JP2021120333A - ヘテロポリ酸化合物の製造方法、ヘテロポリ酸化合物及びメタクリル酸の製造方法 - Google Patents
ヘテロポリ酸化合物の製造方法、ヘテロポリ酸化合物及びメタクリル酸の製造方法 Download PDFInfo
- Publication number
- JP2021120333A JP2021120333A JP2020013698A JP2020013698A JP2021120333A JP 2021120333 A JP2021120333 A JP 2021120333A JP 2020013698 A JP2020013698 A JP 2020013698A JP 2020013698 A JP2020013698 A JP 2020013698A JP 2021120333 A JP2021120333 A JP 2021120333A
- Authority
- JP
- Japan
- Prior art keywords
- compound
- atom
- aqueous mixture
- aqueous slurry
- molybdenum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J27/195—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
- B01J27/198—Vanadium
- B01J27/199—Vanadium with chromium, molybdenum, tungsten or polonium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/64—Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/644—Arsenic, antimony or bismuth
- B01J23/6445—Antimony
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/72—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
- B01J27/25—Nitrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/613—10-100 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0027—Powdering
- B01J37/0045—Drying a slurry, e.g. spray drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G1/00—Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
- C01G1/02—Oxides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/23—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/23—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
- C07C51/235—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C57/00—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
- C07C57/02—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
- C07C57/03—Monocarboxylic acids
- C07C57/04—Acrylic acid; Methacrylic acid
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
[工程(1)]硝酸及びリン化合物を含む水性混合物(A)と、モリブデン化合物を含む水性混合物(B)とを、モリブデン12モルに対して硝酸が1.2〜2.0モルとなるように混合することにより水性スラリー(C)を得る工程;
[工程(2)]前記水性スラリー(C)と、銅化合物を含む水性混合物(D)とを、モリブデン12モルに対して銅が0.01〜0.20モルとなるように混合することにより水性スラリー(E)を得る工程。
[工程(3)]前記水性スラリー(E)を乾燥する工程;
[工程(4)]前記水性スラリー(E)の乾燥物を、酸化性ガス雰囲気下において360℃〜410℃で焼成した後、非酸化性ガス雰囲気下において420℃〜500℃で焼成する工程。
PaMobCucVdXeYfOx (I)
(式(I)中、Pはリン原子を表し、Moはモリブデン原子を表し、Cuは銅原子を表し、Vはバナジウム原子を表し、Oは酸素原子を表し、
Xは、カリウム原子、ルビジウム原子、セシウム原子及びタリウム原子からなる群から選ばれる少なくとも1種の原子を表し、
Yは、ヒ素原子、アンチモン原子、ホウ素原子、銀原子、ビスマス原子、鉄原子、コバルト原子、ランタン原子及びセリウム原子からなる群から選ばれる少なくとも1種の原子を表し、
a〜fは、bを12とした場合に、1.2≦a≦1.8、0.01≦c≦0.2、0.4≦d≦0.6、1.2≦e≦1.8、0.4≦f≦0.6という条件を満たす値を表し、xは各原子の酸化状態により定まる値を表す。なお、e及びfはX及びYがそれぞれ2種以上の原子である場合には該2種以上の原子の合計比率を表す。)
で表されるヘテロポリ酸の部分中和塩である、前記〔10〕に記載のヘテロポリ酸化合物。
本発明のヘテロポリ酸化合物の製造方法は、上記工程(1)及び上記工程(2)を含む、リンとモリブデンと銅とを含有するヘテロポリ酸化合物の製造方法である。以下、各工程を分けて説明する。
工程(1)は、硝酸及びリン化合物を含む水性混合物(A)と、モリブデン化合物を含む水性混合物(B)とを、モリブデン12モルに対して硝酸が1.2〜2.0モルとなるように混合することにより水性スラリー(C)を得る工程である。以下、先ず、工程(1)に用いる水性混合物(A)及び(B)について説明し、次いで、これらの混合条件等について説明する。
このような水性混合物(A)は、硝酸及びリン化合物を含み、かつ、水性の混合物とするための水を含有するものであればよく、その形態は特に制限されず、例えば、硝酸及びリン化合物を含む水溶液であってもよいし、硝酸及びリン化合物を含む水性スラリーであってもよい。
前記水性混合物(B)は、モリブデン化合物を含み、かつ、水性の混合物とするための水を含有するものであればよく、その形態は特に制限されず、例えば、モリブデン化合物を含む水溶液であってもよいし、モリブデン化合物を含む水性スラリーであってもよい。なお、このような水としてはイオン交換水が好ましい。
工程(1)においては、前記水性混合物(A)と前記水性混合物(B)とを、モリブデン12モルに対して硝酸が1.2〜2.0モル(より好ましくは1.2〜1.9モル、更に好ましくは1.6〜1.9モル)となるように混合する。このような混合時における硝酸の割合が前記下限未満では水性スラリーCの性質が顕著に変化することにより、得られる触媒活性が低下する傾向にあり、他方、前記上限を超えると水性スラリーCの性質が顕著に変化することにより、得られる触媒のメタクリル酸選択率が低下する傾向にある。
工程(2)は、前記水性スラリー(C)と、銅化合物を含む水性混合物(D)とを、モリブデン12モルに対して銅が0.01〜0.20モルとなるように混合することにより水性スラリー(E)を得る工程である。以下、先ず、工程(2)に用いる水性混合物(D)について説明し、次いで、混合条件等について説明する。
水性混合物(D)は、銅化合物を含み、かつ、水性の混合物とするための水を含有するものであればよく、その形態は特に制限されず、例えば、銅化合物を含む水溶液であってもよいし、銅化合物を含む水性スラリーであってもよい。なお、このような水としてはイオン交換水が好ましい。
工程(2)においては、前記水性スラリー(C)と、前記水性混合物(D)とを、モリブデン12モルに対して銅が0.01〜0.20モル(より好ましくは0.10〜0.20モル、更に好ましくは0.11〜0.15モル)となるように混合する。このような銅の含有量が前記下限未満では得られる触媒の活性が低下する傾向にあり、他方、前記上限を超えると得られる触媒のメタクリル酸選択率が低下する傾向にある。
ア)密閉容器中100℃以上の保持温度で保持された水性スラリー(C)と前記水性混合物(D)とを混合した後、密閉容器中100℃以上の保持温度で保持することにより水性スラリー(E)を得る。
イ)密閉容器中100℃以上の保持温度で保持された水性スラリー(C)と前記水性混合物(D)とを混合した後、密閉容器中100℃以上の保持温度で保持することなく水性スラリー(E)を得る。
ウ)密閉容器中100℃以上の保持温度に保持されていない水性スラリー(C)と前記水性混合物(D)とを混合した後、密閉容器中100℃以上の保持温度で保持することにより水性スラリー(E)を得る。
このような乾燥工程(工程(3))は、前記水性スラリー(E)を乾燥する工程である。このような水性スラリー(E)の乾燥方法としては、特に制限されるものではなく、例えば、蒸発乾固法、噴霧乾燥法、ドラム乾燥法、気流乾燥法など、この分野で通常用いられる方法を適宜採用することができる。また、乾燥条件については、前記水性スラリー(E)中の水分含量が十分に低減されるよう適宜設定すればよく、特に制限されないが、乾燥時の温度条件を300℃未満とすることが好ましい。
このような焼成工程は、得られた水性スラリー(E)の乾燥物を焼成する工程である。このような乾燥物の焼成の方法としては、特に制限されず、この分野で通常用いられる方法を適宜採用することができる。なお、このような焼成工程は、例えば、酸素等の酸化性ガスの雰囲気下で行ってもよいし、窒素等の非酸化性ガスの雰囲気下で行ってもよく、焼成温度は300℃以上が好ましい。また、このような焼成工程に先立って前記前焼成工程を施す場合、前記前焼成工程で採用した温度よりも高い温度で焼成工程を施すことが好ましい。
本発明のヘテロポリ酸化合物は、上記本発明のヘテロポリ酸化合物の製造方法により得られたヘテロポリ酸化合物である。
PaMobCucVdXeYfOx (I)
(式(I)中、Pはリン原子を表し、Moはモリブデン原子を表し、Cuは銅原子を表し、Vはバナジウム原子を表し、Oは酸素原子を表し、
Xは、カリウム原子、ルビジウム原子、セシウム原子及びタリウム原子からなる群から選ばれる少なくとも1種の原子を表し、
Yは、ヒ素原子、アンチモン原子、ホウ素原子、銀原子、ビスマス原子、鉄原子、コバルト原子、ランタン原子及びセリウム原子からなる群から選ばれる少なくとも1種の原子を表し、
a〜fは、bを12とした場合に、1.2≦a≦1.8、0.01≦c≦0.2、0.4≦d≦0.6、1.2≦e≦1.8、0.4≦f≦0.6という条件を満たす値を表し、xは各原子の酸化状態により定まる値を表す。なお、e及びfはX及びYがそれぞれ2種以上の原子である場合には該2種以上の原子の合計比率を表す。)
で表されるヘテロポリ酸の部分中和塩であることが好ましい。このような式(I)中、得られる触媒の性能の観点から、X(原子X)としてはセシウム原子がより好ましく、Y(原子Y)としてはアンチモン原子がより好ましい。
本発明のメタクリル酸の製造方法は、上記本発明のヘテロポリ酸化合物の製造方法により得られたヘテロポリ酸化合物、又は、上記本発明のヘテロポリ酸化合物の存在下において、メタクロレイン、イソブチルアルデヒド、イソブタン及びイソ酪酸からなる群より選ばれる少なくとも1種の化合物(以下、便宜上、場合により単に「メタクリル酸原料」と称する)を、気相接触酸化反応に供する工程を含む方法である。
〔水性混合物(A1)の調製工程〕
先ず、40℃に加熱したイオン交換水224gに、67.5質量%硝酸26.14g、75質量%オルトリン酸27.43g、及び、硝酸セシウム〔CsNO3〕38.19gを溶解させて、水性混合物(A1)を得た。
40℃に加熱したイオン交換水330gに、七モリブデン酸六アンモニウム4水和物〔(NH4)6Mo7O24・4H2O〕297gを溶解させた後、メタバナジン酸アンモニウム〔NH4VO3〕8.19gを懸濁させて水性混合物(B)を得た。
前記水性混合物(A1)と前記水性混合物(B)の温度を40℃に保持しながら、撹拌条件下において前記水性混合物(A1)を前記水性混合物(B)に滴下して混合した後、得られた混合物を密閉容器中において120℃に5時間保持しながら撹拌することにより水性スラリー(C1)を得た。なお、このような混合工程において、前記水性混合物(B)に含まれるモリブデンに対する前記水性混合物(A1)に含まれる硝酸のモル比(硝酸/モリブデン)は2.0/12であった。
イオン交換水100gに、三酸化アンチモン〔Sb2O3〕10.2g、及び、硝酸銅3水和物〔Cu(NO3)2・3H2O〕の30.6質量%水溶液13.44gを懸濁させて水性混合物(D)を調製した。
前述の水性スラリー(C1)の調製工程において、密閉容器中において前記水性スラリー(C1)を調製した後、直ぐに、該密閉容器中において120℃での温度で撹拌状態を維持した前記水性スラリー(C1)中に、前記水性混合物(D)を添加し、得られた混合物を密閉容器中において120℃に5時間保持しながら撹拌することにより、水性スラリー(E1)を得た。なお、前記水性スラリー(C1)に含まれるモリブデンに対する水性混合物(D)に含まれる銅のモル比(銅/モリブデン)は0.12/12であった。
上述のようにして得られた水性スラリー(E1)を大気中で135℃に加熱することにより水を蒸発させて乾燥して乾燥物を得た。次いで、得られた乾燥物100質量部に対してセラミックファイバー4質量部、硝酸アンモニウム15.1質量部及びイオン交換水9.7質量部を加えて混練した後、直径5mm、高さ6mmの円柱状に押出成形した。次に、得られた成形体に対して、温度90℃、相対湿度30%の条件で3時間乾燥する調温調湿処理を施した後、空気気流中にて220℃で22時間、続いて250℃で1時間保持する前焼成処理を施した。その後、得られた成形体に対して、空気気流中にて390℃で4時間、続いて窒素気流中にて435℃で4時間保持する焼成工程を施すことにより、ヘテロポリ酸化合物(1)を得た。
得られたヘテロポリ酸化合物(1)9gを内径16mmのガラス製マイクロリアクターに充填し、炉温(マイクロリアクターを加熱するための炉の温度)を355℃まで昇温した。その後、メタクロレイン、空気、スチーム及び窒素を混合して調製した原料ガス(組成:メタクロレイン4容量%、分子状酸素12容量%、水蒸気17容量%、窒素67容量%)を空間速度670h−1の条件でマイクロリアクター内に供給して1時間反応を行い、触媒を初期劣化させた。その後、炉温を280℃にして、上記と同じ組成の原料ガスを、上記と同じ空間速度で供給して反応を開始した。このような反応開始から1時間経過時の出口ガス(反応後のガス)をサンプリングし、ガスクロマトグラフィーにより分析して、下記式に基づき、メタクロレイン転化率(%)、メタクリル酸選択率(%)及びメタクリル酸収率(%)を求めた。活性試験の結果を表1に示す。
メタクリル酸選択率(%)=〔生成したメタクリル酸のモル数÷反応したメタクロレインのモル数〕×100
メタクリル酸収率(%)=〔メタクロレイン転化率(%)×メタクリル酸選択率(%)〕÷100
〔水性混合物(A2)の調製工程〕
67.5質量%硝酸の使用量を24.83gに変更した以外は実施例1で採用した〔水性混合物(A1)の調製工程〕と同様の操作を行い、水性混合物(A2)を得た。
水性混合物(A1)の代わりに水性混合物(A2)を使用した以外は実施例1で採用した〔水性スラリー(C1)の調製工程〕と同様の操作を行い、水性スラリー(C2)を得た。水性スラリー(C2)の調製に際して、水性混合物(B)は実施例1で調製したものと同様のものを用いた。なお、水性混合物(B)に含まれるモリブデンに対する水性混合物(A2)に含まれる硝酸のモル比(硝酸/モリブデン)は1.9/12であった。
水性スラリー(C1)の代わりに水性スラリー(C2)を使用した以外は実施例1で採用した〔水性スラリー(E1)の調製工程〕と同様の操作を行い、水性スラリー(E2)を得た。なお、このような水性スラリー(E2)の調製に際して、水性混合物(D)は実施例1で調製したものと同様のものを用いた。また、水性スラリー(C2)に含まれるモリブデンに対する水性混合物(D)に含まれる銅のモル比(銅/モリブデン)は0.12/12であった。
水性スラリー(E1)の代わりに水性スラリー(E2)を使用し、かつ、押出成形の際に乾燥物100質量部に対して加えた硝酸アンモニウム及びイオン交換水の量をそれぞれ14.7質量部(硝酸アンモニウム)及び8.5質量部(イオン交換水)に変更した以外は実施例1で採用した〔水性スラリー(E1)の乾燥及び焼成工程〕と同様の操作を行い、ヘテロポリ酸化合物(2)を得た。
ヘテロポリ酸化合物(1)の代わりにヘテロポリ酸化合物(2)を使用した以外は、実施例1で採用した〔ヘテロポリ酸化合物(1)の活性試験〕と同様の操作を行い、活性試験を実施した。活性試験の結果を表1に示す。
〔水性混合物(A3)の調製工程〕
67.5質量%硝酸の使用量を23.52gに変更した以外は実施例1で採用した〔水性混合物(A1)の調製工程〕と同様の操作を行い、水性混合物(A3)を得た。
水性混合物(A1)の代わりに水性混合物(A3)を使用した以外は実施例1で採用した〔水性スラリー(C1)の調製工程〕と同様の操作を行い、水性スラリー(C3)を得た。水性スラリー(C3)の調製に際して、水性混合物(B)は実施例1で調製したものと同様のものを用いた。なお、水性混合物(B)に含まれるモリブデンに対する水性混合物(A3)に含まれる硝酸のモル比(硝酸/モリブデン)は1.8/12であった。
水性スラリー(C1)の代わりに水性スラリー(C3)を使用した以外は実施例1で採用した〔水性スラリー(E1)の調製工程〕と同様の操作を行い、水性スラリー(E3)を得た。なお、このような水性スラリー(E3)の調製に際して、水性混合物(D)は実施例1で調製したものと同様のものを用いた。また、水性スラリー(C3)に含まれるモリブデンに対する水性混合物(D)に含まれる銅のモル比(銅/モリブデン)は0.12/12であった。
水性スラリー(E2)の代わりに水性スラリー(E3)を使用し、かつ、押出成形の際に乾燥物100質量部に対して加えた硝酸アンモニウムの量を14.7質量部に変更した以外は実施例2で採用した〔水性スラリー(E2)の乾燥及び焼成工程〕と同様の操作を行い、ヘテロポリ酸化合物(3)を得た。
ヘテロポリ酸化合物(1)の代わりにヘテロポリ酸化合物(3)を使用した以外は、実施例1で採用した〔ヘテロポリ酸化合物(1)の活性試験〕と同様の操作を行い、活性試験を実施した。活性試験の結果を表1に示す。
〔水性混合物(A4)の調製工程〕
67.5質量%硝酸の使用量を20.91gに変更した以外は実施例1で採用した〔水性混合物(A1)の調製工程〕と同様の操作を行い、水性混合物(A4)を得た。
水性混合物(A1)の代わりに水性混合物(A4)を使用した以外は実施例1で採用した〔水性スラリー(C1)の調製工程〕と同様の操作を行い、水性スラリー(C4)を得た。水性スラリー(C4)の調製に際して、水性混合物(B)は実施例1で調製したものと同様のものを用いた。なお、水性混合物(B)に含まれるモリブデンに対する水性混合物(A4)に含まれる硝酸のモル比(硝酸/モリブデン)は1.6/12であった。
水性スラリー(C1)の代わりに水性スラリー(C4)を使用した以外は実施例1で採用した〔水性スラリー(E1)の調製工程〕と同様の操作を行い、水性スラリー(E4)を得た。なお、このような水性スラリー(E4)の調製に際して、水性混合物(D)は実施例1で調製したものと同様のものを用いた。また、水性スラリー(C4)に含まれるモリブデンに対する水性混合物(D)に含まれる銅のモル比(銅/モリブデン)は0.12/12であった。
水性スラリー(E2)の代わりに水性スラリー(E4)を使用し、かつ、押出成形の際に乾燥物100質量部に対して加えた硝酸アンモニウムの量を15.3質量部に変更した以外は実施例2で採用した〔水性スラリー(E2)の乾燥及び焼成工程〕と同様の操作を行い、ヘテロポリ酸化合物(4)を得た。
ヘテロポリ酸化合物(1)の代わりにヘテロポリ酸化合物(4)を使用した以外は、実施例1で採用した〔ヘテロポリ酸化合物(1)の活性試験〕と同様の操作を行い、活性試験を実施した。活性試験の結果を表1に示す。
〔水性混合物(A5)の調製工程〕
67.5質量%硝酸の使用量を15.68gに変更した以外は実施例1で採用した〔水性混合物(A1)の調製工程〕と同様の操作を行い、水性混合物(A5)を得た。
水性混合物(A1)の代わりに水性混合物(A5)を使用した以外は実施例1で採用した〔水性スラリー(C1)の調製工程〕と同様の操作を行い、水性スラリー(C5)を得た。水性スラリー(C5)の調製に際して、水性混合物(B)は実施例1で調製したものと同様のものを用いた。なお、水性混合物(B)に含まれるモリブデンに対する水性混合物(A5)に含まれる硝酸のモル比(硝酸/モリブデン)は1.2/12であった。
水性スラリー(C1)の代わりに水性スラリー(C5)を使用した以外は実施例1で採用した〔水性スラリー(E1)の調製工程〕と同様の操作を行い、水性スラリー(E5)を得た。なお、このような水性スラリー(E5)の調製に際して、水性混合物(D)は実施例1で調製したものと同様のものを用いた。また、水性スラリー(C5)に含まれるモリブデンに対する水性混合物(D)に含まれる銅のモル比(銅/モリブデン)は0.12/12であった。
水性スラリー(E2)の代わりに水性スラリー(E5)を使用し、かつ、押出成形の際に乾燥物100質量部に対して加えた硝酸アンモニウムの量を15.0質量部に変更した以外は実施例2で採用した〔水性スラリー(E2)の乾燥及び焼成工程〕と同様の操作を行い、ヘテロポリ酸化合物(5)を得た。
ヘテロポリ酸化合物(1)の代わりにヘテロポリ酸化合物(5)を使用した以外は、実施例1で採用した〔ヘテロポリ酸化合物(1)の活性試験〕と同様の操作を行い、活性試験を実施した。活性試験の結果を表1に示す。
〔水性混合物(A6)の調製工程〕
67.5質量%硝酸の使用量を22.87gに変更した以外は実施例1で採用した〔水性混合物(A1)の調製工程〕と同様の操作を行い、水性混合物(A6)を得た。
水性混合物(A1)の代わりに水性混合物(A6)を使用した以外は実施例1で採用した〔水性スラリー(C1)の調製工程〕と同様の操作を行い、水性スラリー(C6)を得た。水性スラリー(C6)の調製に際して、水性混合物(B)は実施例1で調製したものと同様のものを用いた。なお、水性混合物(B)に含まれるモリブデンに対する水性混合物(A6)に含まれる硝酸のモル比(硝酸/モリブデン)は1.75/12であった。
水性スラリー(C1)の代わりに水性スラリー(C6)を使用した以外は実施例1で採用した〔水性スラリー(E1)の調製工程〕と同様の操作を行い、水性スラリー(E6)を得た。なお、このような水性スラリー(E6)の調製に際して、水性混合物(D)は実施例1で調製したものと同様のものを用いた。また、水性スラリー(C6)に含まれるモリブデンに対する水性混合物(D)に含まれる銅のモル比(銅/モリブデン)は0.12/12であった。
水性スラリー(E2)の代わりに水性スラリー(E6)を使用し、かつ、押出成形の際に乾燥物100質量部に対して加えた硝酸アンモニウムの量を15.3質量部に変更した以外は実施例2で採用した〔水性スラリー(E2)の乾燥及び焼成工程〕と同様の操作を行い、ヘテロポリ酸化合物(6)を得た。
ヘテロポリ酸化合物(1)の代わりにヘテロポリ酸化合物(6)を使用した以外は、実施例1で採用した〔ヘテロポリ酸化合物(1)の活性試験〕と同様の操作を行い、活性試験を実施した。活性試験の結果を表1に示す。
〔水性混合物(A7)の調製工程〕
67.5質量%硝酸の使用量を32.67gに変更した以外は実施例1で採用した〔水性混合物(A1)の調製工程〕と同様の操作を行い、水性混合物(A7)を得た。
水性混合物(A1)の代わりに水性混合物(A7)を使用した以外は実施例1で採用した〔水性スラリー(C1)の調製工程〕と同様の操作を行い、水性スラリー(C7)を得た。水性スラリー(C7)の調製に際して、水性混合物(B)は実施例1で調製したものと同様のものを用いた。なお、水性混合物(B)に含まれるモリブデンに対する水性混合物(A7)に含まれる硝酸のモル比(硝酸/モリブデン)は2.5/12であった。
水性スラリー(C1)の代わりに水性スラリー(C7)を使用した以外は実施例1で採用した〔水性スラリー(E1)の調製工程〕と同様の操作を行い、水性スラリー(E7)を得た。なお、このような水性スラリー(E7)の調製に際して、水性混合物(D)は実施例1で調製したものと同様のものを用いた。また、水性スラリー(C7)に含まれるモリブデンに対する水性混合物(D)に含まれる銅のモル比(銅/モリブデン)は0.12/12であった。
水性スラリー(E2)の代わりに水性スラリー(E7)を使用し、かつ、押出成形の際に乾燥物100質量部に対して加えた硝酸アンモニウムの量を13.7質量部に変更した以外は実施例2で採用した〔水性スラリー(E2)の乾燥及び焼成工程〕と同様の操作を行い、ヘテロポリ酸化合物(7)を得た。
ヘテロポリ酸化合物(1)の代わりにヘテロポリ酸化合物(7)を使用した以外は、実施例1で採用した〔ヘテロポリ酸化合物(1)の活性試験〕と同様の操作を行い、活性試験を実施した。活性試験の結果を表2に示す。
〔水性混合物(A8)の調製工程〕
67.5質量%硝酸の使用量を28.75gに変更した以外は実施例1で採用した〔水性混合物(A1)の調製工程〕と同様の操作を行い、水性混合物(A8)を得た。
水性混合物(A1)の代わりに水性混合物(A8)を使用した以外は実施例1で採用した〔水性スラリー(C1)の調製工程〕と同様の操作を行い、水性スラリー(C8)を得た。水性スラリー(C8)の調製に際して、水性混合物(B)は実施例1で調製したものと同様のものを用いた。なお、水性混合物(B)に含まれるモリブデンに対する水性混合物(A8)に含まれる硝酸のモル比(硝酸/モリブデン)は2.2/12であった。
水性スラリー(C1)の代わりに水性スラリー(C8)を使用した以外は実施例1で採用した〔水性スラリー(E1)の調製工程〕と同様の操作を行い、水性スラリー(E8)を得た。なお、このような水性スラリー(E8)の調製に際して、水性混合物(D)は実施例1で調製したものと同様のものを用いた。また、水性スラリー(C8)に含まれるモリブデンに対する水性混合物(D)に含まれる銅のモル比(銅/モリブデン)は0.12/12であった。
水性スラリー(E2)の代わりに水性スラリー(E8)を使用し、かつ、押出成形の際に乾燥物100質量部に対して加えた硝酸アンモニウムの量を13.1質量部に変更した以外は実施例2で採用した〔水性スラリー(E2)の乾燥及び焼成工程〕と同様の操作を行い、ヘテロポリ酸化合物(8)を得た。
ヘテロポリ酸化合物(1)の代わりにヘテロポリ酸化合物(8)を使用した以外は、実施例1で採用した〔ヘテロポリ酸化合物(1)の活性試験〕と同様の操作を行い、活性試験を実施した。活性試験の結果を表2に示す。
〔水性混合物(A9)の調製工程〕
67.5質量%硝酸の使用量を13.07gに変更した以外は実施例1で採用した〔水性混合物(A1)の調製工程〕と同様の操作を行い、水性混合物(A9)を得た。
水性混合物(A1)の代わりに水性混合物(A9)を使用した以外は実施例1で採用した〔水性スラリー(C1)の調製工程〕と同様の操作を行い、水性スラリー(C9)を得た。水性スラリー(C9)の調製に際して、水性混合物(B)は実施例1で調製したものと同様のものを用いた。なお、水性混合物(B)に含まれるモリブデンに対する水性混合物(A7)に含まれる硝酸のモル比(硝酸/モリブデン)は1.0/12であった。
水性スラリー(C1)の代わりに水性スラリー(C9)を使用した以外は実施例1で採用した〔水性スラリー(E1)の調製工程〕と同様の操作を行い、水性スラリー(E9)を得た。なお、このような水性スラリー(E9)の調製に際して、水性混合物(D)は実施例1で調製したものと同様のものを用いた。また、水性スラリー(C9)に含まれるモリブデンに対する水性混合物(D)に含まれる銅のモル比(銅/モリブデン)は0.12/12であった。
水性スラリー(E2)の代わりに水性スラリー(E9)を使用し、かつ、押出成形の際に乾燥物100質量部に対して加えた硝酸アンモニウムの量を17.2質量部に変更した以外は実施例2で採用した〔水性スラリー(E2)の乾燥及び焼成工程〕と同様の操作を行い、ヘテロポリ酸化合物(9)を得た。
ヘテロポリ酸化合物(1)の代わりにヘテロポリ酸化合物(9)を使用した以外は、実施例1で採用した〔ヘテロポリ酸化合物(1)の活性試験〕と同様の操作を行い、活性試験を実施した。活性試験の結果を表2に示す。
〔水性スラリー(C1)の調製工程〕
実施例1で採用している〔水性混合物(A1)の調製工程〕、〔水性混合物(B)の調製工程〕及び〔水性スラリー(C1)の調製工程〕と同様の操作を行って、水性混合物(A1)、水性混合物(B)及び水性スラリー(C1)を得た。なお、このような〔水性スラリー(C1)の調製工程〕において、前記水性混合物(B)に含まれるモリブデンに対する前記水性混合物(A1)に含まれる硝酸のモル比(硝酸/モリブデン)は2.0/12であった。
イオン交換水100gに、三酸化アンチモン〔Sb2O3〕10.2g、及び、硝酸銅3水和物〔Cu(NO3)2・3H2O〕の30.6質量%水溶液133.59gを懸濁させて水性混合物(D’)を調製した。
前述の水性スラリー(C1)の調製工程において、密閉容器中において前記水性スラリー(C1)を調製した後、直ぐに、該密閉容器中において120℃での温度で撹拌状態を維持した前記水性スラリー(C1)中に、前記水性混合物(D’)を添加し、得られた混合物を密閉容器中において120℃に5時間保持しながら撹拌することにより、水性スラリー(E10)を得た。なお、前記水性スラリー(C1)に含まれるモリブデンに対する水性混合物(D’)に含まれる銅のモル比(銅/モリブデン)は0.3/12であった。
水性スラリー(E2)の代わりに水性スラリー(E10)を使用し、かつ、押出成形の際に乾燥物100質量部に対して加えた硝酸アンモニウムの量を12.6質量部に変更した以外は実施例2で採用した〔水性スラリー(E2)の乾燥及び焼成工程〕と同様の操作を行い、ヘテロポリ酸化合物(10)を得た。
ヘテロポリ酸化合物(1)の代わりにヘテロポリ酸化合物(10)を使用したこと以外は、実施例1〔ヘテロポリ酸化合物(1)の活性試験〕と同様の操作を行い、活性試験を実施した。活性試験の結果を表2に示す。
Claims (13)
- 下記工程(1)及び下記工程(2)を含む、リンとモリブデンと銅とを含有するヘテロポリ酸化合物の製造方法:
[工程(1)]硝酸及びリン化合物を含む水性混合物(A)と、モリブデン化合物を含む水性混合物(B)とを、モリブデン12モルに対して硝酸が1.2〜2.0モルとなるように混合することにより水性スラリー(C)を得る工程;
[工程(2)]前記水性スラリー(C)と、銅化合物を含む水性混合物(D)とを、モリブデン12モルに対して銅が0.01〜0.20モルとなるように混合することにより水性スラリー(E)を得る工程。 - 前記工程(2)において、前記水性スラリー(C)と前記水性混合物(D)とを、モリブデン12モルに対して銅が0.10〜0.20モルとなるように混合する、請求項1に記載のヘテロポリ酸化合物の製造方法。
- 下記工程(3)及び下記工程(4)を更に含む、請求項1又は2に記載のヘテロポリ酸化合物の製造方法:
[工程(3)]前記水性スラリー(E)を乾燥する工程;
[工程(4)]前記水性スラリー(E)の乾燥物を、酸化性ガス雰囲気下において360℃〜410℃で焼成した後、非酸化性ガス雰囲気下において420℃〜500℃で焼成する工程。 - 前記リン化合物がリン酸である、請求項1〜3のうちのいずれか一項に記載のヘテロポリ酸化合物の製造方法。
- 前記水性混合物(A)が硝酸塩をさらに含む、請求項1〜4のうちのいずれか一項に記載のヘテロポリ酸化合物の製造方法。
- 前記モリブデン化合物がモリブデン酸塩である、請求項1〜5のうちのいずれか一項に記載のヘテロポリ酸化合物の製造方法。
- 前記水性混合物(B)がバナジウム化合物をさらに含む、請求項1〜6のうちのいずれか一項に記載のヘテロポリ酸化合物の製造方法。
- 前記銅化合物が銅塩である、請求項1〜7のうちのいずれか一項に記載のヘテロポリ酸化合物の製造方法。
- 前記水性混合物(D)がアンチモン化合物を更に含む、請求項1〜8のうちのいずれか一項に記載のヘテロポリ酸化合物の製造方法。
- 請求項1〜9のうちのいずれか一項に記載のヘテロポリ酸化合物の製造方法により得られたヘテロポリ酸化合物。
- 前記ヘテロポリ酸化合物が、下記式(I):
PaMobCucVdXeYfOx (I)
(式(I)中、Pはリン原子を表し、Moはモリブデン原子を表し、Cuは銅原子を表し、Vはバナジウム原子を表し、Oは酸素原子を表し、
Xは、カリウム原子、ルビジウム原子、セシウム原子及びタリウム原子からなる群から選ばれる少なくとも1種の原子を表し、
Yは、ヒ素原子、アンチモン原子、ホウ素原子、銀原子、ビスマス原子、鉄原子、コバルト原子、ランタン原子及びセリウム原子からなる群から選ばれる少なくとも1種の原子を表し、
a〜fは、bを12とした場合に、1.2≦a≦1.8、0.01≦c≦0.2、0.4≦d≦0.6、1.2≦e≦1.8、0.4≦f≦0.6という条件を満たす値を表し、xは各原子の酸化状態により定まる値を表す。なお、e及びfはX及びYがそれぞれ2種以上の原子である場合には該2種以上の原子の合計比率を表す。)
で表されるヘテロポリ酸の部分中和塩である、請求項10に記載のヘテロポリ酸化合物。 - BET比表面積が5m2/g〜20m2/gである、請求項10又は11に記載のヘテロポリ酸化合物。
- 請求項1〜9のうちのいずれか一項に記載のヘテロポリ酸化合物の製造方法により得られたヘテロポリ酸化合物、又は、請求項10〜12のうちのいずれか一項に記載のヘテロポリ酸化合物の存在下において、メタクロレイン、イソブチルアルデヒド、イソブタン及びイソ酪酸からなる群より選ばれる少なくとも1種の化合物を、気相接触酸化反応に供する工程を含む、メタクリル酸の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020013698A JP7356923B2 (ja) | 2020-01-30 | 2020-01-30 | ヘテロポリ酸化合物の製造方法、ヘテロポリ酸化合物及びメタクリル酸の製造方法 |
KR1020210006199A KR20210097620A (ko) | 2020-01-30 | 2021-01-15 | 헤테로폴리산 화합물의 제조 방법, 헤테로폴리산 화합물 및 메타크릴산의 제조 방법 |
CN202110082297.0A CN113262806B (zh) | 2020-01-30 | 2021-01-21 | 杂多酸化合物的制造方法、杂多酸化合物以及甲基丙烯酸的制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020013698A JP7356923B2 (ja) | 2020-01-30 | 2020-01-30 | ヘテロポリ酸化合物の製造方法、ヘテロポリ酸化合物及びメタクリル酸の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021120333A true JP2021120333A (ja) | 2021-08-19 |
JP7356923B2 JP7356923B2 (ja) | 2023-10-05 |
Family
ID=77228077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020013698A Active JP7356923B2 (ja) | 2020-01-30 | 2020-01-30 | ヘテロポリ酸化合物の製造方法、ヘテロポリ酸化合物及びメタクリル酸の製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7356923B2 (ja) |
KR (1) | KR20210097620A (ja) |
CN (1) | CN113262806B (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113880061A (zh) * | 2021-10-14 | 2022-01-04 | 太仓沪试试剂有限公司 | 一种高纯磷酸盐的制备方法 |
CN114160201A (zh) * | 2021-12-27 | 2022-03-11 | 中建安装集团有限公司 | 一种杂多酸催化剂及其应用 |
US20250196112A1 (en) * | 2023-01-19 | 2025-06-19 | Lg Chem, Ltd. | Catalyst for producing (meth)acrylic acid, and method for producing catalyst for producing (meth)acrylic acid |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0631172A (ja) * | 1992-07-15 | 1994-02-08 | Daicel Chem Ind Ltd | メタクリル酸製造用触媒 |
JP2009248034A (ja) * | 2008-04-09 | 2009-10-29 | Sumitomo Chemical Co Ltd | メタクリル酸製造用触媒の再生方法及びメタクリル酸の製造方法 |
JP2013000734A (ja) * | 2011-06-22 | 2013-01-07 | Sumitomo Chemical Co Ltd | メタクリル酸製造用触媒の再生方法及びメタクリル酸の製造方法 |
JP2013091016A (ja) * | 2011-10-25 | 2013-05-16 | Sumitomo Chemical Co Ltd | メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法 |
JP2014226614A (ja) * | 2013-05-23 | 2014-12-08 | 住友化学株式会社 | メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法 |
JP2019188268A (ja) * | 2018-04-18 | 2019-10-31 | 三菱ケミカル株式会社 | メタクリル酸製造用触媒の製造方法、およびメタクリル酸の製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5912758A (ja) * | 1982-07-14 | 1984-01-23 | Sumitomo Chem Co Ltd | メタクリル酸製造用触媒 |
US5191116A (en) * | 1989-05-22 | 1993-03-02 | Asahi Kasei Kogyo Kabushiki Kaisha | Process for the preparation of methacrylic acid and methacrolein |
JP4812034B2 (ja) * | 2007-04-26 | 2011-11-09 | 三菱レイヨン株式会社 | メタクリル酸製造用触媒の製造方法、メタクリル酸製造用触媒、およびメタクリル酸の製造方法 |
JP5214500B2 (ja) * | 2009-03-09 | 2013-06-19 | 住友化学株式会社 | メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法 |
JP4900449B2 (ja) * | 2009-10-30 | 2012-03-21 | 住友化学株式会社 | メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法 |
JP2012245433A (ja) * | 2011-05-25 | 2012-12-13 | Sumitomo Chemical Co Ltd | メタクリル酸製造用触媒およびその製造方法、並びにメタクリル酸の製造方法 |
JP5793345B2 (ja) | 2011-05-25 | 2015-10-14 | 住友化学株式会社 | メタクリル酸製造用触媒の製造方法およびメタクリル酸の製造方法 |
JP6522213B1 (ja) * | 2018-08-03 | 2019-05-29 | 住友化学株式会社 | メタクロレイン及び/又はメタクリル酸の製造方法 |
-
2020
- 2020-01-30 JP JP2020013698A patent/JP7356923B2/ja active Active
-
2021
- 2021-01-15 KR KR1020210006199A patent/KR20210097620A/ko active Pending
- 2021-01-21 CN CN202110082297.0A patent/CN113262806B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0631172A (ja) * | 1992-07-15 | 1994-02-08 | Daicel Chem Ind Ltd | メタクリル酸製造用触媒 |
JP2009248034A (ja) * | 2008-04-09 | 2009-10-29 | Sumitomo Chemical Co Ltd | メタクリル酸製造用触媒の再生方法及びメタクリル酸の製造方法 |
JP2013000734A (ja) * | 2011-06-22 | 2013-01-07 | Sumitomo Chemical Co Ltd | メタクリル酸製造用触媒の再生方法及びメタクリル酸の製造方法 |
JP2013091016A (ja) * | 2011-10-25 | 2013-05-16 | Sumitomo Chemical Co Ltd | メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法 |
JP2014226614A (ja) * | 2013-05-23 | 2014-12-08 | 住友化学株式会社 | メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法 |
JP2019188268A (ja) * | 2018-04-18 | 2019-10-31 | 三菱ケミカル株式会社 | メタクリル酸製造用触媒の製造方法、およびメタクリル酸の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7356923B2 (ja) | 2023-10-05 |
CN113262806A (zh) | 2021-08-17 |
KR20210097620A (ko) | 2021-08-09 |
CN113262806B (zh) | 2024-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101722061B1 (ko) | 포화 및 불포화 알데히드를 불포화 카르복시산으로 산화시키기 위한 헤테로다중산을 포함하는 촉매, 이를 제조하는 방법 및 이를 사용하는 방법 | |
JP4900449B2 (ja) | メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法 | |
WO2013073691A1 (ja) | メタクリル酸製造用触媒及びそれを用いたメタクリル酸の製造方法 | |
CN113262806B (zh) | 杂多酸化合物的制造方法、杂多酸化合物以及甲基丙烯酸的制造方法 | |
JP2009248035A (ja) | メタクリル酸製造用触媒の再生方法及びメタクリル酸の製造方法 | |
JP2014226614A (ja) | メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法 | |
KR101640255B1 (ko) | 메타크릴산 제조용 촉매의 재생 방법 및 메타크릴산의 제조 방법 | |
JP4715699B2 (ja) | メタクリル酸製造用触媒の再生方法及びメタクリル酸の製造方法 | |
JP5214500B2 (ja) | メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法 | |
JP5892826B2 (ja) | メタクリル酸の製造方法 | |
KR101925641B1 (ko) | 메타크릴산 제조용 촉매의 제조 방법 및 메타크릴산의 제조 방법 | |
JP4200744B2 (ja) | メタクリル酸製造用触媒の製造方法およびメタクリル酸の製造方法 | |
JP5069152B2 (ja) | 不飽和カルボン酸合成用触媒、その製造方法、およびその触媒を用いた不飽和カルボン酸の製造方法 | |
JP2015120133A (ja) | アクリル酸製造用の触媒および該触媒を用いたアクリル酸の製造方法 | |
JPWO2018110126A1 (ja) | α,β−不飽和カルボン酸製造用触媒前駆体の製造方法、α,β−不飽和カルボン酸製造用触媒の製造方法、α,β−不飽和カルボン酸の製造方法およびα,β−不飽和カルボン酸エステルの製造方法 | |
JP4745653B2 (ja) | メタクリル酸の製造方法 | |
JP4352856B2 (ja) | メタクリル酸製造用触媒の製造方法、これにより得られるメタクリル酸製造用触媒、及びメタクリル酸の製造方法。 | |
JP2013091016A (ja) | メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法 | |
JP2013086008A (ja) | メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法 | |
JPH0686933A (ja) | メタクリル酸製造用触媒の製造方法 | |
JP2012196608A (ja) | メタクリル酸製造用触媒の再生方法およびメタクリル酸の製造方法 | |
JP5149138B2 (ja) | 不飽和カルボン酸合成用触媒の製造方法 | |
JP4900532B2 (ja) | メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法 | |
JP2013180251A (ja) | メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法 | |
JP6540422B2 (ja) | 複合酸化物触媒 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221007 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230605 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230616 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230808 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230920 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230925 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7356923 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |