JP2790845B2 - Fθ lens system in optical scanning device - Google Patents
Fθ lens system in optical scanning deviceInfo
- Publication number
- JP2790845B2 JP2790845B2 JP10849389A JP10849389A JP2790845B2 JP 2790845 B2 JP2790845 B2 JP 2790845B2 JP 10849389 A JP10849389 A JP 10849389A JP 10849389 A JP10849389 A JP 10849389A JP 2790845 B2 JP2790845 B2 JP 2790845B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- scanning
- polygon mirror
- rotary polygon
- sub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Mechanical Optical Scanning Systems (AREA)
- Lenses (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、光走査装置におけるfθレンズ系に関す
る。The present invention relates to an fθ lens system in an optical scanning device.
[従来の技術] 光走査装置は、光束の走査により情報の書き込みや読
み取りを行う装置として知られ、レーザープリンターや
ファクシミリ等に使用されている。2. Description of the Related Art An optical scanning device is known as a device for writing and reading information by scanning a light beam, and is used for a laser printer, a facsimile, and the like.
このような光走査装置のうちに、光源からの略平行な
光束を主走査対応方向に長い線像に結像させ、この線像
の結像位置の近傍に反射面を有する回転多面鏡により上
記光束を等角速度的に偏向し、この偏向光束を結像レン
ズ系により走査面上にスポット状に結像させて走査面を
光走査する方式の装置がある。In such an optical scanning device, a substantially parallel light flux from a light source is formed into a long line image in the main scanning corresponding direction, and the above-mentioned light is scanned by a rotating polygon mirror having a reflecting surface near an image forming position of the line image. There is an apparatus that deflects a light beam at a constant angular velocity, forms an image of the deflected light beam in a spot shape on a scanning surface by an imaging lens system, and optically scans the scanning surface.
回転多面鏡を用いる光走査装置には面倒れの問題があ
り、また、偏向される光束は角速度が一定であるから通
常のf・tanθレンズを用いたのでは走査面の走査速度
が一定とならないので、この走査速度が一定となる様に
工夫する必要がある。An optical scanning device using a rotating polygon mirror has a problem of surface tilt, and the angular velocity of a deflected light beam is constant. Therefore, the scanning speed of the scanning surface is not constant using a normal f · tan θ lens. Therefore, it is necessary to devise such that the scanning speed is constant.
fθレンズ系は、走査面の定速的な走査を光学的に実
現する様にしたレンズ系であり、入射角θをもって入射
する光束の像高が焦点距離をfとしてfθとなるように
fθ機能を有する。The fθ lens system is a lens system that optically realizes constant-speed scanning of a scanning surface, and has an fθ function such that the image height of a light beam incident at an incident angle θ becomes fθ with a focal length f. Having.
また面倒れの問題を解決する方法としては、回転多面
鏡と走査面との間に設けられるレンズ系をアナモフィッ
ク系とし、副走査方向に関して、回転多面鏡の反射位置
と走査面とを幾何光学的な共役関係に結び付ける方法が
知られている。上に述べた方式の装置でも、この方式を
実施するために光源からの略平行な光束を回転多面鏡の
反射面の近傍に主走査対応方向に長い線像として結像さ
せているのである。As a method for solving the problem of surface tilt, a lens system provided between the rotating polygon mirror and the scanning surface is an anamorphic system, and the reflection position of the rotating polygon mirror and the scanning surface are geometrically optically defined in the sub-scanning direction. There is known a method of associating with various conjugate relationships. Even in the apparatus of the above-described method, in order to implement this method, a substantially parallel light beam from a light source is formed as a long line image in the main scanning corresponding direction near the reflecting surface of the rotary polygon mirror.
[発明が解決しようとする課題] fθレンズ系自体をアナモフィックとし、定速的な走
査と面倒れの問題の解決とを図ったものとしては、特開
昭60−100118号公報や特開昭63−78120号公報開に開示
されたものが知られている。しかし特開昭60−100118号
公報開示のレンズ系では主・副走査方向の像面湾曲の補
正に就いての十分な検討がなされていない。[Problems to be Solved by the Invention] The fθ lens system itself is made anamorphic to achieve constant-speed scanning and to solve the problem of tilting. What is disclosed in the publication of -78120 is known. However, in the lens system disclosed in Japanese Patent Application Laid-Open No. 60-100118, no sufficient study has been made on the correction of the curvature of field in the main and sub scanning directions.
また特開昭63−78120号公報開示のものは副走査方向
の像面湾曲の補正が不十分で高密度の光走査を行うと光
スポットの副走査方向の径が変動して良好な光走査を実
現できない。Japanese Patent Application Laid-Open No. 63-78120 discloses an optical scanning device in which the correction of the curvature of field in the sub-scanning direction is insufficient and high-density optical scanning is performed. Cannot be realized.
また、fθレンズ系では回転多面鏡の回転に伴う入射
瞳位置の変動が考慮されねばならない。Further, in the fθ lens system, a change in the position of the entrance pupil due to the rotation of the rotary polygon mirror must be considered.
本発明は上述した事情に鑑みてなされたものであっ
て、回転多面鏡の回転に伴う入射瞳位置の変動による主
・副走査方向の像面湾曲の十分な補正と、回転多面鏡に
おける面倒れの問題の解決を可能ならしめ、かつリニア
リティの良好な新規なfθレンズ系の提供を目的とす
る。SUMMARY OF THE INVENTION The present invention has been made in view of the above-described circumstances, and has been made in view of the above-described circumstances. It is an object of the present invention to provide a novel fθ lens system which can solve the above problem and has good linearity.
[課題を解決するための手段] 本発明のfθレンズ系は「光源からの略平行な光束を
主走査対応方向に長い線像を結像させ、この線像の結像
位置の近傍に反射面を有する回転多面鏡により上記光束
を等角速度的に偏向し、この偏向光束を結像レンズ系に
より走査面上にスポット状に結像させて走査面を光走査
する光走査装置において、回転多面鏡により偏向された
光束を走査面上に結像させるレンズ系」であって、副走
査方向に関して、回転多面鏡の反射位置と走査面とを幾
何光学的に略共役な関係とする機能を持ち、主走査方向
に関してはfθ機能を有する。[Means for Solving the Problems] The fθ lens system according to the present invention is based on the principle that “a substantially parallel light flux from a light source forms a long line image in the main scanning corresponding direction, and a reflection surface is formed near the image forming position of this line image. An optical scanning device that deflects the light beam at a constant angular velocity by a rotating polygon mirror having a uniform angular velocity on the scanning surface by an imaging lens system and optically scans the scanning surface. Lens system for forming an image of the light beam deflected by the scanning surface on the scanning surface, having a function of making the reflection position of the rotating polygon mirror and the scanning surface substantially geometrically conjugate with respect to the sub-scanning direction, It has an fθ function in the main scanning direction.
このfθレンズ系は、回転多面鏡の側から走査面側へ
向かって第1乃至第3のレンズを順次配列してなる3群
3枚構成である。The fθ lens system has a three-group, three-element structure in which first to third lenses are sequentially arranged from the rotating polygon mirror side toward the scanning surface side.
「第1のレンズ」は回転多面鏡の側のレンズ面が凹の
球面で、走査面側のレンズ面が副走査対応方向にのみパ
ワーを持つ凹のシリンダー面である負の単レンズであ
り、「第2のレンズ」は回転多面鏡の側に凹面に向けた
正メニスカスレンズであり、「第3のレンズ」は回転多
面鏡の側のレンズ面が平面であり、走査面側のレンズ面
が副走査方向の曲率が強いトーリック面である正単レン
ズである。The "first lens" is a negative single lens in which the lens surface on the side of the rotary polygon mirror is a concave spherical surface, and the lens surface on the scanning surface side is a concave cylinder surface having power only in the sub-scanning corresponding direction, The “second lens” is a positive meniscus lens facing the concave surface on the side of the rotary polygon mirror, and the “third lens” is a lens surface on the side of the rotary polygon mirror that is flat, and the lens surface on the scanning surface side has a flat surface. The positive single lens is a toric surface having a strong curvature in the sub-scanning direction.
fθレンズ系の主走査方向に於ける合成焦点距離を
f、第1及び第3のレンズの焦点距離を、主走査方向に
就いてf1X,f3X、副走査方向に就いてf1Y,f3Y、第2のレ
ンズの焦点距離をf2、第1及び第2のレンズの回転多面
鏡側の面の曲率半径をそれぞれr1,r3、回転多面鏡の反
射位置と第1のレンズの回転多面鏡側のレンズ面との光
軸上距離をd0、第2のレンズの走査面側レンズ面と第3
のレンズの回転多面鏡側のレンズ面の面間隔をd4、第1
及び第3のレンズの屈折率をそれぞれn1,n3とすると
き、これらは (I) −0.83<f1X/f3X<−0.67 (II) −1.15<f1Y/f3Y<−0.9 (III) 0.75<f2/f<1.17 (IV) −0.22<r1/f<−0.17 (V) −0.80<r3/f<−0.62 (VI) −1.19<r1/d0<−0.92 (VII) 0<d4/f<0.0041 (VIII) 0.80≦n1/n3≦0.95 なる条件を満足する。The combined focal length of the fθ lens system in the main scanning direction is f, the focal lengths of the first and third lenses are f 1X and f 3X in the main scanning direction, and f 1Y and f in the sub-scanning direction. 3Y , the focal length of the second lens is f 2 , the radii of curvature of the surfaces of the first and second lenses on the rotating polygon mirror side are r 1 and r 3 , respectively, the reflection position of the rotating polygon mirror and the first lens The distance on the optical axis from the lens surface on the rotating polygon mirror side is d 0 , and the scanning surface side lens surface of the second lens is
The distance between the lens surfaces on the polygonal mirror side of the lens is d 4 ,
When the refractive indices of the third lens and the third lens are n 1 and n 3 , respectively, they are (I) −0.83 <f 1X / f 3X <−0.67 (II) −1.15 <f 1Y / f 3Y <−0.9 ( III) 0.75 <f 2 /f<1.17 ( IV) -0.22 <r 1 /f<-0.17 (V) -0.80 <r 3 /f<-0.62 (VI) -1.19 <r 1 / d 0 <-0.92 (VII) 0 <d 4 /f<0.0041 (VIII) The condition 0.80 ≦ n 1 / n 3 ≦ 0.95 is satisfied.
以下の説明に於いて、回転多面鏡により理想的に偏向
された光束の主光線の掃引により形成される面を「偏向
面」と称する。さらにレンズ光軸を含み上記偏向面に直
交する平面を以下「偏向直交面」と称する。In the following description, a surface formed by sweeping the principal ray of the light beam ideally deflected by the rotating polygon mirror is referred to as a “deflection surface”. Further, a plane that includes the lens optical axis and is orthogonal to the deflection surface is hereinafter referred to as a “deflection orthogonal surface”.
上記第3のレンズの走査面側のレンズ面が「副走査方
向の曲率が強いトーリック面」であるとは、このトーリ
ック面の「偏向直交面内の曲率半径」が「偏向面内での
曲率半径」よりも小さいことを意味する。この説明から
明らかなように「偏向面」は主走査方向に平行であり、
「偏向反射面」は副走査方向に平行である。The lens surface on the scanning surface side of the third lens is “a toric surface having a strong curvature in the sub-scanning direction” when the “radius of curvature in a plane orthogonal to deflection” of this toric surface is “curvature in the deflection plane”. Radius ". As is clear from this description, the “deflection surface” is parallel to the main scanning direction,
The “deflection reflection surface” is parallel to the sub-scanning direction.
[作用] 上記条件(I)乃至(VIII)は以下の如き意味を有す
る。[Operation] The above conditions (I) to (VIII) have the following meanings.
即ち、条件(I),(II),(III),(V),(VII
I)は、主・副走査方向の像面湾曲量を小さく抑えるた
めの条件であり、これら各条件の範囲を外れると主・副
走査方向の残存像面湾曲量が大きくなり補正できなくな
る。That is, the conditions (I), (II), (III), (V), and (VII)
I) is a condition for suppressing the amount of curvature of field in the main and sub-scanning directions. If the conditions deviate from the ranges of these conditions, the remaining amount of curvature of field in the main and sub-scanning directions becomes large and correction cannot be performed.
また条件(IV),(VI)は、コマ収差を補正するため
の条件であり、これら条件の範囲を外れるとコマ収差が
発生して、高密度走査に適合しうる光スポットが得られ
ない。Conditions (IV) and (VI) are conditions for correcting coma aberration. If the conditions are out of the range, coma aberration occurs, and a light spot suitable for high-density scanning cannot be obtained.
条件(VII)は、fθレンズ系をコンパクトにするた
めの条件であり、上限を越えると第3のレンズの外径が
大きくなりってfθレンズ径をコンパクトにまとめるこ
とが出来なくなる。The condition (VII) is a condition for making the fθ lens system compact. If the upper limit is exceeded, the outside diameter of the third lens becomes large, so that it becomes impossible to compact the fθ lens diameter.
以下、図面を参照しながら説明する。 This will be described below with reference to the drawings.
第1図は、本発明のfθレンズ系を用いた光走査装置
の1例を説明図的に略示している。また、第2図は、第
1図の光学配置を副走査方向から見た状態、即ち偏向面
内での様子を示している。FIG. 1 schematically illustrates an example of an optical scanning device using the fθ lens system of the present invention. FIG. 2 shows a state of the optical arrangement of FIG. 1 viewed from the sub-scanning direction, that is, a state in a deflection plane.
光源もしくは光源と集光装置とからなる光源装置1か
らの略平行な光束は線像結像光学系たるシリンダーレン
ズ2により、回転多面鏡3の反射面4の近傍に偏向面と
平行な結像として結像する。A substantially parallel light beam from a light source or a light source device 1 including a light source and a light condensing device is imaged by a cylinder lens 2 serving as a line image forming optical system in the vicinity of a reflection surface 4 of a rotary polygon mirror 3 in parallel with a deflection surface. As an image.
反射面4により反射された光束は、本発明のfθレン
ズ系により、走査面8上にスポット状に結像され、回転
多面鏡3の矢印方向への等速回転に従い、走査面8を等
速的に走査する。The light beam reflected by the reflecting surface 4 is imaged into a spot on the scanning surface 8 by the fθ lens system of the present invention, and the scanning surface 8 is moved at a constant speed according to the constant speed rotation of the rotary polygon mirror 3 in the arrow direction. Scanning.
fθレンズ系は第1のレンズ5と第2のレンズ6と第
3のレンズ7とにより構成され、レンズ5は回転多面鏡
3の側、レンズ7は走査面8の側に配設され、レンズ6
はこれらレンズ5,7の間に配設される。偏向面内で見る
と第2図に示すように、レンズ5〜7によるfθレンズ
系は光源側の無限遠と走査面7の位置とを幾何光学的な
共役関係に結び付けている。The fθ lens system includes a first lens 5, a second lens 6, and a third lens 7, the lens 5 is disposed on the side of the rotary polygon mirror 3, the lens 7 is disposed on the side of the scanning surface 8, and the lens 6
Is disposed between the lenses 5 and 7. As viewed in the deflection plane, as shown in FIG. 2, the fθ lens system including the lenses 5 to 7 links the infinity on the light source side and the position of the scanning plane 7 to a geometric optic conjugate relationship.
これに対し偏光直交面内で見ると、即ち副走査方向に
関してはfθレンズ系は回転多面鏡3の反射位置と走査
面8とを幾何光学的に略共役な関係に結び付けている。
従って、第3図に示すように反射面4が符号4′で示す
ように面倒れを生じてもfθレンズ系による、走査面8
上の結像位置は副走査方向(第3図上下方向)には殆ど
移動しない。従って面倒れは補正される。On the other hand, when viewed in a plane orthogonal to the polarization, that is, in the sub-scanning direction, the fθ lens system links the reflection position of the rotary polygon mirror 3 and the scanning plane 8 to a geometrically optically conjugate relationship.
Therefore, even if the reflecting surface 4 is tilted as shown by reference numeral 4 'as shown in FIG.
The upper imaging position hardly moves in the sub-scanning direction (vertical direction in FIG. 3). Therefore, the tilting is corrected.
さて回転多面鏡3が回転すると、反射面4は軸3Aを中
心として回転するため、第4図に示すように反射面の回
転に伴い結像の結像位置Pと反射面4との間に位置ずれ
ΔXが生じ、fθレンズ系による線像の共役像の位置
P′は走査面8からΔX′だけずれる。When the rotary polygon mirror 3 rotates, the reflecting surface 4 rotates about the axis 3A. Therefore, as shown in FIG. 4, the reflecting surface 4 rotates between the image forming position P and the reflecting surface 4 as the reflecting surface rotates. A position shift ΔX occurs, and the position P ′ of the conjugate image of the line image by the fθ lens system is shifted from the scanning plane 8 by ΔX ′.
このずれ量ΔX′はfθレンズ系の副走査方向の横倍
率をβとして、周知の如くΔX′=β2ΔXで与えられ
る。The shift amount ΔX ′ is given by ΔX ′ = β 2 ΔX, as is well known, where β is the lateral magnification of the fθ lens system in the sub-scanning direction.
反射面の回転に伴う線像の位置と反射面との相対的な
位置ずれは、偏光面内で2次元的に生じ、且つレンズ光
軸に対しても非対象に移動する。The relative displacement between the position of the line image and the reflection surface due to the rotation of the reflection surface occurs two-dimensionally in the polarization plane, and moves asymmetrically with respect to the lens optical axis.
従って、第1図の如き光走査装置ではfθレンズ系の
主・副走査方向の像面湾曲に良好に補正する必要があ
る。また主走査方向に関してはリニアリティ即ちfθ特
性が良好に補正されねばならないことは言うまでもな
い。Therefore, in the optical scanning device as shown in FIG. 1, it is necessary to satisfactorily correct the field curvature of the fθ lens system in the main and sub scanning directions. Needless to say, the linearity, that is, the fθ characteristic, must be properly corrected in the main scanning direction.
[実施例] 以下、具体的に実施例を11例挙げる。[Examples] Eleven examples will be specifically described below.
各実施例において、fはfθレンズ系の主走査方向に
関する合成焦点距離、即ち偏光面に平行な面内における
合成焦点距離を表す。2θは偏光角(単位:度)を示
す。In each embodiment, f represents the combined focal length of the fθ lens system in the main scanning direction, that is, the combined focal length in a plane parallel to the polarization plane. 2θ indicates a polarization angle (unit: degree).
rixは回転多面鏡の側から数えてi番目のレンズ面の
偏光面内の曲率半径、riYはi番目のレンズ面の偏光直
交面内の曲率半径、diはi番目のレンズ面間距離、doは
回転多面鏡の反射面から第1番目のレンズ面までの距
離、njは回転多面鏡の側からj番目のレンズの屈折率を
示す。r ix curvature of the polarization plane of the i-th lens surface counted from the side of the rotating polygon mirror radius, r iY the i-th lens surface curvature radius of polarization orthogonal plane of, d i is between i-th lens surface the distance, d o is the distance from the reflecting surface of the rotary polygon mirror to the first lens surface, n j denotes the refractive index of the j-th lens from the side of the rotating polygon mirror.
さらに、Km(m=1〜8)を持って、条件(I)〜
(VIII)に於ける各条件パラメーターを表す。Further, with K m (m = 1 to 8), conditions (I) to
This represents each condition parameter in (VIII).
なお、i=1,3,4,5に対してはriX=riYであり、特に
i=1,3に就いてはr1X=r1Y,r3X=r3Yは、条件式(I
V),(V),(VI)に関連してr1,r3として説明したも
のである。Incidentally, for i = 1, 3, 4, 5 is r iX = r iY, r 1X = r 1Y are particularly regard to i = 1,3, r 3X = r 3Y the conditional expressions (I
These are described as r 1 and r 3 in relation to (V), (V) and (VI).
また、回転多面鏡の内接円半径をR、反射面数をNと
する。反射面へ入射する光束の主光線とfθレンズ系の
光軸とのなす角は60度である。The radius of the inscribed circle of the rotating polygon mirror is R, and the number of reflecting surfaces is N. The angle between the principal ray of the light beam incident on the reflecting surface and the optical axis of the fθ lens system is 60 degrees.
実施例1 f=903.3,2θ=58,K1=−0.687,K2=−1.051, K3=0.815,K4=−0.183,K5=−0.646,K6=−0.988, K7=0.0011,K8=0.938,R=35,N=6,do=167.00 i riX riY di j ni 1 −165.00 −165.00 12.18 1 1.67500 2 ∞ 362.00 12.93 3 −583.23 −583.23 29.70 2 1.51118 4 −232.72 −232.72 1.00 5 ∞ ∞ 57.75 3 1.78571 6 −279.49 −124.40 第5図に、実施例1に関する球面収差SAの図、コマ収
差COMAの図、fθ特性DISTの図、像面湾曲DS,DMの図を
示す。fθ特性は理想像高fθに対する実際の像高hを
用いて、 (h−fθ)・100/(fθ) で定義され単位は%である。また像面湾曲の図で実線は
副走査方向の像面湾曲、破線は主走査方向の像面湾曲を
示す。像面湾曲は回転多面鏡の回転に伴う入射瞳位置の
変動により非対称的であるので全偏光領域にわたって示
してある。Example 1 f = 903.3,2θ = 58, K 1 = -0.687, K 2 = -1.051, K 3 = 0.815, K 4 = -0.183, K 5 = -0.646, K 6 = -0.988, K 7 = 0.0011 , K 8 = 0.938, R = 35, n = 6, d o = 167.00 i r iX r iY d i j n i 1 -165.00 -165.00 12.18 1 1.67500 2 ∞ 362.00 12.93 3 -583.23 -583.23 29.70 2 1.51118 4 - 232.72 −232.72 1.00 5 ∞ 57.75 3 1.78571 6 −279.49 −124.40 FIG. 5 shows a diagram of the spherical aberration SA, a diagram of the coma aberration COMA, a diagram of the fθ characteristic DIST, and a diagram of the field curvature DS and DM according to the first embodiment. Is shown. The fθ characteristic is defined as (h−fθ) · 100 / (fθ) using the actual image height h with respect to the ideal image height fθ, and the unit is%. In the figures of the field curvature, the solid line indicates the field curvature in the sub-scanning direction, and the broken line indicates the field curvature in the main scanning direction. Since the field curvature is asymmetric due to the change in the position of the entrance pupil due to the rotation of the rotating polygon mirror, it is shown over the entire polarization range.
実施例2 f=903.3,2θ=58,K1=−0.684,K2=−0.965, K3=0.864,K4=−0.183,K5=−0.755,K6=−0.988, K7=0.0011,K8=0.897,R=35,N=6,do=167.00 i riX riY di j ni 1 −165.00 −165.00 11.41 1 1.51118 2 ∞ 188.20 28.24 3 −682.23 −682.23 32.98 2 1.51118 4 −255.87 −255.87 1.00 5 ∞ ∞ 55.54 3 1.68439 6 −322.94 −120.70 第6図に、実施例2に関する諸収差およびfθ特性の
図を示す。Example 2 f = 903.3, 2θ = 58, K 1 = −0.684, K 2 = −0.965, K 3 = 0.864, K 4 = −0.183, K 5 = −0.755, K 6 = −0.988, K 7 = 0.0011 , K 8 = 0.897, R = 35, n = 6, d o = 167.00 i r iX r iY d i j n i 1 -165.00 -165.00 11.41 1 1.51118 2 ∞ 188.20 28.24 3 -682.23 -682.23 32.98 2 1.51118 4 - 255.87 −255.87 1.00 5 ∞ 55.54 3 1.68439 6 −322.94 −120.70 FIG. 6 shows various aberrations and fθ characteristics of the second embodiment.
実施例3 f=903.3,2θ=58,K1=−0.715,K2=−1.089, K3=0.865,K4=−0.194,K5=−0.653,K6=−1.048, K7=0.0011,K8=0.933,R=35,N=6,do=167.00 i riX riY di j ni 1 −175.00 −175.00 13.36 1 1.70217 2 ∞ 367.00 12.33 3 −590.09 −590.09 27.69 2 1.51118 4 −242.04 −242.04 1.00 5 ∞ ∞ 55.19 3 1.82485 6 −287.66 −126.59 第7図に、実施例3に関する諸収差およびfθ特性の
図を示す。Example 3 f = 903.3, 2θ = 58, K 1 = −0.715, K 2 = −1.089, K 3 = 0.865, K 4 = −0.194, K 5 = −0.653, K 6 = −1.048, K 7 = 0.0011 , K 8 = 0.933, R = 35, n = 6, d o = 167.00 i r iX r iY d i j n i 1 -175.00 -175.00 13.36 1 1.70217 2 ∞ 367.00 12.33 3 -590.09 -590.09 27.69 2 1.51118 4 - 242.04 -242.04 1.00 5 ∞ 55.19 3 1.82485 6 -287.66 -126.59 FIG. 7 shows various aberrations and fθ characteristics of the third embodiment.
実施例4 f=903.3,2θ=58,K1=−0.696,K2=−1.039, K3=0.842,K4=−0.193,K5=−0.763,K6=−1.044, K7=0.0011,K8=0.923,R=35,N=6,do=167.00 i riX riY di j ni 1 −174.35 −174.35 12.63 1 1.60909 2 ∞ 263.00 18.76 3 −688.88 −688.88 30.66 2 1.51118 4 −252.20 −252.20 1.00 5 ∞ ∞ 54.05 3 1.74405 6 −305.93 −121.88 第8図に、実施例4に関する諸収差およびfθ特性の
図を示す。Example 4 f = 903.3, 2θ = 58, K 1 = −0.696, K 2 = −1.039, K 3 = 0.842, K 4 = −0.193, K 5 = −0.763, K 6 = −1.044, K 7 = 0.0011 , K 8 = 0.923, R = 35, n = 6, d o = 167.00 i r iX r iY d i j n i 1 -174.35 -174.35 12.63 1 1.60909 2 ∞ 263.00 18.76 3 -688.88 -688.88 30.66 2 1.51118 4 - 252.20 -252.20 1.00 5 ∞ 54.05 3 1.74405 6 -305.93 -121.88 FIG. 8 shows various aberrations and fθ characteristics of the fourth embodiment.
実施例5 f=903.3,2θ=58,K1=−0.676,K2=−1.038, K3=0.806,K4=−0.172,K5=−0.633,K6=−0.932, K7=0.0011,K8=0.923,R=35,N=6,do=167.00 i riX riY di j ni 1 −155.64 −155.64 11.35 1 1.60909 2 ∞ 322.70 15.48 3 −572.10 −572.10 30.81 2 1.51118 4 −229.61 −229.61 1.00 5 ∞ ∞ 58.89 3 1.74405 6 −281.25 −122.42 第9図に、実施例5に関する諸収差およびfθ特性の
図を示す。Example 5 f = 903.3, 2θ = 58, K 1 = −0.676, K 2 = −1.038, K 3 = 0.806, K 4 = −0.172, K 5 = −0.633, K 6 = −0.932, K 7 = 0.0011 , K 8 = 0.923, R = 35, n = 6, d o = 167.00 i r iX r iY d i j n i 1 -155.64 -155.64 11.35 1 1.60909 2 ∞ 322.70 15.48 3 -572.10 -572.10 30.81 2 1.51118 4 - 229.61 −229.61 1.00 5 ∞ 58.89 3 1.74405 6 −281.25 −122.42 FIG. 9 shows various aberrations and fθ characteristics of the fifth embodiment.
実施例6 f=903.3,2θ=58,K1=−0.718,K2=−0.980, K3=0.928,K4=−0.199,K5=−0.794,K6=−1.078, K7=0.0028,K8=0.890,R=35,N=6,do=167.00 i riX riY di j ni 1 −180.00 −180.00 13.70 1 1.52447 2 ∞ 180.00 27.37 3 −717.24 −717.24 22.37 2 1.51118 4 −272.33 −272.33 2.50 5 ∞ ∞ 53.04 3 1.71221 6 −340.28 −123.05 第10図に、実施例6に関する諸収差およびfθ特性の
図を示す。Example 6 f = 903.3, 2θ = 58, K 1 = −0.718, K 2 = −0.980, K 3 = 0.928, K 4 = −0.199, K 5 = −0.794, K 6 = −1.078, K 7 = 0.0028 , K 8 = 0.890, R = 35, n = 6, d o = 167.00 i r iX r iY d i j n i 1 -180.00 -180.00 13.70 1 1.52447 2 ∞ 180.00 27.37 3 -717.24 -717.24 22.37 2 1.51118 4 - 272.33 -272.33 2.50 5 ∞ ∞ 53.04 3 1.71221 6 -340.28 -123.05 FIG. 10 shows various aberrations and fθ characteristics of the sixth embodiment.
実施例7 f=306.9,2θ=56,K1=−0.811,K2=−1.143, K3=1.159,K4=−0.210,K5=−0.642,K6=−1.143, K7=0.004,K8=0.828,R=37.5,N=8,do=56.5 i riX riY di j ni 1 −64.60 −64.60 5.10 1 1.51118 2 ∞ 74.12 7.03 3 −197.00 −197.00 11.00 2 1.51118 4 −96.34 −96.34 1.23 5 ∞ ∞ 21.00 3 1.82485 6 −128.489 −48.125 第11図に、実施例7に関する諸収差およびfθ特性の
図を示す。Example 7 f = 306.9, 2θ = 56, K 1 = −0.811, K 2 = −1.143, K 3 = 1.159, K 4 = −0.210, K 5 = −0.642, K 6 = −1.143, K 7 = 0.004 , K 8 = 0.828, R = 37.5, n = 8, d o = 56.5 i r iX r iY d i j n i 1 -64.60 -64.60 5.10 1 1.51118 2 ∞ 74.12 7.03 3 -197.00 -197.00 11.00 2 1.51118 4 - 96.34 -96.34 1.23 5 ∞ 21.00 3 1.82485 6 -128.489 -48.125 FIG. 11 shows various aberrations and fθ characteristics of the seventh embodiment.
実施例8 f=436.59,2θ=60,K1=−0.742,K2=−1.084, K3=0.957,K4=−0.213,K5=−0.761,K6=−1.163, K7=0.0023,K8=0.901,R=42.0,N=8,do=80.0 i riX riY di j ni 1 −93.00 −93.00 7.10 1 1.60909 2 ∞ 127.50 8.76 3 −332.10 −332.10 15.00 2 1.51118 4 −132.00 −132.00 1.00 5 ∞ ∞ 29.45 3 1.78571 6 −161.70 −63.18 第12図に、実施例8に関する諸収差およびfθ特性の
図を示す。Example 8 f = 436.59, 2θ = 60, K 1 = −0.742, K 2 = −1.084, K 3 = 0.957, K 4 = −0.213, K 5 = −0.761, K 6 = −1.163, K 7 = 0.0023 , K 8 = 0.901, R = 42.0, n = 8, d o = 80.0 i r iX r iY d i j n i 1 -93.00 -93.00 7.10 1 1.60909 2 ∞ 127.50 8.76 3 -332.10 -332.10 15.00 2 1.51118 4 - 132.00 −132.00 1.00 5 ∞ ∞ 29.45 3 1.78571 6 −161.70 −63.18 FIG. 12 shows various aberrations and fθ characteristics of the eighth embodiment.
実施例9 f=831.76,2θ=57.94,K1=−0.716,K2=−1.060, K3=0.887,K4=−0.198,K5=−0.745,K6=−1.071, K7=0.0024,K8=0.911,R=32.5,N=6,do=154.0 i riX riY di j ni 1 −165.00 −165.00 13.00 1 1.60910 2 ∞ 243.50 16.59 3 −619.50 −619.50 27.75 2 1.51118 4 −238.00 −238.00 2.00 5 ∞ ∞ 49.75 3 1.76605 6 −290.00 −115.30 第13図に、実施例9に関する諸収差およびfθ特性の
図を示す。Example 9 f = 831.76, 2θ = 57.94, K 1 = −0.716, K 2 = −1.060, K 3 = 0.887, K 4 = −0.198, K 5 = −0.745, K 6 = −1.071, K 7 = 0.0024 , K 8 = 0.911, R = 32.5, n = 6, d o = 154.0 i r iX r iY d i j n i 1 -165.00 -165.00 13.00 1 1.60910 2 ∞ 243.50 16.59 3 -619.50 -619.50 27.75 2 1.51118 4 - 238.00 -238.00 2.00 5 ∞ ∞ 49.75 3 1.76605 6 -290.00 -115.30 FIG. 13 shows various aberrations and fθ characteristics of the ninth embodiment.
実施例10 f=399.36,2θ=50.8,K1=−0.723,K2=−1.076, K3=0.925,K4=−0.202,K5=−0.734,K6=−1.072, K7=0.0025,K8=0.899,R=32.335,N=8,do=75.10 i riX riY di j ni 1 −80.50 −80.50 7.40 1 1.61420 2 ∞ 125.50 8.23 3 −293.00 −293.00 13.70 2 1.51390 4 −117.00 −117.00 1.00 5 ∞ ∞ 22.30 3 1.79465 6 −144.00 −58.17 第14図に、実施例10に関する諸収差およびfθ特性の
図を示す。Example 10 f = 399.36, 2θ = 50.8, K 1 = −0.723, K 2 = −1.076, K 3 = 0.925, K 4 = −0.202, K 5 = −0.734, K 6 = −1.072, K 7 = 0.0025 , K 8 = 0.899, R = 32.335, n = 8, d o = 75.10 i r iX r iY d i j n i 1 -80.50 -80.50 7.40 1 1.61420 2 ∞ 125.50 8.23 3 -293.00 -293.00 13.70 2 1.51390 4 - 117.00 -117.00 1.00 5 ∞ 22.30 3 1.79465 6 -144.00 -58.17 FIG. 14 shows various aberrations and fθ characteristics of the tenth embodiment.
実施例11 f=489.4,2θ=44.6,K1=−0.756,K2=−1.066, K3=0.965,K4=−0.211,K5=−0.725,K6=−1.161, K7=0.0026,K8=0.893,R=38.5,N=12,do=89.0 i riX riY di j ni 1 −103.30 −103.30 7.40 1 1.63180 2 ∞ 120.00 11.02 3 −355.00 −355.00 15.00 2 1.52223 4 −147.60 −147.60 1.26 5 ∞ ∞ 21.30 3 1.82715 6 −179.00 −67.33 第15図に、実施例11に関する諸収差およびfθ特性の
図を示す。Example 11 f = 489.4, 2θ = 44.6, K 1 = −0.756, K 2 = −1.066, K 3 = 0.965, K 4 = −0.211, K 5 = −0.725, K 6 = −1.161, K 7 = 0.0026 , K 8 = 0.893, R = 38.5, n = 12, d o = 89.0 i r iX r iY d i j n i 1 -103.30 -103.30 7.40 1 1.63180 2 ∞ 120.00 11.02 3 -355.00 -355.00 15.00 2 1.52223 4 - 147.60 -147.60 1.265 5 ∞ 21.30 3 1.82715 6 -179.00 -67.33 FIG. 15 shows various aberrations and fθ characteristics of the eleventh embodiment.
[発明の効果] 以上、本発明によれば光走査装置に於ける新規なfθ
レンズ系を提供できる。このレンズ系は上記の如く、主
・副走査方向とも像面湾曲が小さいので高密度の書き込
みが可能であり、面倒れ補正に長尺のシリンダーレンズ
を必要としないので、光走査装置をコンパクトに構成す
ることが可能となる。[Effects of the Invention] As described above, according to the present invention, a novel fθ in the optical scanning device
A lens system can be provided. As described above, this lens system has a small field curvature in both the main and sub-scanning directions, so that high-density writing is possible, and since a long cylinder lens is not required for correcting surface tilt, the optical scanning device can be made compact. It becomes possible to configure.
第1図は、本発明のfθレンズ系を使用した光走査装置
の概要を示す概略斜視図、第2図乃至第3図は、本発明
のfθレンズ系を説明するための図、第4図は、回転多
面鏡の回転にともづく入射瞳位置の変動を説明するため
の図、第5図乃至第15図は収差図である。 5……第1のレンズ、6……第2のレンズ、7……第3
のレンズFIG. 1 is a schematic perspective view showing an outline of an optical scanning device using the fθ lens system of the present invention. FIGS. 2 and 3 are diagrams for explaining the fθ lens system of the present invention. FIG. 5 is a diagram for explaining a change in the position of the entrance pupil due to the rotation of the rotating polygon mirror, and FIGS. 5 to 15 are aberration diagrams. 5 first lens, 6 second lens, 7 third
Lens
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G02B 26/10 G02B 13/00──────────────────────────────────────────────────続 き Continuation of front page (58) Field surveyed (Int. Cl. 6 , DB name) G02B 26/10 G02B 13/00
Claims (1)
に長い線像に結像させ、この線像の結像位置の近傍に反
射面を有する回転多面鏡により上記光束を等角速度的に
偏向し、この偏向光束を結像レンズ系により走査面上に
スポット状に結像させて走査面を光走査する光走査装置
において、回転多面鏡により偏向された光束を走査面上
に結像させるレンズ系であって、 副走査方向に関して、回転多面鏡の反射位置と走査面と
を幾何光学的に略共役な関係とする機能を持ち、主走査
方向に関してはfθ機能を有し、 回転多面鏡の側から走査面側へ向かって第1乃至第3の
レンズを順次配列してなる3群3枚構成であって、 上記第1のレンズは回転多面鏡の側のレンズ面が凹の球
面で、走査面側のレンズ面が副走査対応方向にのみパワ
ーを持つ凹のシリンダー面である負の単レンズであり、
上記第2のレンズは回転多面鏡の側に凹面に向けた正メ
ニスカスレンズであり、上記第3のレンズは回転多面鏡
の側のレンズ面が平面であり、走査面側のレンズ面が副
走査方向の曲率が強いトーリック面である正単レンズで
あり、 主走査方向に於ける合成焦点距離をf、第1及び第3の
レンズの焦点距離を、主走査方向に就いてf1X,f3X、副
走査方向に就いてf1Y,f3Y、第2のレンズの焦点距離をf
2、第1及び第2のレンズの回転多面鏡側の面の曲率半
径をそれぞれr1,r3、回転多面鏡の反射位置と第1のレ
ンズの回転多面鏡側のレンズ面との光軸上距離をd0、第
2のレンズの走査面側レンズ面と第3のレンズの回転多
面鏡側のレンズ面の面間隔をd4、第1及び第3のレンズ
の屈折率をそれぞれn1,n3とするとき、これらが (I) −0.83<f1X/f3X<−0.67 (II) −1.15<f1Y/f3Y<−0.9 (III) 0.75<f2/f<1.17 (IV) −0.22<r1/f<−0.17 (V) −0.80<r3/f<−0.62 (VI) −1.19<r1/d0<−0.92 (VII) 0<d4/f<0.0041 (VIII) 0.80≦n1/n3≦0.95 なる条件を満足することを特徴とする、光走査装置にお
けるfθレンズ系。1. A method according to claim 1, wherein a substantially parallel light beam from the light source is formed into a long line image in a direction corresponding to the main scanning, and the light beam is subjected to uniform angular velocity by a rotary polygon mirror having a reflecting surface near an image forming position of the line image. In a light scanning device that optically scans the scanning surface by forming an image of the deflected light beam in a spot shape on the scanning surface by the imaging lens system, the light beam deflected by the rotary polygon mirror is imaged on the scanning surface. A lens system having a function of making the reflection position of the rotary polygonal mirror and the scanning surface substantially geometrically conjugate with each other in the sub-scanning direction, and having an fθ function in the main scanning direction; A three-group, three-element configuration in which first to third lenses are sequentially arranged from the mirror side toward the scanning surface side, wherein the first lens has a concave spherical surface on the rotating polygon mirror side. And the lens surface on the scanning surface side has power only in the direction corresponding to the sub-scanning A negative single lens is a cylinder surface,
The second lens is a positive meniscus lens having a concave surface facing the rotary polygon mirror, and the third lens has a flat lens surface on the rotary polygon mirror side and a sub-scanning lens surface on the scanning surface side. A positive single lens which is a toric surface having a strong curvature in the direction. The combined focal length in the main scanning direction is f, and the focal lengths of the first and third lenses are f 1X and f 3X in the main scanning direction. , F 1Y and f 3Y in the sub-scanning direction, and the focal length of the second lens is f
2. The radii of curvature of the surfaces of the first and second lenses on the rotary polygon mirror side are r 1 and r 3 , respectively, and the optical axes of the reflection position of the rotary polygon mirror and the lens surface of the first lens on the rotary polygon mirror side. The upper distance is d 0 , the surface distance between the scanning surface side lens surface of the second lens and the lens surface of the third lens on the rotating polygon mirror side is d 4 , and the refractive indexes of the first and third lenses are n 1. when the n 3, it is (I) -0.83 <f 1X / f 3X <-0.67 (II) -1.15 <f 1Y / f 3Y <-0.9 (III) 0.75 <f 2 /f<1.17 (IV ) −0.22 <r 1 /f<−0.17 (V) −0.80 <r 3 /f<−0.62 (VI) −1.19 <r 1 / d 0 <−0.92 (VII) 0 <d 4 /f<0.0041 ( VIII) An fθ lens system in an optical scanning device, characterized by satisfying the following condition: 0.80 ≦ n 1 / n 3 ≦ 0.95.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10849389A JP2790845B2 (en) | 1989-04-27 | 1989-04-27 | Fθ lens system in optical scanning device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10849389A JP2790845B2 (en) | 1989-04-27 | 1989-04-27 | Fθ lens system in optical scanning device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02285322A JPH02285322A (en) | 1990-11-22 |
JP2790845B2 true JP2790845B2 (en) | 1998-08-27 |
Family
ID=14486173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10849389A Expired - Lifetime JP2790845B2 (en) | 1989-04-27 | 1989-04-27 | Fθ lens system in optical scanning device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2790845B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8424364B2 (en) * | 2008-11-13 | 2013-04-23 | Npoint, Inc. | Active scanner bow compensator |
-
1989
- 1989-04-27 JP JP10849389A patent/JP2790845B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02285322A (en) | 1990-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2563260B2 (en) | Optical beam scanning device | |
JP3061829B2 (en) | Fθ lens system in optical scanning device | |
JP2718735B2 (en) | Fθ lens system in optical scanning device | |
JP2804512B2 (en) | Fθ lens system in optical scanning device | |
JP2550153B2 (en) | Optical scanning device | |
JP2790845B2 (en) | Fθ lens system in optical scanning device | |
JP2945097B2 (en) | Telecentric fθ lens | |
JP3034565B2 (en) | Telecentric fθ lens | |
JP2702516B2 (en) | fθ lens | |
JPH07119897B2 (en) | Optical scanning device | |
JP2738857B2 (en) | Fθ lens system in optical scanning device | |
JP2511904B2 (en) | Optical beam scanning device | |
JP2986949B2 (en) | Imaging lens system in optical scanning device | |
JP2695208B2 (en) | Fθ lens system in optical scanning device | |
JP2774546B2 (en) | Fθ lens system in optical scanning device | |
JP2927846B2 (en) | Fθ lens system in optical scanning device | |
JP2834793B2 (en) | Fθ lens system in optical scanning device | |
JP2718743B2 (en) | Fθ lens system in optical scanning device | |
JP3364525B2 (en) | Scanning imaging lens and optical scanning device | |
JP2583856B2 (en) | Optical beam scanning device | |
JP4445059B2 (en) | Scanning imaging lens and optical scanning device | |
JP2840354B2 (en) | Fθ lens system in optical scanning device | |
JP2774586B2 (en) | Fθ lens system in optical scanning device | |
JP2790839B2 (en) | Fθ lens system in optical scanning device | |
JP3658439B2 (en) | Scanning imaging lens and optical scanning device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |