[go: up one dir, main page]

JPH01220417A - Manufacture of resin magnet - Google Patents

Manufacture of resin magnet

Info

Publication number
JPH01220417A
JPH01220417A JP63046202A JP4620288A JPH01220417A JP H01220417 A JPH01220417 A JP H01220417A JP 63046202 A JP63046202 A JP 63046202A JP 4620288 A JP4620288 A JP 4620288A JP H01220417 A JPH01220417 A JP H01220417A
Authority
JP
Japan
Prior art keywords
resin
magnet
green body
microcapsules
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63046202A
Other languages
Japanese (ja)
Other versions
JP2558790B2 (en
Inventor
Fumitoshi Yamashita
文敏 山下
Masami Wada
正美 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP63046202A priority Critical patent/JP2558790B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to DE68922911T priority patent/DE68922911T2/en
Priority to DE68912157T priority patent/DE68912157T2/en
Priority to EP93100979A priority patent/EP0540503B1/en
Priority to EP93100980A priority patent/EP0540504B1/en
Priority to DE68922748T priority patent/DE68922748T2/en
Priority to EP89103336A priority patent/EP0331055B1/en
Priority to KR1019890002347A priority patent/KR920002258B1/en
Priority to US07/316,967 priority patent/US4981635A/en
Publication of JPH01220417A publication Critical patent/JPH01220417A/en
Application granted granted Critical
Publication of JP2558790B2 publication Critical patent/JP2558790B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To facilitate a mass production by employing as a bonding agent component one or more kinds of microcapsules with a thermally polymerizable resin component as an enclosed substance, mechanically damaging part or all of the capsules to discharge the substance at the time of forming a green body of bonding agent and a magnet material, and then polymerizing and curing the agent. CONSTITUTION:One or more types of microcapsules with a thermally polymerizable resin component as an enclosed substance are employed as a bonding agent component at the time of manufacturing a resin magnet, and part of all of the capsules are mechanically damaged to discharge the substance at the time of forming a green body of the agent and a magnet material. The agent component is polymerized and cured to manufacture the resin magnet. The magnet has Fe100-x-y-zCOxNdyBz (where 0<=x>=30, 10<=y<=28, 2<=z<=12, y+x<=34, 6z+y>=34, and the x, y, z represent the atomic% of the CO, Nd, B) and several tens to several hundreds of particles each including magnetic anisotropy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は熱重合性樹脂組成物を結合剤とした樹脂磁石の
製造方法にかかり、更に詳しくは熱重合性樹脂構成成分
を内包物質としたマイクロカプセルの1種または2種以
上を結合剤成分とした樹脂磁石の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a resin magnet using a thermopolymerizable resin composition as a binder, and more specifically to a method for producing a resin magnet using a thermopolymerizable resin composition as an encapsulating material. The present invention relates to a method for producing a resin magnet using one or more of these as a binder component.

従来の技術 高度な磁気性能が発現する樹脂磁石として、例えばSs
 (Co、Cu、Fe、M)n (但し、Mは周期律表
の■族、V族、■族、■族に属する元素の1種または2
種以上の組み合わせであり、nは一般に5〜9の整数)
を2〜6重量%の結合剤で磁場中圧縮成形した樹脂磁石
が知られている。該樹脂磁石の結合剤としては一般に室
温で液体のエポキシ樹脂組成物が採用されている。ここ
でエポキシ樹脂組成物とは、エポキシ樹脂と、それを3
次元的に橋架けする硬化剤、或は必要に応じて加える硬
化促進剤、可塑剤など各種添加剤とで構成するものであ
るが、かかる結合剤、すなわちエポキシ樹脂組成物が樹
脂磁石の品質の維持、確保に重大な影響を及ぼすことが
知られている。
Conventional technology As a resin magnet that exhibits advanced magnetic performance, for example, Ss
(Co, Cu, Fe, M)n (However, M is one or two of the elements belonging to Groups ■, V, ■, and ■ of the periodic table.
A combination of more than one species, n is generally an integer from 5 to 9)
Resin magnets are known that are made by compression molding in a magnetic field with 2 to 6% by weight of a binder. As the binder for the resin magnet, an epoxy resin composition that is liquid at room temperature is generally used. Here, the epoxy resin composition refers to an epoxy resin and 3
It is composed of a curing agent that creates dimensional cross-linking, and various additives such as curing accelerators and plasticizers that are added as necessary.The binder, that is, the epoxy resin composition, determines the quality of the resin magnet. It is known to have a significant impact on maintenance and security.

上記エポキシ樹脂とは下記一般式で示すような1分子中
に少なくとも2個以上のオキシラン環を有する化合物の
総称である。
The above-mentioned epoxy resin is a general term for compounds having at least two or more oxirane rings in one molecule as shown in the following general formula.

但し、上式中Yは多官能ハロヒドリンであり、例えばエ
ピクロルヒドリンと多価フェノールの反応生成物残基で
ある。ここで有用な多価フェノールはレゾシノールおよ
びフェノールとアルデヒド或はケトンとの縮合によって
得られる種々のビスフェノール類である。このビスフェ
ノール類の代表的なものとして、2・2′−ビス(P−
ヒドロキシフェニルプロパン)であるビスフェノールA
However, Y in the above formula is a polyfunctional halohydrin, for example, a residue of a reaction product of epichlorohydrin and polyhydric phenol. Polyhydric phenols useful herein are resorcinol and various bisphenols obtained by condensation of phenol with aldehydes or ketones. A typical bisphenol is 2,2'-bis(P-
Bisphenol A (hydroxyphenylpropane)
.

4・4′−ジヒドロキシビフェニル、4・4′−ジ□ヒ
ドロキシビフェニルメタン、2・2′−ジヒドロキシジ
フェニルオキサイドなどがある。具体的に最も普通のエ
ポキシ樹脂は下記一般式で示される。
Examples include 4,4'-dihydroxybiphenyl, 4,4'-di□hydroxybiphenylmethane, and 2,2'-dihydroxydiphenyl oxide. Specifically, the most common epoxy resin is represented by the following general formula.

但し、上式中Rは炭素数1〜8の飽和アルキレン基、酸
素およびスルホン基から選ばれる2価の基であり、yは
Oまたは25の整数、そしてnは0または1である。
However, in the above formula, R is a divalent group selected from a saturated alkylene group having 1 to 8 carbon atoms, oxygen, and a sulfone group, y is O or an integer of 25, and n is 0 or 1.

エピクロルヒドリンとビスフェノールAとの縮合物(D
GEBA)はと(にその代表として例示できる。
Condensate of epichlorohydrin and bisphenol A (D
GEBA) can be exemplified by To(.

次に上記したようなエポキシ樹脂の硬化剤は、例えば樹
脂磁石では特開昭60−37106号公報や特開昭60
−207302号公報にアミノ基を有するアゾール化合
物であり、下記一般式で示されるイミダゾール類に特定
することが開示されている。
Next, the above-mentioned epoxy resin curing agent is used, for example, in resin magnets as disclosed in JP-A-60-37106 and JP-A-60.
JP-A-207302 discloses an azole compound having an amino group, which is specifically imidazoles represented by the following general formula.

へ 但し、上式中R1,R2,R3およびR4は水素、低級
アルキル基、フェニル基及び低級アルキルフェニルから
個々に選ばれるものである。例えばイミダゾール、2−
エチル−4−メチルイミダゾール。
In the above formula, R1, R2, R3 and R4 are individually selected from hydrogen, a lower alkyl group, a phenyl group and a lower alkylphenyl group. For example, imidazole, 2-
Ethyl-4-methylimidazole.

1−ベンジル−2−メチルイミダゾール、1−メチルイ
ミダゾール、1・2−ジメチルイミダゾールなどである
These include 1-benzyl-2-methylimidazole, 1-methylimidazole, 1,2-dimethylimidazole, and the like.

発明が解決しようとする課題 しかし、一般にイミダゾール類は高融点(一般に200
℃以上)の固体であるためエポキシ樹脂との混合作業が
難しく、エポキシ樹脂組成物としての可使時間も一般に
7日以内のものである。しかもエポキシ樹脂と、その硬
化剤とを混合したエポキシ樹脂組成物は序々に重合する
ことにより増粘する。該エポキシ樹脂組成物の増粘は磁
石素材との混合下であっても同様であるから、特にSm
(Co、Cu、Fe、M)nのような一般に磁気異方化
を要する樹脂磁石を製造する場合、当該エポキシ樹脂組
成物の増粘によって磁場配向の度合が低下し、例えば樹
脂磁石の残留磁束密度が増粘の程度に応じて低下してし
まうことになる。そして遂にはゲル化に至り、その結果
樹脂磁石自体の製造が困難になるのである。尚、Ss 
(Co、 Cu、 Fe。
Problems to be Solved by the Invention However, imidazoles generally have a high melting point (generally 200%
Since it is a solid with a temperature of 100.degree. Furthermore, an epoxy resin composition in which an epoxy resin and its curing agent are mixed gradually polymerizes, thereby increasing its viscosity. The thickening of the epoxy resin composition is the same even when mixed with a magnet material.
(Co, Cu, Fe, M) When manufacturing a resin magnet that generally requires magnetic anisotropy, the degree of magnetic field orientation decreases due to the thickening of the epoxy resin composition, for example, the residual magnetic flux of the resin magnet The density will decrease depending on the degree of viscosity increase. This eventually leads to gelation, and as a result, it becomes difficult to manufacture the resin magnet itself. Furthermore, Ss
(Co, Cu, Fe.

M)nのように磁気異方化を施す必要のある場合、磁場
配向を容易にするためにエポキシ樹脂組成物としては室
温で液体であることが普通である。このように結合剤で
あるエポキシ樹脂組成物が室温で液体であることは粉末
成形材料としての流動性を伴わないものであるから任意
形状のグリーン体を成形する際の作業性が極めて困難で
あるばかりか、グリーン体自体の機械的強度が著しく低
いために品質や性能の維持確保が極めて困難なものであ
った。この欠点を克服するためにグリーン体成形時にお
ける結合剤の形態についても多くの工夫や提案がなされ
た。例えば特開昭55−63808号公報では、磁石素
材と微粉末熱重合性樹脂とをトライブレンドしたもので
グリーン体を成形することが開示されている。この方法
は、グリーン体の品質の確保には効果的であるけれども
グリーン体加熱時に磁石素材側々の表面を微粉末熱重合
IS:樹脂で均質に濡らすためには多量の結合剤成分を
要し、結果的に磁石素材の密度が低下し磁気性能の低下
を余儀なくされるものであった。一方特開昭60−19
4509号公報には室温で固体の熱重合性樹脂組成物で
磁石素材を被覆し、熱重合性樹脂組成物の軟化温度より
も高い温度でグリーン体を成形し、熱重合性樹脂組成物
の軟化温度よりも低い温度で当該グリーン体を金型より
脱型することが開示されている。この方法は、グリーン
体の品質や性能の維持・確保には、一定の効果があるけ
れどもグリーン体成形時に結合剤の軟化温度を基準とし
て加熱・冷却しなければならないため樹脂磁石を工業的
に多量生産するには設備の維持管理上極めて、困難な問
題が内在するものであった。
When magnetic anisotropy needs to be applied as in M)n, the epoxy resin composition is usually liquid at room temperature in order to facilitate magnetic field orientation. Since the epoxy resin composition used as the binder is liquid at room temperature, it does not have the fluidity as a powder molding material, making it extremely difficult to mold green bodies of arbitrary shapes. Furthermore, the mechanical strength of the green body itself is extremely low, making it extremely difficult to maintain and ensure quality and performance. In order to overcome this drawback, many ideas and proposals have been made regarding the form of the binder used in green body molding. For example, Japanese Unexamined Patent Publication No. 55-63808 discloses molding a green body using a tri-blend of a magnet material and a finely powdered thermopolymerizable resin. Although this method is effective in ensuring the quality of the green body, it requires a large amount of binder component in order to homogeneously wet the surface of both sides of the magnet material with fine powder thermal polymerization resin when heating the green body. As a result, the density of the magnet material decreases, which inevitably leads to a decrease in magnetic performance. On the other hand, JP-A-60-19
No. 4509 discloses that a magnet material is coated with a thermopolymerizable resin composition that is solid at room temperature, and a green body is molded at a temperature higher than the softening temperature of the thermopolymerizable resin composition to soften the thermopolymerizable resin composition. It is disclosed that the green body is demolded from the mold at a temperature lower than the above temperature. Although this method has a certain effect on maintaining and ensuring the quality and performance of the green body, it requires heating and cooling based on the softening temperature of the binder during molding of the green body, which requires a large amount of resin magnets to be used industrially. Production involved extremely difficult problems in terms of equipment maintenance and management.

課題を解決するための手段 本発明は、上記背景に鑑みてなされたもので、熱重合性
樹脂構成成分を内包物質としたマイクロカプセルの1種
または2種以上を結合剤成分とし、該結合剤と磁石素材
とのグリーン体成形時にマイクロカプセルの一部或は全
量を機械的に破壊せしめてカプセルの内包物質を溶出せ
しめ、然るのち結合剤を重合硬化するものである。
Means for Solving the Problems The present invention has been made in view of the above background, and includes one or more types of microcapsules containing a thermopolymerizable resin component as a binder component. When a green body is formed with a magnetic material and a magnetic material, part or all of the microcapsules are mechanically destroyed to elute the substance contained in the capsules, and then the binder is polymerized and hardened.

作用 以下、本発明を更に詳しく説明する。action The present invention will be explained in more detail below.

先ず本発明で言う熱重合性樹脂構成成分とは樹脂磁石の
結合剤として一般的なエポキシ樹脂組成物を、その代表
として例示することができる。ここで言うエポキシ樹脂
組成物の構成成分とは、−般にエポキシ樹脂と、それを
三次元的に橋架けする硬化剤、或は必要に応じて加える
各種添加剤を抱括するものである。ここで上記エポキシ
樹脂とは少なくとも1分子中に2個以上のオキシラン環
を有する化合物の総称である。また該エポキシ樹脂の硬
化剤としては脂肪族ポリアミン類、ポリアミド類、複素
環ジアミン類、芳香族ポリアミン類。
First, the thermopolymerizable resin component referred to in the present invention can be exemplified by an epoxy resin composition commonly used as a binder for resin magnets. The constituent components of the epoxy resin composition as used herein generally include the epoxy resin, a curing agent for three-dimensionally cross-linking the epoxy resin, and various additives added as necessary. The above-mentioned epoxy resin is a general term for compounds having two or more oxirane rings in at least one molecule. Further, as curing agents for the epoxy resin, aliphatic polyamines, polyamides, heterocyclic diamines, and aromatic polyamines are used.

酸無水物類、含芳香核脂肪族ポリアミン類、イミダゾー
ル類、ジシアンジアミドおよびその誘導体類、有機酸ジ
ドラジドおよびその誘導体類などオキシラン環を開環重
合する化合物であれば如何なる化合物をも使用すること
ができる。更にはエポキシ樹脂と上記硬化剤とで単純な
エポキシ樹脂組成物を構成しても差し支えないし、更に
必要に応じ、例えば1分子中に1個のオキシラン環を有
するモノエポキシ化合物などの各種可塑剤や第3アミン
などの各種硬化促進剤を構成成分として加えることもで
きる。
Any compound that undergoes ring-opening polymerization of the oxirane ring, such as acid anhydrides, aromatic nuclear aliphatic polyamines, imidazoles, dicyandiamide and its derivatives, organic acid didrazide and its derivatives, can be used. . Furthermore, a simple epoxy resin composition may be composed of an epoxy resin and the above-mentioned curing agent, and if necessary, various plasticizers such as a monoepoxy compound having one oxirane ring in one molecule, etc. Various curing accelerators such as tertiary amines can also be added as constituents.

次に本発明で言う上記熱重合性樹脂構成成分を内包物質
としたマイクロカプセルとは、例えば適宜選択した少な
(とも室温で液体の内包物質存在下で懸濁重合するいわ
ゆる1n−situ重合法で製造することができる。こ
こで一般にマイクロカプセルの形成に使用される単量体
類としては塩化ビニル、塩化ビニリデン、アクリロニト
リル。
Next, the microcapsules in which the above thermopolymerizable resin constituents are included as encapsulating substances as used in the present invention are, for example, microcapsules containing appropriately selected microcapsules (also known as 1n-situ polymerization in which suspension polymerization is carried out in the presence of liquid encapsulating substances at room temperature). Monomers generally used to form microcapsules include vinyl chloride, vinylidene chloride, and acrylonitrile.

スチレン、酢酸ビニル、メタアクリル酸エステル及び種
々の架橋剤を例示することができ、それ等は、共重合体
として用いられる。尚、ここで内包物質として使用する
熱重合性樹脂構成成分はエポキシ樹脂、硬化剤並びに必
要に応じて加える各種添加剤から適宜選ばれる1種また
は2種以上でありそれ等は少なくとも室温で液体であっ
てしかも内包物質とマイクロカプセルとは互いに化学的
に不活性であることが必要である。尚、マイクロカプセ
ルの形態としては単核球状カプセルであって、しかも磁
石素材の粒子径よりも小さいものが好ましい。
Styrene, vinyl acetate, methacrylic acid esters and various crosslinking agents may be mentioned, which are used as copolymers. The thermopolymerizable resin component used as the encapsulating material here is one or more appropriately selected from epoxy resins, curing agents, and various additives added as necessary, and they are liquid at least at room temperature. Furthermore, it is necessary that the encapsulating substance and the microcapsules are chemically inert to each other. In addition, the form of the microcapsule is preferably a mononuclear spherical capsule, which is smaller in diameter than the particle size of the magnetic material.

次に本発明で使用し得る磁石素材とは、5ffi(Co
、Cu、Fe、M)nの他、Mo−nFe203(但し
、MはB a T S t 、P bの群より選ばれた
1種または2種以上、nは4.5〜6.2の整数)など
一般に樹脂磁石に使用されるような粒子状の如何なるも
のでも使用できるが、とくに好ましくは1:’e+0o
−X−y−z  Cox  Ry  Bz (但し、R
はNdまたは/およびPr、o≦X≦30.10≦y≦
28.2≦ 2 ≦ 12.y+z  ≦ 34.6z
 + y ≧34であり、x、 y、 zはそれぞれC
o、R,Bの原子%を表す)で示される磁気異方性を有
する粒子径数十ないし数百μmのFe−B−R系粒子で
ある。但し、このようなFe−B−R系磁石素材は例え
ば特開昭59−6439号公報に見られるような単ロー
ル法などの超急冷法により製造した薄片をそのまま、或
は熱処理したのち適宜粒度調整したような磁気的に等方
性のものであっても使用することは可能である。尚、基
本的な永久磁石素材としての特性を損なわない範囲であ
ればFe−B−R系磁石素材に例えばAQ、Si、Gu
、Znなど他の元素の混在或は規則的置換があっても差
し支えない。
Next, the magnet material that can be used in the present invention is 5ffi (Co
, Cu, Fe, M)n, Mo-nFe203 (where M is one or more selected from the group of B a T S t and P b, and n is 4.5 to 6.2). Any particulate material commonly used in resin magnets, such as 1:'e+0o, can be used, but 1:'e+0o is particularly preferable.
-X-y-z Cox Ry Bz (However, R
is Nd or/and Pr, o≦X≦30.10≦y≦
28.2≦2≦12. y+z ≦ 34.6z
+ y ≧ 34, and x, y, z are each C
The particles are Fe-B-R particles having a particle diameter of several tens to hundreds of μm and have a magnetic anisotropy expressed as (representing atomic % of R, B). However, such Fe-B-R magnet materials can be produced by an ultra-quenching method such as a single roll method as described in JP-A No. 59-6439, and can be used as is, or after heat treatment, the grain size can be adjusted as appropriate. It is possible to use even magnetically isotropic materials such as those that have been adjusted. In addition, AQ, Si, Gu, etc. may be added to the Fe-B-R magnet material as long as it does not impair the characteristics of the basic permanent magnet material.
, Zn, and other elements may be mixed or regularly substituted.

以上のように、少なくとも熱硬化性樹脂構成成分の1種
または2種以上を内包物質としたマイクロカプセルを樹
脂磁石の結合剤成分とするのであって、その組み合わせ
は室温で固体の熱重合性樹脂構成成分の、室温で液体の
熱重合性樹脂構成成分■、室温で液体の熱重合性樹脂構
成成分を内包物質としたマイクロカプセルO1磁石素材
0とで樹脂磁石を構成する場合、[■十〇十〇+(1)
] 。
As described above, microcapsules containing at least one or more thermosetting resin constituents are used as the binder component of a resin magnet, and the combination is a thermopolymerizable resin that is solid at room temperature. When a resin magnet is composed of the thermopolymerizable resin component ■ that is liquid at room temperature, and the microcapsule O1 magnet material 0 that contains the thermopolymerizable resin component that is liquid at room temperature as an encapsulating material, [■10 10 + (1)
].

[■十〇+O1] 、to+o+o1.[O+Q] を
挙げることができる。但し■を使用する場合には本発明
の重要な効果の1つである粉末成形材料としての流動性
やグリーン体の機械的強度に重大な影響を及ぼさないよ
うな配慮が必要である。
[■10+O1], to+o+o1. [O+Q] can be mentioned. However, when using (2), care must be taken so as not to have a significant effect on the fluidity of the powder molding material, which is one of the important effects of the present invention, and on the mechanical strength of the green body.

上記のような組み合わせ、すなわち少なくとも熱重合性
樹脂構成成分の181または2種以上を内包物質とした
マイクロカプセルを結合剤成分として磁石素材とともに
調整した樹脂磁石材料を粉末成形の常法に従ってグリー
ン体とする場合、必要に応じて磁場を印加をする。磁場
印加をする場合の金型は必要に応じてキャビティを取り
囲むよつに非磁性体ヨークと磁性体ヨークとを交互に組
み合わせ、且つ外側に磁化コイルを配置した構造とする
。或はまたキャビティの外周に磁化コイルを埋設した構
造とする。かかる方法はキャビティ内に所定の強さの磁
界を発生させるため高電圧低電流型の電源に磁化コイル
を接続する。更にはまたキャビティの周囲の所定の位置
に相応する磁極部を有する整列ヨークを設置し、該ヨー
ク内に導線を設けた構造の金型を使用する。かかる方式
は配向ヨーク内に設置した導線に通電して励磁するもの
で、従って商用周波数交流電源を入力してオールサイリ
スタ全波位相制御方式によりパルス電流を発生せしめる
瞬間直流電源、もしくは所定の直流電圧に昇圧整流し、
コンデンサ群に充電後サイリスタを経て放電を行う瞬間
直流電源に接続する。
The above-mentioned combination, that is, a resin magnet material prepared by preparing microcapsules containing at least 181 or more types of thermopolymerizable resin constituents as a binder component together with a magnet material, is made into a green body according to the conventional method of powder molding. If necessary, apply a magnetic field. The mold for applying a magnetic field has a structure in which non-magnetic yokes and magnetic yokes are alternately combined to surround the cavity as required, and a magnetizing coil is arranged on the outside. Alternatively, a structure may be used in which a magnetizing coil is embedded in the outer periphery of the cavity. In this method, a magnetizing coil is connected to a high voltage, low current type power source to generate a magnetic field of a predetermined strength within the cavity. Furthermore, a mold is used in which an alignment yoke having corresponding magnetic pole portions is installed at predetermined positions around the cavity, and a conductive wire is provided within the yoke. In this method, conductive wires installed in the orientation yoke are energized by passing current through them. Therefore, an instantaneous DC power source that inputs a commercial frequency AC power source and generates a pulse current using an all-thyristor full-wave phase control method, or a predetermined DC voltage. Step-up rectification to
Connect to an instantaneous DC power source that charges the capacitor group and then discharges it via a thyristor.

但し磁石素材が磁気的に等方性の場合には上記のような
構成の金型は不要である。いずれにしてもキャビティ内
に充填した樹脂磁石材料を圧縮して高密度化する。高密
度化する段階でマイクロカプセルが磁石素材によって機
械的に破壊し、内包物質である熱重合性樹脂構成成分が
溶出する。このマイクロカプセルから溶出した熱重合性
樹脂構成成分相互、或はマイクロカプセル系外に予め存
在せしめた互いに異種の熱重合性樹脂構成成分とが高密
度化(或は必要に応じて行う磁石素材の磁場配向)の段
階で互いに混合することによって通常の熱重合性樹脂組
成物、すなわち結合剤となるのである。そして充分に高
密度化したグリーン体は、キャビティ内で必要に応じて
脱磁を施し脱型する。
However, if the magnet material is magnetically isotropic, a mold having the above configuration is not necessary. In either case, the resin magnet material filled in the cavity is compressed to increase its density. At the stage of increasing the density, the microcapsules are mechanically destroyed by the magnetic material, and the thermopolymerizable resin component that is the encapsulated substance is eluted. The thermopolymerizable resin constituents eluted from the microcapsules are densified (or, if necessary, the magnet material is By mixing them with each other at the stage of magnetic field orientation), they become a normal thermopolymerizable resin composition, that is, a binder. The green body, which has been sufficiently densified, is then demagnetized as necessary in the cavity and removed from the mold.

更に、脱型後は熱重合性樹脂組成物すなわち結合剤の重
合硬化を施して樹脂磁石とするのである。
Furthermore, after demolding, a thermopolymerizable resin composition, ie, a binder, is polymerized and cured to form a resin magnet.

以上のように本発明に基づく樹脂磁石の製造方法によれ
ば結合剤、すなわち熱重合性樹脂構成成分の混合が容易
である。また、混合後も化学的に活性な成分をマイクロ
カプセルによって隔離した形態なので貯蔵性がよ(、重
合反応に基づ(増粘が生じない。更に粉末成形材料とし
ての流動性が確保される。或は磁場配向を要する磁石素
材の動きをほとんど効げないことやグリーン体成形時に
結合剤の軟化温度を基準として加熱及び冷却することも
不要であるなどの利点があり、高度な磁気性能を有する
樹脂磁石を製造するにあたって品質。
As described above, according to the method for manufacturing a resin magnet according to the present invention, it is easy to mix the binder, that is, the thermopolymerizable resin constituent components. In addition, even after mixing, the chemically active ingredients are isolated by microcapsules, so they have good storage stability (based on the polymerization reaction) and do not thicken.Furthermore, fluidity as a powder molding material is ensured. Alternatively, it has advantages such as having almost no effect on the movement of the magnetic material that requires magnetic field orientation, and no need for heating and cooling based on the softening temperature of the binder during green body molding, and has advanced magnetic performance. Quality when manufacturing resin magnets.

性能の維持、確保に効果的な作用が発現するのである。This results in an effective effect on maintaining and securing performance.

実施例 以下、本発明を実施例によって更に詳しく説明する。Example Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1゜ Sm (Co o、sse、 CB o、+o+、 F
e O,2+4. zr0.017) 7.z3からな
る合金を1150℃にて24時間溶体化処理し、次いで
800℃で24時間、引き続き600℃で1時間時効処
理を施した。この合金を常法に従って粉砕し、分級し、
調合することによって粒子径53〜200μmの磁石素
材に調整した。一方、下記一般式で示されるジグリシジ
ルフェニルエーテル、すなわち4・4′−ビス(2,3
−エポキシプロピル)フェニルエーテルの 存在下でメチルメタアクリレートとアクリルニトリルと
を懸濁重合する、いわゆる1n−situ重合法によっ
て室温で液体のエポキシ樹脂を内包物質とし、メチルメ
タアクリレートとアクリルニトリルとの共重合体をセル
としたマイクロカプセルを調整した。尚、内包物質であ
るエポキシ樹脂の含有量は70重量%であり、その平均
粒子径は16μmである。また、一方の熱重合性樹脂構
成成分として2−エチル−4−メチルイミダゾールを用
意し下記組成の粉末成形に供し得る樹脂磁石材料とした
Example 1゜Sm (Co o, sse, CB o, +o+, F
e O, 2+4. zr0.017) 7. The alloy consisting of z3 was solution treated at 1150°C for 24 hours, then aged at 800°C for 24 hours, and subsequently at 600°C for 1 hour. This alloy is crushed and classified according to conventional methods,
By blending, a magnet material having a particle size of 53 to 200 μm was prepared. On the other hand, diglycidyl phenyl ether represented by the following general formula, that is, 4,4'-bis(2,3
- By suspension polymerization of methyl methacrylate and acrylonitrile in the presence of (epoxypropyl) phenyl ether, a so-called 1n-situ polymerization method, an epoxy resin that is liquid at room temperature is used as an encapsulating material, and methyl methacrylate and acrylonitrile are co-polymerized. Microcapsules with polymer cells were prepared. The content of the epoxy resin as an encapsulating substance was 70% by weight, and the average particle diameter was 16 μm. In addition, 2-ethyl-4-methylimidazole was prepared as one of the thermopolymerizable resin constituents to obtain a resin magnet material having the following composition and capable of being subjected to powder molding.

5s(Co、 Cu、 Fe、Zr)7・・・・・・9
5.9重量%マイクロカプセル・・・・・・・・・・・
・・・・・・・・・・4.0重量%2−エチル−4−メ
チルイミダゾール ・・・・・・・・・・・・・・・・・・・・・0.1重
量%上記樹脂磁石材料を円柱キャビティ内でアキシャル
方向に磁気異方化が可能な粉末成形機により、15KO
eの磁場中8ton/cnfの圧力で径10−のグリー
ン体を成形した。尚、成形まえの段階では50〜60s
ec/ 50gの粉末流動性が認められたが、グリーン
体表面はマイクロカプセルの機械的破壊によって溶出し
たジグリシジルフェニルエーテルによりやや湿った状態
であった。また得られたグリーン体に亀裂や磁石素材の
部分的な欠落も認められなかった。このようなグリーン
体を120℃で30分加熱することによって、密度6.
85g/cjの樹脂磁石としたものの磁気特性は残留磁
束密度7.6KG、最大エネルギー積12.5MGOe
であった。またグリーン体成形まえの段階、すなわち樹
脂磁石材料を40℃で30日間貯蔵したものから同一条
件下で樹脂磁石を製造しても成形性やグリーン体の外観
、或は磁気特性に変動は認められなかった。
5s (Co, Cu, Fe, Zr) 7...9
5.9% by weight microcapsules・・・・・・・・・・・・
・・・・・・・・・・・・4.0% by weight 2-ethyl-4-methylimidazole・・・・・・・・・・・・・・・・・・0.1% by weight Above A powder molding machine that can make resin magnet material magnetically anisotropic in the axial direction inside a cylindrical cavity produces 15 KO
A green body with a diameter of 10 mm was molded under a pressure of 8 tons/cnf in a magnetic field of e. In addition, at the stage before molding, it takes 50 to 60 seconds.
Powder flowability of ec/50g was observed, but the surface of the green body was slightly moist due to diglycidyl phenyl ether eluted by mechanical destruction of the microcapsules. Furthermore, no cracks or partial loss of the magnetic material were observed in the obtained green body. By heating such a green body at 120°C for 30 minutes, the density becomes 6.
The magnetic properties of the 85g/cj resin magnet are a residual magnetic flux density of 7.6KG and a maximum energy product of 12.5MGOe.
Met. Furthermore, even if resin magnets are manufactured under the same conditions at the stage before green body molding, that is, from resin magnet materials stored at 40°C for 30 days, no changes are observed in moldability, green body appearance, or magnetic properties. There wasn't.

比較例1゜ 実施例1と同一条件下で調整したSm (Co。Comparative example 1゜ Sm (Co) prepared under the same conditions as Example 1.

Cu、Fe、Zr) 796.0重量%、ジグリシジル
フェニルエーテルすなわち4・4′−ビス(2゜3−エ
ポキシプロピル)フェニルエーテル、3.8重量部、2
−エチル−4−メチルイミダゾール0.2重量部とを混
合し、直ちに樹脂磁石を製造した。ジグリシジルフェニ
ルエーテルが原因となって粉末成形材料としての流動性
が損なわれているのでキャビティへの均質な充填が困難
であり、グリーン体の段階では磁石素材の一部が脱落し
易(取扱い難いものであった。また密度6.5g/−の
樹脂磁石の磁気特性は残留磁束密度6 、8 K G 
Cu, Fe, Zr) 796.0% by weight, diglycidyl phenyl ether, i.e. 4,4′-bis(2°3-epoxypropyl)phenyl ether, 3.8 parts by weight, 2
-0.2 parts by weight of ethyl-4-methylimidazole was mixed to immediately produce a resin magnet. Because the fluidity of the powder molding material is impaired due to diglycidyl phenyl ether, it is difficult to fill the cavity homogeneously, and part of the magnet material easily falls off at the green body stage (difficult to handle). The magnetic properties of a resin magnet with a density of 6.5 g/- were as follows: residual magnetic flux density of 6.8 K G
.

最大エネルギー積10.6MGOeであり、樹脂磁石材
料の段階で40℃、3日間貯蔵したものは既にグリーン
体の成形すら困難であった。
The maximum energy product was 10.6 MGOe, and when it was stored as a resin magnet material at 40° C. for 3 days, it was already difficult to form a green body.

実施例2゜ Nd+s 、 F67s 、 3 toの急冷薄帯を室
温で圧縮することによりグリーン体とし、700℃で熱
間圧縮したのちダイアツブセンティングを行い相対密度
98〜99%で磁化容易軸を圧縮方向に捉えた合金とし
た。この合金を常法に従って粉砕し、分級し、調合する
ことによって粒子径53〜200μ面の磁石素材に調整
した。一方、11%ブチルグリシジルエーテル置換DG
EBAの存在下で塩化ビニリデンとアクリルニトリルと
を懸濁重合するいわゆる1n−situ重合法により室
温で液体のエポキシ樹脂を内包物質とし、塩化ビニリデ
ンとアクリルニトリルとの共重合体をセルとしたマイク
ロカプセルを調整した。
Example 2 A quenched ribbon of Nd+s, F67s, 3TO was compressed at room temperature to form a green body, hot compressed at 700°C, and then diamond tube centered to obtain a relative density of 98-99% and an axis of easy magnetization. The alloy was taken in the direction of compression. This alloy was pulverized, classified, and blended according to a conventional method to prepare a magnet material having a particle size of 53 to 200 μm. On the other hand, 11% butyl glycidyl ether substituted DG
Microcapsules are produced using a so-called 1n-situ polymerization method in which vinylidene chloride and acrylonitrile are suspended and polymerized in the presence of EBA, using an epoxy resin that is liquid at room temperature as an encapsulating material, and using a copolymer of vinylidene chloride and acrylonitrile as cells. adjusted.

更に4−メチルへキサヒドロ無水フタル酸を内包物質と
し、塩化ビニリデンとアクリルニトリルとの共重合体を
セルをしたマイクロカプセルを調整した。これ等のマイ
クロカプセルの内包物質含有量は70重量%であり、そ
の平均粒子径は10μmである。また、熱重合性樹脂構
成成分としての硬化促進剤にはイミダゾールを用意し、
下記組成の樹脂磁石材料とした。
Furthermore, microcapsules were prepared in which 4-methylhexahydrophthalic anhydride was used as an encapsulating material and cells were made of a copolymer of vinylidene chloride and acrylonitrile. The content of the encapsulated substance in these microcapsules is 70% by weight, and the average particle diameter is 10 μm. In addition, imidazole is prepared as a curing accelerator as a component of the thermopolymerizable resin.
A resin magnet material having the following composition was used.

Nd15.Fe75.B10・・・・・・97重量%マ
イクロカプセルI・・・・・・2.0重量%マイクロカ
プセル■・・・・・・0.9重量%硬化促進剤・・・・
・・・・・・・・・・・・・・0.1重量%但し、上記
マイクロカプセル■及び■は、それぞれ11%ブチルグ
リシジルエーテル置換DGEBAおよび4−メチルへキ
サヒドロ無水フタル酸を内包物質としたものである。
Nd15. Fe75. B10...97% by weight Microcapsule I...2.0% by weight Microcapsule ■...0.9% by weight Curing accelerator...
・・・・・・・・・・・・・・・0.1% by weight However, the above microcapsules ■ and ■ contain 11% butyl glycidyl ether-substituted DGEBA and 4-methylhexahydrophthalic anhydride as encapsulating substances, respectively. This is what I did.

上記樹脂磁石材料を実施例1と同条件下の粉末成形装置
により15KOeの磁場中8ton/cjの圧力で径1
0mmのグリーン体とした。尚、成形まえの段階では5
0〜60sec/ 50gの粉末流動性が認められたが
、グリーン体表面はマイクロカプセル内包物質の溶出に
よって湿潤状態を呈するものであった。このようなグリ
ーン体を120℃で1時間加熱することにより樹脂磁石
としたものの磁気特性は残留磁束密度8.9KG、最大
エネルギー積16MGOeであった。また、グリーン体
成形まえの段階、すなわち樹脂磁石材料を40℃で30
日間貯蔵したものから同一条件下で樹脂磁石を製造して
も成形性やグリーン体の外観、或は磁気特性に変動は認
められなかった。
The above resin magnet material was molded into a diameter of 1 in a magnetic field of 15 KOe at a pressure of 8 ton/cj using a powder molding machine under the same conditions as in Example 1.
It was made into a green body of 0 mm. In addition, at the stage before molding, 5
Powder fluidity of 0 to 60 sec/50 g was observed, but the surface of the green body was in a wet state due to elution of the substance contained in the microcapsules. The magnetic properties of a resin magnet made by heating such a green body at 120° C. for 1 hour were a residual magnetic flux density of 8.9 KG and a maximum energy product of 16 MGOe. In addition, in the stage before forming the green body, that is, the resin magnet material was heated at 40℃ for 30 minutes.
Even when resin magnets were manufactured under the same conditions from those stored for several days, no change was observed in the moldability, appearance of the green body, or magnetic properties.

発明の効果 以上のように本発明に基づく樹脂磁石の製造方法によれ
ば結合剤すなわち熱重合性樹脂構成成分の混合が容易で
ある。また室温で液体の熱重合性樹脂構成成分であって
もマイクロカプセルによって他の成分と隔離した状態で
グリーン体の成形に供すことができるので粉末成形材料
としての流動性が確保できるばかりか、化学的に不活性
な状態を維持できるので貯蔵安定性も格段に優れている
Effects of the Invention As described above, according to the method for producing a resin magnet based on the present invention, it is easy to mix the binder, that is, the thermopolymerizable resin constituent components. Furthermore, even if the thermopolymerizable resin component is liquid at room temperature, it can be molded into a green body while being isolated from other components using microcapsules, which not only ensures fluidity as a powder molding material, but also allows chemical It also has excellent storage stability as it can maintain an inactive state.

と(に樹脂磁石材料としての貯蔵中に熱重合性樹脂構成
成分が互いの重合に基づく増粘現象を起こさず、磁石素
材は個別の独立した粒子きして自由に動くことができる
ので、磁場中粉末成形における配向度を高めることに効
果的である。また、グリーン体成形時に熱重合性樹脂組
成物である結合剤の軟化温度を基準として加熱冷却する
ことも不要であることなどから高度な磁気性能を有する
樹脂磁石を製造するに当たって品質、性能の維持確保に
効果的であることが明白である。
(During storage as a resin magnet material, the thermopolymerizable resin components do not thicken due to mutual polymerization, and the magnet material can move freely as individual independent particles.) It is effective in increasing the degree of orientation in medium powder molding.It is also highly effective because it does not require heating or cooling based on the softening temperature of the binder, which is a thermopolymerizable resin composition, during green body molding. It is clear that this method is effective in maintaining quality and performance in manufacturing resin magnets with magnetic performance.

Claims (1)

【特許請求の範囲】[Claims] (1)熱重合性樹脂構成成分を内包物質としたマイクロ
カプセルの1種または2種以上を結合剤成分とし、該結
合剤と磁石素材とのグリーン体成形時に前記マイクロカ
プセルの一部或は全量を機械的に破壊して前記内包物質
を溶出せしめ、然るのち結合剤成分を重合硬化する樹脂
磁石の製造方法。 2 磁石素材がFe100−x−y−zCOxNdyB
z(但し、o≦x≧30,10≦y≦28,2≦z≦1
2,y+x≦34,6z+y≧34であり、x,y,z
はそれぞれCo,Nd,Bの原子%を表す)で表され、
且つ磁気異方性を有する、数+ないし数百μmの粒子で
ある特許請求の範囲第1項記載の樹脂磁石の製造方法。
(1) One or more types of microcapsules containing a thermopolymerizable resin component as an encapsulating material are used as a binder component, and a part or all of the microcapsules are used when forming a green body with the binder and a magnetic material. A method for producing a resin magnet, in which the encapsulated substance is eluted by mechanically breaking the magnet, and the binder component is then polymerized and cured. 2 Magnet material is Fe100-x-y-zCOxNdyB
z (however, o≦x≧30, 10≦y≦28, 2≦z≦1
2, y+x≦34, 6z+y≧34, and x, y, z
are respectively expressed as atomic percent of Co, Nd, and B),
2. The method for producing a resin magnet according to claim 1, wherein the resin magnet has magnetic anisotropy and is a particle of several to several hundred micrometers.
JP63046202A 1988-02-29 1988-02-29 Resin magnet manufacturing method Expired - Lifetime JP2558790B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP63046202A JP2558790B2 (en) 1988-02-29 1988-02-29 Resin magnet manufacturing method
DE68912157T DE68912157T2 (en) 1988-02-29 1989-02-25 Process for the production of resin-bonded magnets.
EP93100979A EP0540503B1 (en) 1988-02-29 1989-02-25 Method for making a resin bonded magnet article
EP93100980A EP0540504B1 (en) 1988-02-29 1989-02-25 Method for making a resin bonded magnet article
DE68922911T DE68922911T2 (en) 1988-02-29 1989-02-25 Process for the production of resin-bonded magnetic objects.
DE68922748T DE68922748T2 (en) 1988-02-29 1989-02-25 Process for the production of a plastic bonded magnetic object.
EP89103336A EP0331055B1 (en) 1988-02-29 1989-02-25 Methods for producing a resinbonded magnet
KR1019890002347A KR920002258B1 (en) 1988-02-29 1989-02-27 Resin-bonded magnet and making method thereof
US07/316,967 US4981635A (en) 1988-02-29 1989-02-28 Methods for producing a resin-bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63046202A JP2558790B2 (en) 1988-02-29 1988-02-29 Resin magnet manufacturing method

Publications (2)

Publication Number Publication Date
JPH01220417A true JPH01220417A (en) 1989-09-04
JP2558790B2 JP2558790B2 (en) 1996-11-27

Family

ID=12740497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63046202A Expired - Lifetime JP2558790B2 (en) 1988-02-29 1988-02-29 Resin magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP2558790B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03224202A (en) * 1989-12-25 1991-10-03 Seiko Electronic Components Ltd Permanent magnet and manufacture thereof
JP2006100560A (en) * 2004-09-29 2006-04-13 Neomax Co Ltd Rare earth bonded magnet and method for manufacturing the same
JP2017186618A (en) * 2016-04-06 2017-10-12 Jfeスチール株式会社 Mixed powder for powder metallurgy
JP2017186619A (en) * 2016-04-06 2017-10-12 Jfeスチール株式会社 Mixed power for powder metallurgy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03224202A (en) * 1989-12-25 1991-10-03 Seiko Electronic Components Ltd Permanent magnet and manufacture thereof
JP2006100560A (en) * 2004-09-29 2006-04-13 Neomax Co Ltd Rare earth bonded magnet and method for manufacturing the same
JP2017186618A (en) * 2016-04-06 2017-10-12 Jfeスチール株式会社 Mixed powder for powder metallurgy
JP2017186619A (en) * 2016-04-06 2017-10-12 Jfeスチール株式会社 Mixed power for powder metallurgy

Also Published As

Publication number Publication date
JP2558790B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
EP0331055B1 (en) Methods for producing a resinbonded magnet
KR850006642A (en) Permanent magnet
US20220362843A1 (en) Methods of producing bonded magnet and compound for bonded magnets
US5149477A (en) Process for producing a resin bonded magnet structure
JP2558790B2 (en) Resin magnet manufacturing method
US5190684A (en) Rare earth containing resin-bonded magnet and its production
JP7567598B2 (en) Granulated powders, compounds, compacts, and bonded magnets
JP2003189560A (en) Manufacturing method of core-integrated magnet rotor and permanent magnet motor
JP2615781B2 (en) Method for manufacturing resin magnet structure
JP4089220B2 (en) Permanent magnet motor
EP0350967A2 (en) Resin-bonded magnet and its production
KR920002258B1 (en) Resin-bonded magnet and making method thereof
JP2558791B2 (en) Resin magnet manufacturing method
JP3024436B2 (en) Method for manufacturing resin magnet structure
JP2993255B2 (en) Manufacturing method of resin magnet
JP3182961B2 (en) Composition for bonded magnet and method for producing the same
JPS6311050A (en) Permanent magnet type motor
JPH0536509A (en) Composition for bond magnet and the bond magnet
JPH0774013A (en) Composition for resin-bonded magnet and resin-bonded magnet using the same
JPH0380507A (en) Magnet powder, manufacture thereof and magnetic molding using the same
JPH06112022A (en) Composition for bonded magnet and manufacture thereof
JPS61199607A (en) Rare earth element/cobalt magnet powder for resinous magnet
JPH05326227A (en) Bond magnet and composition thereof
JPH0696923A (en) Composition for bond magnet and its manufacture
JPH04286302A (en) Composition for rare earth-fe-b bonded magnet and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12