[go: up one dir, main page]

JP2615532B2 - Zero compensation method for high-precision differential pressure measuring device - Google Patents

Zero compensation method for high-precision differential pressure measuring device

Info

Publication number
JP2615532B2
JP2615532B2 JP3224255A JP22425591A JP2615532B2 JP 2615532 B2 JP2615532 B2 JP 2615532B2 JP 3224255 A JP3224255 A JP 3224255A JP 22425591 A JP22425591 A JP 22425591A JP 2615532 B2 JP2615532 B2 JP 2615532B2
Authority
JP
Japan
Prior art keywords
valve
pressure
differential pressure
zero point
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3224255A
Other languages
Japanese (ja)
Other versions
JPH0560641A (en
Inventor
隆 細馬
常道 賀羽
Original Assignee
動力炉・核燃料開発事業団
株式会社司測研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 動力炉・核燃料開発事業団, 株式会社司測研 filed Critical 動力炉・核燃料開発事業団
Priority to JP3224255A priority Critical patent/JP2615532B2/en
Publication of JPH0560641A publication Critical patent/JPH0560641A/en
Application granted granted Critical
Publication of JP2615532B2 publication Critical patent/JP2615532B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、流体の槽内レベルの
測定、流体の密度測定、流体の流量や流速の測定、さら
には大気圧の測定等に際して利用される高精度差圧測定
装置の零点を補正する方法の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-precision differential pressure measuring apparatus used for measuring the level of a fluid in a tank, measuring the density of a fluid, measuring the flow rate and flow velocity of a fluid, and measuring the atmospheric pressure. The present invention relates to an improvement in a method for correcting a zero point.

【0002】[0002]

【従来の技術】槽内に収容した液体の液位、液量および
密度の測定等においては、先端が液中に位置するように
設置した細管を用いて液内にエアを吹き込み、背圧を測
定するエアパージ法が広く利用されている。エアパージ
法の一例を図1を参照して説明する。図1は、槽1内に
収容された液体状の核燃料物質2の液位を測定する際の
差圧測定装置の例を説明するものであって、槽内に2本
のエアパージ用細管3、4が挿入されている。細管3の
先端は液中の所定深さに配置され、その背圧は弁V1を
有する高圧側配管5を介して差圧変換器6の高圧側に印
加される。一方、細管4の先端は液位より上方に位置
し、その背圧は弁V3を有する低圧側配管7を介して差
圧変圧器6の低圧側に印加される。高圧側配管5と低圧
側配管7は、弁V1および弁V3の下流側で短絡用配管
8により接続されていて、この短絡用配管8には弁V2
が配設されている。差圧測定に際しては、弁V1とV3
を開、弁V2を閉とした状態で細管3、4の背圧の差を
差圧変換器で測定することができる。
2. Description of the Related Art In measuring the level, quantity and density of a liquid contained in a tank, air is blown into the liquid using a thin tube whose tip is located in the liquid to reduce the back pressure. The air purge method for measuring is widely used. An example of the air purge method will be described with reference to FIG. FIG. 1 illustrates an example of a differential pressure measuring device for measuring a liquid level of a liquid nuclear fuel material 2 contained in a tank 1, and includes two air purge thin tubes 3 in a tank. 4 has been inserted. The tip of the thin tube 3 is arranged at a predetermined depth in the liquid, and the back pressure is applied to the high pressure side of the differential pressure transducer 6 via the high pressure side pipe 5 having the valve V1. On the other hand, the tip of the thin tube 4 is located above the liquid level, and the back pressure is applied to the low pressure side of the differential pressure transformer 6 via the low pressure side pipe 7 having the valve V3. The high-pressure pipe 5 and the low-pressure pipe 7 are connected by a short-circuit pipe 8 on the downstream side of the valves V1 and V3.
Are arranged. When measuring the differential pressure, the valves V1 and V3
Is opened, and the back pressure difference between the thin tubes 3 and 4 can be measured by the differential pressure converter with the valve V2 closed.

【0003】核燃料物質を収容する槽は比較的小型であ
るため、差圧も数百mm〜数千mm水柱と小さい。ま
た、核燃料物質の液量は正確に測定しなければならず、
そのため基となる差圧の測定に際しては±0.2mm水
柱程度の高精度が求められる。しかしながら差圧測定装
置に使用される差圧変換器は、周囲温度が変化すると1
℃当たり±0.2mm水柱程度零点が移動し、測定値に
その変化分が加わって誤差を生じることになる。そのた
め差圧変換器の零点を補正することが必要となる。
[0003] Since the tank containing the nuclear fuel material is relatively small, the pressure difference is as small as several hundred mm to several thousand mm of water. In addition, the amount of nuclear fuel material must be measured accurately,
Therefore, when measuring the base differential pressure, high accuracy of about ± 0.2 mm water column is required. However, the differential pressure transducer used in the differential pressure measuring device is one when the ambient temperature changes.
The zero point moves by about ± 0.2 mm water column per degree Celsius, and the change is added to the measured value to cause an error. Therefore, it is necessary to correct the zero point of the differential pressure converter.

【0004】図1の差圧測定装置における差圧変換器の
零点補正は、従来から次のような工程で行われていた。
なお、差圧変化器における圧力変化と弁の開閉状態との
関係を図3に示す。
The correction of the zero point of the differential pressure converter in the differential pressure measuring apparatus shown in FIG. 1 has conventionally been performed by the following steps.
FIG. 3 shows the relationship between the pressure change in the differential pressure changer and the open / closed state of the valve.

【0005】1) 差圧測定状態では、弁V1開、弁V2
閉、弁V3開の状態で、高圧側圧力と低圧側圧力がそれ
ぞれ差圧変換器6の高圧側と低圧側に印加され、差圧が
測定される。この状態で測定していると、温度変化によ
って零点が移動し、測定値にその変化分が加わって誤差
を生じる。
[0005] 1) In the differential pressure measurement state, the valve V1 is opened and the valve V2 is opened.
With the valve closed and the valve V3 open, the high-pressure side pressure and the low-pressure side pressure are respectively applied to the high-pressure side and the low-pressure side of the differential pressure converter 6, and the differential pressure is measured. If the measurement is performed in this state, the zero point moves due to a temperature change, and the change is added to the measured value to cause an error.

【0006】2) そこで、零点補正を開始する。すなわ
ち、3個の弁を同時に開閉して弁V1を閉、弁V2を
開、弁V3を閉とすると、差圧変換器6の両端が短絡さ
れた状態となり、温度変化により移動した零点出力VD
が得られ、これがディジタルメモリ9に入力される。
2) Then, zero point correction is started. That is, when the three valves are simultaneously opened and closed, the valve V1 is closed, the valve V2 is opened, and the valve V3 is closed, both ends of the differential pressure transducer 6 are short-circuited, and the zero-point output VD moved due to the temperature change.
Which is input to the digital memory 9.

【0007】3) ディジタルメモリ9に零点補正指令を
与えると、VDはその符号が反転されて−VDとなり、
この値を加算器10でVDに加えることによって、補正
出力0(=VD−VD)が得られる。
3) When a zero point correction command is given to the digital memory 9, the sign of VD is inverted to -VD,
By adding this value to VD by the adder 10, a correction output 0 (= VD-VD) is obtained.

【0008】4) このようにして零点を補正した後は、
3個の弁を1)の開閉状態に戻し、差圧測定状態へ復帰さ
せる。
4) After correcting the zero point in this way,
Return the three valves to the open / closed state in 1) and return to the differential pressure measurement state.

【0009】[0009]

【発明が解決しようとする課題】上述した従来の零点補
正方法によれば、温度変化による差圧変換器の零点移動
を効果的に補正することができる。しかしながら、差圧
変換器の零点は温度変化によってのみ移動するものでは
なく、差圧変換器の高圧側および低圧側の両端に共通に
かかる圧力によっても移動する。フルスケールが10,
000mm水柱の水晶振動式差圧変換器を用いて2,0
00mm水柱の差圧を測定する場合を例にとると、差圧
変換器の温度変化1℃当たり±0.2mm水柱程度零点
が移動し、また差圧変換器両端に共通にかかる圧力1,
000mm水柱当たり0.1〜2.5mm水柱程度零点
が移動する。差圧変換器両端を短絡して差圧を零とする
上述した従来の零点補正方法では、3)の状態において、
差圧変換器両端の間に、高圧側(例えば2,000mm
水柱)と低圧側(例えば0mm水柱)の中間の圧力(例
えば1,000mm水柱)が共通して残留することにな
る。従って、差圧変換器両端に共通にかかる残留圧力に
よっても零点が移動しており、温度変化による零点移動
を補正するだけの従来の零点補正方法によっては、精度
の高い正確な零点補正はできなかった。
According to the above-described conventional zero point correction method, it is possible to effectively correct the zero point movement of the differential pressure converter due to a temperature change. However, the zero point of the differential pressure converter does not move only due to the temperature change, but also moves due to the pressure applied to both ends of the high pressure side and the low pressure side of the differential pressure converter. Full scale is 10,
2,0 mm using a quartz vibration type differential pressure transducer with a water column of 000 mm.
Taking the case of measuring the differential pressure of a water column of 00 mm as an example, the zero point moves about ± 0.2 mm water column per 1 ° C. of the temperature change of the differential pressure transducer, and the pressure 1, which is applied to both ends of the differential pressure transducer,
The zero point moves about 0.1 to 2.5 mm water column per 000 mm water column. In the above-mentioned conventional zero point correction method in which both ends of the differential pressure converter are short-circuited to make the differential pressure zero, in the state of 3),
A high pressure side (for example, 2,000 mm
An intermediate pressure (for example, 1,000 mm water column) between the water column) and the low-pressure side (for example, 0 mm water column) remains in common. Therefore, the zero point is also moved by the residual pressure applied to both ends of the differential pressure converter, and the conventional zero point correction method that only corrects the zero point movement due to the temperature change cannot perform highly accurate and accurate zero point correction. Was.

【0010】そこでこの発明は、図1に示したような高
精度差圧測定装置における差圧変換器の零点補正を行う
に際して、温度変化に起因する零点移動だけでなく、差
圧変換器両端に共通にかかる圧力に起因する零点移動も
効果的に補正することができる、改良された零点補正方
法を提供することを目的としてなされたものである。
Therefore, the present invention provides not only a zero point shift due to a temperature change but also a differential pressure converter at both ends of a high-precision differential pressure measuring apparatus as shown in FIG. It is an object of the present invention to provide an improved zero point correction method capable of effectively correcting a zero point movement caused by a common pressure.

【0011】[0011]

【課題を解決するための手段】すなわちこの発明は、差
圧変換器と、差圧変換器の高圧側へ接続された弁V1を
有する高圧側配管と、差圧変換器の低圧側へ接続された
弁V3を有する低圧側配管と、弁V1および弁V3の下
流側で高圧側配管および低圧側配管を接続する弁V2を
有する短絡用配管とを具備する高精度差圧測定装置の零
点を補正する方法であって、高圧側配管の弁V1と低圧
側配管の弁V3を開、短絡用配管の弁V2を閉とした状
態での差圧測定状態から零点の補正を行うに際して、低
圧側配管の弁V3を開としたまま高圧側配管の弁V1を
閉とした後、短絡用配管の弁V2を開とすることにより
差圧変換器の高圧側に残留する圧力を低圧側に開放さ
せ、次いで低圧側配管の弁V3を閉として差圧変換器の
零点補正を行うことを特徴とするものである。
That is, the present invention provides a differential pressure transducer, a high pressure side pipe having a valve V1 connected to the high pressure side of the differential pressure transducer, and a low pressure side connected to the differential pressure transducer. Correction of the zero point of a high-precision differential pressure measuring device comprising a low-pressure pipe having a closed valve V3 and a short-circuit pipe having a valve V2 connecting the high-pressure pipe and the low-pressure pipe downstream of the valves V1 and V3. When correcting the zero point from the differential pressure measurement state with the valve V1 of the high-pressure pipe and the valve V3 of the low-pressure pipe opened and the valve V2 of the short-circuit pipe closed, After closing the valve V1 of the high-pressure side pipe while keeping the valve V3 open, the valve V2 of the short-circuiting pipe is opened to release the pressure remaining on the high-pressure side of the differential pressure transducer to the low-pressure side, Next, the valve V3 of the low pressure side pipe is closed to perform zero point correction of the differential pressure transducer. It is an feature.

【0012】[0012]

【作用】零点補正を開始する段階で、低圧側配管の弁V
3を開としたまま高圧側配管の弁V1を閉とした後、短
絡用配管の弁V2を開とすることにより、差圧変換器の
高圧側に残留する圧力は低圧側に開放され、差圧変換器
両端の間に圧力は残留しなくなる。この状態で低圧側配
管の弁V3を閉とすることにより、弁V3も弁V1も閉
とした状態で零点補正を行うのである。このように、弁
の動作に時間差をもたせることによって、温度変化に起
因する零点移動だけでなく、差圧変換器両端に共通にか
かる圧力に起因する零点移動も効果的に補正することが
できる。さらにまた、高圧側配管の弁V1と低圧側配管
の弁V3の両方を閉とした状態で零点補正を行なえるた
め、例えば図1の槽1内の上部空間において発生し得る
短周期の圧力変動が零点補正に及ぼす影響を排除するこ
とができる。
[Operation] At the stage of starting the zero point correction, the valve V of the low pressure side pipe is set.
After the valve V1 of the high-pressure pipe is closed with the valve 3 open, the valve V2 of the short-circuit pipe is opened, whereby the pressure remaining on the high-pressure side of the differential pressure converter is released to the low-pressure side. No pressure remains between the pressure transducers. In this state,
By closing the valve V3 of the pipe, both the valve V3 and the valve V1 are closed.
In this state, zero point correction is performed. Thus, by giving a time difference to the operation of the valve, not only the zero point movement caused by the temperature change but also the zero point movement caused by the pressure applied to both ends of the differential pressure converter can be effectively corrected. Furthermore, the valve V1 of the high pressure side pipe and the low pressure side pipe
Zero correction can be performed with both valves V3 closed.
For example, it can occur in the upper space in the tank 1 of FIG.
Eliminate the effect of short-period pressure fluctuations on zero correction
Can be.

【0013】[0013]

【実施例】この発明による零点補正の方法の各工程を、
図1に示した差圧測定装置を参照して、前述した従来の
零点補正方法と対比できるように順を追って説明すると
次のようになる。なお図2は、この発明の方法における
差圧変化器の圧力変化と弁の開閉状態との関係を説明す
るものであって、従来方法についての図3に対応するも
のである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
With reference to the differential pressure measuring device shown in FIG. 1, description will be given in order so as to be compared with the above-mentioned conventional zero point correction method. FIG. 2 illustrates the relationship between the pressure change of the differential pressure changer and the open / closed state of the valve in the method of the present invention, and corresponds to FIG. 3 of the conventional method.

【0014】1) 差圧測定状態では、弁V1開、弁V2
閉、弁V3開の状態で、高圧側圧力と低圧側圧力がそれ
ぞれ差圧変換器6の高圧側と低圧側に印加され、差圧が
測定される。この状態で測定していると、温度変化によ
って零点が移動し、測定値にその変化分が加わって誤差
を生じる。
1) In the differential pressure measuring state, the valve V1 is opened and the valve V2 is opened.
With the valve closed and the valve V3 open, the high-pressure side pressure and the low-pressure side pressure are respectively applied to the high-pressure side and the low-pressure side of the differential pressure converter 6, and the differential pressure is measured. If the measurement is performed in this state, the zero point moves due to a temperature change, and the change is added to the measured value to cause an error.

【0015】2) そこで零点補正を開始する。すなわ
ち、先ず弁V1を閉とし、その後に弁V2を開とする。
この段階では弁V3は開のままであり、差圧変換器6の
高圧側に残留する圧力は低圧側に開放され、差圧変換器
両端の間に圧力は残留しなくなる。高圧側に残留する圧
力を低圧側に十分開放した後に、弁V3を閉とする。こ
の時点で差圧変換器6の両端が短絡された状態となり、
温度変化と差圧変換器両端に共通にかかる圧力とにより
移動した零点点出力VDが得られ、これがディジタルメ
モリ9に入力される。
2) Then, zero point correction is started. That is, the valve V1 is first closed, and then the valve V2 is opened.
At this stage, the valve V3 remains open, the pressure remaining on the high pressure side of the differential pressure transducer 6 is released to the low pressure side, and no pressure remains between both ends of the differential pressure transducer. After sufficiently releasing the pressure remaining on the high pressure side to the low pressure side, the valve V3 is closed. At this point, both ends of the differential pressure transducer 6 are short-circuited,
The zero point output VD shifted by the temperature change and the pressure applied to both ends of the differential pressure converter is obtained, and is input to the digital memory 9.

【0016】3) ディジタルメモリ9に零点補正指令を
与えると、VDはその符号が反転されて−VDとなり、
この値を加算器10でVDに加えることによって、補正
出力0(=VD−VD)が得られる。
3) When a zero point correction command is given to the digital memory 9, the sign of VD is inverted to -VD,
By adding this value to VD by the adder 10, a correction output 0 (= VD-VD) is obtained.

【0017】4) このようにして零点を補正した後は、
3個の弁を前記の開閉順序とは逆の順序で1)の開閉状態
に戻し、差圧測定状態へ復帰させる。
4) After correcting the zero point in this way,
The three valves are returned to the open / closed state of 1) in the reverse order of the above-mentioned open / close order, and returned to the differential pressure measurement state.

【0018】フルスケールが10,000mm水柱の水
晶振動式差圧変換器を用いて2,000mm水柱の差圧
を測定する前述の測定例の場合、差圧変換器両端に共通
にかかる圧力1,000mm水柱当たり0.1〜2.5
mm水柱程度の零点の移動が生じるが、この発明による
零点補正方法によれば、かような差圧変換器両端に共通
にかかる圧力に起因する零点の移動も補正することがで
きる。
In the above-described measurement example in which a full-scale quartz-crystal vibrating type differential pressure transducer having a water column of 10,000 mm is used to measure the differential pressure of a water column of 2,000 mm, the pressure applied to both ends of the differential pressure converter is 1, 0.1-2.5 per 000 mm water column
Although the movement of the zero point on the order of mm water column occurs, according to the zero point correction method of the present invention, the movement of the zero point caused by the pressure applied to both ends of the differential pressure transducer can also be corrected.

【0019】なお、時間差をもたせて各弁を動作させる
に際しては、タイマーを用いることによって簡便かつ確
実に各弁の動作を所定時間差で制御することができる。
When operating each valve with a time difference, the operation of each valve can be simply and reliably controlled with a predetermined time difference by using a timer.

【0020】[0020]

【発明の効果】以上の説明からわかるようにこの発明に
よれば、差圧変換器の零点を補正するに際して、弁の動
作に時間差をもたせることによって、温度変化に起因す
る零点移動だけでなく、差圧変換器両端に共通にかかる
圧力に起因する零点移動も効果的に補正することができ
る。さらにまた、高圧側配管の弁と低圧側配管の弁の両
方を閉とした状態で零点補正を行なえるため、短周期の
圧力変動が零点補正に及ぼす影響を排除することができ
る。その結果、温度変化に起因する零点移動を補正する
だけであった従来の零点補正方法に比べて、より一層正
確な差圧測定が可能となる。
As can be understood from the above description, according to the present invention, when correcting the zero point of the differential pressure converter, not only the zero point movement caused by the temperature change, The zero point movement caused by the pressure applied to both ends of the differential pressure transducer can also be effectively corrected. Furthermore, both the high-pressure piping valve and the low-pressure piping valve
The zero point correction can be performed with the
The effect of pressure fluctuation on zero compensation can be eliminated.
You. As a result, a more accurate differential pressure measurement can be performed as compared with the conventional zero point correction method that only corrects the zero point movement caused by the temperature change.

【図面の簡単な説明】[Brief description of the drawings]

【図1】エアパージ法による差圧測定装置の例を示す説
明図。
FIG. 1 is an explanatory diagram showing an example of a differential pressure measuring device using an air purge method.

【図2】この発明の零点補正方法における差圧変化器の
圧力変化と弁の開閉状態との関係を示す説明図。
FIG. 2 is an explanatory diagram showing a relationship between a pressure change of a differential pressure changer and an open / closed state of a valve in the zero point correction method of the present invention.

【図3】従来に零点補正方法における差圧変化器の圧力
変化と弁の開閉状態との関係を示す説明図。 5…高圧側配管、 6…差圧変換器、 7…低圧側配
管、8…短絡用配管、 V1,V2,V3…弁。
FIG. 3 is an explanatory diagram showing a relationship between a pressure change of a differential pressure changer and a valve opening / closing state in a conventional zero point correction method. 5: High pressure side pipe, 6: Differential pressure transducer, 7: Low pressure side pipe, 8: Short circuit pipe, V1, V2, V3: Valve.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−158328(JP,A) 特開 昭62−38336(JP,A) 特開 昭62−207924(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-60-158328 (JP, A) JP-A-62-38336 (JP, A) JP-A-62-207924 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 差圧変換器と、差圧変換器の高圧側へ接
続された弁V1を有する高圧側配管と、差圧変換器の低
圧側へ接続された弁V3を有する低圧側配管と、弁V1
および弁V3の下流側で高圧側配管および低圧側配管を
接続する弁V2を有する短絡用配管とを具備する差圧測
定装置の零点を補正する方法であって、高圧側配管の弁
V1と低圧側配管の弁V3を開、短絡用配管の弁V2を
閉とした状態での差圧測定状態から零点の補正を行うに
際して、低圧側配管の弁V3を開としたまま高圧側配管
の弁V1を閉とした後、短絡用配管の弁V2を開とする
ことにより差圧変換器の高圧側に残留する圧力を低圧側
に開放させ、次いで低圧側配管の弁V3を閉として零点
補正を行うことを特徴とする高精度差圧測定装置におけ
る零点補正方法。
1. A differential pressure transducer, a high pressure side pipe having a valve V1 connected to a high pressure side of the differential pressure transducer, and a low pressure side pipe having a valve V3 connected to a low pressure side of the differential pressure transducer. , Valve V1
And a short-circuit pipe having a valve V2 connecting the high-pressure pipe and the low-pressure pipe downstream of the valve V3. When correcting the zero point from the differential pressure measurement state in which the valve V3 of the side pipe is opened and the valve V2 of the short-circuit pipe is closed, the valve V1 of the high-pressure pipe is kept open while the valve V3 of the low-pressure pipe is opened. Is closed, the valve remaining on the high pressure side of the differential pressure converter is opened to the low pressure side by opening the valve V2 of the short-circuit pipe, and then the zero point correction is performed by closing the valve V3 of the low pressure side pipe. A method for correcting a zero point in a high-precision differential pressure measuring device, characterized in that:
【請求項2】 前記各弁V1,V2,V3の開閉動作を
タイマーによって制御することを特徴とする請求項1記
載の零点補正方法。
2. The method according to claim 1, wherein the opening and closing operation of each of the valves V1, V2, V3 is controlled by a timer.
JP3224255A 1991-09-04 1991-09-04 Zero compensation method for high-precision differential pressure measuring device Expired - Lifetime JP2615532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3224255A JP2615532B2 (en) 1991-09-04 1991-09-04 Zero compensation method for high-precision differential pressure measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3224255A JP2615532B2 (en) 1991-09-04 1991-09-04 Zero compensation method for high-precision differential pressure measuring device

Publications (2)

Publication Number Publication Date
JPH0560641A JPH0560641A (en) 1993-03-12
JP2615532B2 true JP2615532B2 (en) 1997-05-28

Family

ID=16810916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3224255A Expired - Lifetime JP2615532B2 (en) 1991-09-04 1991-09-04 Zero compensation method for high-precision differential pressure measuring device

Country Status (1)

Country Link
JP (1) JP2615532B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106248297A (en) * 2016-07-28 2016-12-21 湖南威铭能源科技有限公司 Error correcting method for pressure sensor and the calorimeter with the method pressure measurement

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014000A (en) * 2000-06-30 2002-01-18 Toho Gas Co Ltd Self-recording pressure gauge
JP4753594B2 (en) * 2005-03-03 2011-08-24 国土交通省関東地方整備局長 Gate opening / closing device for river structures

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60158328A (en) * 1984-01-30 1985-08-19 Yamatake Honeywell Co Ltd Zero-point adjusting device for fluid pressure transmitter
US4655074A (en) * 1985-08-12 1987-04-07 The Babcock & Wilcox Company Self-zeroing pressure transmitter with automatic pressure manifold
JPH0676939B2 (en) * 1986-03-10 1994-09-28 横河電機株式会社 Differential pressure measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106248297A (en) * 2016-07-28 2016-12-21 湖南威铭能源科技有限公司 Error correcting method for pressure sensor and the calorimeter with the method pressure measurement

Also Published As

Publication number Publication date
JPH0560641A (en) 1993-03-12

Similar Documents

Publication Publication Date Title
RU2209395C2 (en) Method of calibration of system of measurement of liquid flow pressure difference
JPH02221817A (en) Correction of fluid composition for flowmeter
JPH04506262A (en) Leak test method and equipment
JPH0157728B2 (en)
JP2615532B2 (en) Zero compensation method for high-precision differential pressure measuring device
US3538745A (en) Apparatus for detecting leaks in tanks storing liquids
CN106950150A (en) Liquid density measurement device and method
EP0672893B1 (en) Improved acoustic displacement flowmeter
CN114608682A (en) A method for calibrating a flowmeter
JPH01307614A (en) Electronic apparatus with altimeter
JP3103700B2 (en) Flowmeter
US4524606A (en) Low flow calibrator
JPH0523369B2 (en)
JP3057949B2 (en) Flowmeter
CN115931215B (en) A pressure sensor calibration system based on dynamic compensation
Shrader et al. An optical lever manometer
US3107515A (en) Double tube manometer to calibrate pressure sensing instruments
JPS6175217A (en) Instrumental errors corrector for flowmeter
US2835264A (en) Apparatus for measuring or controlling a physical quantity
JPH0150848B2 (en)
Pacey A wide pressure range McLeod gauge
JPS5890124A (en) Measuring method for gas flow rate
SU643784A1 (en) Piezometric density meter
US3264870A (en) Flow measuring device
Hasbrouck et al. Commentary on differential-pressure measurements at high reference pressures

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 15