JP2019176122A - Method for manufacturing r-t-b based sintered magnet - Google Patents
Method for manufacturing r-t-b based sintered magnet Download PDFInfo
- Publication number
- JP2019176122A JP2019176122A JP2018175736A JP2018175736A JP2019176122A JP 2019176122 A JP2019176122 A JP 2019176122A JP 2018175736 A JP2018175736 A JP 2018175736A JP 2018175736 A JP2018175736 A JP 2018175736A JP 2019176122 A JP2019176122 A JP 2019176122A
- Authority
- JP
- Japan
- Prior art keywords
- sintered magnet
- magnet material
- mass
- insulating member
- based sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 239000000463 material Substances 0.000 claims abstract description 101
- 239000000843 powder Substances 0.000 claims abstract description 88
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 82
- 239000000956 alloy Substances 0.000 claims abstract description 82
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 33
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 20
- 229910052771 Terbium Inorganic materials 0.000 claims description 20
- 238000005304 joining Methods 0.000 claims description 16
- 229910052779 Neodymium Inorganic materials 0.000 claims description 9
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052733 gallium Inorganic materials 0.000 claims description 5
- 229910052738 indium Inorganic materials 0.000 claims description 5
- 239000002994 raw material Substances 0.000 claims description 5
- 229910052718 tin Inorganic materials 0.000 claims description 5
- 238000010304 firing Methods 0.000 claims description 3
- 238000010030 laminating Methods 0.000 claims description 3
- 239000010445 mica Substances 0.000 claims description 3
- 229910052618 mica group Inorganic materials 0.000 claims description 3
- 229910052723 transition metal Inorganic materials 0.000 claims description 2
- 238000000889 atomisation Methods 0.000 abstract description 7
- 239000002245 particle Substances 0.000 description 21
- 239000012071 phase Substances 0.000 description 19
- 238000010438 heat treatment Methods 0.000 description 16
- 150000001875 compounds Chemical class 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 239000000853 adhesive Substances 0.000 description 12
- 230000001070 adhesive effect Effects 0.000 description 12
- 238000009792 diffusion process Methods 0.000 description 9
- 230000005291 magnetic effect Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 7
- 238000010298 pulverizing process Methods 0.000 description 7
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 230000005415 magnetization Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 150000002910 rare earth metals Chemical class 0.000 description 3
- 238000007873 sieving Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006356 dehydrogenation reaction Methods 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000009689 gas atomisation Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- SZUVGFMDDVSKSI-WIFOCOSTSA-N (1s,2s,3s,5r)-1-(carboxymethyl)-3,5-bis[(4-phenoxyphenyl)methyl-propylcarbamoyl]cyclopentane-1,2-dicarboxylic acid Chemical compound O=C([C@@H]1[C@@H]([C@](CC(O)=O)([C@H](C(=O)N(CCC)CC=2C=CC(OC=3C=CC=CC=3)=CC=2)C1)C(O)=O)C(O)=O)N(CCC)CC(C=C1)=CC=C1OC1=CC=CC=C1 SZUVGFMDDVSKSI-WIFOCOSTSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 206010010149 Complicated fracture Diseases 0.000 description 1
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 229910000807 Ga alloy Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229940126543 compound 14 Drugs 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
本発明はR−T−B系焼結磁石の製造方法に関する。 The present invention relates to a method for producing an RTB-based sintered magnet.
R−T−B系焼結磁石(Rは希土類元素うちの少なくとも一種であり、Ndを必ず含む。TはFeまたはFeとCoであり、Bは硼素である)は永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに使用されている。 R-T-B based sintered magnets (R is at least one of rare earth elements and always contains Nd. T is Fe or Fe and Co, and B is boron) is the highest among permanent magnets. It is known as a high-performance magnet, and is used in various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, and home appliances.
R−T−B系焼結磁石は、主としてR2T14B化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。主相であるR2T14B化合物は高い飽和磁化と異方性磁界を持つ強磁性材料であり、R−T−B系焼結磁石の特性の根幹をなしている。 The RTB-based sintered magnet is composed of a main phase mainly composed of an R 2 T 14 B compound and a grain boundary phase located at the grain boundary portion of the main phase. The main phase R 2 T 14 B compound is a ferromagnetic material having a high saturation magnetization and an anisotropic magnetic field, and forms the basis of the characteristics of the RTB-based sintered magnet.
高温では、R−T−B系焼結磁石の保磁力HcJ(以下、単に「HcJ」という場合がある)が低下するため、不可逆熱減磁が起こる。そのため、特に電気自動車用モータに使用されるR−T−B系焼結磁石では、高いHcJを有することが要求されている。 At a high temperature, the coercive force H cJ (hereinafter sometimes simply referred to as “H cJ ”) of the RTB -based sintered magnet decreases, and irreversible thermal demagnetization occurs. Therefore, an RTB -based sintered magnet used particularly for an electric vehicle motor is required to have a high HcJ .
R−T−B系焼結磁石において、R2T14B化合物中のRに含まれる軽希土類元素RL(例えば、NdやPr)の一部を重希土類元素RH(例えば、DyやTb)で置換すると、HcJが向上することが知られている。RHの置換量の増加に伴い、HcJは向上する。 In the RTB-based sintered magnet, a part of the light rare earth element RL (for example, Nd or Pr) contained in R in the R 2 T 14 B compound is a heavy rare earth element RH (for example, Dy or Tb). Substitution is known to improve HcJ . As the substitution amount of RH increases, HcJ improves.
しかし、R2T14B化合物中のRLをRHで置換すると、R−T−B系焼結磁石のHcJが向上する一方、残留磁束密度Br(以下、単に「Br」という場合がある)が低下する。また、特にDy及びTbの重希土類元素は、資源存在量が少ないうえ、産出地が限定されているなどの理由から、供給が安定しておらず、価格が大きく変動するなどの問題を有している。そのため、近年、Dy及びTbの重希土類元素をできるだけ使用することなく、HcJを向上させることが求められている。 However, when RL in the R 2 T 14 B compound is replaced with RH, the H cJ of the RTB -based sintered magnet is improved, while the residual magnetic flux density B r (hereinafter simply referred to as “B r ”). There is). In particular, heavy rare earth elements such as Dy and Tb have problems such as the supply is not stable and the price fluctuates greatly due to the small amount of resources and the limited production area. ing. Therefore, in recent years, it has been demanded to improve HcJ without using heavy rare earth elements of Dy and Tb as much as possible.
特許文献1は、重希土類元素の使用量を抑えるために、HcJを高める必要がある部分に、Dyなどの重希土類元素の含有量が相対的に多い単位磁石を配置し、他の部分には重希土類元素の含有量が相対的に少ない単位磁石を配置して、これら複数の単位磁石を接合する技術を開示している。単位磁石の接合面は、重希土類元素を含有する金属粉末と有機物とを混合したペーストを介して接触した状態で加熱される。 In Patent Document 1, in order to suppress the use amount of heavy rare earth elements, unit magnets having a relatively large content of heavy rare earth elements such as Dy are arranged in portions where HcJ needs to be increased, and other portions are arranged. Discloses a technique in which unit magnets having a relatively small content of heavy rare earth elements are arranged and these unit magnets are joined. The joint surface of the unit magnet is heated while being in contact with a metal powder containing a heavy rare earth element and an organic substance mixed paste.
特許文献2は、希土類元素と他の金属元素の合金粉末を介してR−T−B系希土類焼結磁石とケイ素鋼板などの異材種部材とを接合する技術を開示している。 Patent Document 2 discloses a technique for joining an RTB-based rare earth sintered magnet and a dissimilar material member such as a silicon steel plate via an alloy powder of a rare earth element and another metal element.
特許文献1に開示されている接合技術によれば、Dyなどの重希土類元素の含有量が相対的に多い単位磁石と重希土類元素の含有量が相対的に少ない単位磁石とを配置しているため、重希土類元素の使用量を低減することができる。しかし、単位磁石の接合面は、重希土類元素を含有する金属粉末と有機物とを混合したペーストを介して接触した状態で加熱することにより接合されている(すなわち、重希土類元素の拡散により接合させている)。 According to the joining technique disclosed in Patent Document 1, a unit magnet having a relatively large content of heavy rare earth elements such as Dy and a unit magnet having a relatively small content of heavy rare earth elements are arranged. Therefore, the amount of heavy rare earth elements used can be reduced. However, the bonded surfaces of the unit magnets are bonded by heating in a state where they are in contact with each other through a paste in which a metal powder containing heavy rare earth elements and an organic substance are mixed (that is, bonded by diffusion of heavy rare earth elements). ing).
近年、電気自動車用モータ等の用途において、Dy及びTbを使用しなくても高いHcJを有するR−T−B系焼結磁石が求められている。また、特許文献1及び2に開示されている接合技術は、R−T−B系希土類焼結磁石どうし、またはR−T−B系希土類焼結磁石と鉄系金属部材とを接合することが可能になる。しかし、本発明者による検討の結果、高速で回転することが必要なモータなどに用いられる場合、より高い接合強度を実現し得る新しい接合技術が必要であることがわかった。 In recent years, in applications such as electric vehicle motors, RTB-based sintered magnets having high HcJ without using Dy and Tb have been demanded. Moreover, the joining technique currently disclosed by patent document 1 and 2 is joining the R-T-B type rare earth sintered magnets, or the R-T-B type rare earth sintered magnet and an iron-type metal member. It becomes possible. However, as a result of examination by the present inventors, it has been found that a new joining technique capable of realizing higher joining strength is required when used in a motor or the like that needs to rotate at high speed.
本発明の様々な実施形態は、高い接合強度を実現しつつ、Dy及びTbを使用しなくても高いBrと高いHcJを有するR−T−B系焼結磁石の製造方法を提供する。 Various embodiments of the present invention, while achieving a high bonding strength, to provide a method of manufacturing a R-T-B based sintered magnet having a high B r and high H cJ without using Dy and Tb .
本開示のR−T−B系焼結磁石の製造方法は、例示的な実施形態において、R1−T−B系焼結磁石素材(R1は、Nd及びPrの少なくとも一方を含む希土類元素)を用意する工程と、絶縁部材を準備用意する工程と、R2:65質量%以上97質量%以下(R2は、Nd及びPrの少なくとも一方を含む希土類元素であり、R2全体に対するDy及びTbの合計含有量が50質量%以下である)、及びM:3質量%以上35質量%以下(Mは、Ga、Cu、In、Al、Sn及びCoからなる群から選択された少なくとも1つ)を含有し、アトマイズ法によって作製されたR2−M合金粉末を準備用意する工程と、前記R1−T−B系焼結磁石素材と前記絶縁部材との間に前記R2−M合金粉末を配置し、450℃以上1000℃以下の温度で前記R1−T−B系焼結磁石素材と前記絶縁部材とを接合する接合工程と、を包含する。 In the exemplary embodiment, the manufacturing method of the RTB-based sintered magnet of the present disclosure uses an R1-TB-based sintered magnet material (R1 is a rare earth element including at least one of Nd and Pr). A step of preparing, a step of preparing and preparing an insulating member, and R2: 65% by mass or more and 97% by mass or less (R2 is a rare earth element including at least one of Nd and Pr, and the total content of Dy and Tb relative to the entire R2 And M: 3% by mass or more and 35% by mass or less (M is at least one selected from the group consisting of Ga, Cu, In, Al, Sn and Co). The step of preparing the R2-M alloy powder prepared by the atomizing method, the R2-M alloy powder is disposed between the R1-T-B system sintered magnet material and the insulating member, and 450 ° C. Above 1000 ℃ Including, a bonding step of bonding the insulating member and the R1-T-B based sintered magnet material in degrees.
ある実施形態において、R2はDy及びTbを含有しない(不可避的不純物を含む)R2全体に対するDy及びTbの合計含有量が15質量%以下である。 In one embodiment, R2 does not contain Dy and Tb (including unavoidable impurities), and the total content of Dy and Tb is 15% by mass or less based on the entire R2.
ある実施形態において、R2はPrを必ず含み、MはGaを必ず含む。 In some embodiments, R2 necessarily contains Pr and M necessarily contains Ga.
ある実施形態において、前記絶縁部材は、マイカから形成されたシートである。 In one embodiment, the insulating member is a sheet formed from mica.
ある実施形態において、前記R1−T−B系焼結磁石素材は、2mm以下の平均厚さを有している。 In one embodiment, the R1-T-B based sintered magnet material has an average thickness of 2 mm or less.
ある実施形態において、前記R1−T−B系焼結磁石素材は、1mm以下の平均厚さを有している。 In one embodiment, the R1-T-B based sintered magnet material has an average thickness of 1 mm or less.
ある実施形態において、前記接合工程は、前記絶縁部材を介して3層以上のR1−T−B系焼結磁石素材を積層する工程を含む。 In one embodiment, the joining step includes a step of laminating three or more layers of R1-T-B-based sintered magnet material via the insulating member.
本開示の実施形態によると、アトマイズ法によって作製されたR2−M合金粉末の粉末を用いて接合を実行するため、高い接合強度を実現しつつ、Dy及びTbを使用しなくても高いBr及びHcJを有するR−T−B系焼結磁石を製造することができる。 According to embodiments of the present disclosure, for performing bonded using powder R2-M alloy powder made by atomizing method, while realizing a high bonding strength, high without using Dy and Tb B r And an RTB -based sintered magnet having HcJ can be manufactured.
図1Aは、R−T−B系焼結磁石の一部を拡大して模式的に示す断面図であり、図1Bは図1Aの破線矩形領域内をさらに拡大して模式的に示す断面図である。図1Aには、一例として長さ5μmの矢印が大きさを示す基準の長さとして参考のために記載されている。図1A及び図1Bに示されるように、R−T−B系焼結磁石は、主としてR2T14B化合物からなる主相12と、主相12の粒界部分に位置する粒界相14とから構成されている。粒界相14は、図1Bに示されるように、2つのR2T14B化合物粒子(グレイン)が隣接する二粒子粒界相14aと、3つのR2T14B化合物粒子が隣接する粒界三重点14bとを含む。
FIG. 1A is a cross-sectional view schematically showing a part of an R-T-B system sintered magnet in an enlarged manner, and FIG. 1B is a cross-sectional view schematically showing in a further enlarged view a broken-line rectangular region in FIG. 1A. It is. In FIG. 1A, for example, an arrow having a length of 5 μm is described as a reference length indicating the size for reference. As shown in FIG. 1A and FIG. 1B, the RTB-based sintered magnet includes a
主相12であるR2T14B化合物は高い飽和磁化と異方性磁界を持つ強磁性材料である。したがって、R−T−B系焼結磁石では、主相12であるR2T14B化合物の存在比率を高めることによってBrを向上させることができる。R2T14B化合物の存在比率を高めるためには、原料合金中のR量、T量、B量を、R2T14B化合物の化学量論比(R量:T量:B量=2:14:1)に近づければよい。
The R 2 T 14 B compound that is the
本発明者は、Ga、Cu、In、Al、Sn及びCoからなる群から選択された少なくとも1つを粒界に拡散することにより、粒界相を改質してHcJを高めることが可能になることがわかった。このような粒界相の改質には、R1−T−B系焼結磁石素材(R1は、Nd及びPrの少なくとも一方を含む希土類元素)を準備して、R1−T−B系焼結磁石素材の表面から金属元素M(Ga、Cu、In、Al、Sn及びCoからなる群から選択された少なくとも1つ)を粒界に供給して粒界内を拡散させることが好ましい。このような金属元素Mの拡散は、65質量%以上97質量%以下のR2(Nd及びPrの少なくとも一方を含む希土類元素)と3質量%以上35質量%以下のMとの合金、すなわち、R2−M合金の粉末を用いて行うことができる。これにより、Dy及びTbを使用しなくても高いBrと高いHcJを有するR−T−B系焼結磁石を得ることができる。 The present inventor can modify the grain boundary phase and increase HcJ by diffusing at least one selected from the group consisting of Ga, Cu, In, Al, Sn, and Co into the grain boundary. I found out that For such modification of the grain boundary phase, an R1-T-B system sintered magnet material (R1 is a rare earth element including at least one of Nd and Pr) is prepared, and R1-T-B system sintering is performed. It is preferable that the metal element M (at least one selected from the group consisting of Ga, Cu, In, Al, Sn, and Co) is supplied from the surface of the magnet material to the grain boundary to diffuse in the grain boundary. Such diffusion of the metal element M is an alloy of 65 mass% to 97 mass% R2 (rare earth element including at least one of Nd and Pr) and 3 mass% to 35 mass% M, that is, R2 -M alloy powder can be used. Thus, it is possible to obtain the R-T-B based sintered magnet having a high B r and high H cJ without using Dy and Tb.
本発明者はさらに検討した結果、アトマイズ法によって作製されたR2−M合金粉末(R2−M合金のアトマイズ粉)をR1−T−B系焼結磁石素材の表面に塗布して拡散のための熱処理を行うとき、絶縁部材をR1−T−B系焼結磁石素材に接合させるための優れた融着剤として利用し得ることがわかった。すなわち、R2−M合金のアトマイズ粉は、R1−T−B系焼結磁石素材の二粒子粒界へ導入するための拡散源として機能するとともに、R1−T−B系焼結磁石素材を絶縁部材に接合して均一に結合する粉末としても機能し得ることがわかった。これは、R2−M合金を粉砕して形成した粉末粒子に比べて、アトマイズ粉の粒子の形状及び大きさの分布が一様であることに起因する。その結果、接合面に巣が形成されにくくなり、接合強度が向上する。 As a result of further investigation, the inventor applied R2-M alloy powder (atomized powder of R2-M alloy) produced by the atomizing method to the surface of the R1-T-B system sintered magnet material for diffusion. It has been found that when heat treatment is performed, the insulating member can be used as an excellent fusing agent for joining the R1-T-B sintered magnet material. That is, the atomized powder of the R2-M alloy functions as a diffusion source for introduction into the two-particle grain boundary of the R1-T-B system sintered magnet material, and insulates the R1-T-B system sintered magnet material. It has been found that it can also function as a powder that is bonded to a member and bonded uniformly. This is due to the uniform shape and size distribution of the atomized powder particles compared to the powder particles formed by pulverizing the R2-M alloy. As a result, it becomes difficult to form a nest on the joint surface, and the joint strength is improved.
R1−T−B系焼結磁石素材を絶縁部材に接合すると、R1−T−B系焼結磁石素材そのものの強度を絶縁部材の補助によって補い、全体の強度および剛性を高めることが可能になる。このことは、特にR1−T−B系焼結磁石素材の厚さが薄い場合に優れた効果を発揮する。R1−T−B系焼結磁石素材を絶縁部材に接合することにより、例えば厚さが3mm以下のシート状または棒状の形状を有する場合でも、割れや欠けの生じにくいR−T−B系焼結磁石が実現する。 When the R1-T-B system sintered magnet material is joined to the insulating member, the strength of the R1-T-B system sintered magnet material itself can be supplemented with the assistance of the insulating member, and the overall strength and rigidity can be increased. . This exhibits an excellent effect especially when the thickness of the R1-T-B based sintered magnet material is thin. By bonding an R1-T-B sintered magnet material to an insulating member, for example, even when it has a sheet-like or bar-like shape with a thickness of 3 mm or less, an R-T-B based firing that hardly causes cracking or chipping. A magnetized magnet is realized.
また、R−T−B系焼結磁石がモータに使用される場合、大きな渦電流が発生すると、電力の損失および不要な発熱を引き起こすことになる。絶縁部材を介してR1−T−B系焼結磁石素材を積層することにより、渦電流の形成を抑制することも可能になる。絶縁部材を介して3層以上のR1−T−B系焼結磁石素材が積層されてもよい。 Further, when an R-T-B system sintered magnet is used in a motor, if a large eddy current is generated, power loss and unnecessary heat generation are caused. It is also possible to suppress the formation of eddy currents by laminating R1-T-B based sintered magnet materials via insulating members. Three or more R1-T-B-based sintered magnet materials may be laminated via an insulating member.
図2は、従来の粉砕(例えばインゴット法やストリップキャステキング法により原料合金を作製した後、粉砕したもの)によって形成された合金粉末50の模式的断面図である。合金粉末は2個の固体部材20の間に配置されており、部材20の対向する表面(接合される面)20Sが作る空隙内に位置している。図2からわかるように、個々の粉末粒子50Pの形状及びサイズがばらばらである。合金粉末50は、合金を粉砕することによって作製されているため、粒子50Pには扁平な部分、鋭角状の凸部、複雑な破断面などが存在する。
FIG. 2 is a schematic cross-sectional view of an
一方、図3は、本開示の実施形態によるアトマイズ法によって形成されたR2−M合金粉末30の模式的断面図である。図3に示されるように、アトマイズ法によって形成されたR2−M合金粉末30を構成する個々の粒子30Pは、球状である。このような球状の粉末粒子30Pは、対向する固体部材20の表面(接合される面)20Sの間に配置し、固体部材20の表面20Sを近接させると、対向する表面20Sが作る空隙を均一に埋めるように再配列し得る。このため、接合時に不要な巣を形成することなく、接合面20Sの密着度を高めることが可能になる。
On the other hand, FIG. 3 is a schematic cross-sectional view of an R2-
図4は、本開示の実施形態によるR1−T−B系焼結磁石素材の接合前の状態を模式的に示す斜視図である。図示されている例において、R1−T−B系焼結磁石素材22、26と絶縁部材20、24とが交互に積層される。下端に位置する第1の絶縁部材20と第1のR1−T−B系焼結磁石素材22との間には、アトマイズ法によって形成されたR2−M合金粉末30の層が形成されている。図4の例において、R2−M合金粉末30は、第1の絶縁部材20の上面に塗布している。しかし、アトマイズ法によって形成されたR2−M合金粉末30は、第1のR1−T−B系焼結磁石素材22の底面に塗布されていても良い。また、第1のR1−T−B系焼結磁石素材22と、その上に位置する第2の絶縁部材24との間にも、同様に、アトマイズ法によって形成されたR2−M合金粉末30の層が形成されている。更に、第2の絶縁部材24と、上端に位置する第2のR1−T−B系焼結磁石素材26との間にも、アトマイズ法によって形成されたR2−M合金粉末30の層が形成されている。R2−M合金粉末30は、第1のR1−T−B系焼結磁石素材22、第2のR1−T−B系焼結磁石素材25、第1の絶縁部材20及び第二の絶縁材料24の表面全体に塗布されていてもよい。
FIG. 4 is a perspective view schematically showing a state before joining of the R1-T-B system sintered magnet material according to the embodiment of the present disclosure. In the illustrated example, R1-T-B based sintered
図5は、本開示の実施形態によるR1−T−B系焼結磁石素材の接合中の状態を模式的に示す斜視図である。図5に示される状態において、第1の絶縁部材20と第1のR1−T−B系焼結磁石素材22は、R2−M合金粉末30を挟んで近接する。第1のR1−T−B系焼結磁石素材22と第2の絶縁部材24とは、R2−M合金粉末30を挟んで近接する。第2の絶縁部材24と第2のR1−T−B系焼結磁石素材26は、R2−M合金粉末30を挟んで近接する。
FIG. 5 is a perspective view schematically showing a state during joining of the R1-T-B based sintered magnet material according to the embodiment of the present disclosure. In the state shown in FIG. 5, the first insulating
ある態様において、積層方向に加圧されてもよい。図5に示される状態で熱処理を行うことにより、R2−M合金粉末が溶融し、第1の絶部材20、第1のR1−T−B系焼結磁石素材22、第2の絶縁部材24、および第2のR1−T−B系焼結磁石素材26が接合して、これらが一体化したR−T−B系焼結磁石200が作製される。
In some embodiments, pressure may be applied in the stacking direction. By performing the heat treatment in the state shown in FIG. 5, the R2-M alloy powder is melted, and the first insulating
この接合工程において、R2−M合金粉末30に含まれていた希土類元素R2及び金属元素Mは、第1および第2のR1−T−B系焼結磁石素材22、26の各接合面から粒界を介して第1および第2のR1−T−B系焼結磁石素材22、26の内部に拡散する。アトマイズ法によって作製されたR2−M合金粉末30は、拡散源としてのみならず、優れた接合助剤としても機能して接合強度の向上に寄与する。
In this joining step, the rare earth element R2 and the metal element M contained in the R2-
なお、Pr−Ga合金などのR2−M合金は、延性が高く一般に粉砕性が悪い。このため、粉砕に長時間を要し、量産性に問題がある。 本開示の実施形態では、R2−M合金のアトマイズ粉を使用することにより、粉砕を行うことなく粉末粒子(例えば200μm以下の粒径を有する粒子)を得ることが可能となる。 Note that R2-M alloys such as Pr-Ga alloys have high ductility and generally poor grindability. For this reason, a long time is required for pulverization, and there is a problem in mass productivity. In the embodiment of the present disclosure, it is possible to obtain powder particles (for example, particles having a particle size of 200 μm or less) without performing pulverization by using atomized powder of R2-M alloy.
本開示によるR−T−B系焼結磁石の製造方法は、図6に例示されるように、R1−T−B系焼結磁石素材と絶縁部材を準備する工程S10と、アトマイズ法により作製されたR2−M合金粉末を準備する工程S20とを含む。R1−T−B系焼結磁石素材と絶縁部材を準備する工程S10とRアトマイズ法により作製されたR2−M合金粉末を準備する工程S20との順序は任意であり、それぞれ、異なる場所で製造されたR1−T−B系焼結磁石素材、絶縁部材、R2−M合金アトマイズ粉を用いてもよい。 As illustrated in FIG. 6, the manufacturing method of the RTB-based sintered magnet according to the present disclosure is prepared by the step S <b> 10 of preparing the R1-TB-based sintered magnet material and the insulating member, and the atomizing method. Step S20 of preparing the R2-M alloy powder. The order of the step S10 for preparing the R1-T-B based sintered magnet material and the insulating member and the step S20 for preparing the R2-M alloy powder produced by the R atomizing method is arbitrary, and each is manufactured at a different place. R1-T-B sintered magnet material, insulating member, and R2-M alloy atomized powder may be used.
さらに本開示によるR−T−B系焼結磁石の製造方法は、R1−T−B系焼結磁石素材と絶縁部材との間にR2−M合金粉末を配置する工程S30と、R1−T−B系焼結磁石素材と絶縁部材とを接合する工程S40とを含む。 Furthermore, the manufacturing method of the R-T-B system sintered magnet by this indication WHEREIN: Process S30 which arrange | positions R2-M alloy powder between a R1-T-B system sintered magnet raw material and an insulating member, R1-T -The process S40 which joins a B type sintered magnet raw material and an insulating member is included.
以下、本開示のR−T−B系焼結磁石の製造方法の実施形態をより詳細に説明する。 Hereinafter, the embodiment of the manufacturing method of the RTB-based sintered magnet of the present disclosure will be described in more detail.
1.R1−T−B系焼結磁石素材を準備する工程
まず、R1−T−B系焼結磁石素材を準備する。R1−T−B系焼結磁石素材は、公知の任意のR−T−B系焼結磁石であってもよい。本実施形態で使用可能なR1−T−B系焼結磁石素材の典型例は、以下の組成を有する。
希土類元素R1:27.5〜35.0質量%
B(B(ボロン)の一部はC(カーボン)で置換されていてもよい):0.80〜0.99質量%
Ga:0〜0.8質量%
添加金属元素M(Al、Cu、Zr、Nbからなる群から選択された少なくとも1種):0〜2質量%
T(Feを主とする遷移金属元素であって、Coを含んでもよい)及び不可避不純物:残部
1. Step of preparing R1-T-B system sintered magnet material First, an R1-T-B system sintered magnet material is prepared. The R1-T-B system sintered magnet material may be any known R-T-B system sintered magnet. A typical example of the R1-T-B system sintered magnet material that can be used in the present embodiment has the following composition.
Rare earth element R1: 27.5-35.0 mass%
B (a part of B (boron) may be substituted with C (carbon)): 0.80 to 0.99% by mass
Ga: 0 to 0.8 mass%
Additive metal element M (at least one selected from the group consisting of Al, Cu, Zr, Nb): 0 to 2% by mass
T (a transition metal element mainly composed of Fe and may contain Co) and inevitable impurities: remainder
また、好ましくは、下記不等式(1)を満足する。
[T]/55.85>14[B]/10.8 (1)
ここで、[T]は質量%で示すTの含有量であり、[B]は質量%で示すBの含有量である。
Also preferably, the following inequality (1) is satisfied.
[T] /55.85> 14 [B] /10.8 (1)
Here, [T] is the content of T expressed in mass%, and [B] is the content of B expressed in mass%.
この不等式を満足するということは、Bの含有量がR2T14B化合物の化学量論組成比よりも少ない、すなわち、主相(R2T14B化合物)形成に使われるT量に対して相対的にB量が少ないことを意味している。
The fact that satisfies this inequality, the content of B is less than the stoichiometric ratio of the
式(1)を満足したR1−T−B系焼結磁石素材に対してR2−M合金粉末を拡散させることで、Dy及びTbを使用しなくてもより高いBrとHcJを得ることができる。 By diffusing R2-M alloy powder against R1-T-B based sintered magnet material satisfying the formula (1), that without using Dy and Tb to obtain a higher B r and H cJ Can do.
なお、希土類元素R1は、主として軽希土類元素RL(Nd、Prから選択される少なくとも1種の元素)であるが、Dy及びTb等の重希土類元素を含有していてもよい。ただし、Dy及びTb等の重希土類元素の使用量は、R1−T−B系焼結磁石素材全体の2%以下が好ましく、もっとも好ましくは、R1−T−B系焼結磁石素材は、Dy及びTb等の重希土類元素を含有しない(不可避的不純物を含む)。 The rare earth element R1 is mainly a light rare earth element RL (at least one element selected from Nd and Pr), but may contain heavy rare earth elements such as Dy and Tb. However, the amount of heavy rare earth elements such as Dy and Tb used is preferably 2% or less of the entire R1-T-B based sintered magnet material, and most preferably, the R1-T-B based sintered magnet material is Dy. And does not contain heavy rare earth elements such as Tb (including unavoidable impurities).
上記組成のR1−T−B系焼結磁石素材は、公知の任意の製造方法によって製造され得る。R1−T−B系焼結磁石素材は焼結上がりでもよいし、切削加工や研磨加工が施されていてもよい。 The R1-T-B based sintered magnet material having the above composition can be manufactured by any known manufacturing method. The R1-T-B based sintered magnet material may be sintered, or may be subjected to cutting or polishing.
図4に示される例において、絶縁部材24およびR1−T−B系焼結磁石素材26のサイズは任意である。R1−T−B系焼結磁石素材26の厚さは1mm以下である場合、R1−T−B系焼結磁石素材26そのものの強度が低くなるため、一般にハンドリングが困難になり得る。そのような場合でも、本開示の実施形態によれば、絶縁部材24がR1−T−B系焼結磁石素材26を支持して、全体の強度が向上するため、ハンドリングが容易になる。このような観点から、R1−T−B系焼結磁石素材26のサイズは、例えば、0.5mm以上2mm以下であり、例えば0.5mm以上1mm以下でありうる。
In the example shown in FIG. 4, the sizes of the insulating
2.絶縁部材を準備する工程
絶縁部材は、絶縁耐圧の高い材料から形成されていることが好ましい。い。絶縁部材は、R2−M合金粉末が溶融する温度に耐える耐熱性を有している必要がある。このため、絶縁部材は、セラミックスなどの無機材料のシートから形成されていてもよい。例えば、マイカから形成されたシートである。絶縁部材がシート形状を有する場合、その厚さは例えば0.01mm以上1mm以下であり得る。
2. Step of Preparing Insulating Member The insulating member is preferably formed from a material having a high withstand voltage. Yes. The insulating member needs to have heat resistance that can withstand the temperature at which the R2-M alloy powder melts. For this reason, the insulating member may be formed from a sheet of an inorganic material such as ceramics. For example, a sheet formed from mica. When the insulating member has a sheet shape, the thickness can be, for example, 0.01 mm or more and 1 mm or less.
3.アトマイズ法により作製されたR2−M合金粉末を準備する工程
(R2) R2は、Nd及びPrの少なくとも一方を含む希土類元素であり、R2全体に対するDy及びTbの合計含有量が50質量%以下である。例えば、R2がR2−M合金全体の80質量%の場合は、Dy及びTbの合計含有量は、40質量%以下となる。好ましくは、R2全体に対するDy及びTbの合計含有量が15質量%以下である。もっとも好ましくは、R2−M合金粉末は、Dy及びTb等の重希土類元素を含有しない(不可避的不純物を含む)。R2は、R2−M合金全体の65質量%以上97質量%以下である。R2は、好ましくはPrを必ず含み、R2に占めるPrの量は、40質量%以上が好ましく、さらに好ましくは70質量%以上である。
(M) Mは、Ga、Cu、In、Al、Sn及びCoからなる群から選択された少なくとも1つである。Mは、R2−M合金全体の3質量%以上35質量%以下である。Mは、好ましくはGaを必ず含み、Mに占めるGaの量は、50質量%以上である。R2−M合金は、不可避的不純物を含んでいてもよい。最も好ましくは、R2に占めるPrの量が70質量%以上で、かつ、Mに占めるGaの量が50質量%以上であるR2−M合金粉末を使用する。これによりGaを主相結晶粒の内部にほとんど導入させずに二粒子粒界へ導入させることができる。Gaを含む液相が二粒子粒界に導入されることによりDyやTbを使用しなくても高いHcJを得ることができる。
3. Step of preparing R2-M alloy powder produced by atomization method (R2) R2 is a rare earth element containing at least one of Nd and Pr, and the total content of Dy and Tb with respect to the entire R2 is 50% by mass or less is there. For example, when R2 is 80% by mass of the entire R2-M alloy, the total content of Dy and Tb is 40% by mass or less. Preferably, the total content of Dy and Tb with respect to the entire R2 is 15% by mass or less. Most preferably, the R2-M alloy powder does not contain heavy rare earth elements such as Dy and Tb (including unavoidable impurities). R2 is 65 mass% or more and 97 mass% or less of the whole R2-M alloy. R2 preferably contains Pr, and the amount of Pr in R2 is preferably 40% by mass or more, and more preferably 70% by mass or more.
(M) M is at least one selected from the group consisting of Ga, Cu, In, Al, Sn, and Co. M is 3 mass% or more and 35 mass% or less of the whole R2-M alloy. M preferably necessarily contains Ga, and the amount of Ga in M is 50% by mass or more. The R2-M alloy may contain inevitable impurities. Most preferably, an R2-M alloy powder is used in which the amount of Pr in R2 is 70% by mass or more and the amount of Ga in M is 50% by mass or more. Thereby, Ga can be introduced into the two-grain grain boundary with almost no introduction into the main phase crystal grains. By introducing a liquid phase containing Ga into the two-particle grain boundary, high HcJ can be obtained without using Dy or Tb.
本開示の実施形態において、R2−M合金粉末は、アトマイズ法によって作製されている。アトマイズ法は、溶湯噴霧法とも呼ばれる粉末作製方法の1種であり、ガスアトマイズ法、プラズマアトマイズ法などの公知のアトマイズ法を含む。例えばガスアトマイズ法によれば、金属または合金を溶解炉で溶融して溶湯を形成し、その溶湯を窒素またはアルゴンなどの不活性ガス雰囲気中に噴霧して凝固させる。噴霧された溶湯は、微細な液滴として飛散するため、高速度で冷却されて凝固する。作製される粉末粒子は、それぞれ、球形の形状を持つため、粉砕を行う必要はない。アトマイズ法によって作製される粉末粒子のサイズは、例えば10μm〜200μmの範囲に分布する。 In the embodiment of the present disclosure, the R2-M alloy powder is produced by an atomizing method. The atomizing method is a kind of powder preparation method called a molten metal spraying method, and includes known atomizing methods such as a gas atomizing method and a plasma atomizing method. For example, according to the gas atomization method, a metal or an alloy is melted in a melting furnace to form a molten metal, and the molten metal is sprayed and solidified in an inert gas atmosphere such as nitrogen or argon. Since the sprayed molten metal scatters as fine droplets, it is cooled and solidified at a high speed. Since the produced powder particles each have a spherical shape, it is not necessary to perform pulverization. The size of the powder particles produced by the atomizing method is distributed in the range of 10 μm to 200 μm, for example.
アトマイズ法によれば、噴霧される合金溶湯の液滴が小さく、各液滴の重量に対する表面積が相対的に大きいため、冷却速度が高くなる。そのため、形成される粉末粒子は、非晶質または微結晶質である。なお、これらの粉末粒子に対しては、接合工程の前に付加的に熱処理を行って非晶質を結晶化させてもよい。 According to the atomizing method, since the droplets of the molten alloy to be sprayed are small and the surface area relative to the weight of each droplet is relatively large, the cooling rate is increased. Therefore, the formed powder particles are amorphous or microcrystalline. Note that these powder particles may be additionally heat-treated before the bonding step to crystallize amorphous.
R2−M合金粉末の粒度は篩わけすることによって調整され得る。また、篩わけで排除される粉末が10質量%以内であれば、その影響は少ないので、篩わけせずに用いてもよい。 The particle size of the R2-M alloy powder can be adjusted by sieving. In addition, if the amount of powder excluded by sieving is within 10% by mass, the influence is small, and it may be used without sieving.
4.R1−T−B系焼結磁石素材と絶縁部材との間にR2−M合金粉末を配置する工程
R1−T−B系焼結磁石素材と絶縁部材との間にR2−M合金粉末を配置する(言い換えると、R1−T−B系焼結磁石素材と絶縁部材とでR2−M合金粉末を挟む)。配置方法は、R1−T−B系焼結磁石素材及び絶縁部材の両方の表面にR2−M合金粉末を塗布することにより配置してもよいし、いずれか片方(R1−T−B系焼結磁石素材の表面のみ及び絶縁部材の表面のみ)にR2−M合金粉末を塗布するだけでもよい。また、R2−M合金粉末は、R1−T−B系焼結磁石素材及び絶縁部材の少なくとも一方の表面全体に塗布してもよいし、図4に示すように接合面のみでもよい。また、組成の異なる2種類以上のR2−M合金粉末を用いてもよい。R2−M合金粉末30を絶縁部材および/またはR1−T−B系焼結磁石素材の表面に塗布する方法は、特定の塗布方法に限定されない。塗布対象の表面に粘着剤を塗布する塗布工程と、粘着剤を塗布した領域にR2−M合金粉末を付着させる工程を行ってもよい。粘着剤としては、PVA(ポリビニルアルコール)、PVB(ポリビニルブチラール)、PVP(ポリビニルピロリドン)などがあげられる。粘着剤が水系の粘着剤の場合、塗布の前にR−T−B系焼結磁石素材を予備的に加熱してもよい。予備加熱の目的は余分な溶媒を除去し粘着力をコントロールすること、及び、均一に粘着剤を付着させることである。加熱温度は60〜100℃が好ましい。揮発性の高い有機溶媒系の粘着剤の場合はこの工程は省略してもよい。
4). Step of placing R2-M alloy powder between R1-T-B sintered magnet material and insulating member R2-M alloy powder is placed between R1-T-B sintered magnet material and insulating member (In other words, the R2-M alloy powder is sandwiched between the R1-T-B sintered magnet material and the insulating member). The arrangement method may be arranged by applying R2-M alloy powder to the surface of both the R1-T-B system sintered magnet material and the insulating member, or either one (R1-T-B system firing). The R2-M alloy powder may be simply applied to only the surface of the magnet material and the surface of the insulating member. Further, the R2-M alloy powder may be applied to the entire surface of at least one of the R1-T-B based sintered magnet material and the insulating member, or only the bonding surface as shown in FIG. Two or more types of R2-M alloy powders having different compositions may be used. The method of applying the R2-
R−T−B系焼結磁石素材表面に粘着剤を塗布する方法は、どのようなものでも良い。塗布の具体例としては、スプレー法、浸漬法、ディスペンサーによる塗布などがあげられる。粘着剤の塗布量は、例えば1.02×10−5〜5.10×10−5g/mm2であり得る。 Any method may be used to apply the adhesive to the surface of the RTB-based sintered magnet material. Specific examples of coating include spraying, dipping, and dispensing with a dispenser. The application amount of the pressure-sensitive adhesive may be, for example, 1.02 × 10 −5 to 5.10 × 10 −5 g / mm 2 .
5.R1−T−B系焼結磁石素材と前記絶縁部材とを接合する工程
本開示によれば、R1−T−B系焼結磁石素材とR2−M合金粉末(アトマイズ粉)とが接した状態で接合のための熱処理を開始する。その結果、高い接合強度を実現しつつ、R1−T−B系焼結磁石の粒界相が磁石内部の全体にわたって改質されて高いBr及びHcJを実現する。
5. The step of joining the R1-T-B system sintered magnet material and the insulating member According to the present disclosure, the R1-T-B system sintered magnet material and the R2-M alloy powder (atomized powder) are in contact with each other. Then, heat treatment for bonding is started. As a result, while achieving a high bonding strength, R1-T-B based sintered magnet of the grain boundary phase to realize a reformed with high B r and H cJ throughout the internal magnet.
接合のための熱処理は、450℃以上1000℃以下の温度で、5分以上720分以下の時間、実行され得る。熱処理は、比較的高い温度(700℃以上1000℃以下)で熱処理を行った後比較的低い温度(450℃以上600℃以下)で熱処理(二段熱処理)をしてもよい。好ましい条件は、730℃以上980℃以下で5分から500分程度の熱処理を施し、冷却後(室温まで冷却後、または440℃以上550℃以下まで冷却後)、さらに440℃以上550℃以下で5分から500分程度熱処理をすることが挙げられる。熱処理の雰囲気ガスは、窒素または不活性ガスであり得る。雰囲気ガスは減圧されていてもよい。 The heat treatment for bonding can be performed at a temperature of 450 ° C. or more and 1000 ° C. or less for a time of 5 minutes or more and 720 minutes or less. The heat treatment may be performed at a relatively low temperature (450 ° C. or more and 600 ° C. or less) after performing the heat treatment at a relatively high temperature (700 ° C. or more and 1000 ° C. or less). Preferred conditions are as follows: heat treatment at 730 ° C. or higher and 980 ° C. or lower for 5 to 500 minutes, cooling (cooling to room temperature or cooling to 440 ° C. or higher and 550 ° C. or lower), and further 440 ° C. or higher and 550 ° C. or lower 5 Heat treatment for about 500 minutes to 500 minutes. The atmosphere gas for the heat treatment can be nitrogen or an inert gas. The atmospheric gas may be decompressed.
本開示を実施例によりさらに詳細に説明するが、本開示はそれらに限定されるものではない。 The present disclosure will be described in more detail by way of examples, but the present disclosure is not limited thereto.
実験例1
R1−T−B系焼結磁石素材がおよそ表1のNo.1−Aに示す組成となるように、各元素を秤量してストリップキャスト法により鋳造し、フレーク状の合金を得た。得られたフレーク状の合金を水素加圧雰囲気で水素脆化させた後、550℃まで真空中で加熱、冷却する脱水素処理を施し、粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量%に対して0.04質量%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素雰囲気中で乾式粉砕し、粒径D50が4.3μmの合金粉末を得た。前記合金粉末に、液体潤滑剤を微粉砕粉100質量%に対して、0.3質量%添加、混合した後、磁界中成形し、成形体を得た。なお、成形装置は、磁場印加方向と加圧法方向とが直行する、いわゆる直角磁界成形装置(横磁界成形装置)を用いた。得られた成形体を、真空中、1020℃で4時間焼結し、R1−T−B系焼結磁石素材(No.1−A)を複数個準備した。焼結磁石の密度は7.5Mg/m3以上であった。また、得られたR1−T−B系焼結磁石素材を機械加工し、長さ10mm×幅5mm(幅が磁化方向)×厚さ3mm(厚さが磁化に垂直な方向)にした。得られたR1−T−B焼結磁石素材の成分の結果を表1に示す。なお、表1における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。また、R1−T−B系焼結磁石素材はいずれも不等式(1)を満足していた。また、セラミックス系の絶縁部材を準備した。絶縁部材の寸法はR1−T−B系焼結磁石素材と同様に機械加工し長さ10mm×幅5mm×厚さ0.5mmにした。
Experimental example 1
The R1-T-B sintered magnet material is approximately No. 1 in Table 1. Each element was weighed so as to have the composition shown in 1-A and cast by a strip casting method to obtain a flaky alloy. The obtained flaky alloy was hydrogen embrittled in a hydrogen-pressurized atmosphere, and then subjected to a dehydrogenation treatment in which it was heated and cooled in vacuum to 550 ° C. to obtain coarsely pulverized powder. Next, after adding and mixing 0.04% by mass of zinc stearate as a lubricant with respect to 100% by mass of the coarsely pulverized powder, the resulting coarsely pulverized powder was mixed with an airflow pulverizer (jet mill device). It was dry milled in a nitrogen atmosphere, the particle diameter D 50 was obtained alloy powder of 4.3 [mu] m. A liquid lubricant was added to and mixed with the alloy powder in an amount of 0.3% by mass with respect to 100% by mass of finely pulverized powder, and then molded in a magnetic field to obtain a molded body. The forming apparatus used was a so-called right-angle magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressing method direction were orthogonal. The obtained molded body was sintered in vacuum at 1020 ° C. for 4 hours to prepare a plurality of R1-TB-based sintered magnet materials (No. 1-A). The density of the sintered magnet was 7.5 Mg / m 3 or more. Further, the obtained R1-TB-based sintered magnet material was machined so as to have a length of 10 mm × width of 5 mm (width is a magnetization direction) × thickness of 3 mm (thickness is a direction perpendicular to the magnetization). The results of the components of the obtained R1-T-B sintered magnet material are shown in Table 1. In addition, each component in Table 1 was measured using high frequency inductively coupled plasma optical emission spectrometry (ICP-OES). Moreover, all of the R1-T-B based sintered magnet materials satisfied the inequality (1). In addition, a ceramic insulating member was prepared. The dimensions of the insulating member were machined in the same manner as the R1-T-B system sintered magnet material to make the length 10 mm × width 5 mm × thickness 0.5 mm.
次に、表2のNo.1−aに示す組成の合金粉末をアトマイズ法により作製することにより、R1−M合金粉末を準備した。得られたR2−M合金粉末の粒度は106μm以下であった。さらに表2のNo.1−bに示す組成の合金になるように各元素を秤量してストリップキャスト法により鋳造し、フレーク状の合金を得た。得られたフレーク状の合金を水素加圧雰囲気で水素脆化させた後、550℃まで真空中で加熱、冷却する脱水素処理を施し、粗粉砕粉を得た。得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量%に対して0.04質量%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素雰囲気中で乾式粉砕し、粒径D50が4.3μmの合金粉末を得た。 Next, no. An R1-M alloy powder was prepared by producing an alloy powder having the composition shown in 1-a by an atomizing method. The particle size of the obtained R2-M alloy powder was 106 μm or less. Furthermore, No. 2 in Table 2 Each element was weighed so as to be an alloy having the composition shown in 1-b and cast by a strip casting method to obtain a flaky alloy. The obtained flaky alloy was hydrogen embrittled in a hydrogen-pressurized atmosphere, and then subjected to a dehydrogenation treatment in which it was heated and cooled in vacuum to 550 ° C. to obtain coarsely pulverized powder. After adding and mixing 0.04% by mass of zinc stearate as a lubricant with respect to 100% by mass of the coarsely pulverized powder, the resulting coarsely pulverized powder is mixed with a nitrogen atmosphere using an airflow pulverizer (jet mill device). dry milled at medium particle size D 50 was obtained alloy powder of 4.3 [mu] m.
次に、表1のNo.1−AのR1−T−B系焼結磁石素材表面全面に粘着剤を塗布した。塗布方法は、R1−T−B系焼結磁石素材をホットプレート上で60℃に加熱後、スプレー法でR1−T−B系焼結磁石素材に粘着剤を塗布した。粘着剤としてPVP(ポリビニルピロリドン)を用いた。 Next, no. An adhesive was applied to the entire surface of the 1-A R1-T-B system sintered magnet material surface. The application method was as follows. The R1-T-B system sintered magnet material was heated to 60 ° C. on a hot plate, and then an adhesive was applied to the R1-T-B system sintered magnet material by a spray method. PVP (polyvinyl pyrrolidone) was used as an adhesive.
次に、粘着剤を塗布したR1−T−B系焼結磁石素材(No.1−A)に対して、表2のNo.1−aの拡散源(R2−M合金粉末)を付着させた。付着方法は、容器に拡散源を広げ、粘着剤を塗布したR1−T−B系焼結磁石素材を常温まで降温させた後、容器内で拡散源をR1−T−B系焼結磁石素材全面にまぶすように付着させた。 Next, with respect to the R1-T-B sintered magnet material (No. 1-A) coated with an adhesive, No. 1 in Table 2 was obtained. A 1-a diffusion source (R2-M alloy powder) was deposited. The adhesion method is to spread the diffusion source on the container, lower the temperature of the R1-T-B system sintered magnet material coated with adhesive to room temperature, and then use the R1-T-B system sintered magnet material in the container. It was made to adhere to the whole surface.
次に、R1−T−B系焼結磁石素材(No.1−A)とR2−M合金粉末(No.1−a)とが接した状態で、R1−T−B系焼結磁石素材No.1−Aと絶縁部材とを厚さ(3mm)方向に重ね(長さ10mm×幅5mmの面どうしを接触させ)、熱処理を行うことで接合し、R−T−B系焼結磁石(No.1−1)を得た。熱処理は、900℃で8時間の熱処理を行った後室温まで冷却し、さらに500℃で6時間の熱処理(二段熱処理)を行った。同様の方法で、R1−T−B系焼結磁石素材(No.1−A)に対して、表2のNo.1−bの拡散源を付着させ、同様の方法で熱処理を行うことで接合し、R−T−B系焼結磁石(No.1−2)を得た。 Next, the R1-T-B system sintered magnet material (No. 1-A) and the R2-M alloy powder (No. 1-a) are in contact with each other, and the R1-T-B system sintered magnet material. No. 1-A and an insulating member are stacked in a thickness (3 mm) direction (surfaces of 10 mm length × 5 mm width are brought into contact with each other) and bonded by heat treatment to obtain an R-T-B system sintered magnet (No. 1-1) was obtained. The heat treatment was performed at 900 ° C. for 8 hours, then cooled to room temperature, and further heat treated at 500 ° C. for 6 hours (two-stage heat treatment). In the same manner, for the R1-T-B sintered magnet material (No. 1-A), No. 1 in Table 2 was obtained. A 1-b diffusion source was attached and bonded by heat treatment in the same manner to obtain an RTB-based sintered magnet (No. 1-2).
得られたR−T−B系焼結磁石の接合面における巣の発生を確認した。巣が多く発生すると、接着強度が低下したり、巣を起点とした剥がれが起きる可能性があるため、特に高速で回転することが必要なモータなどにR−T−B系焼結磁石が用いられる場合、巣の発生を抑える必要がある。 The generation of nests on the joint surface of the obtained RTB-based sintered magnet was confirmed. If a large number of nests are generated, the adhesive strength may decrease or peeling may occur starting from the nests. Therefore, an R-T-B system sintered magnet is used for a motor that needs to rotate at a high speed. If possible, it is necessary to suppress the occurrence of nests.
R−T−B系焼結磁石(No.1−1及び1−2)をそれぞれ機械加工により切断研磨し接合面を含む任意の接合磁石の断面(幅5mm×厚さ6mmにおける磁石断面)を走査電子顕微鏡(SEM:日本電子製JCM−7001F)で観察した。観察領域は500μm×500μmであり、視認により接合面における巣の発生を確認した。巣の発生が接合面の20%以下(100×巣の部分の面積/接合部分の面積)を本発明とする。結果を表3に示す。巣の発生が20%以下の場合を〇と20%以上の場合を×と記載する。さらに、R−T−B系焼結磁石の磁気特性の結果を表3に示す。磁気特性は、接合されたR−T−B系焼結磁石からR1−T−B系焼結磁石素材のみを切削加工により切り出し、B−Hトレーサを用いて測定した。 R-T-B system sintered magnets (No. 1-1 and 1-2) are cut and polished by machining, respectively, and a cross section (magnet cross section at a width of 5 mm × thickness of 6 mm) of an arbitrary bonded magnet including a bonded surface is shown. It observed with the scanning electron microscope (SEM: JEOL JCM-7001F). The observation area was 500 μm × 500 μm, and the occurrence of nests on the joint surface was confirmed by visual recognition. Nest generation is 20% or less of the joint surface (100 × nest area / joint area). The results are shown in Table 3. The case where the occurrence of the nest is 20% or less is described as ◯ and the case where the nest is 20% or more is described as x. Further, Table 3 shows the results of the magnetic characteristics of the R-T-B system sintered magnet. The magnetic characteristics were measured by cutting only the R1-T-B system sintered magnet material from the bonded R-T-B system sintered magnet by cutting and using a B-H tracer.
表3に示すように本発明例は巣の発生が抑えられているのに対し、比較例(ストリップキャスト法で作製した拡散源を用いた場合)は巣の発生が抑えられていない。 As shown in Table 3, nest formation is suppressed in the inventive examples, whereas nest generation is not suppressed in the comparative example (using a diffusion source produced by a strip cast method).
実験例2
およそ表4のNo.2−A及び2−Bに示す組成となるように、実験例1と同様にしてR1−T−B系焼結磁石素材を準備した。得られたR1−T−B系焼結磁石素材を機械加工し、長さ10mm×幅5mm×厚さ3mm(厚さが磁化に垂直な方向)にした。得られたR1−T−B焼結磁石素材の成分の結果を表4に示す。なお、表4における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。また、セラミックス系の絶縁部材を準備した。絶縁部材の寸法はR1−T−B系焼結磁石素材と同様に機械加工し長さ10mm×幅5mm×厚さ0.5mmにした。次に実施例1と同様にしてNo.1−aのR2−M合金粉末を準備した。
Experimental example 2
No. in Table 4 An R1-T-B system sintered magnet material was prepared in the same manner as in Experimental Example 1 so that the compositions shown in 2-A and 2-B were obtained. The obtained R1-T-B based sintered magnet material was machined to have a length of 10 mm, a width of 5 mm, and a thickness of 3 mm (the direction in which the thickness is perpendicular to the magnetization). Table 4 shows the results of the components of the obtained R1-T-B sintered magnet material. In addition, each component in Table 4 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). In addition, a ceramic insulating member was prepared. The dimensions of the insulating member were machined in the same manner as the R1-T-B system sintered magnet material to make the length 10 mm × width 5 mm × thickness 0.5 mm. Next, in the same manner as in Example 1, no. 1-a R2-M alloy powder was prepared.
次に、表6に示す条件で、実験例1と同様にしてR1−T−B系焼結磁石素材と絶縁部材を接合し、R−T−B系焼結磁石を得た。表6のNo.2−1は、No.2−AのR1−T−B系焼結磁石素材表面全面に粘着剤を実験例1と同様にして塗布し、粘着剤を塗布したR1−T−B系焼結磁石素材(No.2−A)に対して、No.1−aのR−2M合金粉末を実験例1と同様にして付着させた。次に、R1−T−B系焼結磁石素材(No.2−A)とR2−M合金粉末(No.1−a)とが接した状態で、R1−T−B系焼結磁石素材No.2−Aと絶縁部材とを厚さ方向(3mm)に重ね、実験例1と同様にして熱処理を行うことで接合し、R−T−B系焼結磁石(No.2−1)を得たものである。No.2−2も同様に記載している。得られたR−T−B系焼結磁石に対し、実験例1と同様にして、視認により接合面における巣の発生を確認した。 Next, under the conditions shown in Table 6, the R1-T-B system sintered magnet material and the insulating member were joined in the same manner as in Experimental Example 1 to obtain an R-T-B system sintered magnet. No. in Table 6 2-1. An adhesive was applied to the entire surface of the 2-A R1-T-B system sintered magnet material in the same manner as in Experimental Example 1, and an R1-T-B system sintered magnet material (No. 2- In contrast to A), no. 1-a R-2M alloy powder was deposited in the same manner as in Experimental Example 1. Next, the R1-T-B system sintered magnet material (No. 2-A) and the R2-M alloy powder (No. 1-a) are in contact with each other, and the R1-T-B system sintered magnet material. No. 2-A and the insulating member are stacked in the thickness direction (3 mm), and bonded by performing heat treatment in the same manner as in Experimental Example 1 to obtain an RTB-based sintered magnet (No. 2-1) It is a thing. No. 2-2 is similarly described. With respect to the obtained RTB-based sintered magnet, generation of nests on the joint surface was confirmed by visual recognition in the same manner as in Experimental Example 1.
表6に示すように、本発明例はいずれも巣の発生が抑えられている。 As shown in Table 6, the nests of all the inventive examples are suppressed.
本発明によれば、高いBrと高いHcJを有するR−T−B系焼結磁石を作製することができる。本発明の焼結磁石は、高温下に晒されるハイブリッド車搭載用モータ等の各種モータや家電製品等に好適である。 According to the present invention, it is possible to produce R-T-B based sintered magnet having a high B r and high H cJ. The sintered magnet of the present invention is suitable for various motors such as a motor for mounting on a hybrid vehicle exposed to high temperatures, home appliances, and the like.
12 R2T14B化合物からなる主相
14 粒界相
14a 二粒子粒界相
14b 粒界三重点
20、24 固体部材
22、26 R1−T−B系焼結磁石素材
30 R2−M合金粉末
50 合金粉末
12 R 2 T 14 B main phase composed of
Claims (7)
絶縁部材を準備する工程と、
R2:65質量%以上97質量%以下(R2は、Nd及びPrの少なくとも一方を含む希土類元素であり、R2全体に対するDy及びTbの合計含有量が50質量%以下である)、及び
M:3質量%以上35質量%以下(Mは、Ga、Cu、In、Al、Sn及びCoからなる群から選択された少なくとも1つ)
を含有し、アトマイズ法によって作製されたR2−M合金粉末を準備する工程と、
前記R1−T−B系焼結磁石素材と前記絶縁部材との間に前記R2−M合金粉末を配置し、450℃以上1000℃以下の温度で前記R1−T−B系焼結磁石素材と前記絶縁部材とを接合する工程と、
を包含する、R−T−B系焼結磁石の製造方法。 Step of preparing an R1-T-B based sintered magnet material (R1 is a rare earth element containing at least one of Nd and Pr, T is a transition metal element mainly containing Fe and may contain Co) When,
Preparing an insulating member;
R2: 65 mass% or more and 97 mass% or less (R2 is a rare earth element containing at least one of Nd and Pr, and the total content of Dy and Tb with respect to the entire R2 is 50 mass% or less), and M: 3 % By mass or more and 35% by mass or less (M is at least one selected from the group consisting of Ga, Cu, In, Al, Sn and Co)
A step of preparing an R2-M alloy powder prepared by an atomizing method,
The R2-T-B system sintered magnet material is disposed between the R1-T-B system sintered magnet material and the insulating member, and the R1-T-B system sintered magnet material is used at a temperature of 450 ° C. or higher and 1000 ° C. or lower. Bonding the insulating member;
The manufacturing method of the RTB type | system | group sintered magnet including this.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018064134 | 2018-03-29 | ||
JP2018064134 | 2018-03-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019176122A true JP2019176122A (en) | 2019-10-10 |
JP7099218B2 JP7099218B2 (en) | 2022-07-12 |
Family
ID=68167524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018175736A Active JP7099218B2 (en) | 2018-03-29 | 2018-09-20 | Manufacturing method of RTB-based sintered magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7099218B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4287226A4 (en) * | 2021-01-26 | 2025-01-15 | NDFEB Corporation | MULTILAYER SINTERED MAGNET ND-FE-B AND ITS PRODUCTION METHOD |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04369202A (en) * | 1991-06-17 | 1992-12-22 | Isuzu Ceramics Kenkyusho:Kk | Composite permanent magnet and manufacture thereof |
JPH08141779A (en) * | 1994-11-16 | 1996-06-04 | Honda Motor Co Ltd | Paste-like bonding material for brazing |
JP2009225608A (en) * | 2008-03-18 | 2009-10-01 | Nitto Denko Corp | Permanent magnet for motor and method of manufacturing the permanent magnet for motor |
JP2018028123A (en) * | 2016-08-17 | 2018-02-22 | 日立金属株式会社 | Method for producing r-t-b sintered magnet |
-
2018
- 2018-09-20 JP JP2018175736A patent/JP7099218B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04369202A (en) * | 1991-06-17 | 1992-12-22 | Isuzu Ceramics Kenkyusho:Kk | Composite permanent magnet and manufacture thereof |
JPH08141779A (en) * | 1994-11-16 | 1996-06-04 | Honda Motor Co Ltd | Paste-like bonding material for brazing |
JP2009225608A (en) * | 2008-03-18 | 2009-10-01 | Nitto Denko Corp | Permanent magnet for motor and method of manufacturing the permanent magnet for motor |
JP2018028123A (en) * | 2016-08-17 | 2018-02-22 | 日立金属株式会社 | Method for producing r-t-b sintered magnet |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4287226A4 (en) * | 2021-01-26 | 2025-01-15 | NDFEB Corporation | MULTILAYER SINTERED MAGNET ND-FE-B AND ITS PRODUCTION METHOD |
Also Published As
Publication number | Publication date |
---|---|
JP7099218B2 (en) | 2022-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5687621B2 (en) | NdFeB sintered magnet and manufacturing method thereof | |
WO2017018291A1 (en) | Method for producing r-t-b system sintered magnet | |
JP2014150119A (en) | Method of manufacturing r-t-b based sintered magnet | |
TWI683007B (en) | Sintered body for forming rare earth magnet and rare earth sintered magnet | |
JP2019169542A (en) | Method for manufacturing r-t-b based sintered magnet | |
CN109585152B (en) | Method for producing R-T-B sintered magnet and diffusion source | |
JP6939337B2 (en) | Manufacturing method of RTB-based sintered magnet | |
JP6939339B2 (en) | Manufacturing method of RTB-based sintered magnet | |
CN111489874A (en) | Manufacturing method of R-T-B based sintered magnet | |
JP6946905B2 (en) | Diffusion source | |
JP7099218B2 (en) | Manufacturing method of RTB-based sintered magnet | |
JP2012204823A (en) | Method for producing rare earth sintered magnet | |
WO2019187858A1 (en) | Method for manufacturing r-t-b sintered magnet | |
JP2019060008A (en) | Diffusion source | |
JP2020120102A (en) | Method for manufacturing r-t-b based sintered magnet | |
WO2019187857A1 (en) | Method for manufacturing r-t-b sintered magnet | |
JP7604822B2 (en) | Manufacturing method of RTB based sintered magnet | |
JP6610957B2 (en) | Method for producing RTB-based sintered magnet | |
JP7528437B2 (en) | Manufacturing method of RTB based sintered magnet | |
JP6939338B2 (en) | Manufacturing method of RTB-based sintered magnet | |
JP2020120101A (en) | Method for manufacturing r-t-b based sintered magnet | |
JP7582002B2 (en) | Manufacturing method of RTB based sintered magnet | |
JP7631955B2 (en) | Manufacturing method of RTB based sintered magnet | |
KR102159079B1 (en) | Method Of rare earth sintered magnet | |
CN111489888B (en) | Method for producing R-T-B sintered magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210817 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220531 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220531 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220613 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7099218 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |