63109132A (en) | High-strength conductive copper alloy and its production |