[go: up one dir, main page]

JP7528437B2 - Manufacturing method of RTB based sintered magnet - Google Patents

Manufacturing method of RTB based sintered magnet Download PDF

Info

Publication number
JP7528437B2
JP7528437B2 JP2019231381A JP2019231381A JP7528437B2 JP 7528437 B2 JP7528437 B2 JP 7528437B2 JP 2019231381 A JP2019231381 A JP 2019231381A JP 2019231381 A JP2019231381 A JP 2019231381A JP 7528437 B2 JP7528437 B2 JP 7528437B2
Authority
JP
Japan
Prior art keywords
magnet material
based sintered
sintered magnet
rare earth
earth element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019231381A
Other languages
Japanese (ja)
Other versions
JP2020107888A (en
Inventor
大介 山道
修嗣 三野
大 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Proterial Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proterial Ltd filed Critical Proterial Ltd
Publication of JP2020107888A publication Critical patent/JP2020107888A/en
Application granted granted Critical
Publication of JP7528437B2 publication Critical patent/JP7528437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

本開示は、R-T-B系焼結磁石の製造方法に関する。 This disclosure relates to a method for producing R-T-B based sintered magnets.

Fe14B型化合物を主相とするR-T-B系焼結磁石(Rは希土類元素、TはFe又はFeとCo)は、永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品等に使用されている。 R-T-B system sintered magnets (R is a rare earth element, and T is Fe or Fe and Co) with an R 2 Fe 14 B type compound as the main phase are known as the highest performance magnets among permanent magnets, and are used in a variety of motors such as voice coil motors (VCMs) for hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, and home appliances.

R-T-B系焼結磁石は、主としてRFe14B型化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。主相であるRFe14B型化合物は高い飽和磁化と異方性磁界を持つ強磁性材料であり、R-T-B系焼結磁石の特性の根幹をなしている。 R-T-B based sintered magnets are composed of a main phase consisting mainly of R 2 Fe 14 B type compounds and a grain boundary phase located at the grain boundaries of this main phase. The R 2 Fe 14 B type compound that is the main phase is a ferromagnetic material with high saturation magnetization and anisotropic magnetic field, and forms the basis of the characteristics of R-T-B based sintered magnets.

R-T-B系焼結磁石は、高温で固有保磁力HcJ(以下、単に「HcJ」という)が低下するため、不可逆熱減磁が起こる。不可逆熱減磁を回避するため、モータ用等に使用する場合、高温下でも高いHcJを維持することが要求されている。 Since the intrinsic coercivity H cJ (hereinafter simply referred to as "H cJ ") of an R-T-B based sintered magnet decreases at high temperatures, irreversible thermal demagnetization occurs. In order to avoid irreversible thermal demagnetization, when the magnet is used in a motor or the like, it is required to maintain a high H cJ even at high temperatures.

R-T-B系焼結磁石は、RFe14B型化合物相中のRの一部を重希土類元素RH(Dy、Tb等)で置換すると、HcJが向上することが知られている。高温で高いHcJを得るためには、R-T-B系焼結磁石中に重希土類元素RHを多く添加することが有効である。しかし、R-T-B系焼結磁石において、Rとして軽希土類元素RL(Nd、Pr)を重希土類元素RHで置換すると、HcJが向上する一方、残留磁束密度B(以下、単に「B」という)が低下してしまうという問題がある。また、重希土類元素RHは希少資源である。これらの理由により重希土類元素RHの使用量を削減することが求められている。 It is known that the H cJ of an R-T-B based sintered magnet is improved when a part of R in the R 2 Fe 14 B type compound phase is replaced with a heavy rare earth element RH (Dy, Tb, etc.). In order to obtain a high H cJ at high temperatures, it is effective to add a large amount of the heavy rare earth element RH to the R-T-B based sintered magnet. However, when the light rare earth element RL (Nd, Pr) as R in an R-T-B based sintered magnet is replaced with a heavy rare earth element RH, there is a problem that while the H cJ is improved, the residual magnetic flux density B r (hereinafter simply referred to as "B r ") is reduced. In addition, the heavy rare earth element RH is a scarce resource. For these reasons, there is a demand to reduce the amount of heavy rare earth element RH used.

そこで、近年、より少ない重希土類元素RHによってR-T-B系焼結磁石のHcJを向上させるために、R-T-B系焼結磁石表面にTb、Dy等の重希土類元素RHを供給し、その重希土類元素RHを磁石内部に拡散させることが提案されている。これにより、主相外殻部(粒界近傍)に重希土類元素RHを多く分布させることができる。主相外殻部(粒界近傍)に重希土類元素RHの薄いシェル層(RH濃化層)を分布させることによりBの低下を抑制することができ、さらに、R-T-B系焼結磁石のHcJ発生機構は核生成型(ニュークリエーション型)であるため、主相外殻部(粒界近傍)に重希土類元素RHの薄いシェル層を分布させることにより結晶粒全体の結晶磁気異方性が高められ、逆磁区の核生成が妨げられ、その結果、HcJが向上する。 In recent years, in order to improve the HcJ of R-T-B based sintered magnets with less heavy rare earth element RH, it has been proposed to supply heavy rare earth element RH such as Tb or Dy to the surface of the R-T-B based sintered magnet and diffuse the heavy rare earth element RH into the magnet. This allows the heavy rare earth element RH to be distributed in a large amount in the main phase outer periphery (near the grain boundaries). By distributing a thin shell layer (RH-enriched layer) of heavy rare earth element RH in the main phase outer periphery (near the grain boundaries), it is possible to suppress a decrease in B r , and further, since the HcJ generation mechanism of R-T-B based sintered magnets is of the nucleation type, distributing a thin shell layer of heavy rare earth element RH in the main phase outer periphery (near the grain boundaries) enhances the crystal magnetic anisotropy of the entire crystal grains, preventing the nucleation of reverse magnetic domains, and as a result, improving HcJ .

特許文献1には、DyおよびTb等を含有する粉末を焼結体表面に存在させた状態で焼結温度よりも低い温度で加熱することで、前記粉末からDyおよびTb等を焼結体に拡散させる方法が記載されている。 Patent Document 1 describes a method in which a powder containing Dy, Tb, etc. is placed on the surface of a sintered body and heated at a temperature lower than the sintering temperature, thereby diffusing Dy, Tb, etc. from the powder into the sintered body.

特許文献2および特許文献3には、焼結磁石(特許文献3は焼結体)とDy等を含有する蒸発材料(特許文献3はバルク体)とを網を介して離間して配置し、焼結磁石と蒸発材料とを所定温度に加熱することにより、蒸発材料からDy等を焼結磁石に拡散させる方法が記載されている。 Patent Document 2 and Patent Document 3 describe a method in which a sintered magnet (sintered body in Patent Document 3) and an evaporation material containing Dy and the like (bulk body in Patent Document 3) are placed apart via a net, and the sintered magnet and the evaporation material are heated to a predetermined temperature, thereby diffusing Dy and the like from the evaporation material into the sintered magnet.

特許文献4には、複数個のR-T-B系焼結磁石体とDy等を含有する複数個のRH拡散源とを相対的に移動可能かつ近接又は接触可能に処理室内に挿入し、前記R-T-B系焼結磁石体と前期RH拡散源とを前記処理室内にて連続的に又は断続的に移動させながら加熱することによって、前記RH拡散源からDy等をR-T-B系焼結磁石体に拡散させる方法が記載されている。 Patent document 4 describes a method in which multiple R-T-B based sintered magnet bodies and multiple RH diffusion sources containing Dy or the like are inserted into a treatment chamber so that they are relatively movable and close to or in contact with each other, and the R-T-B based sintered magnet bodies and the RH diffusion sources are heated while being moved continuously or intermittently within the treatment chamber, thereby diffusing Dy or the like from the RH diffusion sources into the R-T-B based sintered magnet bodies.

特開2008-147634号公報JP 2008-147634 A 特開2008-171995号公報JP 2008-171995 A 国際公開第2007/102391号International Publication No. 2007/102391 国際公開第2011/007758号International Publication No. 2011/007758

しかし、特許文献1に記載の方法によれば、焼結体表面に蓄積された重希土類元素RHが一気に焼結体内部に拡散するため、焼結体の表層領域において主相の中央部分に近いところまでも重希土類元素RHが拡散する。これによりBの低下を招く。また、焼結体の表層領域において多くの重希土類元素RHが消費されるため、磁石体の表層領域からさらに奥の領域(磁石の中央部分)にまで十分な重希土類元素RHを拡散させることが困難となる。 However, according to the method described in Patent Document 1, the heavy rare earth element RH accumulated on the surface of the sintered body diffuses into the interior of the sintered body all at once, leading to the heavy rare earth element RH diffusing even to the vicinity of the center of the main phase in the surface region of the sintered body, resulting in a decrease in B r . In addition, since a large amount of the heavy rare earth element RH is consumed in the surface region of the sintered body, it becomes difficult to diffuse a sufficient amount of the heavy rare earth element RH from the surface region of the magnet body to the region deeper inside (the central part of the magnet).

また、特許文献2~4に記載の方法によれば、重希土類元素RHが表面に衝突したあと焼結磁石内部に速やかに拡散する。しかし、重希土類元素RHの供給が磁石表面に逐次行われるため、焼結磁石の表層領域からさらに奥の領域(磁石の中央部分)にまで十分な重希土類元素RHを拡散しようとすると、焼結磁石の表層領域の主相において比較的厚い重希土類元素RHのシェル層が形成されてしまう場合がある。 According to the methods described in Patent Documents 2 to 4, the heavy rare earth element RH quickly diffuses into the interior of the sintered magnet after colliding with the surface. However, because the heavy rare earth element RH is supplied to the magnet surface successively, when attempting to diffuse a sufficient amount of the heavy rare earth element RH from the surface region of the sintered magnet to a region deeper inside (the central part of the magnet), a relatively thick shell layer of the heavy rare earth element RH may be formed in the main phase of the surface region of the sintered magnet.

このように、特許文献1~4に記載の方法では、焼結磁石の表層領域において、重希土類元素RHが主相外殻部(粒界近傍)のみならず主相内部にまで拡散したり、比較的厚い重希土類元素RHのシェル層が形成される場合があるため、必ずしも十分にBの低下を抑制しつつ、HcJを向上させているとは言い難い。 As described above, the methods described in Patent Documents 1 to 4 may cause the heavy rare earth element RH to diffuse not only to the outer crust portion of the main phase (near the grain boundaries) but also into the interior of the main phase in the surface layer region of the sintered magnet, or may form a relatively thick shell layer of the heavy rare earth element RH. As a result, it is difficult to say that they necessarily improve HcJ while sufficiently suppressing a decrease in Br .

本開示の様々な実施形態は、重希土類RHの使用量を低減し、Bの低下を抑制しつつ高いHcJを有するR-T-B系焼結磁石の製造方法を提供する。 Various embodiments of the present disclosure provide a method for producing a sintered RTB based magnet that reduces the amount of heavy rare earth RH used and has high HcJ while suppressing a decrease in B r .

本開示のR-T-B系焼結磁石の製造方法は、例示的な実施形態において、軽希土類元素RL(RLはNd、PrおよびCeからなる群から選択された少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有するR-T-B系焼結磁石素材(TはFe又はFeとCo)を用意する工程と、重希土類元素RH(RHはTb、DyおよびHoからなる群から選択された少なくとも1種)を含む合金または化合物の粉末から形成した拡散源粉末を用意する工程と、前記R-T-B系焼結磁石素材の表面の少なくとも一部に、前記拡散源粉末の少なくとも一部を接触させる工程と、前記拡散源粉末が接触した状態のR-T-B系焼結磁石素材を、800℃以上前記R-T-B系焼結磁石素材の焼結温度以下の温度で30時間以上加熱する熱処理をして、前記拡散源粉末に含まれる重希土類元素RHを前記R-T-B系焼結磁石素材の表面から内部に拡散する拡散工程と、を含む。 In an exemplary embodiment, the method for producing an R-T-B based sintered magnet according to the present disclosure is to produce an R 2 Fe 14 magnet containing a light rare earth element RL (RL is at least one element selected from the group consisting of Nd, Pr, and Ce) as the main rare earth element R. The method includes the steps of: preparing a sintered R-T-B based magnet material (T is Fe, or Fe and Co) having B-type compound crystal grains as a main phase; preparing a diffusion source powder formed from a powder of an alloy or compound containing a heavy rare earth element RH (RH is at least one selected from the group consisting of Tb, Dy, and Ho); bringing at least a part of the diffusion source powder into contact with at least a part of the surface of the sintered R-T-B based magnet material; and subjecting the sintered R-T-B based magnet material in contact with the diffusion source powder to a heat treatment at a temperature of 800° C. or higher and lower than the sintering temperature of the sintered R-T-B based magnet material for 30 hours or more, thereby diffusing the heavy rare earth element RH contained in the diffusion source powder from the surface to the inside of the sintered R-T-B based magnet material.

ある実施形態は、前記拡散工程において、前記拡散源粉末が接触した状態のR-T-B系焼結磁石素材を、前記R-T-B系焼結磁石素材の焼結温度以下の温度で30時間以上45時間以下加熱する熱処理をする。 In one embodiment, in the diffusion step, the R-T-B based sintered magnet material in contact with the diffusion source powder is subjected to a heat treatment at a temperature equal to or lower than the sintering temperature of the R-T-B based sintered magnet material for 30 hours to 45 hours.

ある実施形態は、前記拡散工程において、前記拡散源粉末が接触した状態のR-T-B系焼結磁石素材を、前記R-T-B系焼結磁石素材の焼結温度以下の温度で35時間以上40時間以下加熱する熱処理をする。 In one embodiment, in the diffusion step, the R-T-B based sintered magnet material in contact with the diffusion source powder is subjected to a heat treatment at a temperature equal to or lower than the sintering temperature of the R-T-B based sintered magnet material for 35 hours to 40 hours.

ある実施形態において、前記拡散源粉末は、RHM合金粉末(MはNd、Pr、Ce、Cu、Ga、Fe、Co、Ni、およびAlからなる群から選択された少なくとも1種)である。 In one embodiment, the diffusion source powder is an RHM alloy powder (wherein M is at least one selected from the group consisting of Nd, Pr, Ce, Cu, Ga, Fe, Co, Ni, and Al).

ある実施形態において、前記拡散源粉末は、Cuを含む。 In one embodiment, the diffusion source powder contains Cu.

ある実施形態において、前記R-T-B系焼結磁石素材の厚さ方向の寸法は1mm以上5mm以下である。 In one embodiment, the thickness dimension of the R-T-B based sintered magnet material is 1 mm or more and 5 mm or less.

ある実施形態において、前記R-T-B系焼結磁石素材の表面の少なくとも一部に、前記拡散源粉末の少なくとも一部を接触させる工程は、前記R-T-B系焼結磁石素材の表面の少なくとも一部に、前記拡散源粉末の少なくとも一部を付着させる工程である。 In one embodiment, the step of contacting at least a portion of the diffusion source powder with at least a portion of the surface of the R-T-B based sintered magnet material is a step of adhering at least a portion of the diffusion source powder to at least a portion of the surface of the R-T-B based sintered magnet material.

本開示により、重希土類RHの使用量を低減し、Bの低下を抑制しつつ高いHcJを有するR-T-B系焼結磁石の製造方法を提供することができる。 The present disclosure makes it possible to provide a method for producing a sintered RTB based magnet that reduces the amount of heavy rare earth RH used and has high HcJ while suppressing a decrease in B r .

本発明者らは、特許文献1に記載の方法、例えば、R-T-B系焼結磁石素材の表面に重希土類元素RHを含む拡散源粉末を接触させ、拡散源粉末を接触させた状態のR-T-B系焼結磁石を加熱する熱処理をして重希土類元素RHをR-T-B系焼結磁石素材内部に拡散させる場合に、R-T-B系焼結磁石の表層領域において、重希土類元素RHを主相外殻部(粒界近傍)に拡散させることができないかの検討を行った。 The present inventors have investigated whether it is possible to diffuse the heavy rare earth element RH into the outer shell of the main phase (near the grain boundaries) in the surface region of the R-T-B based sintered magnet by using the method described in Patent Document 1, for example, by contacting the surface of the R-T-B based sintered magnet material with a diffusion source powder containing the heavy rare earth element RH and then subjecting the R-T-B based sintered magnet with the diffusion source powder in contact therewith to a heat treatment in which the heavy rare earth element RH is diffused into the R-T-B based sintered magnet material.

通常、拡散工程における加熱時間は、加熱時間を長くしていくと(例えば5時間から10時間)磁石の表層領域において主相内部への重希土類元素RHの拡散が進んでいく。よって、従来、加熱時間を長くすればするほど、磁石の表層領域において主相内部へ重希土類元素RHが拡散され、これによりBの低下を招き、さらに表層領域において多くの重希土類元素RHが消費されることで磁石の中央部分にまで十分な重希土類元素RHを拡散させることが困難となりHcJの向上が妨げられると考えられてきた。しかし、検討の結果、全く意外なことに、加熱時間を30時間以上行うと、主相内部に重希土類元素RHが拡散されず、重希土類元素RHを主相外殻部(粒界近傍)に拡散させることができることが分かった。また、磁石の表層領域からさらに奥の領域(磁石の中央部分)にまで重希土類元素RHを拡散させることができることが分かった。詳しいメカニズムは不明であるが、一度主相内部へ拡散された重希土類元素RHが長時間の加熱を行うことにより、今度は粒界へ逆に拡散され、逆に拡散された重希土類元素RHが粒界をとおって磁石の表層領域からさらに奥の領域へ拡散されたと考えられる。これによりBの低下を抑制しつつ高いHcJを有するR-T-B系焼結磁石を得ることができたと考えられる。また、この現象は、特許文献2~4のような方法においては起こらないことが分かった。これは、特許文献1とは異なり重希土類元素RHが磁石表面に逐次新たに導入されるからだと考えられる。 Usually, the longer the heating time in the diffusion step (for example, 5 to 10 hours), the more the heavy rare earth element RH diffuses from the surface region of the magnet into the main phase. Therefore, it has been believed that the longer the heating time, the more the heavy rare earth element RH diffuses from the surface region of the magnet into the main phase, which leads to a decrease in B r , and furthermore, the more the heavy rare earth element RH is consumed in the surface region, making it difficult to diffuse a sufficient amount of the heavy rare earth element RH to the center of the magnet, thereby preventing an improvement in H cJ . However, as a result of the investigation, it was found, quite unexpectedly, that when the heating time is 30 hours or more, the heavy rare earth element RH does not diffuse into the main phase, and the heavy rare earth element RH can be diffused to the outer periphery of the main phase (near the grain boundary). It was also found that the heavy rare earth element RH can be diffused from the surface region of the magnet to a region deeper inside (the center of the magnet). Although the detailed mechanism is unclear, it is believed that the heavy rare earth element RH that was once diffused into the main phase is then diffused back into the grain boundaries by heating for a long period of time, and the reversely diffused heavy rare earth element RH is then diffused through the grain boundaries from the surface region of the magnet to a region deeper inside. It is believed that this makes it possible to obtain an R-T-B based sintered magnet that has a high HcJ while suppressing a decrease in B r . It was also found that this phenomenon does not occur in the methods described in Patent Documents 2 to 4. This is believed to be because, unlike Patent Document 1, the heavy rare earth element RH is successively newly introduced to the magnet surface.

特許文献1には、拡散時間として1分~100時間と非常に広い範囲で記載されているが、実施例は5時間~20時間の範囲であり、好ましい範囲として5分~8時間、特に10分~6時間であると記載されている。また、特許文献2には、拡散時間として48時間及び60時間の記載があるが、上述したように、特許文献2に記載の方法では重希土類元素RHが磁石表面に逐次新たに導入されており、R-T-B系焼結磁石の表層領域において、重希土類元素RHを主相外殻部(粒界近傍)に拡散させることができない。 Patent Document 1 gives a very wide range of diffusion times, from 1 minute to 100 hours, but in the examples it gives a range of 5 hours to 20 hours, with a preferred range of 5 minutes to 8 hours, and particularly 10 minutes to 6 hours. Patent Document 2 also gives diffusion times of 48 hours and 60 hours, but as mentioned above, in the method described in Patent Document 2, the heavy rare earth element RH is successively newly introduced to the magnet surface, and it is not possible to diffuse the heavy rare earth element RH into the outer shell of the main phase (near the grain boundaries) in the surface region of the R-T-B based sintered magnet.

なお、本開示において、拡散工程前および拡散工程中のR-T-B系焼結磁石を「R-T-B系焼結磁石素材」と称し、拡散工程後のR-T-B系焼結磁石を単に「R-T-B系焼結磁石」と称する。また、本開示において「表層領域」とは、磁石表面から深さでおよそ20μm程度までの領域のことをいう。 In this disclosure, the R-T-B based sintered magnet before and during the diffusion process is referred to as the "R-T-B based sintered magnet material," and the R-T-B based sintered magnet after the diffusion process is simply referred to as the "R-T-B based sintered magnet." In addition, in this disclosure, the "surface region" refers to the region from the magnet surface to a depth of approximately 20 μm.

(R-T-B系焼結磁石素材を用意する工程)
軽希土類元素RL(RLはNd、PrおよびCeからなる群から選択された少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有するR-T-B系焼結磁石素材(TはFe又はFeとCo)を用意する。
(Preparing R-T-B based sintered magnet material)
An R-T-B system sintered magnet material (T is Fe or Fe and Co) having, as a main phase, R 2 Fe 14 B type compound crystal grains containing a light rare earth element RL (RL is at least one selected from the group consisting of Nd, Pr and Ce) as the main rare earth element R is prepared.

R-T-B系焼結磁石素材は公知のものが使用できる。例えば、以下の組成を有する。
希土類元素R:27.5~35.0質量%、
B(B(ボロン)の一部はC(カーボン)で置換されていてもよい):0.80~1.20質量%、
Ga:0~0.8質量%、
添加元素M(Al、Cu、Zr、Nbからなる群から選択された少なくとも1種):0~2質量%、
T(TはFe又はFeとCo)及び不可避不純物:残部。
The RTB based sintered magnet material may be any known material, for example, having the following composition:
Rare earth element R: 27.5 to 35.0% by mass,
B (a part of B (boron) may be substituted with C (carbon)): 0.80 to 1.20 mass%,
Ga: 0 to 0.8% by mass,
Additional element M (at least one selected from the group consisting of Al, Cu, Zr, and Nb): 0 to 2 mass %,
T (T is Fe or Fe and Co) and inevitable impurities: the balance.

希土類元素Rは主として軽希土類元素RLを含有するが、重希土類元素RH(RHはTb、DyおよびHoからなる群から選択された少なくとも1種)を含有していてもよい。 The rare earth element R mainly contains a light rare earth element RL, but may also contain a heavy rare earth element RH (RH is at least one element selected from the group consisting of Tb, Dy, and Ho).

上記組成のR-T-B系焼結磁石素材は、公知の任意の製造方法によって製造される。R-T-B系焼結磁石素材は焼結上がりでもよいし、切削加工や研磨加工が施されていてもよい。 The R-T-B based sintered magnet material of the above composition can be manufactured by any known manufacturing method. The R-T-B based sintered magnet material may be in the as-sintered state, or may have been subjected to cutting or polishing processing.

また、R-T-B系焼結磁石素材は、その厚さ方向の寸法が1mm以上5mm以下であることが好ましい。厚さ方向とは、例えば、磁石が矩形状で、4mm×4mm×2mmの場合は、2mmが厚さ方向となる。また、寸法が同じ場合、例えば、2mm×2mm×2mmの場合は、2mmが厚さ方向となる。厚さ方向の寸法が1mm未満になると強度不足によるひびや割れが発生する可能性があり、5mmを超えると、R-T-B系焼結磁石素材の中央部分にまで十分な重希土類元素RHを拡散させることが困難になる可能性がある。また、必ずしも厚さ方向が磁化方向である必要はなく、厚さ方向と異なる方向が磁化方向であってもよい。 In addition, it is preferable that the thickness dimension of the R-T-B based sintered magnet material is 1 mm or more and 5 mm or less. For example, if the magnet is rectangular and 4 mm x 4 mm x 2 mm, the thickness direction is 2 mm. Also, if the dimensions are the same, for example, 2 mm x 2 mm x 2 mm, the thickness direction is 2 mm. If the thickness dimension is less than 1 mm, cracks or breaks may occur due to insufficient strength, and if it exceeds 5 mm, it may be difficult to sufficiently diffuse the heavy rare earth element RH to the center of the R-T-B based sintered magnet material. In addition, the thickness direction does not necessarily have to be the magnetization direction, and the magnetization direction may be in a direction different from the thickness direction.

(拡散源粉末を用意する工程)
重希土類元素RH(RHはTb、DyおよびHoからなる群から選択された少なくとも1種)を含む合金または化合物の粉末から形成した拡散源粉末を用意する。
(Step of Preparing Diffusion Source Powder)
A diffusion source powder formed from a powder of an alloy or compound containing a heavy rare earth element RH (RH is at least one selected from the group consisting of Tb, Dy and Ho) is prepared.

拡散源粉末は、例えばRHM合金粉末(MはNd、Pr、Ce、Cu、Ga、Fe、Co、Ni、およびAlからなる群から選択された少なくとも1種)である。 The diffusion source powder is, for example, RHM alloy powder (where M is at least one selected from the group consisting of Nd, Pr, Ce, Cu, Ga, Fe, Co, Ni, and Al).

RHM合金粉末の作製方法は、特に限定されない。ロール急冷法によって合金薄帯を作製し、この合金薄帯を粉砕する方法で作製してもよいし、遠心アトマイズ法、回転電極法、ガスアトマイズ法、プラズマアトマイズ法などの公知のアトマイズ法で作製してもよい
。鋳造法で作製したインゴットを粉砕してもよい。RHM合金粉末の典型例は、DyFe合金粉末、DyAl合金粉末、DyCu合金粉末、TbFe合金粉末、TbAl合金粉末、TbCu合金粉末、DyFeCu合金粉末、TbCuAl合金粉末、TbNdPrCu合金粉末、TbNdCePrCu合金粉末、TbNdGa合金粉末、TbNdPrGaCu合金粉末などである。また、RHM合金粉末は、好ましくはCuを含む。Cuを含むことにより、R-T-B系焼結磁石素材の表層領域からさらに奥の領域(磁石の中央部分)にまで十分な重希土類元素RHを拡散させることができる。RHM合金粉末の粒度は、例えば500μm以下であり、小さいものは10μm程度である。
The method of producing the RHM alloy powder is not particularly limited. The RHM alloy powder may be produced by a method of producing an alloy ribbon by roll quenching and pulverizing the alloy ribbon, or may be produced by a known atomizing method such as centrifugal atomizing, rotating electrode method, gas atomizing, or plasma atomizing. The ingot produced by casting may be pulverized. Typical examples of the RHM alloy powder include DyFe alloy powder, DyAl alloy powder, DyCu alloy powder, TbFe alloy powder, TbAl alloy powder, TbCu alloy powder, DyFeCu alloy powder, TbCuAl alloy powder, TbNdPrCu alloy powder, TbNdCePrCu alloy powder, TbNdGa alloy powder, and TbNdPrGaCu alloy powder. The RHM alloy powder preferably contains Cu. By including Cu, it is possible to diffuse a sufficient amount of the heavy rare earth element RH from the surface region of the sintered R-T-B magnet material to a deeper region (the central portion of the magnet). The particle size of the RHM alloy powder is, for example, 500 μm or less, and as small as about 10 μm.

重希土類元素RHの化合物は、RHフッ化物、RH酸フッ化物、RH酸化物から選ばれる1種以上であり、これらを総称してRH化合物と称する。RH酸フッ化物は、RHフッ化物の製造工程における中間物質としてRHフッ化物に含まれるものであってもよい。入手可能な多くのRH化合物の粉末の粒度は、凝集した2次粒子の大きさにおいて、20μm以下、典型的には10μm以下、小さいものは1次粒子で数μm程度である。 The compound of the heavy rare earth element RH is one or more selected from RH fluoride, RH acid fluoride, and RH oxide, and these are collectively referred to as RH compounds. RH acid fluoride may be included in RH fluoride as an intermediate substance in the manufacturing process of RH fluoride. The particle size of many available RH compound powders is 20 μm or less, typically 10 μm or less, in terms of the size of the agglomerated secondary particles, and for small ones, the primary particles are about a few μm in size.

(R-T-B系焼結磁石素材の表面の少なくとも一部に、拡散源粉末の少なくとも一部を接触させる工程)
前記R-T-B系焼結磁石素材の表面の少なくとも一部に、前記拡散源粉末の少なくとも一部を接触させる。R-T-B系焼結磁石素材の表面に拡散源粉末を接触させる方法は特に問わない。R-T-B系焼結磁石素材の表面の少なくとも一部に、拡散源粉末の少なくとも一部を付着させることができればどのような方法でも良い。例えば、スプレー法、浸漬法、ディスペンサーによる塗布などがあげられる。また、R-T-B系焼結磁石素材の表面に粘着剤を塗布し、粘着剤が付着したR-T-B系焼結磁石素材の表面に拡散源粉末を散布する方法により付着させてもよい。例えば、流動させた拡散源粉末の中に粘着剤が塗布されたR-T-B系焼結磁石素材を浸漬させる方法いわゆる流動浸漬法(fluidized bed coating process)を用いてもよい。以下、流動浸漬法を応用する例について説明する。
(Step of contacting at least a part of the diffusion source powder with at least a part of the surface of the sintered R-T-B based magnet material)
At least a part of the diffusion source powder is brought into contact with at least a part of the surface of the R-T-B based sintered magnet material. There is no particular limit to the method of bringing the diffusion source powder into contact with the surface of the R-T-B based sintered magnet material. Any method may be used as long as at least a part of the diffusion source powder can be attached to at least a part of the surface of the R-T-B based sintered magnet material. Examples include a spray method, an immersion method, and application with a dispenser. The diffusion source powder may also be attached by applying an adhesive to the surface of the R-T-B based sintered magnet material and scattering the diffusion source powder on the surface of the R-T-B based sintered magnet material to which the adhesive has been attached. For example, a method of immersing the R-T-B based sintered magnet material to which the adhesive has been applied in fluidized diffusion source powder, known as a fluidized bed coating process, may be used. An example of application of the fluidized bed coating process will be described below.

流動浸漬法は、従来、粉体塗装の分野で広く行われている方法であり、流動させた熱可塑性の粉体塗料の中に加熱した被塗物を浸漬し被塗物表面の熱によって塗料を融着させる方法である。この例では流動浸漬法を磁石に応用するために、熱可塑性の粉体塗料の代わりに上述の拡散源粉末を用い、加熱した塗布物の代わりに粘着剤が塗布されたR-T-B系焼結磁石素材を用いる。拡散源粉末を流動させる方法はどのような方法でも良い。例えば、1つの具体例として、下部に多孔質の隔壁を設けた容器を用いる方法を説明する。この例では、容器内に拡散源粉末を入れ、隔壁の下部から大気又は不活性ガスなどの気体に圧力をかけて容器内に注入し、その圧力又は気流で隔壁上方の拡散源粉末を浮かせて流動させることができる。 The fluidized bed method is a method that has been widely used in the field of powder coating. A heated workpiece is immersed in fluidized thermoplastic powder paint, and the paint is fused to the workpiece surface by the heat. In this example, in order to apply the fluidized bed method to magnets, the above-mentioned diffusion source powder is used instead of the thermoplastic powder paint, and an R-T-B sintered magnet material coated with an adhesive is used instead of the heated coating. Any method can be used to fluidize the diffusion source powder. For example, as one specific example, a method using a container with a porous partition at the bottom will be described. In this example, the diffusion source powder is placed in the container, and air or an inert gas or other gas is pressurized and injected into the container from the bottom of the partition, and the diffusion source powder above the partition can be floated and fluidized by the pressure or air flow.

容器の内部で流動する拡散源粉末に粘着剤が塗布されたR-T-B系焼結磁石素材を浸漬させる(あるいは配置する又は通過させる)ことで拡散源粉末をR-T-B系焼結磁石素材に付着させる。粘着剤が塗布されたR-T-B系焼結磁石素材を浸漬する時間は、例えば0.5~5.0秒程度である。流動浸漬法を用いることで、容器内に拡散源粉末が流動(撹拌)されるため、比較的大きい粉末粒子が偏って磁石表面に付着したり、逆に比較的小さい粉末粒子が隔たって磁石表面に付着したりすることが抑制される。そのため、より均一にR-T-B系焼結磁石素材に拡散源粉末を付着させることができる。 The R-T-B based sintered magnet material coated with an adhesive is immersed (or placed or passed through) in the diffusion source powder flowing inside the container, thereby adhering the diffusion source powder to the R-T-B based sintered magnet material. The time for which the R-T-B based sintered magnet material coated with an adhesive is immersed is, for example, about 0.5 to 5.0 seconds. By using the fluidized immersion method, the diffusion source powder is fluidized (stirred) inside the container, which prevents relatively large powder particles from being unevenly attached to the magnet surface, or, conversely, relatively small powder particles from being spaced apart and attached to the magnet surface. This allows the diffusion source powder to be more uniformly attached to the R-T-B based sintered magnet material.

(拡散工程)
拡散源粉末が接触した状態のR-T-B系焼結磁石素材を、800℃以上R-T-B系焼結磁石素材の焼結温度以下の温度で30時間以上加熱する熱処理をして、前記拡散源粉末に含まれる重希土類元素RHを前記R-T-B系焼結磁石素材の表面から内部に拡散させる。加熱温度が800℃以下であると、重希土類元素RHを含む液相量が少なすぎてR-T-B系焼結磁石の内部への拡散が不十分となり高いHcJを得ることが出来ない可能性があり、焼結温度を超えると異常粒成長が発生し、B及びHcJが大きく低下する可能性がある。加熱温度は、好ましくは850℃以上950℃以下である。より高いHcJを得ることができる。また、熱処理は、公知の熱処理装置を用いて行うことができる。
(Diffusion process)
The R-T-B based sintered magnet material in contact with the diffusion source powder is heat-treated at a temperature of 800°C or higher and lower than the sintering temperature of the R-T-B based sintered magnet material for 30 hours or more, so that the heavy rare earth element RH contained in the diffusion source powder is diffused from the surface to the inside of the R-T-B based sintered magnet material. If the heating temperature is 800°C or lower, the amount of liquid phase containing the heavy rare earth element RH is too small, so that diffusion into the inside of the R-T-B based sintered magnet is insufficient, and it may not be possible to obtain a high HcJ . If the heating temperature exceeds the sintering temperature, abnormal grain growth may occur, and Br and HcJ may be significantly reduced. The heating temperature is preferably 850°C or higher and 950°C or lower. A higher HcJ can be obtained. The heat treatment can be performed using a known heat treatment device.

上述したように、加熱時間を30時間以上行うことにより、R-T-B系焼結磁石の表層領域において、重希土類元素RHを主相外殻部(粒界近傍)に拡散させることができ、磁石の表層領域からさらに奥の領域(磁石の中央部分)にまで重希土類元素RHを拡散させることができる。これにより、Bの低下を抑制しつつ高いHcJを有するR-T-B系焼結磁石を得ることができる。 As described above, by performing heating for 30 hours or more, the heavy rare earth element RH can be diffused into the outer periphery of the main phase (near the grain boundaries) in the surface region of the sintered R-T-B magnet, and can be diffused from the surface region of the magnet to a region deeper inside (the center part of the magnet). This makes it possible to obtain a sintered R-T-B magnet that has a high HcJ while suppressing a decrease in B r .

本開示の拡散工程における加熱時間は、R-T-B系焼結磁石素材の温度が設定温度になった時(例えば設定温度が920℃の場合は920℃になった時)を開始点とし、設定温度よりも20℃を超えて低くなった時(例えば設定温度が920℃の場合は900℃未満になった時)を終了点とする。熱処理を2回以上に分けて行う場合は、合計時間が30時間以上になればよい。また、R-T-B系焼結磁石素材の温度は、例えば、磁石素材に熱電対をとりつけることにより測定することができる。加熱時間は、好ましくは30時間以上45時間以下であり、より好ましくは35時間以上40時間以下である。 The heating time in the diffusion process of the present disclosure starts when the temperature of the R-T-B based sintered magnet material reaches the set temperature (for example, when it reaches 920°C when the set temperature is 920°C) and ends when it falls below the set temperature by more than 20°C (for example, when it falls below 900°C when the set temperature is 920°C). If the heat treatment is performed in two or more stages, the total time should be 30 hours or more. The temperature of the R-T-B based sintered magnet material can be measured, for example, by attaching a thermocouple to the magnet material. The heating time is preferably 30 hours or more and 45 hours or less, and more preferably 35 hours or more and 40 hours or less.

拡散工程を行った後のR-T-B系焼結磁石は、磁気特性を向上させることを目的とした第二の熱処理を行ってもよい。第二の熱処理における温度、時間などの条件は、焼結磁石の熱処理条件として公知の条件(例えば、500℃で3時間)を採用することができる。また、最終的な磁石寸法の調整を研削などの機械加工等により行ってもよい。この場合、第二の熱処理の前に行っても、後に行ってもよい。 After the diffusion process, the R-T-B sintered magnet may be subjected to a second heat treatment for the purpose of improving its magnetic properties. The temperature, time, and other conditions in the second heat treatment may be those known as heat treatment conditions for sintered magnets (e.g., 500°C for 3 hours). The final magnet dimensions may also be adjusted by machining such as grinding. In this case, this may be done before or after the second heat treatment.

本開示を実施例によりさらに詳細に説明するが、本開示はそれらに限定されるものではない。 The present disclosure will be described in more detail with reference to examples, but is not limited thereto.

実験例1
(R-T-B系焼結磁石素材を用意する工程)
R-T-B系焼結磁石素材がおよそ表1の符号1-Aの組成となるよう各元素を秤量しストリップキャスト法により鋳造し、厚み0.2~0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量%に対して0.04質量%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
Experimental Example 1
(Preparing R-T-B based sintered magnet material)
Each element was weighed so that the R-T-B sintered magnet material had a composition approximately shown by symbol 1-A in Table 1, and the alloy flakes were cast by strip casting to obtain a 0.2-0.4 mm thick raw alloy flakes. The obtained raw alloy flakes were subjected to hydrogen pulverization, followed by heating to 550°C in a vacuum and then cooling to obtain a coarsely pulverized powder. Next, zinc stearate was added as a lubricant to the obtained coarsely pulverized powder in an amount of 0.04% by mass relative to 100% by mass of the coarsely pulverized powder, and mixed. The mixture was then dry-pulverized in a nitrogen gas stream using an airflow pulverizer (jet mill device) to obtain a finely pulverized powder (alloy powder) with a particle size D 50 of 4 μm. The particle size D 50 is the volume center value (volume-based median diameter) obtained by a laser diffraction method using an airflow dispersion method.

前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100質量%に対して0.05質量%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。 Zinc stearate was added as a lubricant at 0.05% by mass relative to 100% by mass of the finely pulverized powder, mixed, and molded in a magnetic field to obtain a green body. The molding device used was a so-called perpendicular magnetic field molding device (horizontal magnetic field molding device) in which the magnetic field application direction and the pressure direction are perpendicular to each other.

得られた成形体を4時間焼結(焼結による緻密化が十分起こる温度を選定)し、R-T-B系焼結磁石素材(No.1-A)を複数個用意した。得られたR-T-B系焼結磁石素材の密度は7.5Mg/m以上であった。得られたR-T-B系焼結磁石素材の成分の結果を表1に示す。なお、表1における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP-OES)を使用して測定した。なお、焼結体の酸素量をガス融解-赤外線
吸収法で測定した結果、0.1質量%前後であることを確認した。また、No.1-AのR-T-B系焼結磁石素材を切断、切削加工し、4.4mm×10.0mm×11.0mmの直方体(10.0mm×11.0mmの面が配向方向と垂直な面、4.4mm方向が厚み方向であり、配向方向)とした。
The obtained compact was sintered for 4 hours (a temperature was selected at which densification by sintering was sufficient) to prepare a number of R-T-B based sintered magnet materials (No. 1-A). The density of the obtained R-T-B based sintered magnet material was 7.5 Mg/ m3 or more. Table 1 shows the composition of the obtained R-T-B based sintered magnet material. Each component in Table 1 was measured using inductively coupled plasma optical emission spectroscopy (ICP-OES). The oxygen content of the sintered body was measured by gas fusion-infrared absorption method, and it was confirmed to be around 0.1 mass%. The R-T-B based sintered magnet material No. 1-A was cut and machined to obtain a 4.4 mm x 10.0 mm x 11.0 mm rectangular parallelepiped (the 10.0 mm x 11.0 mm surface was perpendicular to the orientation direction, and the 4.4 mm direction was the thickness direction, which is the orientation direction).

(拡散源粉末を用意する工程)
表2のNo.1-aに示す組成の合金粉末をアトマイズ法により作成することにより、拡散源粉末を用意した。得られた拡散源粉末の粒度は106μm以下であった。
(Step of Preparing Diffusion Source Powder)
A diffusion source powder was prepared by atomizing an alloy powder having a composition shown in No. 1-a of Table 2. The particle size of the obtained diffusion source powder was 106 μm or less.

(R-T-B系焼結磁石素材の表面の少なくとも一部に、拡散源粉末の少なくとも一部を接触させる工程)
次に、表1のNo.1-AのR-T-B系焼結磁石素材表面全面に粘着剤を塗布した。塗布方法は、R-T-B系焼結磁石素材をホットプレート上で60℃に加熱後、スプレー法でR-T-B系焼結磁石素材に粘着剤を塗布した。粘着剤としてPVP(ポリビニルピロリドン)を用いた。
(Step of contacting at least a part of the diffusion source powder with at least a part of the surface of the sintered R-T-B based magnet material)
Next, an adhesive was applied to the entire surface of the R-T-B based sintered magnet material No. 1-A in Table 1. The application method was to heat the R-T-B based sintered magnet material to 60°C on a hot plate, and then apply the adhesive to the R-T-B based sintered magnet material by spraying. PVP (polyvinylpyrrolidone) was used as the adhesive.

次に、粘着剤を塗布したR-T-B系焼結磁石素材(No.1-A)に対して、表2のNo.1-aの拡散源粉末を付着させた。付着方法は、容器に拡散源粉末を広げ、容器内で拡散源粉末を、粘着剤を塗布したR-T-B系焼結磁石素材全面にまぶすように付着させた。 Next, the diffusion source powder No. 1-a in Table 2 was attached to the adhesive-coated R-T-B sintered magnet material (No. 1-A). The attachment method was to spread the diffusion source powder in a container, and then attach the diffusion source powder in the container so that it was sprinkled over the entire surface of the adhesive-coated R-T-B sintered magnet material.

(拡散工程)
管状流気炉を用いて、200Paに制御した減圧アルゴン中で、拡散源粉末(No.1-a)が接触した状態のR-T-B系焼結磁石素材を、920℃で36時間加熱する熱処理(拡散処理)を行った。更に拡散処理後のR-T-B系焼結磁石に対し、490℃で6時間加熱する第二の熱処理を行いR-T-B系焼結磁石(No.1-1)を得た。また、拡散処理における加熱時間を36時間から10時間に変更する以外はNo.1-1のR-T-B系焼結磁石と同様にしてR-T-B系焼結磁石(No.1-2)を作製した。得られたR-T-B系焼結磁石(No.1-1及びNo.1-2)の磁気特性をB-Hトレーサによって測定した。各試料のB及びHcJを測定した。結果を表3に示す。
(Diffusion process)
Using a tubular gas flow furnace, the R-T-B based sintered magnet material in contact with the diffusion source powder (No. 1-a) was subjected to a heat treatment (diffusion treatment) at 920°C for 36 hours in reduced pressure argon controlled at 200 Pa. The R-T-B based sintered magnet after the diffusion treatment was then subjected to a second heat treatment at 490°C for 6 hours to obtain an R-T-B based sintered magnet (No. 1-1). An R-T-B based sintered magnet (No. 1-2) was produced in the same manner as the R-T-B based sintered magnet No. 1-1, except that the heating time in the diffusion treatment was changed from 36 hours to 10 hours. The magnetic properties of the obtained R-T-B based sintered magnets (No. 1-1 and No. 1-2) were measured using a B-H tracer. The B r and H cJ of each sample were measured. The results are shown in Table 3.

表3に示すように、加熱時間を36時間行うことにより、Bの低下を抑制しつつ、高いHcJが得られている。 As shown in Table 3, by carrying out the heating for 36 hours, a high HcJ was obtained while suppressing the decrease in B r .

No.1-1(本発明例)およびNo.1-2(比較例)の磁石表面近傍の断面を走査電子顕微鏡(SEM:日本電子製JCM-6000)で観察し、主相結晶粒におけるTbの濃化層を確認した。その結果、本発明例(No.1-1)は、R-T-B系焼結磁石の表層領域において、主相外殻部に重希土類元素RH(Tb)の薄いシャル相(RH濃化層)が分布しているのを確認できたのに対し、比較例(No.2-1)は、R-T-B系焼結磁石の表層領域において、主相の中央部分に近いところまでも重希土類元素RH(Tb)が拡散していることを確認した。 The cross sections near the magnet surface of No. 1-1 (invention example) and No. 1-2 (comparison example) were observed with a scanning electron microscope (SEM: JEOL JCM-6000) to confirm the presence of a Tb-enriched layer in the main phase crystal grains. As a result, it was confirmed that in the invention example (No. 1-1), a thin Shar phase (RH-enriched layer) of the heavy rare earth element RH (Tb) is distributed in the outer periphery of the main phase in the surface layer region of the R-T-B sintered magnet, whereas in the comparison example (No. 2-1), it was confirmed that the heavy rare earth element RH (Tb) is diffused even near the center of the main phase in the surface layer region of the R-T-B sintered magnet.

また、No.1-1及びNo.1-2の磁石中央部におけるTbの量を測定した所、No.1-1はTbが測定されたのに対し、No.1-2はTbが測定されなかった。 In addition, when the amount of Tb in the center of the magnets of No. 1-1 and No. 1-2 was measured, Tb was measured in No. 1-1, but not in No. 1-2.

実験例2
実施例1のNo.1-AのR-T-B系焼結磁石素材を準備した。そして、表3のNo.2-a~2-eに示す組成の合金粉末をアトマイズ法により作成することにより、拡散源粉末を用意した。得られた拡散源粉末の粒度は106μm以下であった。
Experimental Example 2
An R-T-B based sintered magnet material No. 1-A in Example 1 was prepared. Then, diffusion source powders were prepared by atomizing alloy powders having the compositions shown in Nos. 2-a to 2-e in Table 3. The particle size of the obtained diffusion source powders was 106 μm or less.

次に、表5の加熱時間にて行う以外は、実施例1と同様にして熱処理(拡散処理)を行った。更に拡散処理後のR-T-B系焼結磁石に対し、実施例1と同様にして第二の熱処理を行いR-T-B系焼結磁石(No.2-1~2-11)を得た。得られたR-T-B系焼結磁石(No.2-1~2-11)の磁気特性をB-HトレーサによってB及びHcJを測定した。結果を表5に示す。 Next, heat treatment (diffusion treatment) was performed in the same manner as in Example 1, except that the heating time was as shown in Table 5. Furthermore, a second heat treatment was performed on the R-T-B based sintered magnets after the diffusion treatment in the same manner as in Example 1, to obtain R-T-B based sintered magnets (Nos. 2-1 to 2-11). The magnetic properties of the obtained R-T-B based sintered magnets (Nos. 2-1 to 2-11) were measured for B r and H cJ using a B-H tracer. The results are shown in Table 5.

Figure 0007528437000005
Figure 0007528437000005

表5に示すように、同じR-T-B系焼結磁石素材および拡散源粉末を用いた本発明例と比較例(No.2-1および2-2、No.2-3および2-4、No.2-5および2-6、No.2-7および2-8、No.2-9および2-10)をそれぞ比べると、いずれも本発明例の方がBの低下を抑制しつつ、高いHcJが得られている。また、No.2-9(加熱時間:38時間)とNo.2-11(加熱時間:45時間)の本発明例を比べると同等の磁気特性レベルである。そのため、加熱する時間は30時間以上45時間以下が好ましく、30時間以上40時間以下がさらに好ましい。 As shown in Table 5, when comparing the invention examples and comparative examples (Nos. 2-1 and 2-2, 2-3 and 2-4, 2-5 and 2-6, 2-7 and 2-8, and 2-9 and 2-10) using the same R-T-B based sintered magnet material and diffusion source powder, the invention examples all achieved higher HcJ while suppressing the decrease in B r . Also, comparing the invention examples No. 2-9 (heating time: 38 hours) and No. 2-11 (heating time: 45 hours), they have the same magnetic property levels. For this reason, the heating time is preferably 30 hours or more and 45 hours or less, and more preferably 30 hours or more and 40 hours or less.

本開示により得られたR-T-B系焼結磁石は、ハードディスクドライブのボイスコイルモータ(VCM)や、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品等などに好適に利用することができる。 The R-T-B based sintered magnets obtained through this disclosure can be suitably used in a variety of motors, such as voice coil motors (VCMs) for hard disk drives, motors for electric vehicles (EVs, HVs, PHVs, etc.), motors for industrial equipment, home appliances, etc.

Claims (3)

軽希土類元素RL(RLはNd、PrおよびCeからなる群から選択された少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有
するR-T-B系焼結磁石素材(TはFe又はFeとCo)を用意する工程と、
Tb、Nd、Pr、およびCuを含む合金の粉末から形成した拡散源粉末を用意する工程と、
前記R-T-B系焼結磁石素材の表面の少なくとも一部に、前記拡散源粉末の少なくとも一部を接触させる工程と、
前記拡散源粉末が接触した状態のR-T-B系焼結磁石素材を、900℃超950℃以下の温度で30時間以上45時間以下加熱する熱処理をして、前記拡散源粉末に含まれる重希土類元素RHを前記R-T-B系焼結磁石素材の表面から内部に拡散する拡散工程と、
を含み、
前記拡散源粉末の少なくとも一部を接触させる工程は、
前記R-T-B系焼結磁石素材の表面に粘着剤を塗布する工程と、
前記粘着剤に前記拡散源粉末を接触させる工程と、
を含み、
前記熱処理の時間は、前記R-T-B系焼結磁石素材の温度が設定温度になった時を開始点として計測される、R-T-B系焼結磁石の製造方法。
A step of preparing an R-T-B based sintered magnet material (T is Fe or Fe and Co) having, as a main phase, crystal grains of an R2Fe14B type compound containing a light rare earth element RL (RL is at least one selected from the group consisting of Nd, Pr and Ce) as a main rare earth element R;
providing a diffusion source powder formed from a powder of an alloy including Tb, Nd, Pr, and Cu;
a step of contacting at least a part of the diffusion source powder with at least a part of the surface of the sintered R-T-B based magnet material;
a diffusion step in which the sintered R-T-B based magnet material in contact with the diffusion source powder is heat-treated at a temperature higher than 900°C and lower than 950°C for 30 hours to 45 hours, thereby diffusing the heavy rare earth element RH contained in the diffusion source powder from the surface to the inside of the sintered R-T-B based magnet material;
Including,
The step of contacting at least a portion of the diffusion source powder comprises:
applying an adhesive to a surface of the sintered R-T-B magnet material;
contacting the adhesive with the diffusion source powder;
Including,
In the method for producing a sintered RTB based magnet, the time for the heat treatment is measured from the point when the temperature of the sintered RTB based magnet material reaches a set temperature.
前記拡散工程において、前記拡散源粉末が接触した状態のR-T-B系焼結磁石素材を、前記R-T-B系焼結磁石素材の焼結温度以下の温度で35時間以上40時間以下加熱する熱処理をする、請求項1に記載のR-T-B系焼結磁石の製造方法。 The method for producing an R-T-B based sintered magnet according to claim 1, wherein in the diffusion step, the R-T-B based sintered magnet material in contact with the diffusion source powder is subjected to a heat treatment at a temperature equal to or lower than the sintering temperature of the R-T-B based sintered magnet material for 35 to 40 hours. 前記R-T-B系焼結磁石素材の厚さ方向の寸法は1mm以上5mm以下である、請求項1または2に記載のR-T-B系焼結磁石の製造方法。 The method for manufacturing an R-T-B based sintered magnet according to claim 1 or 2, wherein the dimension in the thickness direction of the R-T-B based sintered magnet material is 1 mm or more and 5 mm or less.
JP2019231381A 2018-12-25 2019-12-23 Manufacturing method of RTB based sintered magnet Active JP7528437B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018240701 2018-12-25
JP2018240701 2018-12-25

Publications (2)

Publication Number Publication Date
JP2020107888A JP2020107888A (en) 2020-07-09
JP7528437B2 true JP7528437B2 (en) 2024-08-06

Family

ID=71449480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019231381A Active JP7528437B2 (en) 2018-12-25 2019-12-23 Manufacturing method of RTB based sintered magnet

Country Status (1)

Country Link
JP (1) JP7528437B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117373767A (en) * 2022-06-30 2024-01-09 浙江东阳东磁稀土有限公司 Modified sintered NdFeB permanent magnet material and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114200A (en) 2008-11-05 2010-05-20 Daido Steel Co Ltd Method of manufacturing rare-earth magnet
JP2011082467A (en) 2009-10-10 2011-04-21 Toyota Central R&D Labs Inc Rare earth magnetic material and method for producing the same
JP2017073463A (en) 2015-10-07 2017-04-13 Tdk株式会社 R-T-B sintered magnet
US20170103835A1 (en) 2015-10-07 2017-04-13 Tdk Corporation R-t-b based sintered magnet
JP2018030187A (en) 2016-08-23 2018-03-01 株式会社サンシン Ball screw polishing method and device for the same
JP2018142641A (en) 2017-02-28 2018-09-13 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet
JP2019062152A (en) 2017-09-28 2019-04-18 日立金属株式会社 Diffusion source

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114200A (en) 2008-11-05 2010-05-20 Daido Steel Co Ltd Method of manufacturing rare-earth magnet
JP2011082467A (en) 2009-10-10 2011-04-21 Toyota Central R&D Labs Inc Rare earth magnetic material and method for producing the same
JP2017073463A (en) 2015-10-07 2017-04-13 Tdk株式会社 R-T-B sintered magnet
US20170103835A1 (en) 2015-10-07 2017-04-13 Tdk Corporation R-t-b based sintered magnet
JP2017073465A (en) 2015-10-07 2017-04-13 Tdk株式会社 R-T-B based sintered magnet
JP2018030187A (en) 2016-08-23 2018-03-01 株式会社サンシン Ball screw polishing method and device for the same
JP2018142641A (en) 2017-02-28 2018-09-13 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet
JP2019062152A (en) 2017-09-28 2019-04-18 日立金属株式会社 Diffusion source

Also Published As

Publication number Publication date
JP2020107888A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
JP7588618B2 (en) RTB series permanent magnet
JP6361813B2 (en) Method for producing RTB-based sintered magnet
JP6488976B2 (en) R-T-B sintered magnet
JP7251917B2 (en) RTB system permanent magnet
CN107077965A (en) The manufacture method of R T B based sintered magnets
JP6733398B2 (en) Method for manufacturing RTB-based sintered magnet
CN107492429A (en) A kind of high temperature resistant neodymium iron boron magnetic body and preparation method thereof
JP2019102708A (en) R-t-b based permanent magnet
JP2012079726A (en) Production method of alloy for r-t-b-m based sintered magnet and production method of r-t-b-m based sintered magnet
JP5643355B2 (en) Manufacturing method of NdFeB sintered magnet
JP2009224413A (en) MANUFACTURING METHOD OF NdFeB SINTERED MAGNET
WO2021200873A1 (en) R-t-b-based permanent magnet and method for producing same, motor, and automobile
JP2019169542A (en) Method for manufacturing r-t-b based sintered magnet
JP7424126B2 (en) RTB series permanent magnet
JP6939337B2 (en) Manufacturing method of RTB-based sintered magnet
JP2020155634A (en) R-t-b based permanent magnet
JP2018174314A (en) R-T-B sintered magnet
JP6946904B2 (en) Diffusion source
JP6946905B2 (en) Diffusion source
JP6939339B2 (en) Manufacturing method of RTB-based sintered magnet
JP7528437B2 (en) Manufacturing method of RTB based sintered magnet
CN111724955B (en) R-T-B permanent magnet
JP6623998B2 (en) Method for producing RTB based sintered magnet
CN111724961B (en) R-T-B permanent magnet
JP2022008212A (en) RTB system permanent magnets and motors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240708

R150 Certificate of patent or registration of utility model

Ref document number: 7528437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150