JP2583793B2 - Semiconductor substrate - Google Patents
Semiconductor substrateInfo
- Publication number
- JP2583793B2 JP2583793B2 JP63330110A JP33011088A JP2583793B2 JP 2583793 B2 JP2583793 B2 JP 2583793B2 JP 63330110 A JP63330110 A JP 63330110A JP 33011088 A JP33011088 A JP 33011088A JP 2583793 B2 JP2583793 B2 JP 2583793B2
- Authority
- JP
- Japan
- Prior art keywords
- region
- type
- purity
- impurity
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Element Separation (AREA)
- Junction Field-Effect Transistors (AREA)
- Solid State Image Pick-Up Elements (AREA)
Description
【発明の詳細な説明】 (1) 発明の属する技術分野 本発明は、高速電子デハイス,発光デバイス及び受光
デバイスなどに使用する半導体基板に関するものであ
る。Description: TECHNICAL FIELD The present invention relates to a semiconductor substrate used for a high-speed electronic device, a light-emitting device, a light-receiving device, and the like.
(2) 従来の技術とその問題点 半導体素子の多機能化,高速化の要求にともない、同
一基板上に複数のデバイスを配した集積回路の高性能化
が進められている。しかし、同一基板上に複数のデバイ
スを配した集積回路においては基板上部のみにしかも部
分的にデバイスが形成されるため、デバイス下部および
デバイス間といったデバイス外領域は不必要となるばか
りでなく、電極間あるいはデバイス間の電気的絶縁の妨
げにもなり、その結果集積回路中に寄生インピーダンス
等の寄生素子が生じ集積回路の高性能化にとって大きな
問題となっている。(2) Conventional technology and its problems With the demand for multifunctional and high-speed semiconductor devices, the performance of integrated circuits in which a plurality of devices are arranged on the same substrate has been promoted. However, in an integrated circuit in which a plurality of devices are arranged on the same substrate, devices are formed only on the upper portion of the substrate and partially, so that not only external regions such as the lower portion of the device but also between the devices become unnecessary, and the electrode This also hinders electrical insulation between devices or between devices, and as a result, parasitic elements such as parasitic impedance are generated in the integrated circuit, which is a major problem in improving the performance of the integrated circuit.
デバイス外領域の絶縁を保つために従来より用いられ
てきた方法としては、基板結晶の高純度化あるいは不
純物ドープにより高抵抗化、イオン注入を用いた不純
物ドープによるデバイス外領域の高抵抗化、ドライエ
ッチングあるいはウェットエッチングによるデバイス外
領域の除去等の方法がある。しかし、の方法は、高度
な結晶成長技術が必要であり、さらにたとえ高度な結晶
技術を用いてもバンドギャップの小さな半導体などでは
完全な絶縁性を保つことは本質的には不可能である。
の方法は、イオン注入の持つ領域の選択性を利用してデ
バイス外領域に深い準位を形成するかまたは非晶質化し
て高抵抗化する方法であるが、イオン注入では例えばデ
バイス下部領域を高抵抗化する場合デバイス領域への損
傷を避けられない。の方法では、デバイス領域とデバ
イス外領域との間に段差が生じ、フォトリソグラフィに
おける焦点ずれやデバイス間配線における配線切れ等の
困難な問題が生じる。Methods conventionally used to maintain the insulation of the region outside the device include increasing the purity of the substrate crystal or increasing the resistance by impurity doping, increasing the resistance of the region outside the device by impurity doping using ion implantation, and improving the dryness. There is a method of removing a region outside the device by etching or wet etching. However, this method requires an advanced crystal growth technique, and it is essentially impossible to maintain perfect insulation with a semiconductor having a small band gap even if the advanced crystal technique is used.
Is a method in which a deep level is formed in a region outside the device by utilizing the selectivity of the region possessed by ion implantation, or the region is made amorphous to increase the resistance. In ion implantation, for example, a lower region of the device is formed. When the resistance is increased, damage to the device region cannot be avoided. In the method (1), a step is generated between the device region and the outside device region, which causes difficult problems such as defocus in photolithography and disconnection of wiring between devices.
(3) 発明の目的 本発明の目的は、集積回路におけるデバイス外領域が
十分に高抵抗化された半導体基板を提供することにあ
る。(3) Object of the Invention It is an object of the present invention to provide a semiconductor substrate in which the area outside the device in an integrated circuit has a sufficiently high resistance.
(4) 発明の構成 (4−1)発明の特徴と従来技術との差異 本発明は、高抵抗化すべき領域に隣接する部分に外領
域と反対の導電型を持つ不純物領域を形成し、両領域の
導電型の違いによって生じるビルトイン電圧を利用して
両領域を空乏化し高抵抗化することを最も主要な特徴と
する。従って、上記〜に述べた純度の極めて高い結
晶の必要性、デバイスへの損傷,段差等の問題はない。(4) Constitution of the invention (4-1) Difference between the features of the invention and the prior art In the present invention, an impurity region having a conductivity type opposite to that of an outer region is formed in a portion adjacent to a region to be increased in resistance. The most important feature is that both regions are depleted and have high resistance by utilizing a built-in voltage generated by the difference in the conductivity type of the regions. Therefore, there are no problems such as the necessity of a crystal having extremely high purity, damage to a device, and a step described above.
(4−2)実施例 〔実施例1〕 図1は本発明の第一の実施例を説明する接合型電界効
果トランジスタ及びその基板の断面図であって、1は半
絶縁性InP基板、2は本発明において特徴的な厚さdA、
p型不純物濃度NA +のInP層、3は厚さdDの高純度In0.53
Ga0.47As層、4は接合型電界効果トランジスタの能動層
となるn型In0.53Ga0.47As不純物層、5はn型In0.53Ga
0.47As不純物層4へのイオン注入により形成したp型In
0.53Ga0.47As不純物領域、6はゲート電極、7,8はそれ
ぞれソース電極、ドレイン電極である。ここでデバイス
外領域である領域3は領域4の結晶性を向上させるため
のバッファ層であり、高純度In0.53Ga0.47Asエピタキシ
ャル成長技術を用いているが、通常1014〜1015cm-3程度
のn型導電キャリアを含んである。(4-2) Example [Example 1] FIG. 1 is a cross-sectional view of a junction field effect transistor and its substrate for explaining a first example of the present invention, wherein 1 is a semi-insulating InP substrate, Is the characteristic thickness d A of the present invention,
InP layer with p-type impurity concentration N A + , 3 is high purity In 0.53 with thickness d D
Ga 0.47 As layer, 4 is an n-type In 0.53 Ga 0.47 As impurity layer serving as an active layer of a junction field effect transistor, and 5 is an n-type In 0.53 Ga
0.47 p-type In formed by ion implantation into As impurity layer 4
A 0.53 Ga 0.47 As impurity region, 6 is a gate electrode, and 7, 8 are a source electrode and a drain electrode, respectively. Here, the region 3 which is an out-of-device region is a buffer layer for improving the crystallinity of the region 4 and uses a high-purity In 0.53 Ga 0.47 As epitaxial growth technique, and is usually about 10 14 to 10 15 cm -3. N-type conductive carrier.
領域2及び3を完全に空乏化させるためには、以下に
例示するように、制限長さ内のあるdDのものでdA +、dA
を適当に選ぶ必要がある。図2は高純度In0.53Ga0.47As
層3の導電キャリア密度をNDとして、図1おいてA−
A′線に沿った領域1,2界面からの距離を横軸にとって
導電キャリア濃度を示したものである。ここで領域2及
び3を完全に空乏化させるためには、dDに対する制限は
およそ であり、この制限のもとでNA +、dAを NA +dA=NDdDかつNA +≫ND を満足するように選ぶことが必要である。ここで、qは
素電荷、ε0は真空誘電率、εrは領域3(In0.53Ga
0.47As)の比誘電率、E20は領域2(InP)の伝導バンド
下端とフェルミ準位との差、E30は領域3(In0.53Ga
0.47As)の伝導バンド下端とフェルミ準位との差、ΔE0
は領域2(InP)と領域3(In0.53Ga0.47As)との伝導
バンド不連続値である。これらのパラメータの数値は、
図7に例示されている。以上簡単のため、p型不純物層
内2のキャリア濃度分布が一定の場合について例示した
が、p型不純物層2を例えばイオン注入により形成し導
電キャリア濃度が深さ方向に分布する場合でも同様に決
定することができる。上述の計算式を用い例えばNDが1
×1015cm-3、dDが0.5μmの場合、NA +、dAをそれぞれ1
×107cm-3、5nmと選ぶことにより領域2及び領域3を完
全に空乏化することが可能である。領域2を設けること
により領域3を空乏化し、領域3を介して流れる漏れ電
流を防ぎ高性能電界効果トランジスタが実現可能であ
る。In order to completely deplete the regions 2 and 3, as exemplified below, d A in those of the limited length d D +, d A
Must be selected appropriately. Figure 2 shows high purity In 0.53 Ga 0.47 As
The conductive carrier density of the layer 3 as N D, Figure 1 Oite A-
The horizontal axis represents the distance from the interface between the regions 1 and 2 along the line A ', and the conductive carrier concentration is shown. Here, in order to completely deplete regions 2 and 3, the limit on d D is approximately , And the + under N A of this limitation, it is necessary to choose the d A so as to satisfy N A + d A = N D d D and N A + »N D. Here, q is an elementary charge, ε 0 is a vacuum dielectric constant, and ε r is a region 3 (In 0.53 Ga
Dielectric constant of 0.47 As), E 20 is the difference between the conduction band bottom and the Fermi level of the region 2 (InP), E 30 is region 3 (In 0.53 Ga
0.47 As) Difference between conduction band bottom and Fermi level, ΔE 0
Is the conduction band discontinuity between region 2 (InP) and region 3 (In 0.53 Ga 0.47 As). The values for these parameters are
This is illustrated in FIG. For simplicity, the case where the carrier concentration distribution in the p-type impurity layer 2 is constant has been described as an example. However, even when the p-type impurity layer 2 is formed by, for example, ion implantation and the conductive carrier concentration is distributed in the depth direction, the same applies. Can be determined. For example N D using the above formula is 1
When × 10 15 cm -3 and d D are 0.5 μm, N A + and d A are each 1
Regions 2 and 3 can be completely depleted by selecting × 10 7 cm −3 and 5 nm. By providing the region 2, the region 3 is depleted, a leakage current flowing through the region 3 is prevented, and a high-performance field-effect transistor can be realized.
この構造は半絶縁性InP基板上にMOVPE法で形成した。
MOVPE法による形成条件は0.1気圧のもので、領域2はZn
を不純物添加し成長時間約8秒、領域3は不純物添加せ
ずに成長時間約30分、領域4はSiを不純物添加し成長時
間10分とした。なお領域4の厚さは0.2μm程度であ
る。This structure was formed on a semi-insulating InP substrate by MOVPE.
The MOVPE formation condition is 0.1 atm.
The growth time was about 30 seconds without adding impurities in the area 3 and the growth time was about 10 minutes in the area 4 by adding Si as an impurity. The thickness of the region 4 is about 0.2 μm.
領域5は厚さ0.1μm程度であり、領域2,3,4を形成し
た後に真空度10-6Torrの雰囲気中でZnイオンを電圧180k
eV、時間1分かけて打ち込みを行い、その後700℃程度
の活性化アニールを行ってp型の導電キャリア層とした
ものである。6は領域5上に形成されたAuZnNi(50nm)
/Au(150nm)ゲート電極、7,8はAuGeNi(50nm)/Au(15
0nm)ソース電極,ドレイン電極である。The region 5 has a thickness of about 0.1 μm, and after forming the regions 2, 3, and 4, Zn ions are applied at a voltage of 180 k in an atmosphere of a degree of vacuum of 10 −6 Torr.
The implantation is performed for 1 minute at eV, and then activation annealing at about 700 ° C. is performed to form a p-type conductive carrier layer. 6 is AuZnNi (50 nm) formed on the region 5
/ Au (150 nm) gate electrode, 7 and 8 are AuGeNi (50 nm) / Au (15
0 nm) Source and drain electrodes.
図1の例ではIn0.53Ga0.47AsをMOVPE法により形成し
たがMBE法またはLPE法等によって形成してもよく、この
ことは以下に述べる実施例2,3,4,5においても同様であ
る。また特に領域2は半絶縁性InP基板上へのp型不純
物のイオン注入あるいはp型不純物の拡散によっても形
成することができる。また半絶縁性基板1及びp型不純
物層2,高純度層3,n型不純物層4はInP、In0.53Ga0.47As
以外にもSi、Ge等の無極性半導体、GaAs,InAs,AlAs,GaP
等の二元化合物半導体、さらにAlxGa1-xAs(0<x<
1)等の三元化合物半導体、InxGa1-xAsyP1-y(0<x,y
<1)等の四元化合物半導体を用いることも可能であ
る。また領域2を領域3と同じ半導体とすることも可能
である。さらに領域3が多種類の半導体からなる超格子
の場合でも領域2によりこれを完全に空乏化することが
可能である。In the example of FIG. 1, In 0.53 Ga 0.47 As is formed by the MOVPE method, but may be formed by the MBE method, the LPE method, or the like, and this is the same in Examples 2, 3, 4, and 5 described below. . Particularly, the region 2 can also be formed by ion implantation of a p-type impurity or diffusion of a p-type impurity on a semi-insulating InP substrate. The semi-insulating substrate 1, the p-type impurity layer 2, the high-purity layer 3, and the n-type impurity layer 4 are made of InP, In 0.53 Ga 0.47 As.
Besides, non-polar semiconductors such as Si and Ge, GaAs, InAs, AlAs, GaP
Binary semiconductors such as Al x Ga 1 -x As (0 <x <
Ternary compound semiconductor such as 1), In x Ga 1-x As y P 1-y (0 <x, y
It is also possible to use a quaternary compound semiconductor such as <1). Further, the region 2 can be made of the same semiconductor as the region 3. Further, even when the region 3 is a superlattice made of various kinds of semiconductors, the region 2 can be completely depleted.
〔実施例2〕 図3は本発明の第二の実施例を説明する図であって、
電界効果トランジスタ能動層の結晶性をさらに向上させ
るために第一の実施例におけるIn0.53Ga0.47Asバッファ
層をさらに厚くした場合の例である。領域9は半絶縁性
InP基板であり、領域10,12,14は本発明に特徴的な厚さ
がそれぞれdA,2dA,2dA,p型不純物濃度1×1017cm-3のIn
0.53Ga0.47As層、領域11,13,15は厚さがそれぞれ2dD,2d
D,dD,n型不純物濃度1×1015cm-3の高純度In0.53Ga0.47
As層、領域16は接合型電界効果トランジスタの能動層と
なるn型In0.53Ga0.47As不純物層であり、いずれもMOVP
E法で形成されている。領域17はn型In0.53Ga0.47As不
純物層へのイオン注入により形成したp型In0.53Ga0.47
As不純物領域、18はゲート電極、19,20はそれぞれソー
ス電極、ドレイン電極である。各部の形成方法は実施例
1と同じである。ここでdA,dDは実施例1における領域
2,3をいずれもIn0.53Ga0.47Asであるとして前述の計算
式を用いて求めたものであり、これによって10,11,12,1
3,14,15の各領域は完全に空乏化されている。Embodiment 2 FIG. 3 is a view for explaining a second embodiment of the present invention.
This is an example in which the thickness of the In 0.53 Ga 0.47 As buffer layer in the first embodiment is further increased in order to further improve the crystallinity of the field effect transistor active layer. Region 9 is semi-insulating
An InP substrate, regions 10, 12 each characteristic thickness to the present invention d A, 2d A, 2d A , In the p-type impurity concentration of 1 × 10 17 cm -3
0.53 Ga 0.47 As layer, regions 11, 13 and 15 are 2d D and 2d respectively
High purity In 0.53 Ga 0.47 with D , d D , n-type impurity concentration of 1 × 10 15 cm -3
The As layer and the region 16 are an n-type In 0.53 Ga 0.47 As impurity layer serving as an active layer of the junction field effect transistor.
It is formed by E method. Region 17 is a p-type In 0.53 Ga 0.47 formed by ion implantation into an n-type In 0.53 Ga 0.47 As impurity layer.
As impurity region, 18 is a gate electrode, 19 and 20 are a source electrode and a drain electrode, respectively. The method of forming each part is the same as in the first embodiment. Where d A and d D are the areas in the first embodiment.
2, 3 were determined using the above-described calculation formula assuming that In 0.53 Ga 0.47 As was obtained, and thereby, 10, 11, 12, 1, 1
Areas 3, 14, and 15 are completely depleted.
図3では三つのp型不純物層を用いた例を示してある
が、p型不純物層とn型不純物層を交互にdA,2dD,2dA,2
dD…,2dA,2dD,2dA,dDと多層積み重ね、これらの層をす
べて完全に空乏化することも可能である。半絶縁性基板
9、p型不純物層10,12,14、高純度層11,13,15、n型不
純物層16をInP,In0.53Ga0.47As以外の半導体としても可
能である。FIG. 3 shows an example in which three p-type impurity layers are used. However, the p-type impurity layers and the n-type impurity layers are alternately d A , 2d D , 2d A , 2
It is also possible to stack multiple layers of d D …, 2d A , 2d D , 2d A , d D and completely deplete all these layers. The semi-insulating substrate 9, the p-type impurity layers 10, 12, and 14, the high-purity layers 11, 13, and 15, and the n-type impurity layer 16 can also be semiconductors other than InP and In 0.53 Ga 0.47 As.
〔実施例3〕 図4は本発明の第三の実施例を示すpin型光ダイオー
ドと接合型電界効果トランジスタとの集積回路及びその
基板の断面図であって、aはpin型光ダイオード、cは
接合型電界効果トランジスタ、bはデバイス外領域であ
り、aにおいて、21は半絶縁性InP基板、22は半絶縁性I
nP基板へのn型不純物イオン注入により形成したn型In
P領域、23はMOVPE法により形成した厚さ2μmの高純度
In0.53Ga0.47As領域、24は高純度In0.53Ga0.47As領域へ
のn型不純物イオン注入により形成したn型In0.53Ga
0.47As領域、25は高純度In0.53Ga0.47As層へのp型不純
物イオン注入により形成した厚さ0.1μmのp型In0.53G
a0.47As領域、26は25上に形成したAuZnNi(50nm)/Au
(150nm)pin型光ダイオードp電極、27は24上に形成し
たAuGeNi(50nm)/Au(150nm)pin型光ダイオードn電
極である。またcにおいて、28は半絶縁性InP基板への
p型不純物イオン注入により形成した厚さdA1でp型不
純物濃度NA1 +のInP領域、29は23と同時にMOVPE法により
形成した厚さdD1の高純度In0.53Ga0.47As領域、30は高
純度In0.53Ga0.47As層へのn型不純物イオン注入により
形成した厚さ0.5μmのn型In0.53Ga0.47As領域、31は
n型In0.53Ga0.47As領域へのp型不純物イオン注入によ
り形成した厚さ0.1μmのp型In0.53Ga0.47As領域、32
は31上に形成したAuZnNi(50nm)/Au(150nm)ゲート電
極、33,34はAuGeNi(50nm)/Al(150nm)ソース電極,
ドレイン電極である。さらにbにおいて、35は半絶縁性
InP基板へのp型不純物イオン注入により形成した厚さd
A2でp型不純物濃度NA2 +のInP領域、36は厚さdD2の高純
度In0.53Ga0.47As領域である。この集積回路において
は、23,24,25,29,30,31,36は一つのIn0.53Ga0.47As層内
に形成されており、プロセスの共通化及びデバイスの平
坦化が達成されている。Third Embodiment FIG. 4 is a cross-sectional view of an integrated circuit of a pin type photodiode and a junction field effect transistor according to a third embodiment of the present invention and a substrate thereof, where a is a pin type photodiode, c Is a junction field-effect transistor, b is a region outside the device, and in a, 21 is a semi-insulating InP substrate, and 22 is a semi-insulating
n-type In formed by n-type impurity ion implantation into nP substrate
P region, 23 is 2μm high purity formed by MOVPE method
In 0.53 Ga 0.47 As region, 24 is an n-type In 0.53 Ga formed by implanting n-type impurity ions into a high-purity In 0.53 Ga 0.47 As region.
In the 0.47 As region, 25 is a 0.1 μm-thick p-type In 0.53 G formed by implanting p-type impurity ions into the high-purity In 0.53 Ga 0.47 As layer.
a 0.47 As region, 26: AuZnNi (50 nm) / Au formed on 25
A (150 nm) pin-type photodiode p-electrode 27 is an AuGeNi (50 nm) / Au (150 nm) pin-type photodiode n-electrode formed on 24. Further, in c, 28 is a thickness d A1 formed by implanting p-type impurity ions into a semi-insulating InP substrate, an InP region having a p-type impurity concentration N A1 + , 29 is a thickness d formed simultaneously with 23 by MOVPE. D1 high-purity In 0.53 Ga 0.47 As region, 30 is a 0.5 μm-thick n-type In 0.53 Ga 0.47 As region formed by implanting n-type impurity ions into the high-purity In 0.53 Ga 0.47 As layer, 31 is n-type In 0.53 Ga 0.47 As having a thickness of 0.1μm was formed by p-type impurity ion implantation into the region p-type in 0.53 Ga 0.47 As region, 32
Is an AuZnNi (50 nm) / Au (150 nm) gate electrode formed on 31; 33 and 34 are AuGeNi (50 nm) / Al (150 nm) source electrodes;
It is a drain electrode. Furthermore, in b, 35 is semi-insulating
Thickness d formed by implanting p-type impurity ions into InP substrate
A2 is an InP region having a p-type impurity concentration of N A2 + , and 36 is a high-purity In 0.53 Ga 0.47 As region having a thickness of d D2 . In this integrated circuit, 23, 24, 25, 29, 30, 31, and 36 are formed in one In 0.53 Ga 0.47 As layer, and the process is shared and the device is flattened.
接合型電界効果トランジスタcにおけるNA1 +,dA1をNA
+,dAとして前述の計算式を用いて適当に選べば、領域28
により領域29が完全に空乏化されることは実施例1と同
様であるが、ここではさらに前述の計算式を用いて同様
にNA2 +,dA2を適当に選び、領域35及び36を完全に空乏化
している。その結果pin型光ダイオードaと接合型電界
効果トランジスタcとがデバイス外領域bにより電気的
に絶縁され、高性能光電子集積回路の実現が可能とな
る。N A1 + , d A1 in the junction field effect transistor c is changed to N A
+ , d A can be appropriately selected using the above formula,
Is completely depleted in the same manner as in the first embodiment. However, here, N A2 + , d A2 is also appropriately selected in the same manner using the above-mentioned calculation formula, and the regions 35 and 36 are completely depleted. Is depleted. As a result, the pin-type photodiode a and the junction field-effect transistor c are electrically insulated by the region b outside the device, and a high-performance optoelectronic integrated circuit can be realized.
図4の例えは電子デバイスと光デバイスとの間の電気
的絶縁の例を示してあるが、電子デバイスと電子デバイ
スとの間の電気的絶縁、光デバイスと光デバイスとの間
の電気的絶縁の場合も全く同様である。また領域28及び
35はp型不純物の拡散または選択的なエピタキシャル成
長によっても形成することができる。さらに半絶縁性基
板21及び領域22,23,24,25,28,29,30,31,35,36をInP、In
0.53Ga0.47As以外の半導体としても可能である。以上の
応用は以下に述べる実施例4,5に対しても可能である。
また図4の例では領域35をデバイス外領域b全体に形成
した例を示してあるが、デバイス領域aとcとを電気的
に絶縁するためには必ずしもデバイス外領域b全体に領
域35を形成しなくてもよく、このことは以下に述べる実
施例4においても同様である。Although the illustration of FIG. 4 shows an example of the electrical insulation between the electronic device and the optical device, the electrical insulation between the electronic device and the electronic device, the electrical insulation between the optical device and the optical device are illustrated. The case is exactly the same. Region 28 and
35 can also be formed by diffusion of p-type impurities or selective epitaxial growth. Further, the semi-insulating substrate 21 and the regions 22, 23, 24, 25, 28, 29, 30, 31, 35 and 36 are InP and In.
Semiconductors other than 0.53 Ga 0.47 As are also possible. The above application is also possible for the fourth and fifth embodiments described below.
4 shows an example in which the region 35 is formed over the entire device outside region b. However, in order to electrically insulate the device regions a and c, the region 35 is not necessarily formed over the entire device outside region b. This need not be done, and this is the same in the fourth embodiment described below.
〔実施例4〕 図5は本発明の第四の実施例を説明する図でありd,f
の部分はそれぞれpin型光ダイオード、接合型電界効果
トランジスタであって、図4の実施例3と全く同じであ
る。eにおいて、37及び39はMOVPE法により形成した厚
さかがそれぞれdD1、dD2の高純度In0.53Ga0.47As領域、
38は高純度In0.53Ga0.47As層へのp型不純物イオン注入
により形成した厚さdA1+dA2のp型In0.53Ga0.47As領域
である。図5で示した構造は図4の実施例3と同じく一
つのIn0.53Ga0.47As層を各領域が共有しており、プロセ
スの共通化、デバイスの平坦化が達成されている。Fourth Embodiment FIG. 5 is a diagram for explaining a fourth embodiment of the present invention.
Are a pin-type photodiode and a junction field-effect transistor, respectively, which are exactly the same as those of the embodiment 3 in FIG. e, 37 and 39 are high-purity In 0.53 Ga 0.47 As regions of d D1 and d D2 , respectively, having thicknesses formed by the MOVPE method,
Reference numeral 38 denotes a p-type In 0.53 Ga 0.47 As region having a thickness of d A1 + d A2 formed by implanting p-type impurity ions into the high-purity In 0.53 Ga 0.47 As layer. The structure shown in FIG. 5 shares one In 0.53 Ga 0.47 As layer in each region, similarly to the third embodiment of FIG. 4, and achieves a common process and a flattened device.
ここでは前述の計算式を用いてNA1 +、dA1は領域37と
これに隣接した領域38の一部分(厚さdA1)、NA2 +、dA2
は領域39とこれに隣接した領域38の残りの部分(厚さd
A2)が完全に空乏化されるように選んである。したがっ
てデバイス外領域eが完全に空乏化されているため、d
とfとが電気的に絶縁されている。Here, using the above-mentioned calculation formula, N A1 + and d A1 are a part of area 37 and a part of area 38 adjacent thereto (thickness d A1 ), N A2 + and d A2
Is the area 39 and the remainder of the area 38 adjacent to it (thickness d
A2 ) is chosen to be completely depleted. Therefore, since the region e outside the device is completely depleted, d
And f are electrically insulated.
図5の例では領域38の形成にイオン注入を用いている
が、dD2=0すなわち領域38が基板表面にある場合、こ
れを不純物拡散あるいはエピタキシャル成長により形成
することも可能である。Although ion implantation is used to form the region 38 in the example of FIG. 5, when d D2 = 0, that is, when the region 38 is on the substrate surface, it can be formed by impurity diffusion or epitaxial growth.
〔実施例5〕 図6は本発明の第五の実施例を説明する図であり、g,
iの部分はそれぞれpin型光ダイオード、接合型電界効果
トランジスタであって、図4の実施例3と全く同じであ
る。hにおいて、40及び42はMOVPE法により形成した幅
がそれぞれdD1、dD2の部分を持つ高純度In0.53Ga0.47As
層、41は高純度In0.53Ga0.47As層へのp型不純物イオン
注入により形成した幅dA1+dA2、p型不純物濃度NA +のI
n0.53Ga0.47As領域である。図6で示した構造は図4の
実施例3と同じく一つのIn0.53Ga0.47As層を各領域が共
有しておりプロセスの共通化、デバイスの平坦化が達成
されている。Embodiment 5 FIG. 6 is a diagram for explaining a fifth embodiment of the present invention.
The portion i is a pin-type photodiode and a junction field-effect transistor, respectively, which are exactly the same as those of the embodiment 3 in FIG. In h, 40 and 42 are high-purity In 0.53 Ga 0.47 As having widths d D1 and d D2 respectively formed by the MOVPE method.
The layer 41 has a width d A1 + d A2 formed by implanting p-type impurity ions into the high-purity In 0.53 Ga 0.47 As layer, and a p-type impurity concentration of N A + .
n 0.53 Ga 0.47 As region. The structure shown in FIG. 6 shares one In 0.53 Ga 0.47 As layer in each region as in the third embodiment of FIG. 4, and achieves a common process and a flattened device.
ここでは前述の計算式を用いてNA +、dA1は領域40とこ
れに隣接した41の一部分(幅dA1)、さらにdA2は領域42
とこれに隣接した領域41の残りの部分(幅dA2)が完全
に空乏化されるように選んである。したがってデバイス
外領域hが完全に空乏化されているため、gとiとが電
気的に絶縁されている。ここではデバイス外領域h全体
が空乏化される例を示してあるが、dD1あるいはdD2の距
離が短くデバイス外領域h全体が空乏化されない場合で
も、デバイス領域gとiとを電気的に絶縁することは可
能である。Here, using the above formula, N A + , d A1 are a part of area 40 and 41 adjacent thereto (width d A1 ), and d A2 is area 42.
And the remaining part (width d A2 ) of the region 41 adjacent thereto is completely depleted. Therefore, since the region h outside the device is completely depleted, g and i are electrically insulated. Here it is shown an example in which the entire device area outside h is depleted but, even if the d D1 or the entire device area outside h short distance d D2 is not depleted, electrically a device region g and i It is possible to insulate.
図6の例では領域41の形成にイオン注入を用いている
が、これを不純物拡散により形成することも可能であ
る。Although the region 41 is formed by ion implantation in the example of FIG. 6, it can be formed by impurity diffusion.
(5) 発明の効果 以上説明したように、本発明によれば集積回路におけ
るデバイス外領域が空乏化されることにより十分に高抵
抗化されるため集積回路中での寄生インピーダンス等の
寄生素子の発生が抑えられ集積回路の高性能化が達成で
きるという利点がある。(5) Effects of the Invention As described above, according to the present invention, the depletion of the region outside the device in the integrated circuit sufficiently increases the resistance, so that the parasitic element such as the parasitic impedance in the integrated circuit is reduced. There is an advantage that generation is suppressed and high performance of the integrated circuit can be achieved.
図1,図3,図4,図5,図6はそれぞれ本発明の第一,二,
三,四,五の実施例を説明するための断面図、図2は図
1に示す半導体基板における導電キャリア濃度分布を示
す図、図7は本発明の説明に用いるパラメータの値を例
示した特性図である。 1……半絶縁性InP基板、2……厚さdAでp型不純物濃
度NA +のInP層、3……厚さdDの高純度In0.53Ga0.47As
層、4……接合型電界効果トランジスタの能動層となる
n型In0.53Ga0.47As不純物層、5……p型In0.53Ga0.47
As不純物領域、6……ゲート電極、7……ソース電極、
8……ドレイン電極、9……半絶縁性InP基板、10……
厚さdAで不純物濃度1×1017cm-3のp型In0.53Ga0.47As
層、11……厚さ2dDで不純物濃度1×1015cm-3の高純度
n型In0.53Ga0.47As層、12……厚さ2dDAで不純物濃度1
×1017cm-3のp型In0.53Ga0.47As層、13……厚さ2dDで
不純物濃度1×1015cm-3の高純度n型In0.53Ga0.47As
層、14……厚さ2dAで不純物濃度1×1017cm-3のp型In
0.53Ga0.47As層、15……厚さdDで不純物濃度1×1015cm
-3の高純度n型In0.53Ga0.47As層、16……n型In0.53Ga
0.47As不純物層、17……p型In0.53Ga0.47As不純物領
域、18……ゲート電極、19……ソース電極、20……ドレ
イン電極、21……半絶縁性InP基板、22……n型InP領
域、23……厚さ2μmの高純度In0.53Ga0.47As領域、24
……n型In0.53Ga0.47As領域、25……p型In0.53Ga0.47
As領域、26……pin型光ダイオードp電極、27……pin型
光ダイオードn電極、28……厚さdA1のp型InP領域、29
……厚さdD1の高純度In0.53Ga0.47As領域、30……n型I
n0.53Ga0.47As領域、31……p型In0.53Ga0.47As領域、3
2……ゲート電極、33……ソース電極、34……ドレイン
電極、35……厚さdA2のp型InP領域、36……厚さdD2の
高純度In0.53Ga0.47As領域、37……厚さdD1の高純度In
0.53Ga0.47As領域、38……厚さdA1+dA2のp型In0.53Ga
0.47As領域、39……厚さdD2の高純度In0.53Ga0.47As領
域、40……幅dD1の高純度In0.53Ga0.47As領域、41……
幅dA1+dA2のp型In0.53Ga0.47As領域、42……幅dD2の
高純度In0.53Ga0.47As領域。FIG. 1, FIG. 3, FIG. 4, FIG. 5 and FIG.
FIG. 2 is a cross-sectional view for explaining the third, fourth, and fifth embodiments, FIG. 2 is a diagram showing a conductive carrier concentration distribution in the semiconductor substrate shown in FIG. 1, and FIG. 7 is a characteristic illustrating values of parameters used in the description of the present invention. FIG. 1 ...... semi-insulating InP substrate, 2 p-type impurity concentration N A + InP layer at ...... thickness d A, 3 high-purity In 0.53 Ga 0.47 As of ...... thickness d D
Layer, 4... N-type In 0.53 Ga 0.47 As impurity layer serving as an active layer of a junction field effect transistor, 5... P-type In 0.53 Ga 0.47
As impurity region, 6 ... gate electrode, 7 ... source electrode,
8 ... Drain electrode, 9 ... Semi-insulating InP substrate, 10 ...
P-type impurity concentration of 1 × 10 17 cm -3 with a thickness d A In 0.53 Ga 0.47 As
Layer, 11 a high-purity n-type In 0.53 Ga 0.47 As layer of ...... thickness 2d impurity concentration D 1 × 10 15 cm -3, impurity concentration of 1 in 12 ...... thickness 2d DA
× 10 17 p-type In 0.53 Ga 0.47 As layer of cm -3, 13 high-purity n-type In 0.53 of ...... impurity concentration in a thickness 2d D 1 × 10 15 cm -3 Ga 0.47 As
Layer, 14 ...... thickness 2d impurity concentration A 1 × 10 17 cm -3 p-type In
0.53 Ga 0.47 As layer, 15 ...... thickness d impurity concentration D 1 × 10 15 cm
-3 high-purity n-type In 0.53 Ga 0.47 As layer, 16 ... n-type In 0.53 Ga
0.47 As impurity layer, 17 p-type In 0.53 Ga 0.47 As impurity region, 18 gate electrode, 19 source electrode, 20 drain electrode, 21 semi-insulating InP substrate, 22 n-type InP region, 23: High-purity In 0.53 Ga 0.47 As region with a thickness of 2 μm, 24
…… n-type In 0.53 Ga 0.47 As region, 25 …… p-type In 0.53 Ga 0.47
As region, 26: pin-type photodiode p-electrode, 27: pin-type photodiode n-electrode, 28: p-type InP region with thickness d A1 , 29
…… High purity In 0.53 Ga 0.47 As region of thickness d D1 , 30 …… n-type I
n 0.53 Ga 0.47 As region, 31 ... p-type In 0.53 Ga 0.47 As region, 3
2 ... Gate electrode, 33 ... Source electrode, 34 ... Drain electrode, 35 ... P-type InP region with thickness d A2 , 36 ... High-purity In 0.53 Ga 0.47 As region with thickness d D2 , 37 ... … High purity In of thickness d D1
0.53 Ga 0.47 As region, 38 p-type In 0.53 Ga of thickness d A1 + d A2
0.47 As region, 39 ...... high purity an In 0.53 Ga 0.47 As region of thickness d D2, 40 high purity an In 0.53 Ga 0.47 As region of ...... width d D1, 41 ......
A p-type In 0.53 Ga 0.47 As region having a width d A1 + d A2 , a high-purity In 0.53 Ga 0.47 As region having a width d D2 .
Claims (1)
らなるn型の高純度領域に隣接する部分に第2の半導体
からなるp型の不純物領域を有し、前記第1の半導体の
エネルギーギャップの大きさが、前記第2の半導体のエ
ネルギーギャップの大きさ以下であり、qは素電荷,ε
0は真空誘電率,εrは前記高純度領域の比誘電率,E20
は前記不純物領域の伝導バンド下端とフェルミ準位との
差,E30は前記高純度領域の伝導バンド下端とフェルミ準
位との差,ΔE0は前記不純物領域と前記高純度領域との
伝導バンド不連続値,NDは前記高純度領域のキャリア濃
度としたとき、前記高純度領域の膜厚dDは、 であり、この制限のもとで前記不純物領域のキャリア濃
度NA +と前記不純物領域の膜厚dAとがNA +dA=NDdDかつ NA +≫ND を満足するように選定されていることを特徴とする半導
体基板。An n-type high-purity region made of a first semiconductor which is not doped with an impurity, a p-type impurity region made of a second semiconductor, and an energy gap of the first semiconductor; The size is equal to or smaller than the size of the energy gap of the second semiconductor, q is an elementary charge, ε
0 is the vacuum dielectric constant, ε r is the relative dielectric constant of the high-purity region, E 20
The difference between the conduction band bottom and Fermi level of the impurity region, E 30 is the difference between the conduction band bottom and Fermi level of the high-purity region, Delta] E 0 is the conduction band and the high-purity region and the impurity region discrete values, when N D is that the carrier concentration of the high purity region, the film thickness d D of the high-purity region, , And the like that the thickness d A of the carrier concentration N A + and the impurity region of the impurity region under this restriction satisfies N A + d A = N D d D and N A + »N D A semiconductor substrate, which is selected from the group consisting of:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63330110A JP2583793B2 (en) | 1988-12-27 | 1988-12-27 | Semiconductor substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63330110A JP2583793B2 (en) | 1988-12-27 | 1988-12-27 | Semiconductor substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02174247A JPH02174247A (en) | 1990-07-05 |
JP2583793B2 true JP2583793B2 (en) | 1997-02-19 |
Family
ID=18228908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63330110A Expired - Fee Related JP2583793B2 (en) | 1988-12-27 | 1988-12-27 | Semiconductor substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2583793B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2658898B2 (en) * | 1994-09-20 | 1997-09-30 | 日本電気株式会社 | field effect transistor |
-
1988
- 1988-12-27 JP JP63330110A patent/JP2583793B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02174247A (en) | 1990-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10756506B2 (en) | III-V photonic integrated circuits on silicon substrate | |
US9726819B2 (en) | Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxial semiconductor material formed using lateral overgrowth | |
US5491461A (en) | Magnetic field sensor on elemental semiconductor substrate with electric field reduction means | |
US6753593B1 (en) | Quantum wire field-effect transistor and method of making the same | |
US9312377B2 (en) | Semiconductor devices and methods of manufacturing the same | |
US9864135B2 (en) | Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxially formed material | |
JP2010016089A (en) | Field effect transistor, method of manufacturing the same, and semiconductor device | |
EP0558229B1 (en) | Article comprising a real space transfer semiconductor device | |
JP2583793B2 (en) | Semiconductor substrate | |
JP2701583B2 (en) | Tunnel transistor and manufacturing method thereof | |
US20210296509A1 (en) | Stacked high-blocking ingaas semiconductor power diode | |
JPH06334175A (en) | Tunnel transistor and manufacture thereof | |
JPH02256287A (en) | Semiconductor light emitting device and usage thereof | |
JP2817726B2 (en) | Tunnel transistor and manufacturing method thereof | |
KR0170486B1 (en) | Fabrication method of double peak resonant tunneling diode | |
JP2995359B2 (en) | Semiconductor photodetector and method of manufacturing the same | |
TW202339285A (en) | Field effect transistor and switch element | |
JP2670525B2 (en) | Light receiving element and manufacturing method thereof | |
JPS61189663A (en) | Semiconductor integrated circuit and its manufacturing method | |
JPH06177367A (en) | Tunnel transistor | |
JPH10190003A (en) | Semiconductor device and manufacturing method thereof | |
GB2338599A (en) | Single electron transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |