JP2695208B2 - Fθ lens system in optical scanning device - Google Patents
Fθ lens system in optical scanning deviceInfo
- Publication number
- JP2695208B2 JP2695208B2 JP30029288A JP30029288A JP2695208B2 JP 2695208 B2 JP2695208 B2 JP 2695208B2 JP 30029288 A JP30029288 A JP 30029288A JP 30029288 A JP30029288 A JP 30029288A JP 2695208 B2 JP2695208 B2 JP 2695208B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- scanning
- polygon mirror
- lens system
- light beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Mechanical Optical Scanning Systems (AREA)
- Lenses (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、光走査装置におけるfθレンズ系に関す
る。The present invention relates to an fθ lens system in an optical scanning device.
[従来の技術] 光走査装置は、光束の走査により情報の書き込みや読
み取りを行う装置として知られ、レーザープリンターや
ファクシミリ等に使用されている。このような光走査装
置のうちに、光源からの光束を線状に結像させ、その線
状の結像位置の近傍に反射面を有する回転多面鏡により
上記光束を等角速度的に偏向し、この偏向光束を結像レ
ンズ系により走査面上にスポット状に結像させて走査面
を光走査する方式の装置がある。2. Description of the Related Art An optical scanning device is known as a device for writing and reading information by scanning a light beam, and is used for a laser printer, a facsimile, and the like. In such an optical scanning device, a light flux from a light source is linearly imaged, and the light flux is deflected at a constant angular velocity by a rotary polygon mirror having a reflecting surface in the vicinity of the linear imaging position, There is an apparatus of a type in which this deflected light beam is imaged in a spot shape on a scanning surface by an imaging lens system to optically scan the scanning surface.
回転多面鏡を用いる光走査装置には、面倒れの問題が
あり、また、偏向される光束は角速度が一定となるの
で、走査面の走査が定速的に行われる様に工夫する必要
がある。fθレンズ系は、この、走査面の定速的な走査
を光学的に実現する様にしたレンズ系であり、入射角θ
をもって入射する光束の像高が焦点距離をfとしてfθ
となるようにするfθ機能を有する。An optical scanning device using a rotary polygon mirror has a problem of surface tilt, and the angular velocity of the deflected light beam is constant. Therefore, it is necessary to devise a method to scan the scanning surface at a constant speed. . The fθ lens system is a lens system that optically realizes the constant-speed scanning of the scanning surface, and the incident angle θ
The image height of the luminous flux incident with f is fθ where f is the focal length.
Fθ function to make
また、面倒れの問題を解決する方法としては、回転多
面鏡と走査面との間に設けられるレンズ系をアナモフィ
ック系とし、副走査方向に関して、回転多面鏡の反射位
置と走査面とを共役関係に結び付ける方法が知られてい
る。As a method for solving the problem of surface tilt, an anamorphic lens system provided between the rotating polygon mirror and the scanning plane is used, and the reflection position of the rotating polygon mirror and the scanning plane are conjugated in the sub-scanning direction. There is a known way to link them.
[発明が解決しようとする課題] fθレンズ系自体をアナモフィックとし、定速的な走
査と面倒れの問題の解決とを図ったものとしては、特開
昭59−147316号公報に開示されたものが知られている。
このレンズ系は偏向角が大きいが像面湾曲に関して、回
転多面鏡による入射瞳位置の変動による影響が検討され
ていない。[Problems to be Solved by the Invention] The f-theta lens system itself is made anamorphic, and a technique for solving the problem of constant-speed scanning and tilting is disclosed in Japanese Patent Application Laid-Open No. Sho 59-147316. It has been known.
Although this lens system has a large deflection angle, the effect of the change in the position of the entrance pupil by the rotating polygon mirror has not been studied with respect to the field curvature.
また、特開昭61−245129号公報開示のものは像面湾曲
に対する上記入射瞳位置の変動の問題についても面倒れ
に起因する走査線のピッチむらの除去に関しても十分な
検討がなされていない。Further, the one disclosed in Japanese Patent Application Laid-Open No. 61-245129 does not sufficiently examine the problem of the above-mentioned fluctuation of the entrance pupil position due to the curvature of field, nor the removal of the scanning line pitch unevenness due to the surface tilt.
本発明は、上述した事情に鑑みてなされたものであっ
て、回転多面鏡の回転にともなう入射瞳位置の変動によ
る主・副走査方向の像面湾曲の十分な補正と、回転多面
鏡における面倒れの問題の解決を可能ならしめた新規な
fθレンズ系の提供を目的とする。The present invention has been made in view of the above-described circumstances, and has been made in view of the above-described circumstances, and has been made in view of the above circumstances. It is an object of the present invention to provide a novel fθ lens system which can solve these problems.
[課題を解決するための手段] 以下、本発明を説明する。[Means for Solving the Problems] Hereinafter, the present invention will be described.
本発明のfθレンズ系は、「光源からの光束を線状に
結像させ、その線状の結像位置の近傍に反射面を有する
回転多面鏡により上記光束を等角速度的に偏向し、この
偏向光束を結像レンズ系により走査面上にスポット状に
結像させて走査面を光走査する光走査装置において、回
転多面鏡により偏向された光束を走査面上に結像させる
レンズ系」であって、副走査方向に関して、回転多面鏡
の反射位置と走査面とを共役関係に結び付ける機能と、
fθ機能とを有する。The fθ lens system according to the present invention "forms a light beam from a light source into a linear image and deflects the light beam at a constant angular velocity by a rotary polygon mirror having a reflecting surface in the vicinity of the linear image forming position. In a light scanning device that forms an image of a deflected light beam on the scanning surface by a focusing lens system and optically scans the scanning surface, a lens system that images the light beam deflected by the rotating polygon mirror on the scanning surface " Therefore, with respect to the sub-scanning direction, the function of connecting the reflection position of the rotary polygon mirror and the scanning surface in a conjugate relationship,
fθ function.
このfθレンズ系は、回転多面鏡の側から走査面側へ
向かって第1、第2の順に配備される第1および第2の
レンズにより構成される2群・2枚構成であって、上記
第1のレンズは「主・副走査方向ともに負の屈折力を持
つアナモフィックの単レンズ」であり、第2のレンズは
「主・副走査方向とも正の屈折力を持つアナモフィック
な単レンズ」である。The fθ lens system has a two-group / two-lens configuration composed of first and second lenses arranged in a first and second order from the rotary polygon mirror side toward the scanning surface side. The first lens is an "anamorphic single lens that has negative refracting power in both the main and sub scanning directions," and the second lens is "an anamorphic single lens that has positive refracting power in both the main and sub scanning directions." is there.
上記第1のレンズは「上記回転多面鏡の側のレンズ面
が球面で、走査面側のレンズ面がシリンダー面もしくは
変形シリンダー面」であり、上記第2のレンズは「上記
回転多面鏡の側のレンズ面が平面もしくはシリンダー面
または変形シリンダー面であり、走査面側のレンズ面が
トーリック面」である。The first lens is “the lens surface on the side of the rotary polygon mirror is a spherical surface, and the lens surface on the scanning surface side is a cylinder surface or a modified cylinder surface”, and the second lens is “the side of the rotary polygon mirror. Is a flat surface, a cylinder surface, or a deformed cylinder surface, and the lens surface on the scanning surface side is a toric surface ".
回転多面鏡の側から走査面に向かってレンズ面を順
次、第1ないし第4レンズ面とし第iレンズ面(i=1
〜4)の曲率半径を偏向面内でRiX,副走査方向でRiYと
するとき、これらは、 (I) 1.5<R1X/R4X<2.5 (II) −2.5<[(1/R4Y)/{(1/R2Y)−(1/
R3Y}]<−1 なる条件を満足する。The lens surfaces are sequentially referred to as first to fourth lens surfaces from the side of the rotary polygon mirror toward the scanning surface, and the i-th lens surface (i = 1)
When the radius of curvature of ~ 4) is R iX in the deflection plane and R iY in the sub-scanning direction, these are (I) 1.5 <R 1X / R 4X <2.5 (II) −2.5 <[(1 / R 4Y ) / {(1 / R 2Y ) − (1 /
R 3Y }] <-1 is satisfied.
レンズ面の曲率に関して、RiXは偏向面による断面上
の曲率半径の成分であり、RiYは光軸に平行で且つ偏向
面に直交する断面の、曲率半径成分である。Regarding the curvature of the lens surface, R iX is a component of the radius of curvature on the cross section by the deflecting surface, and R iY is a radius of curvature component of the section parallel to the optical axis and orthogonal to the deflecting surface.
また、「偏向面」とは回転多面鏡による理想的な偏向
光束の主光線の掃引により形成される平面である。レン
ズ光軸を含む上記偏向面に直交する平面を以下、「偏向
直交面」と称する。The "deflecting surface" is a plane formed by sweeping the principal ray of an ideal deflected light beam by a rotating polygon mirror. Hereinafter, a plane that includes the optical axis of the lens and is orthogonal to the deflection plane is referred to as a "deflection orthogonal plane".
上記変形シリンダー面は、上記偏向面との交差部が主
走査方向に平行な直線状であり、偏向直交面に平行な
「平面」内に於けるレンズ面曲率半径(副走査方向の曲
率半径)が、主走査方向における上記「平面」と光軸と
の距離Hの多項式 C0+C1H+C2H2+C3H3+……+CnHn で与えられる変形シリンダー面であり、上記係数C0,C1,
…,Cnを特定することにより特定される。The deformed cylinder surface has a linear shape whose intersection with the deflection surface is parallel to the main scanning direction, and a lens surface curvature radius (curvature radius in the sub-scanning direction) within a “plane” parallel to the deflection orthogonal surface. Is a deformed cylinder surface given by the polynomial C 0 + C 1 H + C 2 H 2 + C 3 H 3 + ... + C n H n of the distance H between the “plane” and the optical axis in the main scanning direction, and the coefficient C 0 , C 1 ,
..., specified by specifying C n .
上記条件(II)には、副走査方向のレンズ面曲率半径
R2Y,R3Yが入っているが、上述の通り、これらの曲率半
径を持つレンズ面は何れも変形シリンダー面となり得る
ものである。その場合、これら曲率半径R2Y,R3Yの値
は、条件(II)に関しては、上記多項式の第1項C0の値
であるとする。In the above condition (II), the radius of curvature of the lens surface in the sub-scanning direction
Although R 2Y and R 3Y are included, as described above, any lens surface having these radii of curvature can be a deformed cylinder surface. In that case, the values of these radii of curvature R 2Y and R 3Y are assumed to be the values of the first term C 0 of the above polynomial with respect to the condition (II).
[作用] 上記条件(I),(II)は以下の如き意味を有する。
即ち、条件(I)は、主走査方向の像面湾曲とリニアリ
ティ即ちfθ特性とを良好に保つための条件であり、上
限を越えると主走査方向の像面湾曲がアンダーとなり、
fθ特性がオーバーとなる。また、下限を越えると像面
湾曲がオーバーとなり、fθ特性はアンダーとなる。[Operation] The above conditions (I) and (II) have the following meanings.
That is, the condition (I) is a condition for keeping the field curvature in the main scanning direction and the linearity, that is, the fθ characteristic in good condition. If the upper limit is exceeded, the field curvature in the main scanning direction becomes under,
The fθ characteristic becomes over. If the lower limit is exceeded, the curvature of field will be over, and the fθ characteristic will be under.
条件(II)はアナモフィックレンズで発生する軸外の
コマ収差を良好に補正する為の条件である。The condition (II) is a condition for favorably correcting the off-axis coma aberration generated in the anamorphic lens.
条件(II)の上限を越えると外向きのコマ収差が発生
し、下限を越えると内向きのコマ収差が発生する。If the upper limit of condition (II) is exceeded, outward coma will occur, and if the lower limit is exceeded, inward coma will occur.
変形シリンダー面は、副走査方向の像面湾曲を良好に
補正するために採用されている。The deformed cylinder surface is adopted to favorably correct the field curvature in the sub-scanning direction.
以下、図面を参照しながら説明する。 This will be described below with reference to the drawings.
第1図は、本発明のfθレンズ系を用いた光走査装置
の1例を説明図的に略示している。また、第2図は、第
1図の光学配置を副走査方向から見た状態、即ち偏向面
内での様子を示している。FIG. 1 schematically illustrates an example of an optical scanning device using the fθ lens system of the present invention. FIG. 2 shows a state of the optical arrangement of FIG. 1 viewed from the sub-scanning direction, that is, a state in a deflection plane.
光源もしくは光源と集光装置とからなる光源装置1か
らの平行光束は線像結像光学系たるシリンダーレンズ2
により、回転多面鏡3の反射面4の近傍に、偏向面と略
平行な線像として結像する。A parallel light flux from a light source or a light source device 1 including a light source and a condenser is a cylinder lens 2 which is a line image forming optical system.
Thereby, an image is formed in the vicinity of the reflecting surface 4 of the rotary polygon mirror 3 as a line image substantially parallel to the deflecting surface.
回転多面鏡3により反射された光束は、本発明のfθ
レンズ系により、走査面7上にスポット状に結像され、
回転多面鏡3の矢印方向への等速回転に従い、走査面7
を等速的に走査する。The light beam reflected by the rotating polygon mirror 3 is fθ of the present invention.
The lens system forms a spot-like image on the scanning surface 7,
The scanning surface 7 follows the rotation of the rotary polygon mirror 3 at a constant speed in the direction of the arrow.
Are scanned at a constant speed.
fθレンズ系は第1のレンズ5と第2のレンズ6とに
より構成され、レンズ5は回転多面鏡3の側、レンズ6
は走査面7の側にそれぞれ配設される。偏向面内で見る
と第2図に示すように、レンズ5,6によるfθレンズ系
は光源側の無限遠と走査面7の位置とを共役関係に結び
付けている。The fθ lens system includes a first lens 5 and a second lens 6, and the lens 5 is located on the side of the rotary polygon mirror 3 and the lens 6
Are disposed on the scanning surface 7 side, respectively. As seen in the deflection plane, as shown in FIG. 2, the fθ lens system including the lenses 5 and 6 links the infinity on the light source side and the position of the scanning plane 7 in a conjugate relationship.
これに対し、偏向直交面内で見ると、即ち副走査方向
に関してはfθレンズ系は回転多面鏡3の反射位置と走
査面7とを略共役関係に結び付けている。従って、第3
図に示すように反射面4が符号4′で示すように面倒れ
を生じてもfθレンズ系による、走査面7上の結像位置
は、副走査方向(第3図上下方向)には殆ど移動しな
い。従って面倒れは補正される。On the other hand, when viewed in the plane orthogonal to the deflection, that is, in the sub-scanning direction, the fθ lens system connects the reflection position of the rotary polygon mirror 3 and the scanning surface 7 in a substantially conjugate relationship. Therefore, the third
As shown in the figure, even if the reflecting surface 4 is tilted as shown by reference numeral 4 ', the image forming position on the scanning surface 7 by the fθ lens system is almost in the sub-scanning direction (up and down direction in FIG. 3). Do not move. Therefore, the tilting is corrected.
さて、回転多面鏡3が回転すると、反射面4は軸3Aを
中心として回転するため、第4図に示すように、反射面
の回転に伴い、線像の結像位置Pと反射面4との間に位
置ずれΔXが生じ、fθレンズ系による線像の共役像の
位置P′は走査面7からΔX′だけずれる。Now, when the rotary polygon mirror 3 rotates, the reflecting surface 4 rotates about the axis 3A. Therefore, as shown in FIG. 4, along with the rotation of the reflecting surface, the image forming position P of the line image and the reflecting surface 4 are A positional deviation ΔX occurs between the two, and the position P ′ of the conjugate image of the line image by the fθ lens system is deviated from the scanning surface 7 by ΔX ′.
このずれ量ΔX′はfθレンズ系の副走査方向の横倍
率をβとして、周知の如くΔX′=β2ΔXで与えられ
る。The shift amount ΔX ′ is given by ΔX ′ = β 2 ΔX, as is well known, where β is the lateral magnification of the fθ lens system in the sub-scanning direction.
偏向面内で、fθレンズ系のレンズ光軸と偏向光束の
主光線とのなす角をθとする時、θと上記ΔXとの関係
を示したのが第5図及び第6図である。第5図は入射角
α(回転多面鏡への入射光束の主光線とfθレンズ系の
光軸のなす角:第7図参照)を90度とし、回転多面鏡3
の内接円半径Rをパラメーターとして描いている。ま
た、第6図では、上記内接円半径Rを40mmとし、入射角
αをパラメーターとして描いている。FIGS. 5 and 6 show the relationship between θ and ΔX, where θ is the angle formed between the lens optical axis of the fθ lens system and the principal ray of the deflected light beam in the deflection plane. In FIG. 5, the angle of incidence α (the angle between the principal ray of the light beam incident on the rotary polygon mirror and the optical axis of the fθ lens system: see FIG. 7) is 90 degrees, and the rotary polygon mirror 3
The inscribed circle radius R of is drawn as a parameter. In FIG. 6, the radius R of the inscribed circle is set to 40 mm, and the incident angle α is used as a parameter.
第5,6図から分かるように、ΔXは、内接円半径Rが
大きいほど、また、入射角αが小さいほど大きくなる。As can be seen from FIGS. 5 and 6, ΔX increases as the radius R of the inscribed circle increases and as the incident angle α decreases.
また、反射面の回転に伴う線像の位置と反射面との相
対的な位置ずれは、偏向面内で2次元的に生じ、且つレ
ンズ光軸に対しても非対象に移動する。Further, the relative positional deviation between the position of the line image and the reflecting surface due to the rotation of the reflecting surface occurs two-dimensionally within the deflecting surface and also moves asymmetrically with respect to the lens optical axis.
従って、第1図の如き光走査装置ではfθレンズ系の
主、副走査方向の像面湾曲を良好に補正する必要があ
る。また、主走査方向に関してはfθ特性が良好に補正
されねばならないことは言うまでもない。Therefore, in the optical scanning device as shown in FIG. 1, it is necessary to satisfactorily correct the field curvature of the fθ lens system in the main and sub scanning directions. Needless to say, the fθ characteristic must be corrected well in the main scanning direction.
ここで、前述の入射角αにつき説明すると、第7図に
おいて、符号aは回転多面鏡に入射する光束の主光線を
示し、符号bは回転多面鏡3による反射光束がfθレン
ズ系の光軸と平行に成ったときの主光線を示している。
主光線a,bの交点を原点として図のごとくX,Y軸を定め、
回転多面鏡3の回転軸位置座標をXp,Ypとする。Here, the incident angle α will be described. In FIG. 7, reference numeral a denotes a principal ray of a light beam incident on the rotating polygonal mirror, and reference numeral b denotes a light beam reflected by the rotating polygonal mirror 3 when an optical axis of the fθ lens system is changed. 3 shows the principal ray when it is parallel to.
The X and Y axes are determined as shown in the figure with the intersection of the principal rays a and b as the origin,
The coordinates of the rotation axis position of the rotary polygon mirror 3 are defined as Xp and Yp.
入射角αは、図の如く主光線a,bの交角として定義さ
れる。The incident angle α is defined as the angle of intersection of the principal rays a and b as shown in the figure.
前述した、線像位置と反射面との位置ずれ量のΔXの
変動をなるべく少なくする為には周知のごとく、 0<Xp<Rcos(α/2) 0<Yp<Rsin(α/2) なる条件をXp,Ypに課せばよい。In order to minimize the variation of ΔX of the displacement between the line image position and the reflecting surface as described above, 0 <Xp <Rcos (α / 2) 0 <Yp <Rsin (α / 2) Conditions may be imposed on Xp and Yp.
また、第8図には、本発明の特徴の一端をなす変形シ
リンダー面を説明図的に示す。Further, FIG. 8 is an explanatory view showing a deformed cylinder surface which is one of the features of the present invention.
この変形シリンダー面は、第i番目のレンズ面に採用
されたとき、同図に示すように偏向面内の曲率半径RiX
は∞であるが、副走査方向の曲率半径RiYは光軸上ではC
0であり主走査方向で光軸からHだけはなれた部分での
副走査方向の曲率半径の解析的な表現は、前述したよう
な多項式 RiY(H)=C0+C1H+C2H2+C3H3+……+CnHn で与えられる。When this deformed cylinder surface is adopted as the i-th lens surface, as shown in the figure, the radius of curvature R iX in the deflection surface is
Is ∞, but the radius of curvature R iY in the sub-scanning direction is C on the optical axis.
Analytical expression of the radius of curvature in the sub-scanning direction at a portion that is 0 and deviates from the optical axis in the main scanning direction is the polynomial R iY (H) = C 0 + C 1 H + C 2 H 2 + C as described above. It is given by 3 H 3 + …… + C n H n .
[実施例] 以下、具体的な実施例を4例挙げる。[Examples] Hereinafter, four specific examples will be given.
各実施例において、fMはfθレンズ系の主走査方向に
関する合成焦点距離、即ち偏向面に平行な面内における
合成焦点距離を表し、この値は100に規格化される。ま
た、fSは偏向直交面内での合成焦点距離即ち副走査方向
に関する合成焦点距離を示す。2θは偏向角、αは入射
角を示す。In each embodiment, f M represents a combined focal length of the fθ lens system in the main scanning direction, that is, a combined focal length in a plane parallel to the deflection surface, and this value is normalized to 100. Further, f S represents a combined focal length in the plane orthogonal to the deflection, that is, a combined focal length in the sub-scanning direction. 2θ indicates a deflection angle, and α indicates an incident angle.
RiXは回転多面鏡の側から数えてi番目のレンズ面の
偏向面内の曲率半径、RiYはi番目のレンズ面の偏向直
交面内の曲率半径、diはi番目のレンズ面間距離、d0は
回転多面鏡の反射面から第1レンズ面までの距離、njは
j番目のレンズの屈折率、Rは回転多面鏡の内接円半径
を示す。R iX is the radius of curvature of the i-th lens surface in the deflection plane counted from the side of the rotating polygon mirror, R iY is the radius of curvature of the i-th lens surface in the plane orthogonal to the deflection, and d i is the distance between the i-th lens surfaces. The distance, d 0 is the distance from the reflecting surface of the rotating polygon mirror to the first lens surface, n j is the refractive index of the j-th lens, and R is the radius of the inscribed circle of the rotating polygon mirror.
さらに、K1=R1X/R4X,K2=[(1/R4Y)/{(1/R2Y)
−(1/R3Y}]を表している。Furthermore, K 1 = R 1X / R 4X , K 2 = [(1 / R 4Y ) / {(1 / R 2Y )
-(1 / R 3Y }] is represented.
実施例 1 fM=100,fS=21.3685,2θ=65.8゜,α=60゜, R=14.0845,K1=2.0199,K2=−1.3194,d0=7.4343 この実施例に於いては、*印を付けた第2面が変形シ
リンダー面であり、この面を特徴付ける前記多項式の各
係数は、以下の通りである。Example 1 f M = 100, f S = 21.3685,2 θ = 65.8 °, α = 60 °, R = 14.0845, K1 = 2.0199, K2 = −1.3194, d 0 = 7.4343 In this example, the second surface marked with * is the deformed cylinder surface and the coefficients of the polynomial that characterize this surface are as follows:
C0=17.9982,C1=−4.2013・10-1 C2=−2.3145・10-1,C3=1.4346・10-2 C4=1.8275・10-3,C5=−2.0887・10-4 C6=−1.0331・10-5 実施例 2 fM=100,fS=21.1663,2θ=65.6゜,α=60゜, R=14.0845,K1=2.0199,K2=−2.2916,d0=7.4343 この実施例に於いては、*印を付けた第2面が変形シ
リンダー面であり、多項式の各係数は以下の通りであ
る。C 0 = 17.9982, C 1 = −4.2013 ・ 10 -1 C 2 = −2.3145 ・ 10 -1 ,, C 3 = 1.4346 ・ 10 -2 C 4 = 1.8275 ・ 10 -3 , C 5 = −2.0887 ・ 10 -4 C 6 = −1.0331 · 10 −5 Example 2 f M = 100, f S = 21.1663,2 θ = 65.6 °, α = 60 °, R = 14.0845, K1 = 2.0199, K2 = −2.2916, d 0 = 7.4343 In this embodiment, the second surface marked with * is the deformed cylinder surface, and each coefficient of the polynomial is as follows.
C0=44.9167,C1=−1.1896 C2=−6.265・10-1,C3=5.3039・10-2 C4=7.7804・10-3,C5=−9.7627・10-5 C6=−5.1653・10-5,C7=1.1369・10-5 実施例 3 fM=100,fS=21.3153,2θ=65.6゜,α=60゜, R=14.0845,K1=2.0199,K2=−2.0581,d0=7.4343 この実施例に於いては、*印を付けた第3面が変形シ
リンダー面であり、多項式の各係数は以下の通りであ
る。C 0 = 44.9167, C 1 = -1.1896 C 2 = -6.265 ・ 10 -1 ,, C 3 = 5.3039 ・ 10 -2 C 4 = 7.7804 ・ 10 -3 , C 5 = -9.7627 ・ 10 -5 C 6 =- 5.1653 · 10 −5 , C 7 = 1.1369 · 10 −5 Example 3 f M = 100, f S = 21.3153,2 θ = 65.6 °, α = 60 °, R = 14.0845, K1 = 2.0199, K2 = −2.0581, d 0 = 7.4343 In this embodiment, the third surface marked with * is the deformed cylinder surface, and each coefficient of the polynomial is as follows.
C0=−49.3808,C1=4.9362・10-2 C2=1.2311・10-2,C3=−7.9496・10-4 C4=−8.7432・10-5,C5=2.3468・10-6 実施例 4 fM=100,fS=21.3340,2θ=65.6゜,α=60゜, R=14.0845,K1=2.0199,K2=−2.0243,d0=7.4343 この実施例に於いては、*印を付けた第2面が変形シ
リンダー面であり、多項式の各係数は以下の通りであ
る。C 0 = -49.3808, C 1 = 4.9362 / 10 -2 C 2 = 1.2311 / 10 -2 , C 3 = -7.9496 / 10 -4 C 4 = -8.7432 / 10 -5 , C 5 = 2.3468 / 10 -6 Example 4 f M = 100, f S = 21.3340,2θ = 65.6 °, α = 60 °, R = 14.0845, K1 = 2.0199, K2 = −2.0243, d 0 = 7.4343 In this embodiment, the second surface marked with * is the deformed cylinder surface, and each coefficient of the polynomial is as follows.
C0=49.5804,C1=−5.9315・10-1 C2=−1.8883・10-1,C3=3.3999・10-2 C4=3.8801・10-3,C5=−4.3651・10-4 C6=1.0331・10-5 なお、fMの具体的な数値は、上記実施例1〜4を通じ
てfM=220.1である。C 0 = 49.5804, C 1 = -5.9315 ・ 10 -1 C 2 = -1.8883 ・ 10 -1 ,, C 3 = 3.3999 ・ 10 -2 C 4 = 3.8801 ・ 10 -3 , C 5 = -4.3651 ・ 10 -4 C 6 = 1.0331 · 10 -5 the specific numeric value of f M is a f M = 220.1 through the fourth embodiments.
第9図に、実施例1に関する収差図を示す。第10図な
いし第12図には、実施例2ないし4に関する収差図を示
す。像面湾曲の図における実線は副走査方向の結像位置
を示し、破線は主走査方向の結像位置を示す。像面湾曲
は回転多面鏡の回転に伴う入射瞳位置の変動により非対
称的であるので全偏向領域にわたって示してある。FIG. 9 shows an aberration diagram relating to the first embodiment. 10 to 12 are aberration diagrams related to Examples 2 to 4. The solid line in the figure of curvature of field indicates the image forming position in the sub-scanning direction, and the broken line indicates the image forming position in the main scanning direction. Since the field curvature is asymmetric due to the change in the position of the entrance pupil due to the rotation of the rotary polygon mirror, it is shown over the entire deflection region.
また、第13図ないし第16図に、各実施例における結像
性能を表すスポットダイヤグラムを示す。光軸を中心に
有効走査角±32.8゜、±23.43゜、および0゜の像高の
ものを示す。Further, FIGS. 13 to 16 show spot diagrams showing the image forming performance in each example. The effective scanning angles ± 32.8 °, ± 23.43 °, and 0 ° image height around the optical axis are shown.
[発明の効果] 以上、本発明によれば光走査装置に於ける新規なfθ
レンズ系を提供できる。このレンズ系は上記の如く、像
面湾曲が小さいので高密度の書き込みが可能であり、面
倒れ補正に長尺のシリンダーレンズを必要としないの
で、光走査装置をコンパクトに構成することが可能とな
る。[Effects of the Invention] As described above, according to the present invention, a novel fθ in the optical scanning device
A lens system can be provided. As described above, this lens system has a small curvature of field, so that high-density writing is possible, and since a long cylinder lens is not required for correcting surface tilt, it is possible to make the optical scanning device compact. Become.
第1図は、本発明のfθレンズ系を使用した光走査装置
の概要を示す概略斜視図、第2図乃至第3図は、本発明
のfθレンズ系を説明するための図、第4図乃至第7図
は、回転多面鏡の回転にもとづく入射瞳位置の変動とそ
の対応策を説明するための図、第8図は変形シリンダー
面を説明するための図、第9図乃至第12図は収差図、第
13図乃至第16図は、スポットダイヤグラムを示す図であ
る。 5……第1のレンズ、6……第2のレンズFIG. 1 is a schematic perspective view showing an outline of an optical scanning device using the fθ lens system of the present invention, and FIGS. 2 to 3 are views for explaining the fθ lens system of the present invention. 7 to FIG. 7 are diagrams for explaining the variation of the entrance pupil position based on the rotation of the rotary polygon mirror and its countermeasures, FIG. 8 is a diagram for explaining the deformed cylinder surface, and FIGS. Is the aberration diagram,
13 to 16 are diagrams showing spot diagrams. 5 ... first lens, 6 ... second lens
Claims (1)
状の結像位置の近傍に反射面を有する回転多面鏡により
上記光束を等角速度的に偏向し、この偏向光束を結像レ
ンズ系により走査面上にスポット状に結像させて走査面
を光走査する光走査装置において、回転多面鏡により偏
向された光束を走査面上に結像させるレンズ系であっ
て、 副走査方向に関して、回転多面鏡の反射位置と走査面と
を略共役関係に結び付ける機能と、fθ機能とを有し、 回転多面鏡の側から走査面側へ向かって第1、第2の順
に配備される、第1および第2のレンズにより構成され
る2群・2枚構成であって、 上記第1のレンズは主・副走査方向ともに負の屈折力を
持つアナモフィックな単レンズであり、上記第2のレン
ズは主・副走査方向とも正の屈折力を持つアナモフィッ
クな単レンズであり、 上記第1のレンズは上記回転多面鏡の側のレンズ面が球
面で、走査面側のレンズ面がシリンダー面もしくは変形
シリンダー面であり、上記第2のレンズは上記回転多面
鏡の側のレンズ面が平面もしくはシリンダー面または変
形シリンダー面であり、走査面側のレンズ面がトーリッ
ク面であり 回転多面鏡の側から走査面に向かってレンズ面を順次、
第1ないし第4レンズ面とし第iレンズ面(i=1〜
4)の曲率半径を偏向面内でRiX,副走査方向でRiYとす
るとき、これらが、 (I) 1.5<R1X/R4X<2.5 (II) −2.5<[(1/R4Y)/{(1/R2Y)−(1/
R3Y}]<−1 なる条件を満足することを特徴とする、fθレンズ系。1. A light beam from a light source is linearly imaged, and the light beam is deflected at a constant angular velocity by a rotary polygon mirror having a reflecting surface in the vicinity of the linear image formation position, and the deflected light beam is formed. An optical scanning device for forming an image in a spot shape on a scanning surface by an image lens system and optically scanning the scanning surface. A lens system for forming an image of a light beam deflected by a rotary polygon mirror on the scanning surface. Regarding the direction, it has a function of connecting the reflection position of the rotary polygon mirror and the scanning surface in a substantially conjugate relationship, and an fθ function, and is arranged in the first and second order from the rotary polygon mirror side toward the scanning surface side. The first lens is an anamorphic single lens having a negative refracting power in both the main and sub-scanning directions. The second lens has a positive refractive power in both the main and sub scanning directions. An anamorphic single lens, the first lens has a spherical lens surface on the side of the rotary polygonal mirror, the lens surface on the scanning surface side is a cylinder surface or a deformed cylinder surface, and the second lens has the rotation surface. The lens surface on the polygonal mirror side is a flat surface or a cylinder surface or a deformed cylinder surface, the lens surface on the scanning surface side is a toric surface, and the lens surfaces are sequentially arranged from the rotary polygonal mirror side toward the scanning surface,
The first to fourth lens surfaces and the i-th lens surface (i = 1 to
When the radius of curvature of 4) is R iX in the deflection plane and R iY in the sub-scanning direction, these are (I) 1.5 <R 1X / R 4X <2.5 (II) −2.5 <[(1 / R 4Y ) / {(1 / R 2Y ) − (1 /
R 3Y }] <− 1, the fθ lens system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30029288A JP2695208B2 (en) | 1988-11-28 | 1988-11-28 | Fθ lens system in optical scanning device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30029288A JP2695208B2 (en) | 1988-11-28 | 1988-11-28 | Fθ lens system in optical scanning device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02146017A JPH02146017A (en) | 1990-06-05 |
JP2695208B2 true JP2695208B2 (en) | 1997-12-24 |
Family
ID=17883031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30029288A Expired - Lifetime JP2695208B2 (en) | 1988-11-28 | 1988-11-28 | Fθ lens system in optical scanning device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2695208B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0679824B2 (en) * | 1992-01-17 | 1994-10-12 | 日精樹脂工業株式会社 | Injection molding machine |
JP5031303B2 (en) * | 2006-09-11 | 2012-09-19 | キヤノン株式会社 | Image reading device |
-
1988
- 1988-11-28 JP JP30029288A patent/JP2695208B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02146017A (en) | 1990-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0782157B2 (en) | Scanning optical system with surface tilt correction function | |
US6239894B1 (en) | Scanning optical system and image forming apparatus using the same | |
JP2718735B2 (en) | Fθ lens system in optical scanning device | |
JP3061829B2 (en) | Fθ lens system in optical scanning device | |
JP2804512B2 (en) | Fθ lens system in optical scanning device | |
JP2550153B2 (en) | Optical scanning device | |
JP2695208B2 (en) | Fθ lens system in optical scanning device | |
JP2738857B2 (en) | Fθ lens system in optical scanning device | |
JPH07119897B2 (en) | Optical scanning device | |
JP2774546B2 (en) | Fθ lens system in optical scanning device | |
JP3034565B2 (en) | Telecentric fθ lens | |
JP2702516B2 (en) | fθ lens | |
JP2834793B2 (en) | Fθ lens system in optical scanning device | |
JP2877457B2 (en) | Fθ lens system in optical scanning device | |
JP3437331B2 (en) | Optical scanning optical system and laser beam printer including the same | |
JP2718743B2 (en) | Fθ lens system in optical scanning device | |
JP2774586B2 (en) | Fθ lens system in optical scanning device | |
JP2986949B2 (en) | Imaging lens system in optical scanning device | |
JP2877390B2 (en) | Fθ lens system in optical scanning device | |
JP2790839B2 (en) | Fθ lens system in optical scanning device | |
JP2927846B2 (en) | Fθ lens system in optical scanning device | |
JP3364525B2 (en) | Scanning imaging lens and optical scanning device | |
JP2790845B2 (en) | Fθ lens system in optical scanning device | |
JP2775434B2 (en) | Scanning optical system | |
JP2553882B2 (en) | Scanning optical system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090912 Year of fee payment: 12 |