JPH10183274A - Copper alloy for electronic equipment - Google Patents
Copper alloy for electronic equipmentInfo
- Publication number
- JPH10183274A JPH10183274A JP35579296A JP35579296A JPH10183274A JP H10183274 A JPH10183274 A JP H10183274A JP 35579296 A JP35579296 A JP 35579296A JP 35579296 A JP35579296 A JP 35579296A JP H10183274 A JPH10183274 A JP H10183274A
- Authority
- JP
- Japan
- Prior art keywords
- oxide film
- strength
- inclusions
- alloy
- conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 22
- 239000010949 copper Substances 0.000 claims abstract description 17
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 17
- 239000012535 impurity Substances 0.000 claims abstract description 10
- 229910052742 iron Inorganic materials 0.000 claims abstract description 9
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 9
- 229910052718 tin Inorganic materials 0.000 claims abstract description 9
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 9
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 8
- 229910052738 indium Inorganic materials 0.000 claims abstract description 7
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 7
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 7
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 40
- 229910052804 chromium Inorganic materials 0.000 abstract description 14
- 229910052719 titanium Inorganic materials 0.000 abstract description 8
- 239000000203 mixture Substances 0.000 abstract description 5
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 description 30
- 239000000956 alloy Substances 0.000 description 30
- 239000011651 chromium Substances 0.000 description 17
- 230000000694 effects Effects 0.000 description 17
- 239000011159 matrix material Substances 0.000 description 13
- 239000011701 zinc Substances 0.000 description 13
- 230000032683 aging Effects 0.000 description 12
- 239000002244 precipitate Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 239000002245 particle Substances 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 238000005452 bending Methods 0.000 description 10
- 229910052802 copper Inorganic materials 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 239000004065 semiconductor Substances 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 238000001816 cooling Methods 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 238000005098 hot rolling Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000011135 tin Substances 0.000 description 6
- 238000005097 cold rolling Methods 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 229910021332 silicide Inorganic materials 0.000 description 5
- 150000004763 sulfides Chemical class 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000005204 segregation Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910017526 Cu-Cr-Zr Inorganic materials 0.000 description 3
- 229910017810 Cu—Cr—Zr Inorganic materials 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011295 pitch Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001203 Alloy 20 Inorganic materials 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- GXDVEXJTVGRLNW-UHFFFAOYSA-N [Cr].[Cu] Chemical compound [Cr].[Cu] GXDVEXJTVGRLNW-UHFFFAOYSA-N 0.000 description 1
- RIRXDDRGHVUXNJ-UHFFFAOYSA-N [Cu].[P] Chemical compound [Cu].[P] RIRXDDRGHVUXNJ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000003483 aging Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- XTYUEDCPRIMJNG-UHFFFAOYSA-N copper zirconium Chemical compound [Cu].[Zr] XTYUEDCPRIMJNG-UHFFFAOYSA-N 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電子機器用材料と
して必要な強度、導電性、曲げ性および酸化膜発生後の
酸化膜の密着性を兼ね備えた銅合金に関するものであ
り、特には介在物の大きさが30μm以下であり、かつ
0.5〜30μmの介在物の個数が100個/mm2 未
満であるCu−Cr−Zr−Zn系電子機器用銅合金に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy having the necessary strength, conductivity, bendability, and adhesion of an oxide film after an oxide film has been generated, and more particularly to an inclusion. A Cu—Cr—Zr—Zn-based electronic device copper alloy having a size of 30 μm or less and a number of inclusions of 0.5 to 30 μm of less than 100 / mm 2 .
【0002】[0002]
【従来の技術】電子機器の小型化への要求により、基板
上の半導体素子の高密度実装への要求がますます高まっ
ている。最近では、高実装密度向上に有利なSOJ(メ
モリー用)、SOP(メモリー用)、QFP(ロジック
用)等の表面実装パッケージが主流となっている。これ
らのパッケージには、多ピン化の要求からくるリードピ
ッチの更なる縮小や、TSOP、TQFPなどに代表さ
れる薄板化が進行している。多ピン、狭ピッチのリード
フレームはエッチング加工によりつくられるのが大半で
あるが、エッチングは板厚方向だけではなく、板幅方向
へサイドエッチも起こることから、リード幅やリード間
隔の加工限界は板厚に依存し、板厚は薄いほどエッチン
グ加工上有利となる。また、パッケージの薄肉化への要
求から、リードフレーム材を薄くする必要があり、その
結果、板厚は、最近では、0.15mm、0.125m
mといった薄い材料が主流となっている。このようなリ
ードフレームの薄板化、リードの狭小化は、フレーム全
体やリードの剛性を低下させ、アセンブリー工程中での
インナーリードの変形、デバイス実装時のアウターリー
ドの変形を引き起こす。このようなトラブルを防止する
ためには、使用されるリードフレーム材料に対し、より
高い強度が要求される。一方、ICの処理スピードの高
速化および多ピン化に伴い消費電力が大きくなるため、
ここから発生する熱の放散対策がIC設計上の重要な問
題となる。銅は、もともと熱伝導度で42アロイ(Fe
−Ni合金)をはるかに上回る特性をもっているので、
銅合金は熱放散性において有利である。従って、薄板化
に対応可能な強度を有し、かつ熱放散性に優れる銅系リ
ードフレーム材料への要求が益々強くなっている。2. Description of the Related Art Due to the demand for miniaturization of electronic equipment, the demand for high-density mounting of semiconductor elements on a substrate is increasing more and more. Recently, surface mount packages such as SOJ (for memory), SOP (for memory), and QFP (for logic), which are advantageous for improving the mounting density, have become mainstream. In these packages, further reduction in the lead pitch due to the demand for more pins and thinning such as TSOP and TQFP have been progressing. Most lead frames with many pins and narrow pitches are made by etching, but etching is not only in the thickness direction but also in the width direction, so the processing limits of the lead width and lead spacing are limited. Depending on the plate thickness, the thinner the plate, the more advantageous in the etching process. Also, due to the demand for thinner packages, it is necessary to reduce the thickness of the lead frame material, and as a result, the plate thickness has recently become 0.15 mm and 0.125 m.
Thin materials such as m have become mainstream. Such thinning of the lead frame and narrowing of the leads reduce the rigidity of the entire frame and the leads, causing deformation of the inner leads during the assembly process and deformation of the outer leads during device mounting. To prevent such troubles, higher strength is required for the lead frame material used. On the other hand, power consumption increases as the processing speed of the IC increases and the number of pins increases.
The measures to dissipate the heat generated from this become an important issue in IC design. Copper originally had a thermal conductivity of 42 alloy (Fe
-Ni alloy).
Copper alloys are advantageous in heat dissipation. Therefore, there is an increasing demand for a copper-based lead frame material having strength capable of coping with thinning and excellent heat dissipation.
【0003】このような半導体機器のリードフレーム材
には、一般に次のような多岐多様にわたる特性が要求さ
れている: 1)リードが容易に変形することがない機械的強度を有
すること。 2)リードフレームのパターン形成において、優れたエ
ッチング性及びプレス加工性を有すること。 3)チップの発熱に対して、効率良く熱放散することが
可能な高い熱伝導率を有すること。 4)通電特性に優れていること。 5)実装における半田付け性に優れること、および半田
接合部の信頼性が高いこと。 6)ボンディングのための銀めっき性に優れること。 7)加熱工程で生じた合金表面の酸化層が剥離しにくい
こと。 8)リード曲げ加工時の加工性に優れていること。 9)適正な価格であること。[0003] Such lead frame materials for semiconductor devices are generally required to have a wide variety of characteristics such as the following: 1) Leads must have mechanical strength so that they are not easily deformed. 2) To have excellent etching and press workability in forming a lead frame pattern. 3) It has a high thermal conductivity capable of efficiently dissipating heat generated by the chip. 4) It has excellent current-carrying characteristics. 5) The solderability in mounting is excellent, and the reliability of the solder joint is high. 6) Excellent silver plating property for bonding. 7) The oxide layer on the alloy surface generated in the heating step is difficult to peel off. 8) Excellent workability during lead bending. 9) Appropriate price.
【0004】ところで、プラスチック半導体パッケージ
は、表面に酸化膜を有するリードフレームのダイパッド
の上に半導体チップを接着し、該半導体チップをボンデ
ィングワイヤにより該リードフレームのリードと接続
し、これらを一体のものとして熱硬化性樹脂から成る樹
脂モールドにより封止することにより作製される。これ
らのパッケージの信頼性に関する最大の問題は、表面実
装時に発生するパッケージ・クラックや剥離の問題であ
る。パッケージの剥離は、プラスチック半導体パッケー
ジを組み立てた後、樹脂とダイパッドとの密着性が弱い
場合、後の熱処理時の熱応力によって生じるものであ
る。パッケージクラックの発生メカニズムは以下の通り
である。プラスチック半導体パッケージを組み立てた
後、樹脂モールドが大気より吸湿するため、後の表面実
装での加熱において水分が気化し、パッケージ内部に剥
離があると剥離面に水蒸気圧が印加されて、内圧として
作用する。この圧力によりパッケージに膨れを生じた
り、樹脂が内圧に耐えられずにクラックを生じたりす
る。表面実装後のパッケージにクラックが発生すると水
分や不純物が侵入し、チップを腐蝕させるため、半導体
としての機能を害する。また、パッケージが膨れること
で外観不良となり、商品価値が失われる。このようなパ
ッケージクラックや剥離の問題は、近年のパッケージの
薄型化の進展にともなって顕著となっている。In a plastic semiconductor package, a semiconductor chip is bonded onto a die pad of a lead frame having an oxide film on the surface, and the semiconductor chip is connected to leads of the lead frame by bonding wires, and these are integrated. It is manufactured by sealing with a resin mold made of a thermosetting resin. The biggest problem regarding the reliability of these packages is the problem of package cracking and peeling occurring during surface mounting. When the adhesion between the resin and the die pad is weak after assembling the plastic semiconductor package, the peeling of the package is caused by thermal stress during the subsequent heat treatment. The mechanism of occurrence of package cracks is as follows. After assembling the plastic semiconductor package, the resin mold absorbs moisture from the atmosphere, so moisture evaporates during subsequent surface mounting heating, and if there is peeling inside the package, water vapor pressure is applied to the peeled surface and acts as internal pressure I do. This pressure causes swelling of the package and cracks due to the resin being unable to withstand the internal pressure. If cracks occur in the package after surface mounting, moisture and impurities penetrate and corrode the chip, thereby impairing the function as a semiconductor. In addition, when the package swells, the appearance becomes poor and the commercial value is lost. Such problems of package cracking and peeling have become remarkable with recent progress in thinning packages.
【0005】ここで、モールド樹脂とダイパッドとの密
着性に最も大きな影響を及ぼしているのがリードフレー
ム材の酸化膜密着性である。半導体の組立工程において
リードフレーム材は種々の加熱工程を経るため、その表
面には酸化膜が生成している。従って、モールド樹脂と
リードフレームのダイパッドは酸化膜を介して接してい
ることになるため、この酸化膜のリードフレーム母材へ
の密着性が樹脂とダイパッドとの密着性を決定する。し
かしながら、Cu合金リードフレームは前述の酸化膜密
着性においてFe−Ni系合金に比べると劣るため、樹
脂とダイパッドの間に剥離を生じやすく、そのためパッ
ケージクラックや剥離といった問題が発生しやすかっ
た。このために信頼性の高いパッケージを製造すること
ができないという問題を有していた。Here, the oxide film adhesion of the lead frame material has the greatest effect on the adhesion between the mold resin and the die pad. In a semiconductor assembling process, the lead frame material undergoes various heating processes, and an oxide film is formed on the surface thereof. Therefore, since the mold resin and the die pad of the lead frame are in contact with each other via the oxide film, the adhesion of the oxide film to the lead frame base material determines the adhesion between the resin and the die pad. However, the Cu alloy lead frame is inferior to the Fe-Ni-based alloy in the adhesiveness of the oxide film described above, so that peeling is likely to occur between the resin and the die pad, and thus problems such as package cracking and peeling are likely to occur. For this reason, there was a problem that a highly reliable package could not be manufactured.
【0006】また、各種端子、コネクター、リレーまた
はスイッチといった電子部品に対しては、従来、安価な
「黄銅」、優れたばね特性を有する「りん青銅」あるい
は優れたばね特性と耐食性を有する「洋白」といった材
料が適用されていた。ところが、近年、電子機器類およ
びその部品には小型化、薄肉化が要求されるようにな
り、また、自動車の電装部品のように高温の環境下で使
用されるケースでは、苛酷な環境に耐えられる信頼性の
高い部品が望まれている。このような要求に対して、こ
うした電子部品材料には、 a)薄い板厚においても高い接触圧を生じるための十分
な強度を有すること、 b)応力緩和率が低く、高温下で長期間使用しても接触
圧が低下しないこと、 c)導電率が高く、通電時にジュール熱の発生しにく
く、また、発生した熱を放散しやすいこと、 d)厳しい曲げ加工を行っても曲げ部に割れや肌あれの
生じないこと、 e)弾性域内で多数回の曲げ変形を繰り返し与えても、
材料が疲労破壊しないこと、 f)組立工程中で発生した酸化膜が母材から容易に剥離
しないこと、 といった多数の特性が要求され、要求レベルはますます
高度化している。Conventionally, for electronic parts such as various terminals, connectors, relays or switches, inexpensive "brass", "phosphor bronze" having excellent spring characteristics, or "white steel" having excellent spring characteristics and corrosion resistance have conventionally been used. Such materials were applied. However, in recent years, electronic devices and their components have been required to be reduced in size and thickness, and in cases where they are used in high-temperature environments, such as electrical components of automobiles, they can withstand severe environments. There is a demand for highly reliable components. In response to such demands, such electronic component materials include: a) having sufficient strength to generate a high contact pressure even at a small thickness; b) having a low stress relaxation rate and being used for a long time at a high temperature. C) High conductivity, hard to generate Joule heat when energized, and easy to dissipate the generated heat. D) Cracks in the bent part even after severe bending E) Even if the bending deformation is repeatedly performed many times within the elastic range,
There are many demands for such properties that the material does not undergo fatigue failure, and f) the oxide film generated during the assembling process does not easily peel off from the base material.
【0007】近年、これらの電子機器用銅合金のような
高い強度と導電性を要求される用途には、析出型銅合金
が使われるケースが多い。Cu−Cr−Zr系合金は高
強度と高導電率とを併せ持つ代表的な析出型銅合金であ
り、電子機器用材料としての実用化が試みられている。
この合金における研究結果によると、時効析出過程にお
いて銅マトリックス中に微細なCrとCu3 Zr析出粒
子が生じることにより強度と導電率が上昇するとされて
おり、強度上昇に寄与する析出粒子の大きさは0.5μ
m以下であるとされている。In recent years, precipitation-type copper alloys are often used for applications requiring high strength and conductivity, such as copper alloys for electronic devices. A Cu-Cr-Zr-based alloy is a typical precipitation-type copper alloy having both high strength and high electrical conductivity, and its practical use as a material for electronic devices has been attempted.
According to the results of research on this alloy, the strength and electrical conductivity increase due to the formation of fine Cr and Cu 3 Zr precipitate particles in the copper matrix during the aging precipitation process, and the size of the precipitate particles contributing to the strength increase Is 0.5μ
m or less.
【0008】例えば、特許番号第2501275号(登
録日:平成8年3月13日)の特許公報は、クロム0.
01〜2wt%、ジルコニウム0.005〜1wt%の
いずれか又は双方を選択し、酸素60ppm以下、残部
実質的に銅よりなり、析出物の大きさが50μm以下で
あり、かつ0.5〜50μmの析出物が100〜100
000個/mm2 存在することを特徴とする導電性およ
び強度を兼備した銅合金を記載している。この合金に、
指定量のNi、Sn、Fe、Co、Zn、Tiその他多
数の添加元素を添加することも記載している。[0008] For example, Patent Publication No. 2501275 (registered date: March 13, 1996) discloses a chromium 0.
One or both of 0.01 to 2 wt% and zirconium of 0.005 to 1 wt% are selected, oxygen is 60 ppm or less, the balance is substantially made of copper, the size of the precipitate is 50 μm or less, and 0.5 to 50 μm 100 to 100 precipitates
It describes a copper alloy having both conductivity and strength characterized by being present at 000 pieces / mm 2 . In this alloy,
It also describes adding a specified amount of Ni, Sn, Fe, Co, Zn, Ti, and many other additional elements.
【0009】[0009]
【発明が解決しようとする課題】Cu−Cr−Zr系合
金において銅マトリックス中に微細なCrとCu3 Zr
析出粒子が生じることにより強度と導電率が上昇すると
いう性質は、添加元素のCrおよびZrがマトリックス
の銅と固溶しにくいという性質があるため実現できるこ
とであるが、半面、強度の向上に寄与しない粗大な晶出
物あるいは析出物がマトリックス中に残存しやすく、ま
た、これら添加元素の活性が高いために、酸化物、硫化
物、珪化物等が発生しやすいため、マトリックス中にこ
れらの比較的大きな粒子が分散した組織となりやすいと
いう結果を生むことになっている。事実、上記特許番号
第2501275号は、0.5〜50μmの析出物が1
00〜100000個/mm2 にも及んで存在すること
を記載している。SUMMARY OF THE INVENTION In a Cu-Cr-Zr alloy, fine Cr and Cu 3 Zr are contained in a copper matrix.
The property that the strength and the electrical conductivity increase due to the formation of precipitated particles can be realized because the added elements Cr and Zr are difficult to form a solid solution with the copper of the matrix, but on the other hand, they contribute to the improvement of the strength. Coarse crystals or precipitates are likely to remain in the matrix, and oxides, sulfides, silicides, etc. are likely to be generated due to the high activity of these additional elements. The result is that the target tends to have a structure in which extremely large particles are dispersed. In fact, the above-mentioned Patent No. 2,501,275 discloses that a precipitate of 0.5 to 50 μm has 1
It is described that it exists as much as 100-100,000 pieces / mm 2 .
【0010】しかしながら、Cu−Cr−Zr系合金を
電子機器用材料として実用化するに当って、これらの粗
大な粒子が存在すると、材料に苛酷な曲げ変形が加わる
場合には、クラック発生の起点となるため、問題とな
る。従って、電子機器用材料としての強度、導電性を保
ちながらこれらを解決することがこの合金系の課題とな
った。また、プラスチック半導体パッケージに使用され
るリードフレーム等の用途においては、発生した酸化膜
の密着性の確保も急務となっている。However, when a Cu—Cr—Zr alloy is put to practical use as a material for electronic equipment, the presence of these coarse particles causes a crack starting point when severe bending deformation is applied to the material. Becomes a problem. Therefore, solving these problems while maintaining the strength and conductivity as a material for electronic devices has become a problem of the alloy system. In addition, in applications such as lead frames used for plastic semiconductor packages, it is urgently necessary to ensure the adhesion of the generated oxide film.
【0011】[0011]
【課題を解決するための手段】本発明者らは、Cu−C
r−Zr系合金の研究を重ねた結果、Cr、ZrにZn
を添加することにより合金成分を調整すると共に、製造
条件を厳密に制御・選定して、マトリックス中の析出
物、晶出物、酸化物、硫化物、珪化物等の介在物の分布
の制御を行うことにより、強度、導電率、曲げ性および
酸化膜の密着性を高いレベルでバランスさせることが可
能であり、これにFeおよびTi、並びにNi、Sn、
In、Mn、P、MgおよびSiの1種以上を添加する
ことにより強度特性の更なる改良が可能となることがわ
かった。前記特許番号第2501275号の開示とは異
なり、介在物の大きさが30μm以下であり、かつ0.
5〜30μmの介在物の個数を100個/mm2 未満と
することにより始めて曲げ性が良好となり、加えて、C
rとZrは、共添することにより表面に生成する酸化膜
と母材との密着性を向上させることができ、そこにZn
を添加することにより、Znは酸化膜と母材との密着性
を向上させるはたらきがあり、更に良好な酸化膜の密着
性を得ることができることがここに判明したものであ
る。Means for Solving the Problems The present inventors have proposed Cu-C
As a result of repeated research on r-Zr alloys, Zn was added to Cr and Zr.
In addition to adjusting the alloy composition by adding, the production conditions are strictly controlled and selected to control the distribution of inclusions such as precipitates, crystallization, oxides, sulfides, and silicides in the matrix. By doing so, it is possible to balance the strength, conductivity, bendability, and adhesion of the oxide film at a high level, and to this, Fe and Ti, Ni, Sn,
It has been found that the strength characteristics can be further improved by adding one or more of In, Mn, P, Mg and Si. Unlike the disclosure of Patent No. 2501275, the size of the inclusion is 30 μm or less,
By setting the number of inclusions having a size of 5 to 30 μm to less than 100 / mm 2, the bendability becomes good for the first time.
r and Zr can improve the adhesion between the oxide film formed on the surface and the base material by being co-added.
It has been found that by adding Zn, Zn has a function of improving the adhesion between the oxide film and the base material, and it is possible to obtain more favorable adhesion of the oxide film.
【0012】すなわち、本発明は、重量割合にて、C
r:0.05〜0.4%、Zr:0.03〜0.25%
およびZn:0.06〜2.0%を含有すると共に、必
要により、Fe:0.1〜1.8%およびTi:0.1
〜0.8%を含有し、更に必要により、Ni、Sn、I
n、Mn、P、MgおよびSiの1種以上:総量で0.
01〜1.0%をも含有し、残部がCuおよび不可避的
不純物からなり、介在物の大きさが30μm以下であ
り、かつ0.5〜30μmの介在物の個数を100個/
mm2 未満であり、電子機器用材料として必要な強度、
導電性、曲げ性および酸化膜発生後の酸化膜の密着性を
良好としたことを特徴とする銅合金を提供する。That is, according to the present invention, C
r: 0.05 to 0.4%, Zr: 0.03 to 0.25%
And Zn: 0.06 to 2.0%, and if necessary, Fe: 0.1 to 1.8% and Ti: 0.1
0.8%, and if necessary, Ni, Sn, I
at least one of n, Mn, P, Mg and Si: 0.
0.1 to 1.0%, the balance being Cu and unavoidable impurities, the size of inclusions is 30 μm or less, and the number of inclusions of 0.5 to 30 μm is 100 /
less than mm 2 , the strength required as a material for electronic devices,
Provided is a copper alloy characterized by having improved conductivity, bendability, and adhesion of an oxide film after the oxide film is generated.
【0013】本発明において、用語「介在物」とは、鋳
造時の凝固過程以降、すなわち凝固後の冷却過程、熱間
圧延後の冷却過程、時効焼鈍時等に固相のマトリックス
中に析出反応で生じる析出物(粒子)、鋳造時の凝固過
程の偏析により生じ、一般に粗大である晶出物(粒子)
並びに溶解時の溶湯内での反応により生じる不純物であ
る酸化物、硫化物、珪化物など、本銅合金の顕微鏡観察
によりマトリックス中に観察される粒子を包括するもの
として使用する。「介在物の大きさ」は介在物を顕微鏡
観察下で、その介在物を包む最小円の直径を云う。「介
在物の個数」とは、顕微鏡観察下で、多数箇所において
実際に数えた単位平方mm当りの介在物の平均個数であ
る。In the present invention, the term "inclusion" refers to the precipitation reaction in the solid phase matrix after the solidification process during casting, ie, the cooling process after solidification, the cooling process after hot rolling, and the aging annealing. Precipitates (particles) generated by segregation in the solidification process during casting and generally coarse precipitates (particles)
In addition, oxides, sulfides, silicides, and the like, which are impurities generated by a reaction in the molten metal at the time of melting, are used to cover particles observed in the matrix by microscopic observation of the copper alloy. "Size of inclusions" refers to the diameter of the smallest circle enclosing the inclusions under microscopic observation. The “number of inclusions” is the average number of inclusions per unit square mm actually counted at a number of locations under microscopic observation.
【0014】[0014]
【発明の実施の形態】本発明合金は、リードフレーム
や、各種端子、コネクター、リレーまたはスイッチとい
った電子部品のような電子機器用途に使用される。本発
明合金の成分組成および介在物条件を限定した理由を、
その作用とともに以下に詳述する。BEST MODE FOR CARRYING OUT THE INVENTION The alloy of the present invention is used for electronic devices such as lead frames and various electronic components such as terminals, connectors, relays and switches. The reason for limiting the component composition and inclusion conditions of the alloy of the present invention,
The operation will be described in detail below.
【0015】A.成分CrおよびZr Crは、合金を液体化処理後、時効させることにより母
相中に析出して強度を向上させる作用をするが、その含
有量が0.05重量%未満ではこの作用による所望の効
果が得られず、一方、0.4重量%を超えて含有させる
と製品化後に粗大なCrが母相中に残留する。その結
果、曲げ性やエッチング性が劣化する。以上の理由によ
りCr含有量を0.05〜4重量%と定めた。Zrに
は、時効処理によりCuと化合物を形成して母材中に析
出しこれを強化する作用があるが、その含有量が0.0
3%重量未満では前記作用による所望の効果が得られ
ず、一方0.25重量%を超えてZrを含有させると、
溶体化処理後に粗大な未固溶Zrが母材中に残留するよ
うになって、曲げ性やエッチング性の低下を招くことか
ら、Zr含有量は0.03〜0.25重量%と定めた。
加えて、Cr及びZrを共添すると、合金表面に生成す
る酸化膜と母材との密着性を向上させることができるた
め、パッケージクラックや剥離の発生への対策として有
効である。これは、CrとZrを共添した場合、Cr、
Zr自身や、他の添加元素、不純物元素が加熱により酸
化膜−母材界面へ偏析することが抑制されるためであ
る。A. The components Cr and ZrCr function to precipitate in the matrix by aging after liquefaction of the alloy, thereby improving the strength. When the content is less than 0.05% by weight, desired effects due to this effect are obtained. No effect is obtained, while if it exceeds 0.4% by weight, coarse Cr remains in the matrix after commercialization. As a result, the bending property and the etching property deteriorate. For the above reasons, the Cr content is determined to be 0.05 to 4% by weight. Zr has a function of forming a compound with Cu by aging treatment and precipitating in the base material to strengthen it.
If the content is less than 3% by weight, the desired effect due to the above-mentioned effects cannot be obtained, while if the content exceeds 0.25% by weight, Zr contains
After the solution treatment, coarse undissolved Zr is left in the base material, resulting in deterioration of bendability and etching property. Therefore, the Zr content is set to 0.03 to 0.25% by weight. .
In addition, when Cr and Zr are co-added, the adhesion between the oxide film formed on the alloy surface and the base material can be improved, which is effective as a measure against occurrence of package cracks and peeling. This is because when Cr and Zr are added together,
This is because segregation of Zr itself, other additive elements, and impurity elements to the oxide film-base material interface by heating is suppressed.
【0016】Zn Znは、加熱により合金表面に生成する酸化膜と母材と
の密着性を向上させるはたらきがあり、Cr、Zrと共
添することによりさらに良好な酸化膜の密着性を得るこ
とができる。Znには、Cr、Zrと同様に、添加元素
や不純物元素が加熱により酸化膜−母材界面に偏析する
ことを抑制する作用があるためである。Znはまた、半
田の耐熱剥離性を向上させる作用も有している。その含
有量が0.06重量%未満では、前記作用による所望の
効果が得られず、一方2.0重量%を超えてZnを含有
させると、導電率が劣化することから、Zn含有量は
0.06〜2.0重量%と定めた。 Zn Zn has a function of improving the adhesion between the oxide film formed on the alloy surface by heating and the base material, and further improves the adhesion of the oxide film by co-adding with Cr and Zr. Can be. This is because Zn, like Cr and Zr, has an effect of suppressing the segregation of additional elements and impurity elements at the oxide film-base material interface by heating. Zn also has the function of improving the heat-peelability of the solder. If the content is less than 0.06% by weight, the desired effect due to the above-mentioned effect cannot be obtained. On the other hand, if Zn is contained in an amount exceeding 2.0% by weight, the electrical conductivity is deteriorated. It was determined to be 0.06 to 2.0% by weight.
【0017】TiおよびFe TiおよびFeは、合金を時効処理した時に母相中にT
iとFeとの金属間化合物を形成し、その結果として合
金強度を更に向上させる作用を発揮するために必要に応
じて添加されるが、これらの含有量がそれぞれ0.01
%未満では、上記作用による所望の強度が得られない。
一方、Ti含有量が0.08%を超えたり、Fe含有量
が1.80%を超える場合には、TiとFeを主成分と
する粗大な介在物が残存し、曲げ性を損ない、またエッ
チング性を著しく阻害する。 Ti and Fe Ti and Fe contain T in the matrix when the alloy is aged.
They are added as necessary to form an intermetallic compound of i and Fe and consequently exert an effect of further improving the alloy strength.
%, The desired strength cannot be obtained by the above action.
On the other hand, if the Ti content exceeds 0.08% or the Fe content exceeds 1.80%, coarse inclusions containing Ti and Fe as main components remain, impairing bendability, and Significantly inhibits etchability.
【0018】Ni、Sn、In、Mn、P、Mgおよび
Si これらの成分は、何れも、合金の導電性を大きく低下さ
せずに、主として固溶強化により強度を向上させる作用
を有しており、従って必要により1種又は2種以上の添
加がなされるが、その含有量が総量で0.01重量%未
満であると前記作用による所望の効果が得られず、一
方、総量で1.0重量%を超える含有量になると合金の
導電性を著しく劣化する。このため、単独添加あるいは
2種以上の複合添加がなされるNi、Sn、In、M
n、P、MgおよびSiの含有量は総量で0.01〜
1.0重量%と定めた。 Ni, Sn, In, Mn, P, Mg and
Si These components are all, without significantly decreasing the electrical conductivity of the alloy, primarily has the effect of improving the strength by solid solution strengthening, and thus one or more additives as necessary are made However, if the total content is less than 0.01% by weight, the desired effect cannot be obtained by the above effect, while if the total content exceeds 1.0% by weight, the conductivity of the alloy is significantly deteriorated. I do. Therefore, Ni, Sn, In, M, which are added alone or in combination of two or more kinds, are used.
The content of n, P, Mg and Si is 0.01 to a total amount.
It was determined to be 1.0% by weight.
【0019】B)介在物の分布 先述のように、この合金系ではマトリックス中に析出
物、晶出物、酸化物、硫化物、珪化物等を含めて介在物
の粒子が存在する。この合金に必要な強度を得るための
介在物(析出粒子)は小さいものであるが、0.5μm
を超える粗大な介在物は強度上昇に寄与しないばかり
か、電子機器用銅合金として必要な曲げ性を劣化する。
すなわち、曲げ変形を受けた材料の表面には強い引張変
形を生じるが、この部位に粗大な介在物が存在すると介
在物とマトリックスの間に空隙を生じ、やがてこれらが
結合し、表面に達すると外観上クラックとなって顕在化
するため、実用上不具合となる。このような曲げ性の劣
化を起こさないためには、この粗大な介在物の大きさの
上限を30μmとし、0.5〜30μmの大きさの介在
物の個数を100個/mm2 未満とすれば良い。B) Distribution of Inclusions As described above, in this alloy system, inclusion particles including precipitates, crystallized substances, oxides, sulfides, and silicides are present in the matrix. Inclusions (precipitated particles) for obtaining the strength required for this alloy are small, but 0.5 μm
Coarse inclusions not exceeding not only do not contribute to an increase in strength, but also degrade the bendability required as a copper alloy for electronic equipment.
In other words, strong tensile deformation occurs on the surface of the material subjected to bending deformation, but if coarse inclusions exist at this site, voids will be generated between the inclusions and the matrix, and these will eventually combine and reach the surface Since it becomes a crack in appearance and becomes apparent, it becomes a practical problem. In order to prevent such deterioration in bending property, the upper limit of the size of the coarse inclusion is set to 30 μm, and the number of inclusions having a size of 0.5 to 30 μm is set to less than 100 / mm 2. Good.
【0020】次に、この合金を得るための製造方法につ
いて説明する。Next, a manufacturing method for obtaining this alloy will be described.
【0021】(溶解・鋳造)溶解工程では、粗大な酸化
物、硫化物、珪化物等の介在物の生成を防ぐことが重要
である。まずルツボの材料としてはカーボンが好まし
く、マグネシア、アルミナ、シリカ等の酸化物を含むも
のを使用する場合、溶湯がこれらを侵食して溶湯中に巻
き込んだり、炉材がZrにより還元されZr酸化物を生
成したりするため適当でない。また、使用する溶解原料
に油分の付着があると溶湯中で硫化物を形成する可能性
があるため好ましくない。従って、リターン材の使用は
なるたけ避けるべきであり、リターン材を使う場合には
脱脂を行う必要がある。溶解原料の溶落後は、溶湯表面
をCO等の還元性ガスで被覆したり、真空雰囲気とする
ことにより酸素濃度を低減する必要がある。これにより
酸素濃度を20ppm以下とすることが望ましい。(Melting / Casting) In the melting step, it is important to prevent formation of inclusions such as coarse oxides, sulfides and silicides. First, the material of the crucible is preferably carbon, and when a material containing an oxide such as magnesia, alumina, silica, etc. is used, the molten metal erodes these materials and is caught in the molten metal, or the furnace material is reduced by Zr to reduce the Zr oxide. Or it is not suitable. In addition, if the dissolved raw material used has an oily component, sulfide may be formed in the molten metal, which is not preferable. Therefore, the use of a return material should be avoided as much as possible, and the use of a return material requires degreasing. After the melted raw material is dropped, it is necessary to reduce the oxygen concentration by coating the surface of the molten metal with a reducing gas such as CO, or by providing a vacuum atmosphere. Thereby, it is desirable that the oxygen concentration be 20 ppm or less.
【0022】(均質化熱処理)次に、均質化熱処理条件
について述べる。インゴット中には、Cr、Zrを始め
とする添加元素が鋳造中に偏析したことによって形成さ
れた晶出物が存在している。製品までの工程においてこ
れらを小さくするためには、均質化熱処理を熱間圧延前
に十分行うことによって、この段階で晶出物を小さくし
ておく必要がある。具体的には、熱間圧延開始時点での
温度を800℃以上、好ましくは850℃以上とする必
要がある。(Homogenizing Heat Treatment) Next, the homogenizing heat treatment conditions will be described. In the ingot, crystallized substances formed due to segregation of additional elements such as Cr and Zr during casting are present. In order to reduce these in the process up to the product, it is necessary to sufficiently reduce the crystallized matter at this stage by sufficiently performing the homogenizing heat treatment before hot rolling. Specifically, the temperature at the start of hot rolling needs to be 800 ° C. or higher, preferably 850 ° C. or higher.
【0023】(熱間圧延)次に、熱間圧延の条件につい
て述べる。圧延中に温度が低下すると、析出反応が進む
ことによって粒子の粗大化が起こる。このような場合に
は製品段階でも大きい粒子が残存することになる。従っ
て、熱間圧延中、材料の温度が下がらないことが必要で
あり、終了温度を700℃以上、好ましくは750℃以
上であることが望ましい。熱間圧延後の冷却過程におい
て、冷却速度を遅くするほど析出反応が進み、析出物が
粗大化傾向となる。具体的には、冷却速度が1℃/秒よ
り小さいときは、析出物が過度に粗大化し、従って、熱
間圧延終了後の冷却速度を1℃/秒以上とする。(Hot Rolling) Next, the conditions for hot rolling will be described. If the temperature decreases during rolling, the precipitation reaction proceeds, and the particles become coarse. In such a case, large particles remain even at the product stage. Therefore, it is necessary that the temperature of the material does not drop during hot rolling, and the end temperature is desirably 700 ° C or higher, preferably 750 ° C or higher. In the cooling process after hot rolling, the slower the cooling rate, the more the precipitation reaction proceeds, and the larger the precipitates tend to be. Specifically, when the cooling rate is lower than 1 ° C./sec, the precipitates are excessively coarsened. Therefore, the cooling rate after the completion of hot rolling is set to 1 ° C./sec or more.
【0024】(溶体化処理)溶体化処理を行うのは、後
の時効処理で高強度の材料を得るためである。処理温度
が高いほうがCrおよびZrのマトリックス中へ固溶量
が増し、時効後の強度が高くなる。このような効果を得
るためには処理温度が高いほど良く、700℃以上とす
るのが望ましい。また、このときの再結晶の結晶粒径が
大きくなると、製品で曲げ加工を受けたときに曲げ部に
肌荒れが発生するため、結晶粒径は40μm以下である
ことが望ましい。また、溶体化処理の際、冷却速度は速
いほど高強度が得られやすく、具体的には水冷を行うこ
とが望ましい。(Solution treatment) The solution treatment is performed in order to obtain a high-strength material by the subsequent aging treatment. The higher the treatment temperature, the higher the amount of solid solution in the matrix of Cr and Zr, and the higher the strength after aging. In order to obtain such an effect, the higher the processing temperature, the better, and it is preferable that the temperature be 700 ° C. or higher. Further, if the crystal grain size of the recrystallization at this time becomes large, the surface of the bent portion becomes rough when the product is subjected to bending, so that the crystal grain size is desirably 40 μm or less. In the solution treatment, the higher the cooling rate is, the higher the strength is easily obtained. Specifically, it is desirable to perform water cooling.
【0025】(冷間圧延)溶体化処理後に冷却間圧延を
行うと時効工程での析出が促進され、高強度が得られ
る。また、この効果を得るためには冷却間圧延の加工度
を40%以上とするのが望ましい。(Cold Rolling) If cold rolling is performed after the solution treatment, precipitation in the aging step is promoted, and high strength is obtained. In order to obtain this effect, it is desirable to set the working ratio of the cold rolling to 40% or more.
【0026】(時効処理)時効処理は、強度、導電性を
向上させるために必要であるが、時効処理温度は300
〜700℃とするのがよい。300℃未満では時効処理
に時間がかかり、経済的ではなく、700℃を超える
と、CrおよびZrが固溶してしまい、時効硬化型の合
金の特徴である強度および導電性が得られなくなる。こ
の後、最終の冷間圧延および歪取焼鈍が行われる。(Aging Treatment) The aging treatment is necessary to improve the strength and conductivity, but the aging treatment temperature is 300 ° C.
The temperature is preferably set to ℃ 700 ° C. If the temperature is lower than 300 ° C., it takes a long time to perform the aging treatment, which is not economical. If the temperature exceeds 700 ° C., Cr and Zr form a solid solution, and the strength and conductivity characteristic of the age hardening type alloy cannot be obtained. Thereafter, final cold rolling and strain relief annealing are performed.
【0027】[0027]
【実施例】まず、電気銅あるいは無酸素銅を主原料と
し、そして銅クロム母合金、銅ジルコニウム母合金、亜
鉛、チタン、ニッケル、スズ、インジウム、マンガン、
マグネシウム軟鋼、シリコン、銅リン母合金を副原料と
し、カーボン製ルツボを用いて、高周波溶解炉にて表1
に示す各種成分組成の銅合金を真空中またはAr雰囲気
溶解中で溶製し、厚さ30mmのインゴットに鋳造し
た。次に、上述した工程に従い、これらの各インゴット
を熱間加工及び溶体化処理、1回目の冷間圧延、時効処
理、最終の冷間圧延、歪取焼鈍の順に行い、厚さ0.1
5mmの板とし、電子機器用銅合金としての特性を評価
した。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, electrolytic copper or oxygen-free copper is used as a main material, and copper chromium mother alloy, copper zirconium mother alloy, zinc, titanium, nickel, tin, indium, manganese,
Magnesium mild steel, silicon, and copper-phosphorus mother alloy were used as auxiliary materials, and a carbon crucible was used in a high-frequency melting furnace.
Copper alloys having various component compositions shown in Table 1 were melted in a vacuum or in an Ar atmosphere, and cast into ingots having a thickness of 30 mm. Next, in accordance with the above-described steps, each of these ingots was subjected to hot working and solution treatment, first cold rolling, aging treatment, final cold rolling, and strain relief annealing, in the order of 0.1 mm in thickness.
A 5 mm plate was used, and the characteristics as a copper alloy for electronic devices were evaluated.
【0028】なお、特性は「強度」、「伸び」、「導電
性」、「曲げ性」を調査することによって評価した。そ
して、「強度」並びに「伸び」は引張試験により測定
し、「導電性」は導電率を測定して求めた。「曲げ性」
は、曲げ半径0のW曲げ試験を行うことにより評価し、
曲げ部表面に微細なクラックが入る場合を「×」、入ら
ない場合を「○」とした。「介在物の数」は、顕微鏡観
察により、0.5〜30μmの大きさの介在物を実際に
数えることにより測定した。The properties were evaluated by investigating "strength", "elongation", "conductivity", and "bendability". "Strength" and "elongation" were measured by a tensile test, and "conductivity" was obtained by measuring conductivity. "Bendability"
Is evaluated by performing a W bending test with a bending radius of 0,
The case where a fine crack was formed on the surface of the bent portion was evaluated as “×”, and the case where no fine crack was formed was evaluated as “○”. The “number of inclusions” was measured by actually counting inclusions having a size of 0.5 to 30 μm by microscopic observation.
【0029】これらの調査結果を、同じく、表1に示
す。表1に示される結果からは次のことが明らかであ
る。本発明合金1〜13は、強度、伸び、導電性、曲げ
性いずれの特性についても充分に良好な評価が得られる
ものである。これに対して、比較合金14は、Cr含有
量が充分でないため強度が劣っている。また比較合金1
5、16、17、18はCr、Zr、Fe、Ti含有量
がそれぞれ上限値を超えているために比較合金19は酸
素濃度が高いために介在物数が高くなり、曲げ性が劣っ
ている。次に、比較合金20は、Zn含有量が上限値を
超えているために導電性が劣っている例である。The results of these investigations are also shown in Table 1. The following is clear from the results shown in Table 1. The alloys 1 to 13 of the present invention have sufficiently good evaluations in all of the properties of strength, elongation, conductivity, and bendability. On the other hand, the comparative alloy 14 is inferior in strength because of insufficient Cr content. Comparative alloy 1
5, 16, 17, and 18 have Cr, Zr, Fe, and Ti contents exceeding the respective upper limit values, and the comparative alloy 19 has a high oxygen concentration, so that the number of inclusions is high and the bendability is inferior. . Next, Comparative Alloy 20 is an example in which the conductivity is inferior because the Zn content exceeds the upper limit.
【0030】[0030]
【表1】 [Table 1]
【0031】同様にして別途製造した表2の組成の厚さ
0.15mmの板材の酸化膜の密着性をテープピーリン
グ試験により評価した。各板材から20×50mmの試
験片を切り出し、大気中で所定温度で所定時間加熱した
後、酸化膜の生成した試験片表面に市販のテープ(スリ
ーエム#851)を張り付け、引き剥した。その時テー
プに付着した酸化膜の面積で密着性を評価した。酸化膜
が全く剥離しなかった場合を○、部分的に剥離したもの
を△、そして全面剥離したものを×として評価を行っ
た。併せて、先と同じく、強度および導電性の評価も行
った。The adhesiveness of the oxide film of a 0.15 mm thick plate having the composition shown in Table 2 separately produced in the same manner was evaluated by a tape peeling test. A test piece of 20 × 50 mm was cut out from each plate material and heated in air at a predetermined temperature for a predetermined time, and then a commercially available tape (3M # 851) was attached to the surface of the test piece on which the oxide film was formed and peeled off. At that time, the adhesiveness was evaluated based on the area of the oxide film adhered to the tape. The case where the oxide film was not peeled at all was evaluated as ○, the one where the oxide film was partially peeled was evaluated as Δ, and the one where the oxide film was completely peeled was evaluated as ×. At the same time, the strength and the conductivity were also evaluated as before.
【0032】表3にその評価結果を示す。本実施例1〜
13については、良好な酸化膜密着性が得られた。一
方、比較例15〜27は、酸化膜の密着性が低い。比較
例14は酸化膜密着性は良好であるが、強度が劣ってい
る。Table 3 shows the evaluation results. Example 1
With regard to 13, good oxide film adhesion was obtained. On the other hand, Comparative Examples 15 to 27 have low adhesion of the oxide film. Comparative Example 14 had good adhesion to the oxide film, but was inferior in strength.
【0033】[0033]
【表2】 [Table 2]
【0034】[0034]
【表3】 [Table 3]
【0035】[0035]
【発明の効果】本発明により、強度、導電性、曲げ性お
よび酸化膜発生後の酸化膜の密着性の良好な銅合金を得
ることが可能となり、電子機器類の小型化、薄肉化に大
きく寄与し得るなど、産業上極めて有用な効果がもたら
される。According to the present invention, it is possible to obtain a copper alloy having good strength, conductivity, bendability and adhesion of an oxide film after generation of the oxide film, which is great for miniaturization and thinning of electronic equipment. Industrially extremely useful effects such as contribution can be brought about.
Claims (4)
%、Zr:0.03〜0.25%、Zn:0.06〜
2.0%を含有し、残部がCuおよび不可避的不純物か
らなり、そして介在物の大きさが30μm以下であり、
かつ0.5〜30μmの介在物の個数が100個/mm
2 未満であり、電子機器用材料として必要な強度、導電
性、曲げ性および酸化膜発生後の酸化膜の密着性を良好
としたことを特徴とする銅合金。1. Cr: 0.05 to 0.4 in weight ratio.
%, Zr: 0.03 to 0.25%, Zn: 0.06 to
2.0%, the balance consists of Cu and unavoidable impurities, and the size of inclusions is 30 μm or less,
And the number of inclusions of 0.5 to 30 μm is 100 / mm
A copper alloy having a strength of less than 2 and having improved strength, conductivity, bendability, and adhesion of an oxide film after the oxide film is generated, which is required as a material for electronic devices.
%、Zr:0.03〜0.25%、Zn:0.06〜
2.0%を含有し、更にNi、Sn、In、Mn、P、
MgおよびSiの1種以上:総量で0.01〜1.0%
をも含有し、残部がCuおよび不可避的不純物からな
り、そして介在物の大きさが30μm以下であり、かつ
0.5〜30μmの介在物の個数が100個/mm2 未
満であり、電子機器用材料として必要な強度、導電性、
曲げ性および酸化膜発生後の酸化膜の密着性を良好とし
たことを特徴とする銅合金。2. Cr: 0.05 to 0.4 in weight ratio.
%, Zr: 0.03 to 0.25%, Zn: 0.06 to
2.0% and further contains Ni, Sn, In, Mn, P,
One or more of Mg and Si: 0.01 to 1.0% in total amount
And the balance consists of Cu and unavoidable impurities, and the size of inclusions is 30 μm or less, and the number of inclusions of 0.5 to 30 μm is less than 100 / mm 2 , Strength, conductivity,
A copper alloy characterized by improved bendability and adhesion of an oxide film after the oxide film is generated.
%、Zr:0.03〜0.25%、Zn:0.06〜
2.0%、を含有し、更にFe:0.1〜1.8%、T
i:0.1〜0.8%を含有し、残部がCuおよび不可
避的不純物からなり、そして介在物の大きさが30μm
以下であり、かつ0.5〜30μmの介在物の個数が1
00個/mm2 未満であり、電子機器用材料として必要
な強度、導電性、曲げ性および酸化膜発生後の酸化膜の
密着性を良好としたことを特徴とする銅合金。3. Cr: 0.05 to 0.4 in weight ratio.
%, Zr: 0.03 to 0.25%, Zn: 0.06 to
2.0%, Fe: 0.1-1.8%, T
i: contains 0.1 to 0.8%, the balance consists of Cu and unavoidable impurities, and the size of inclusions is 30 μm
And the number of inclusions of 0.5 to 30 μm is 1
A copper alloy having a strength of less than 00 pieces / mm 2 , and having good strength, conductivity, bendability, and adhesion of an oxide film after the oxide film is generated, which is necessary as a material for electronic devices.
%、Zr:0.03〜0.25%、Zn:0.06〜
2.0%、を含有し、更にFe:0.1〜1.8%、T
i:0.1〜0.8%を含有し、加えて、Ni、Sn、
In、Mn、P、MgおよびSiの1種以上:総量で
0.01〜1.0%をも含有し、残部がCuおよび不可
避的不純物からなり、そして介在物の大きさが30μm
以下であり、かつ0.5〜30μmの介在物の個数が1
00個/mm2 未満であり、電子機器用材料として必要
な強度、導電性、曲げ性および酸化膜発生後の酸化膜の
密着性を良好としたことを特徴とする銅合金。4. Cr: 0.05 to 0.4 by weight ratio.
%, Zr: 0.03 to 0.25%, Zn: 0.06 to
2.0%, Fe: 0.1-1.8%, T
i: contains 0.1 to 0.8%, and additionally contains Ni, Sn,
At least one of In, Mn, P, Mg, and Si: also contains 0.01 to 1.0% in total amount, the balance consists of Cu and unavoidable impurities, and the size of inclusions is 30 μm.
And the number of inclusions of 0.5 to 30 μm is 1
A copper alloy having a strength of less than 00 pieces / mm 2 , and having good strength, conductivity, bendability, and adhesion of an oxide film after the oxide film is generated, which is necessary as a material for electronic devices.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35579296A JPH10183274A (en) | 1996-12-25 | 1996-12-25 | Copper alloy for electronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35579296A JPH10183274A (en) | 1996-12-25 | 1996-12-25 | Copper alloy for electronic equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10183274A true JPH10183274A (en) | 1998-07-14 |
Family
ID=18445775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35579296A Pending JPH10183274A (en) | 1996-12-25 | 1996-12-25 | Copper alloy for electronic equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10183274A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6093499A (en) * | 1997-03-27 | 2000-07-25 | Nippon Mining & Metals Co., Ltd. | Copper alloy foils |
EP1582602A2 (en) * | 2004-03-29 | 2005-10-05 | Ngk Insulators, Ltd. | Copper alloy and copper alloy manufacturing method |
WO2008041777A1 (en) * | 2006-10-04 | 2008-04-10 | Sumitomo Light Metal Industries, Ltd. | Copper alloy for seamless pipes |
JP2009132965A (en) * | 2007-11-30 | 2009-06-18 | Hitachi Cable Ltd | Copper alloy material for electrical and electronic parts |
WO2012133651A1 (en) | 2011-03-31 | 2012-10-04 | 国立大学法人東北大学 | Copper alloy and method for producing copper alloy |
JP2015048518A (en) * | 2013-09-03 | 2015-03-16 | Jx日鉱日石金属株式会社 | Copper alloy sheet excellent in stress relaxation characteristic |
-
1996
- 1996-12-25 JP JP35579296A patent/JPH10183274A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6093499A (en) * | 1997-03-27 | 2000-07-25 | Nippon Mining & Metals Co., Ltd. | Copper alloy foils |
EP1582602A2 (en) * | 2004-03-29 | 2005-10-05 | Ngk Insulators, Ltd. | Copper alloy and copper alloy manufacturing method |
EP1582602A3 (en) * | 2004-03-29 | 2009-01-21 | Ngk Insulators, Ltd. | Copper alloy and copper alloy manufacturing method |
US9777348B2 (en) | 2004-03-29 | 2017-10-03 | Akihisa Inoue | Copper alloy and copper alloy manufacturing method |
WO2008041777A1 (en) * | 2006-10-04 | 2008-04-10 | Sumitomo Light Metal Industries, Ltd. | Copper alloy for seamless pipes |
JP2009132965A (en) * | 2007-11-30 | 2009-06-18 | Hitachi Cable Ltd | Copper alloy material for electrical and electronic parts |
WO2012133651A1 (en) | 2011-03-31 | 2012-10-04 | 国立大学法人東北大学 | Copper alloy and method for producing copper alloy |
US9666325B2 (en) | 2011-03-31 | 2017-05-30 | Tohoku University | Copper alloy and method of manufacturing copper alloy |
JP2015048518A (en) * | 2013-09-03 | 2015-03-16 | Jx日鉱日石金属株式会社 | Copper alloy sheet excellent in stress relaxation characteristic |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2898627B2 (en) | Copper alloy foil | |
JP2670670B2 (en) | High strength and high conductivity copper alloy | |
KR950004935B1 (en) | Copper alloy for electronic instruments | |
JP2542370B2 (en) | Copper alloy for semiconductor leads | |
JP4567906B2 (en) | Copper alloy plate or strip for electronic and electrical parts and method for producing the same | |
KR950013290B1 (en) | Material for conductive parts of electronic and electric appliances | |
KR950013291B1 (en) | Materials for Electronic Components | |
JPH10183274A (en) | Copper alloy for electronic equipment | |
EP0189745B1 (en) | Lead material for ceramic package ic | |
JPH09157775A (en) | Copper alloy for electronic equipment | |
JPH11264040A (en) | Copper alloy foil | |
JP2732355B2 (en) | Manufacturing method of high strength and high conductivity copper alloy material for electronic equipment | |
JP3344924B2 (en) | Copper alloy for lead frames with high oxide film adhesion | |
JPH07331363A (en) | High strength and high conductivity copper alloy | |
JPH11264037A (en) | Copper alloy foil | |
JPH0987814A (en) | Production of copper alloy for electronic equipment | |
JP2732490B2 (en) | Manufacturing method of high strength and high conductivity copper alloy for electronic equipment | |
JPH1197609A (en) | Copper alloy for lead frame superior in oxide film adhesion and manufacture thereof | |
JPH0555582B2 (en) | ||
JP4175920B2 (en) | High strength copper alloy | |
JPH0978162A (en) | Copper alloy for electronic equipment and its production | |
JP3404278B2 (en) | Cu-Ni-Si based copper base alloy with improved annealing cracking | |
JPH0717982B2 (en) | Conductive rolled material for leadframes, connectors or switches | |
JPS6365748B2 (en) | ||
JPH11243171A (en) | Copper alloy for lead frame |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Effective date: 20040213 Free format text: JAPANESE INTERMEDIATE CODE: A821 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040213 |
|
A977 | Report on retrieval |
Effective date: 20040927 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A711 | Notification of change in applicant |
Effective date: 20060511 Free format text: JAPANESE INTERMEDIATE CODE: A712 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060511 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061024 |
|
A02 | Decision of refusal |
Effective date: 20080527 Free format text: JAPANESE INTERMEDIATE CODE: A02 |