[go: up one dir, main page]

JP2558790B2 - Resin magnet manufacturing method - Google Patents

Resin magnet manufacturing method

Info

Publication number
JP2558790B2
JP2558790B2 JP63046202A JP4620288A JP2558790B2 JP 2558790 B2 JP2558790 B2 JP 2558790B2 JP 63046202 A JP63046202 A JP 63046202A JP 4620288 A JP4620288 A JP 4620288A JP 2558790 B2 JP2558790 B2 JP 2558790B2
Authority
JP
Japan
Prior art keywords
resin
green body
magnet
microcapsules
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63046202A
Other languages
Japanese (ja)
Other versions
JPH01220417A (en
Inventor
文敏 山下
正美 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP63046202A priority Critical patent/JP2558790B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to DE68922748T priority patent/DE68922748T2/en
Priority to EP89103336A priority patent/EP0331055B1/en
Priority to EP93100979A priority patent/EP0540503B1/en
Priority to DE68912157T priority patent/DE68912157T2/en
Priority to EP93100980A priority patent/EP0540504B1/en
Priority to DE68922911T priority patent/DE68922911T2/en
Priority to KR1019890002347A priority patent/KR920002258B1/en
Priority to US07/316,967 priority patent/US4981635A/en
Publication of JPH01220417A publication Critical patent/JPH01220417A/en
Application granted granted Critical
Publication of JP2558790B2 publication Critical patent/JP2558790B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は熱重合性樹脂組成物を結合剤とした樹脂磁石
の製造方法にかかり、更に詳しくは熱重合性樹脂構成成
分を内包物質としたマイクロカプセルの1種または2種
以上を結合剤成分とした樹脂磁石の製造方法に関するも
のである。
TECHNICAL FIELD The present invention relates to a method for producing a resin magnet using a thermopolymerizable resin composition as a binder, and more specifically to microcapsules containing a thermopolymerizable resin component as an encapsulating substance. The present invention relates to a method for producing a resin magnet containing one or more of the above as a binder component.

従来の技術 高度な磁気性能が発現する樹脂磁石として、例えばSm
(Co,Cu,Fe,M)n(但し、Mは周期律表のIV族,V族,VI
族,VII族に属する元素の1種または2種以上の組み合わ
せであり、nは一般に5〜9の整数)を2〜6重量%の
結合剤で磁場中圧縮成形した樹脂磁石が知られている。
該樹脂磁石の結合剤としては一般に室温で液体のエポキ
シ樹脂組成物が採用されている。ここでエポキシ樹脂組
成物とは、エポキシ樹脂と、それを3次元的に橋架けす
る硬化剤、或は必要に応じて加える硬化促進剤、可塑剤
など各種添加剤とで構成するものであるが、かかる結合
剤、すなわちエポキシ樹脂組成物が樹脂磁石の品質の維
持,確保に重大な影響を及ぼすことが知られている。
Conventional technology As resin magnets with high magnetic performance, for example, Sm
(Co, Cu, Fe, M) n (where M is IV, V or VI of the periodic table)
Resin magnets are known that are one or a combination of two or more elements belonging to Group VII and Group VII, where n is generally an integer of 5 to 9) and are compression molded in a magnetic field with a binder of 2 to 6% by weight. .
As the binder for the resin magnet, an epoxy resin composition which is liquid at room temperature is generally adopted. Here, the epoxy resin composition is composed of an epoxy resin and a curing agent that three-dimensionally bridges it, or various additives such as a curing accelerator and a plasticizer that are added as necessary. It is known that such a binder, that is, an epoxy resin composition, has a significant influence on maintaining and ensuring the quality of resin magnets.

上記エポキシ樹脂とは下記一般式で示すような1分子
中に少なくとも2個以上のオキシラン環を有する化合物
の総称である。
The epoxy resin is a general term for compounds having at least two oxirane rings in one molecule as represented by the following general formula.

但し、上式中Yは多官能ハロヒドリンであり、例えば
エピクロルヒドリンと多価フェノールの反応生成物残基
である。ここで有用な多価フェノールはレゾシノールお
よびフェノールとアルデヒド或はケトンとの縮合によっ
て得られる種々のビスフェノール類である。このビスフ
ェノール類の代表的なものとして、2・2′−ビス(P
−ヒドロキシフェニルプロパン)であるビスフェノール
A,4・4′−ジヒドロキシビフェニル,4・4′−ジヒド
ロキシフェニルメタン,2・2′−ジヒドロキシジフェニ
ルオキサイドなどがある。具体的に最も普通のエポキシ
樹脂は下記一般式で示される。
However, Y in the above formula is a polyfunctional halohydrin, for example, a reaction product residue of epichlorohydrin and polyhydric phenol. Polyhydric phenols useful herein are resorcinol and various bisphenols obtained by condensation of phenol with aldehydes or ketones. Typical of these bisphenols are 2.2'-bis (P
-Hydroxyphenylpropane)
There are A, 4'4'-dihydroxybiphenyl, 4,4'-dihydroxyphenylmethane, 2.2'-dihydroxydiphenyl oxide and the like. Specifically, the most common epoxy resin is represented by the following general formula.

但し、上式中Rは炭素数1〜8の飽和アルキレン基,
酸素およびスルホン基から選ばれる2価の基であり、y
は0または25の整数、そしてnは0または1である。
However, in the above formula, R is a saturated alkylene group having 1 to 8 carbon atoms,
A divalent group selected from oxygen and sulfonic groups, y
Is an integer of 0 or 25, and n is 0 or 1.

エピクロルヒドリンとビスフェノールAとの縮合物
(DGEBA)はとくにその代表として例示できる。
A condensate of epichlorohydrin and bisphenol A (DGEBA) can be particularly exemplified.

次に上記したようなエポキシ樹脂の硬化剤は、例えば
樹脂磁石では特開昭60−37106号公報や特開昭60−20730
2号公報にアミノ基を有するアゾール化合物であり、下
記一般式で示されるイミダゾール類に特定することが開
示されている。
Next, as a curing agent for the epoxy resin as described above, for example, in the case of resin magnets, there are JP-A-60-37106 and JP-A-60-20730.
No. 2 discloses an azole compound having an amino group, which is specified as an imidazole represented by the following general formula.

但し、上式中R1,R2,R3およびR4は水素、低級アルキル
基,フェニル基及び低級アキルフェニルから個々に選ば
れるものである。例えばイミダゾール,2−エチル−4−
メチルイミダゾール,1−ベンジル−2−メチルイミダゾ
ール,1−メチルイミダゾール,1・2−ジメチルイミダゾ
ールなどである。
However, in the above formula, R 1 , R 2 , R 3 and R 4 are individually selected from hydrogen, a lower alkyl group, a phenyl group and a lower alkylphenyl. For example imidazole, 2-ethyl-4-
Examples thereof include methyl imidazole, 1-benzyl-2-methyl imidazole, 1-methyl imidazole, 1.2-dimethyl imidazole.

発明が解決しようとする課題 しかし、一般にイミダゾール類は高融点(一般に200
℃以上)の固体であるためエポキシ樹脂との混合作業が
難しく、エポキシ樹脂組成物としての可使時間も一般に
7日以内のものである。しかもエポキシ樹脂と、その硬
化剤とを混合したエポキシ樹脂組成物は序々に重合する
ことにより増粘する。該エポキシ樹脂組成物の増粘は磁
石素材との混合下であっても同様であるから、特にSm
(Co,Cu,Fe,M)nのような一般に磁気異方化を要する樹
脂磁石を製造する場合、当該エポキシ樹脂組成物の増粘
によって磁場配向の度合が低下し、例えば樹脂磁石の残
留磁束密度が増粘の程度に応じて低下してしまうことに
なる。そして遂にはゲル化に至り、その結果樹脂磁石自
体の製造が困難になるのである。尚、Sm(Co,Cu,Fe,M)
nのように磁気異方化を施す必要のある場合、磁場配向
を容易にするためにエポキシ樹脂組成物としては室温で
液体であることが普通である。このように結合剤である
エポキシ樹脂組成物が室温で液体であることは粉末成形
材料としての流動性を伴わないものであるから任意形状
のグリーン体を形成する際の作業性が極めて困難である
ばかりか、グリーン体自体の機械的強度が著しく低いた
めに品質や性能の繊維確保が極めて困難なものであっ
た。この欠点を克服するためにグリーン体成形時におけ
る結合剤の形態についても多くの工夫や提案がなされ
た。例えば特開昭55−63808号公報では、磁石素材と微
粉末熱重合性樹脂とをドライブレンドしたものでグリー
ン体を成形することが開示されている。この方法は、グ
リーン体の品質の確保には効果的であるけれどもグリー
ン体加熱時に磁石素材個々の表面を微粉末熱重合性樹脂
で均質に濡らすためには多量の結合剤成分を要し、結果
的に磁石素材の密度が低下し磁気性能の低下を余儀なく
されるものであった。一方特開昭60−194509号公報には
室温で固体の熱重合性樹脂組成物で磁石素材を被覆し、
熱重合性樹脂組成物の軟化温度よりも高い温度でグリー
ン体を成形し、熱重合性樹脂組成物の軟化温度よりも低
い温度で当該グリーン体を金型より脱型することが開示
されている。この方法は、グリーン体の品質や性能の維
持・確保には、一定の効果があるけれどもグリーン体成
形時に結合剤の軟化温度を基準として加熱・冷却しなけ
ればならないため樹脂磁石を工業的に多量生産するには
設備の維持管理上極めて、困難な問題が内在するもので
あった。
However, imidazoles generally have a high melting point (typically 200
Since it is a solid (° C or higher), it is difficult to mix it with an epoxy resin, and the pot life of the epoxy resin composition is generally within 7 days. Moreover, the epoxy resin composition obtained by mixing the epoxy resin and the curing agent thereof is gradually polymerized to increase the viscosity. The increase in viscosity of the epoxy resin composition is the same even when mixed with a magnet material.
When a resin magnet such as (Co, Cu, Fe, M) n that generally requires magnetic anisotropy is manufactured, the degree of magnetic field orientation decreases due to the thickening of the epoxy resin composition, and for example, the residual magnetic flux of the resin magnet is reduced. The density will decrease depending on the degree of thickening. Finally, gelation occurs, and as a result, it becomes difficult to manufacture the resin magnet itself. In addition, Sm (Co, Cu, Fe, M)
When it is necessary to apply magnetic anisotropy like n, the epoxy resin composition is usually a liquid at room temperature in order to facilitate magnetic field orientation. Since the epoxy resin composition as the binder is liquid at room temperature as described above, it does not have fluidity as a powder molding material, and thus workability in forming a green body having an arbitrary shape is extremely difficult. Not only that, the mechanical strength of the green body itself is extremely low, so it was extremely difficult to secure quality and performance fibers. In order to overcome this drawback, many contrivances and proposals have been made regarding the form of the binder when molding the green body. For example, Japanese Patent Application Laid-Open No. 55-63808 discloses that a green body is formed by dry blending a magnet material and a fine powder thermopolymerizable resin. Although this method is effective for ensuring the quality of the green body, it requires a large amount of binder component to uniformly wet the surface of each magnet material with the fine powder thermopolymerizable resin when heating the green body. Therefore, the density of the magnetic material is reduced, and the magnetic performance is inevitably reduced. On the other hand, in JP-A-60-194509, a magnet material is coated with a thermopolymerizable resin composition which is solid at room temperature,
It is disclosed that a green body is molded at a temperature higher than the softening temperature of the thermopolymerizable resin composition, and the green body is released from the mold at a temperature lower than the softening temperature of the thermopolymerizable resin composition. . This method has a certain effect in maintaining and ensuring the quality and performance of the green body, but since it must be heated and cooled based on the softening temperature of the binder when molding the green body, a large amount of resin magnets are used industrially. There was an extremely difficult problem in terms of equipment maintenance for production.

課題を解決するための手段 本発明は、上記背景に鑑みてなされたもので、熱重合
性樹脂構成成分を内包物質としたマイクロカプセルの1
種または2種以上を結合剤成分とし、該結合剤と磁石素
材とのグリーン体成形時にマイクロカプセルの一部或は
全量を機械的に破壊せしめてカプセルの内包物質を溶出
せしめ、然るのち結合剤を重合硬化するものである。
Means for Solving the Problems The present invention has been made in view of the above background, and is a microcapsule having a thermopolymerizable resin component as an encapsulating substance.
One kind or two or more kinds are used as a binder component, and when the binder and the magnetic material are molded into a green body, some or all of the microcapsules are mechanically destroyed to elute the encapsulating substance of the capsules, and then the bonding is performed. It cures and cures the agent.

作用 以下、本発明を更に詳しく説明する。Action The present invention will be described in more detail below.

先ず本発明で言う熱重合性樹脂構成成分とは樹脂磁石
の結合剤として一般的なエポキシ樹脂組成物を、その代
表として例示することができる。ここで言うエポキシ樹
脂組成物の構成成分とは、一般にエポキシ樹脂と、それ
を三次元的に橋架けする硬化剤、或いは必要に応じて加
える各種添加剤を抱括するものである。ここで上記エポ
キシ樹脂とは少なくとも1分子中に2個以上のオキシラ
ン環を有する化合物の総称である。また該エポキシ樹脂
の硬化剤としては脂肪族ポリアミン類,ポリアミド類,
複素環ジアミン類,芳香族ポリアミン類,酸無水物類,
含芳香核脂肪酸ポリアミン類,イミダゾール類,ジシア
ンジアミドおよびその誘導体類,有機酸ジドラジドおよ
びその誘導体類などオキシラン環を開環重合する化合物
であれば如何なる化合物をも使用することができる。更
にはエポキシ樹脂と上記硬化剤とで単純なエポキシ樹脂
組成物を構成しても差し支えないし、更に必要に応じ、
例えば1分子中に1個のオキシラン環を有するモノエポ
キシ化合物などの各種可塑剤や第3アミンなどの各種硬
化促進剤を構成成分として加えることもできる。
First, as the thermopolymerizable resin constituent referred to in the present invention, a typical epoxy resin composition as a binder for resin magnets can be exemplified. The constituent components of the epoxy resin composition here generally include an epoxy resin, a curing agent that three-dimensionally bridges the epoxy resin, and various additives that are added as necessary. Here, the epoxy resin is a generic term for compounds having at least two oxirane rings in at least one molecule. As the curing agent for the epoxy resin, aliphatic polyamines, polyamides,
Heterocyclic diamines, aromatic polyamines, acid anhydrides,
Any compound can be used as long as it is a compound capable of ring-opening polymerization of an oxirane ring, such as aromatic amine-containing fatty acid polyamines, imidazoles, dicyandiamide and its derivatives, organic acid hydrazide and its derivatives. Furthermore, a simple epoxy resin composition may be constituted with an epoxy resin and the above curing agent, and if necessary,
For example, various plasticizers such as monoepoxy compounds having one oxirane ring in one molecule and various curing accelerators such as tertiary amines can be added as constituent components.

次に本発明で言う上記熱重合性樹脂構成成分を内包物
質としたマイクロカプセルとは、例えば適宜選択した少
なくとも室温で液体の内包物質存在下で懸濁重合するい
わゆるin−situ重合法で製造することができる。ここで
一般にマイクロカプセルの形成に使用される単量体類と
しては塩化ビニル,塩化ビニリデン,アクリロニトリ
ル,スチレン,酢酸ビニル,メタアクリル酸エステル及
び種々の架橋剤を例示することができ、それ等は、共重
合体として用いられる。尚、ここで内包物質として使用
する熱重合性樹脂構成成分はエポキシ樹脂,硬化剤並び
に必要に応じて加える各種添加剤から適宜選ばれる1種
または2種以上でありそれ等は少なくとも室温で液体で
あってしかも内包物質とマイクロカプセルとは互いに化
学的に不活性であることが必要である。尚、マイクロカ
プセルの形態としては単核球状カプセルであって、しか
も磁石素材の粒子径よりも小さいものが好ましい。
Next, the microcapsules containing the thermopolymerizable resin component as an encapsulating substance in the present invention are produced by, for example, a so-called in-situ polymerization method in which suspension polymerization is performed in the presence of a liquid encapsulating substance at least at room temperature. be able to. Here, as the monomers generally used for forming the microcapsules, vinyl chloride, vinylidene chloride, acrylonitrile, styrene, vinyl acetate, methacrylic acid ester and various crosslinking agents can be exemplified. Used as a copolymer. The thermopolymerizable resin constituents used as the encapsulating material here are one or two or more kinds appropriately selected from an epoxy resin, a curing agent, and various additives added as necessary, and they are liquid at least at room temperature. In addition, the encapsulating material and the microcapsules must be chemically inert to each other. The microcapsules are preferably mononuclear spherical capsules having a particle size smaller than that of the magnet material.

次に本発明で使用し得る磁石素材とは、Sm(Co,Cu,F
e,M)nの他、Mo・nFe2O3(但し、MはBa,St,Pbの群よ
り選ばれた1種または2種以上,nは4.5〜6.2の整数)な
ど一般に樹脂磁石に使用されるような粒子状の如何なる
ものでも使用できるが、とくに好ましくはFe100-x-y-z
Cox Ry Bz(但し、RはNdまたは/およびPr,0≦x
≧30,10≦y≦28,2≦z≦12,y+x≦34,6z+y≧34であ
り、x,y,zはそれぞれCo,Nd,Bの原子%を表す)で示され
る磁気異方性を有する粒子径数十ないし数百μmのFe−
B−R系粒子である。但し、このようなFe−B−R系磁
石素材は例えば特開昭59−6439号公報に見られるような
単ロール法などの超急冷法により製造した薄片をそのま
ま、或は熱処理したのち適宜粒度調整したような磁気的
に等方性のものであっても使用することは可能である。
尚、基本的な永久磁石素材としての特性を損なわない範
囲であればFe−B−R系磁石素材に例えばAl,Si,Gu,Zn
など他の元素の混在或は規則的置換があっても差し支え
ない。
Next, the magnet materials that can be used in the present invention include Sm (Co, Cu, F
e, M) n, Mo ・ nFe 2 O 3 (where M is one or more selected from the group of Ba, St, Pb, n is an integer of 4.5 to 6.2) Any of the particulate forms used can be used, particularly preferably Fe 100-xyz
Cox Ry Bz (where R is Nd or / and Pr, 0 ≦ x
≧ 30,10 ≦ y ≦ 28, 2 ≦ z ≦ 12, y + x ≦ 34,6z + y ≧ 34, where x , y , and z represent the atomic% of Co, Nd, and B), and the magnetic anisotropy is shown. Fe having a particle size of several tens to several hundreds μm
It is a B-R type particle. However, such a Fe-BR magnet material may have a proper particle size after being subjected to a heat treatment of a thin piece produced by an ultra-quenching method such as a single roll method as disclosed in JP-A-59-6439. It is possible to use even a magnetically isotropic one as adjusted.
In addition, as long as the characteristics of the basic permanent magnet material are not impaired, the Fe-BR magnet material is made of, for example, Al, Si, Gu, Zn.
There is no problem even if other elements are mixed or regularly substituted.

以上のように、少なくとも熱硬化性樹脂構成成分の1
種または2種以上を内包物質としたマイクロカプセルを
樹脂磁石の結合剤成分とするのであって、その組み合せ
は室温で固体の熱重合性樹脂構成成分,室温で液体の
熱重合性樹脂構成成分,室温で液体の熱重合性樹脂構
成成分を内包物質としたマイクロカプセル,磁石素材
とで樹脂磁石を構成する場合、[+++],
[++],[++],[+]を挙げる
ことができる。但しを使用する場合には本発明の重要
な効果の1つである粉末成形材料としての流動性やグリ
ーン体の機械的強度に重大な影響を及ぼさないような配
慮が必要である。
As described above, at least one of the thermosetting resin components is used.
One or two or more kinds of microcapsules containing an encapsulating substance are used as the binder component of the resin magnet, and the combination thereof is a thermopolymerizable resin component which is solid at room temperature, a thermopolymerizable resin component which is liquid at room temperature, When a resin magnet is composed of a microcapsule containing a thermopolymerizable resin component that is liquid at room temperature as an encapsulating material, and a magnet material, [+++],
[++], [++], and [+] can be mentioned. However, when using, it is necessary to consider so as not to seriously affect the fluidity of the powder molding material and the mechanical strength of the green body, which is one of the important effects of the present invention.

上記のような組み合わせ、すなわち少なくとも熱重合
性樹脂構成成分の1種または2種以上を内包物質とした
マイクロカプセルを結合剤成分として磁石素材とともに
調整した樹脂磁石材料を粉末成形の常法に従ってグリー
ン体とする場合、必要に応じて磁場を印加する。磁場印
加をする場合の金型は必要に応じてキャビティを取り囲
むように非磁性体ヨークと磁性体ヨークとを交互に組み
合わせ、且つ外側に磁化コイルを配置した構造とする。
或はまたキャビティの外周に磁化コイルを埋設した構造
とする。かかる方法はキャビティ内に所定の強さの磁界
を発生させるため高電圧低電流型の電源に磁化コイルを
接続する。更にはまたキャビティの周囲の所定の位置に
相応する磁極部を有する整列ヨークを設置し、該ヨーク
内に導線を設けた構造の金型を使用する。かかる方式は
配向ヨーク内に設置した導線に通電して励磁するもの
で、従って商用周波数交流電源を入力してオールサイリ
スタ全波位相制御方式によりパルス電流を発生せしめる
瞬間電流電源、もしくは所定の直流電圧に昇圧整流し、
コンデンサ群に充電後サイリスタを経て放電を行う瞬間
直流電源に接続する。但し磁石素材が磁気的に等方性の
場合には上記のような構成の金型は不要である。いずれ
にしてもキャビティ内に充填した樹脂磁石材料を圧縮し
て高密度化する。高密度化する段階でマイクロカプセル
が磁石素材によって機械的に破壊し、内包物質である熱
重合性樹脂構成成分が溶出する。このマイクロカプセル
から溶出した熱重合性樹脂構成成分相互、或はマイクロ
カプセル系外に予め存在せしめた互いに異種の熱重合性
樹脂構成成分とが高密度化(或は必要に応じて行う磁石
素材の磁場配向)の段階で互いに混合することによって
通常の熱重合性樹脂組成物、すなわち結合剤となるので
ある。そして充分に高密度化したグリーン体は、キャビ
ティ内で必要に応じて脱磁を施し脱型する。更に、脱型
後は熱重合性樹脂組成物すなわち結合剤の重合硬化を施
して樹脂磁石とするのである。
The above combination, that is, a resin magnet material prepared by using a microcapsule containing at least one or more thermopolymerizable resin components as an encapsulating substance together with a magnet material as a binder component, is formed into a green body according to a conventional powder molding method. In that case, a magnetic field is applied as necessary. The mold for applying a magnetic field has a structure in which non-magnetic material yokes and magnetic material yokes are alternately combined so as to surround the cavity as necessary, and a magnetizing coil is arranged outside.
Alternatively, the magnetizing coil is embedded in the outer periphery of the cavity. In this method, a magnetizing coil is connected to a high voltage / low current type power source in order to generate a magnetic field having a predetermined strength in the cavity. Furthermore, a mold having a structure in which an alignment yoke having magnetic pole portions corresponding to predetermined positions around the cavity is installed and a conductive wire is provided in the yoke is used. Such a method energizes and energizes a conducting wire installed in the orientation yoke.Therefore, a commercial frequency AC power source is input and an instantaneous current power source that generates a pulse current by the all-thyristor full-wave phase control method, or a predetermined DC voltage. Boost rectified to
After charging the capacitor group, it is connected to the instantaneous DC power source that discharges through the thyristor. However, if the magnet material is magnetically isotropic, the mold having the above configuration is not necessary. In any case, the resin magnet material filled in the cavity is compressed to increase the density. At the stage of densification, the microcapsules are mechanically broken by the magnet material, and the thermopolymerizable resin constituents as the encapsulating substance are eluted. The thermopolymerizable resin constituents eluted from the microcapsules or the different thermopolymerizable resin constituents existing in advance outside the microcapsule system are densified (or the By mixing with each other in the (magnetic field orientation) stage, it becomes a usual thermopolymerizable resin composition, that is, a binder. Then, the fully densified green body is demagnetized and demolded in the cavity as needed. Further, after demolding, the thermopolymerizable resin composition, that is, the binder is polymerized and cured to obtain a resin magnet.

以上のように本発明に基づく樹脂磁石の製造方法によ
れば結合剤、すなわち熱重合性樹脂構成成分の混合が容
易である。また、混合後も化学的に活性な成分をマイク
ロカプセルによって隔離した形態なので貯蔵性がよく、
重合反応に基づく増粘が生じない。更に粉末成形材料と
しての流動性が確保される。或は磁場配向を要する磁石
素材の動きをほとんど妨げないことやグリーン体成形時
に結合剤の軟化温度を基準として加熱及び冷却すること
も不要であるなどの利点があり、高度な磁気性能を有す
る樹脂磁石を製造するにあたって品質,性能の維持,確
保に効果的な作用が発現するのである。
As described above, according to the method for producing a resin magnet of the present invention, it is easy to mix the binder, that is, the thermopolymerizable resin constituent component. In addition, since the chemically active components are separated by microcapsules even after mixing, they have good storage properties,
Thickening due to the polymerization reaction does not occur. Furthermore, the fluidity as a powder molding material is secured. Or, it has the advantages that it hardly interferes with the movement of the magnet material that requires magnetic field orientation, and that it does not require heating and cooling based on the softening temperature of the binder during molding of the green body. When manufacturing magnets, effective effects are maintained to maintain and secure quality and performance.

実施例 以下、本発明を実施例によって更に詳しく説明する。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1. Sm(Co0.668,Cu0.101,Fe0.214,Zr0.0177.33からな
る合金を1150℃にて24時間溶体化処理し、次いで800℃
で24時間、引き続き600℃で1時間時効処理を施した。
この合金を常法に従って粉砕し、分級し、調合すること
によって粒子径53〜200μmの磁石素材に調整した。一
方、下記一般式で示されるジグリシジルフェニルエーテ
ル、すなわち4・4′−ビス(2,3−エポキシプロピ
ル)フェニルエーテルの 存在下でメチルメタアクリレートとアクリルニトリルと
を懸濁重合する、いわゆるin−situ重合法によって室温
で液体のエポキシ樹脂を内包物質とし、メチルメタアク
リレートとアクリルニトリルとの共重合体をセルとした
マイクロカプセルを調整した。尚、内包物質であるエポ
キシ樹脂の含有量は70重量%であり、その平均粒子径は
16μmである。また、一方の熱重合性樹脂構成成分とし
て2−エチル−4−メチルイミダゾールを用意し下記組
成の粉末成形に供し得る樹脂磁石材料とした。
Example 1. An alloy consisting of Sm (Co 0.668 , Cu 0.101 , Fe 0.214 , Zr 0.017 ) 7.33 was solution treated at 1150 ° C for 24 hours and then 800 ° C.
Aging treatment was performed for 24 hours at 600 ° C. for 1 hour.
This alloy was pulverized, classified and compounded according to a conventional method to prepare a magnet material having a particle diameter of 53 to 200 μm. On the other hand, a diglycidyl phenyl ether represented by the following general formula, that is, 4 / 4'-bis (2,3-epoxypropyl) phenyl ether Suspension polymerization of methylmethacrylate and acrylonitrile in the presence, by the so-called in-situ polymerization method at room temperature liquid epoxy resin as the inclusion material, a copolymer of methylmethacrylate and acrylonitrile as a cell micro The capsule was adjusted. The content of the epoxy resin, which is the inclusion substance, was 70% by weight, and the average particle size was
16 μm. Further, 2-ethyl-4-methylimidazole was prepared as one of the thermopolymerizable resin constituents to prepare a resin magnet material which can be used for powder molding having the following composition.

Sm(Co,Cu,Fe,Zr) ……95.9重量% マイクロカプセル ……4.0重量% 2−エチル−4−メチルイミダゾール ……0.1重量% 上記樹脂磁石材料を円柱キャビティ内でアキシャル方
向に磁気異方化が可能な粉末成形機により、15KOeの磁
場中8ton/cm2の圧力で径10mmのグリーン体を成形した。
尚、成形まえの段階では50〜60sec/50gの粉末流動性が
認められたが、グリーン体表面はマイクロカプセルの機
械的破壊によって溶出したジグリシジルフェニルエーテ
ルによりやや湿った状態であった。また得られたグリー
ン体に亀裂や磁石素材の部分的な欠落も認められなかっ
た。このようなグリーン体を120℃で30分加熱すること
によって、密度6.85g/cm3の樹脂磁石としたものの磁気
特性は残留磁束密度7.6KG,最大エネルギー積12.5MGOeで
あった。またグリーン体成形まえの段階、すなわち樹脂
磁石材料を40℃で30日間貯蔵したものから同一条件下で
樹脂磁石を製造しても成形性やグリーン体の外観、或は
磁気特性に変動は認められなかった。
Sm (Co, Cu, Fe, Zr) 7 ...... 95.9% by weight Microcapsules ...... 4.0% by weight 2-Ethyl-4-methylimidazole ...... 0.1% by weight Magnetically different the above resin magnet material in the axial direction in the cylindrical cavity. A green body having a diameter of 10 mm was molded in a magnetic field of 15 KOe at a pressure of 8 ton / cm 2 using a powder molding machine capable of squaring.
Although powder flowability of 50 to 60 sec / 50 g was observed at the stage before molding, the surface of the green body was slightly moistened by diglycidyl phenyl ether eluted by mechanical destruction of the microcapsules. Moreover, neither cracks nor partial omission of the magnet material was observed in the obtained green body. By heating such a green body at 120 ° C. for 30 minutes, the magnetic characteristics of a resin magnet having a density of 6.85 g / cm 3 were a residual magnetic flux density of 7.6 KG and a maximum energy product of 12.5 MGOe. Even when the resin magnet material was stored for 30 days at 40 ° C before the green body was molded, and the resin magnet was manufactured under the same conditions, the moldability, the appearance of the green body, and the magnetic properties did not change. There wasn't.

比較例1. 実施例1と同一条件下で調整したSm(Co,Cu,Fe,Zr)7
96.0重量%,ジグリシジルフェニルエーテルすなわち
4・4′−ビス(2,3−エポキシプロピル)フェニルエ
ーテル,3.8重量部,2−エチル−4−メチルイミダゾール
0.2重量部とを混合し、直ちに樹脂磁石を構造した。ジ
グリシジルフェニルエーテルが原因となって粉末成形材
料としての流動性が損なわれているのでキャビティへの
均質な充填が困難であり、グリーン体の段階では磁石素
材の一部が脱落し易く取扱い難いものであった。また密
度6.5g/cm3の樹脂磁石の磁気特性は残留磁束密度6.8K
G、最大エネルギー積10.6MGOeであり、樹脂磁石材料の
段階で40℃,3日間貯蔵したものは既にグリーン体の成形
すら困難であった。
Comparative Example 1. Sm (Co, Cu, Fe, Zr) 7 prepared under the same conditions as in Example 1
96.0% by weight, diglycidyl phenyl ether or 4,4'-bis (2,3-epoxypropyl) phenyl ether, 3.8 parts by weight, 2-ethyl-4-methylimidazole
0.2 parts by weight was mixed and immediately a resin magnet was constructed. Since the fluidity of the powder molding material is impaired due to diglycidyl phenyl ether, it is difficult to uniformly fill the cavity, and at the stage of the green body part of the magnet material easily falls off and is difficult to handle. Met. The magnetic characteristics of resin magnets with a density of 6.5 g / cm 3 are the residual magnetic flux density of 6.8 K.
G, the maximum energy product was 10.6 MGOe, and it was already difficult to mold a green body when stored at 40 ° C for 3 days at the stage of resin magnet material.

実施例2. Nd15,Fe75,B10の急冷薄帯を室温で圧縮することによ
りグリーン体とし、700℃で熱間圧縮したのちダイアッ
プセンティングを行い相対密度98〜99%で磁化容易軸を
圧縮方向に捉えた合金とした。この合金を常法に従って
粉砕し、分級し、調合することによって粒子径53〜200
μmの磁石素材に調整した。一方、11%ブチルグリシジ
ルエーテル置換DGEBAの存在下で塩化ビニリデンとアク
リルニトリルとを懸濁重合するいわゆるin−situ重合法
により室温で液体のエポキシ樹脂を内包物質とし、塩化
ビニリデンとアクリルニトリルとの共重合体をセルとし
たマイクロカプセルを調整した。
Example 2. Nd 15 , Fe 75 , B 10 quenched ribbon was compressed at room temperature to form a green body, hot-pressed at 700 ° C and die-up sent to make it easy to magnetize at a relative density of 98-99%. An alloy with the shaft in the compression direction was used. This alloy is pulverized, classified and compounded according to a conventional method to obtain a particle size of 53-200.
The magnet material was adjusted to μm. On the other hand, a so-called in-situ polymerization method of suspension-polymerizing vinylidene chloride and acrylonitrile in the presence of 11% butyl glycidyl ether-substituted DGEBA was used as an encapsulating material for an epoxy resin that was liquid at room temperature, and the copolymerization of vinylidene chloride and acrylonitrile was performed. Microcapsules containing the polymer as a cell were prepared.

更に4−メチルヘキサヒドロ無水フタル酸を内包物質
とし、塩化ビニリデンとアクリルニトリルとの共重合体
をセルをしたマイクロカプセルを調整した。これ等のマ
イクロカプセルの内包物質含有量は70重量%であり、そ
の平均粒子径は10μmである。また、熱重合性樹脂構成
成分としての硬化促進剤にはイミダゾールを用意し、下
記組成の樹脂磁石材料とした。
Further, microcapsules containing 4-methylhexahydrophthalic anhydride as an encapsulating substance and a cell of a copolymer of vinylidene chloride and acrylonitrile were prepared. The content of the encapsulated substance in these microcapsules was 70% by weight, and the average particle size was 10 μm. In addition, imidazole was prepared as a curing accelerator as a component of the thermopolymerizable resin to obtain a resin magnet material having the following composition.

Nd15,Fe75,B10 ……97 重量% マイクロカプセルI ……2.0重量% マイクロカプセルII ……0.9重量% 硬化促進剤 ……0.1重量% 但し、上記マイクロカプセルI及びIIは、それぞれ11
%ブチルグリシジルエーテル置換DGEBAおよび4−メチ
ルヘキサヒドロ無水フタル酸を内包物質としたものであ
る。
Nd 15 , Fe 75 , B 10 ...... 97% by weight Microcapsule I ・ ・ ・ 2.0% by weight Microcapsule II ・ ・ ・ 0.9% by weight Curing accelerator ・ ・ ・ 0.1% by weight However, the above microcapsules I and II are 11 respectively.
% Butyl glycidyl ether-substituted DGEBA and 4-methylhexahydrophthalic anhydride were included as encapsulating substances.

上記樹脂磁石材料を実施例1と同条件下の粉末成形装
置により15KOeの磁場中8ton/cm2の圧力で径10mmのグリ
ーン体とした。尚、成形まえの段階では50〜60sec/50g
の粉末流動性が認められたが、グリーン体表面はマイク
ロカプセル内包物質の溶出によって湿潤状態を呈するも
のであった。このようなグリーン体を120℃で1時間加
熱することにより樹脂磁石としたものの磁気特性は残留
磁束密度8.9KG,最大エネルギー積16MGOeであった。ま
た、グリーン体成形まえの段階、すなわち樹脂磁石材料
を40℃で30日間貯蔵したものから同一条件下で樹脂磁石
を製造しても成形性やグリーン体の外観、或は磁気特性
に変動は認められなかった。
The resin magnet material was made into a green body having a diameter of 10 mm by a powder molding apparatus under the same conditions as in Example 1 under a magnetic field of 15 KOE and a pressure of 8 ton / cm 2 . In addition, at the stage before molding, 50-60sec / 50g
Although the powder fluidity was observed, the surface of the green body was in a wet state due to the elution of the substance encapsulated in the microcapsules. The magnetic properties of a resin magnet obtained by heating such a green body at 120 ° C. for 1 hour had a residual magnetic flux density of 8.9 KG and a maximum energy product of 16 MGOe. Even when the resin magnet was manufactured under the same conditions from the stage before the green body was formed, that is, the resin magnet material was stored at 40 ° C for 30 days, the formability, the appearance of the green body, and the magnetic characteristics did not change. I couldn't do it.

発明の効果 以上のように本発明に基づく樹脂磁石の製造方法によ
れば、結合剤すなわち熱重合性樹脂構成成分の混合が容
易である。また室温で液体の熱重合性樹脂構成成分であ
ってもマイクロカプセルによって他の成分と隔離した状
態でグリーン体の成形に供すことができるので粉末成形
材料としての流動性が確保できるばかりか、科学的に不
活性な状態を維持できるので貯蔵安定性も格段に優れて
いる。とくに樹脂磁石材料としての貯蔵中に熱重合性樹
脂構成成分が互いの重合に基づく増粘現象を起こさず、
磁石素材は個別の独立した粒子として自由に動くことが
できるので、磁場中粉末成形における配向度を高めるこ
とに効果的である。また、グリーン体成形時に熱重合性
樹脂組成物である結合剤の軟化温度を基準として加熱冷
却することも不要であることなどから高度な磁気性能を
有する樹脂磁石を製造するに当たって品質,性能の維持
確保に効果的であることが明白である。
EFFECTS OF THE INVENTION As described above, according to the method for producing a resin magnet according to the present invention, it is easy to mix the binder, that is, the thermopolymerizable resin constituent component. In addition, even thermosetting resin components that are liquid at room temperature can be used for forming green bodies in a state where they are isolated from other components by microcapsules, so that not only can fluidity be ensured as a powder molding material, Since it can maintain an inactive state, it has excellent storage stability. Especially during storage as a resin magnet material, thermopolymerizable resin components do not cause a thickening phenomenon based on mutual polymerization,
Since the magnet material can move freely as individual particles, it is effective in increasing the degree of orientation in powder molding in a magnetic field. In addition, since it is not necessary to heat and cool the softening temperature of the binder, which is a thermopolymerizable resin composition, when molding the green body, it is not necessary to maintain quality and performance when manufacturing resin magnets with high magnetic performance. It is clear that it is effective for securing.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】熱重合性樹脂構成成分を内包物質としたマ
イクロカプセルの1種または2種以上を結合剤成分と
し、該結合剤と磁石素材とのグリーン体成形時に前記マ
イクロカプセルの一部或は全量を機械的に破壊して前記
内包物質を溶出せしめ、然るのち結合剤成分を重合硬化
する樹脂磁石の製造方法。
1. One or more microcapsules containing a thermopolymerizable resin component as an encapsulating substance as a binder component, and a part of the microcapsules or a part of the microcapsules when the binder and the magnetic material are molded into a green body. Is a method for producing a resin magnet, in which the whole amount is mechanically destroyed to elute the encapsulated substance, and then the binder component is polymerized and cured.
【請求項2】磁石素材がFe100-x-y-z Cox Ndy Bz
(但し、0≦x≧30,10≦y≦28,2≦z≦12,y+x≦34,
6z+y≧34であり、x,y,zはそれぞれCo,Nd,Bの原子%を
表す)で表され、且つ磁気異方性を有する、数十ないし
数百μmの粒子である特許請求の範囲第1項記載の樹脂
磁石の製造方法。
2. The magnet material is Fe 100-xyz Cox Ndy Bz.
(However, 0 ≦ x ≧ 30, 10 ≦ y ≦ 28, 2 ≦ z ≦ 12, y + x ≦ 34,
6z + y ≧ 34, wherein x , y , and z represent the atomic% of Co, Nd, and B), and are particles having a magnetic anisotropy of several tens to several hundreds μm. The method for producing a resin magnet according to item 1.
JP63046202A 1988-02-29 1988-02-29 Resin magnet manufacturing method Expired - Lifetime JP2558790B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP63046202A JP2558790B2 (en) 1988-02-29 1988-02-29 Resin magnet manufacturing method
EP89103336A EP0331055B1 (en) 1988-02-29 1989-02-25 Methods for producing a resinbonded magnet
EP93100979A EP0540503B1 (en) 1988-02-29 1989-02-25 Method for making a resin bonded magnet article
DE68912157T DE68912157T2 (en) 1988-02-29 1989-02-25 Process for the production of resin-bonded magnets.
DE68922748T DE68922748T2 (en) 1988-02-29 1989-02-25 Process for the production of a plastic bonded magnetic object.
EP93100980A EP0540504B1 (en) 1988-02-29 1989-02-25 Method for making a resin bonded magnet article
DE68922911T DE68922911T2 (en) 1988-02-29 1989-02-25 Process for the production of resin-bonded magnetic objects.
KR1019890002347A KR920002258B1 (en) 1988-02-29 1989-02-27 Resin-bonded magnet and making method thereof
US07/316,967 US4981635A (en) 1988-02-29 1989-02-28 Methods for producing a resin-bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63046202A JP2558790B2 (en) 1988-02-29 1988-02-29 Resin magnet manufacturing method

Publications (2)

Publication Number Publication Date
JPH01220417A JPH01220417A (en) 1989-09-04
JP2558790B2 true JP2558790B2 (en) 1996-11-27

Family

ID=12740497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63046202A Expired - Lifetime JP2558790B2 (en) 1988-02-29 1988-02-29 Resin magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP2558790B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2696100B2 (en) * 1989-12-25 1998-01-14 セイコーインスツルメンツ株式会社 Manufacturing method of magnetic anisotropic sintered magnet
JP2006100560A (en) * 2004-09-29 2006-04-13 Neomax Co Ltd Rare earth bonded magnet and method for manufacturing the same
JP6436127B2 (en) * 2016-04-06 2018-12-12 Jfeスチール株式会社 Mixed powder for powder metallurgy
JP6436128B2 (en) * 2016-04-06 2018-12-12 Jfeスチール株式会社 Mixed powder for powder metallurgy

Also Published As

Publication number Publication date
JPH01220417A (en) 1989-09-04

Similar Documents

Publication Publication Date Title
EP0331055B1 (en) Methods for producing a resinbonded magnet
CA1265671A (en) Epoxy bonded rare earth-iron magnets
US20220362843A1 (en) Methods of producing bonded magnet and compound for bonded magnets
US5149477A (en) Process for producing a resin bonded magnet structure
EP0285990B1 (en) A rare-earth permanent magnet
JP2558790B2 (en) Resin magnet manufacturing method
JP2009099580A (en) Rare earth bond magnet and manufacturing method thereof
US5190684A (en) Rare earth containing resin-bonded magnet and its production
JP2615781B2 (en) Method for manufacturing resin magnet structure
EP0350967A2 (en) Resin-bonded magnet and its production
JP4089220B2 (en) Permanent magnet motor
KR920002258B1 (en) Resin-bonded magnet and making method thereof
JP2558791B2 (en) Resin magnet manufacturing method
JP3024436B2 (en) Method for manufacturing resin magnet structure
JP2993255B2 (en) Manufacturing method of resin magnet
JPH01220419A (en) Manufacture of resin magnet structure
JP3182961B2 (en) Composition for bonded magnet and method for producing the same
JP2005344142A (en) Method for producing radial anisotropic ring magnet
JPH0536509A (en) Composition for bond magnet and the bond magnet
JPH0774013A (en) Composition for resin-bonded magnet and resin-bonded magnet using the same
JPS6311050A (en) Permanent magnet type motor
JPH06151128A (en) Blended substance for bond magnet
JPH06163224A (en) Composition for bond magnet and bond magnet
JPH06112022A (en) Composition for bonded magnet and manufacture thereof
JPH06151129A (en) Formation for bond magnet, and bond magnet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12