JP7631955B2 - Manufacturing method of RTB based sintered magnet - Google Patents
Manufacturing method of RTB based sintered magnet Download PDFInfo
- Publication number
- JP7631955B2 JP7631955B2 JP2021049198A JP2021049198A JP7631955B2 JP 7631955 B2 JP7631955 B2 JP 7631955B2 JP 2021049198 A JP2021049198 A JP 2021049198A JP 2021049198 A JP2021049198 A JP 2021049198A JP 7631955 B2 JP7631955 B2 JP 7631955B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- alloy
- sintered magnet
- based sintered
- magnet material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 229910045601 alloy Inorganic materials 0.000 claims description 41
- 239000000956 alloy Substances 0.000 claims description 41
- 239000000463 material Substances 0.000 claims description 38
- 229910001093 Zr alloy Inorganic materials 0.000 claims description 27
- 238000009792 diffusion process Methods 0.000 claims description 25
- 238000010438 heat treatment Methods 0.000 claims description 19
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 18
- 229910052802 copper Inorganic materials 0.000 claims description 14
- 229910052733 gallium Inorganic materials 0.000 claims description 13
- 229910052782 aluminium Inorganic materials 0.000 claims description 11
- 229910052779 Neodymium Inorganic materials 0.000 claims description 9
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 229910052684 Cerium Inorganic materials 0.000 claims description 6
- 239000012298 atmosphere Substances 0.000 claims description 5
- 239000011261 inert gas Substances 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000012071 phase Substances 0.000 description 27
- 239000002245 particle Substances 0.000 description 21
- 230000005291 magnetic effect Effects 0.000 description 19
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- 150000001875 compounds Chemical class 0.000 description 15
- 239000000843 powder Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 13
- 239000000853 adhesive Substances 0.000 description 11
- 230000001070 adhesive effect Effects 0.000 description 11
- 239000007791 liquid phase Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 230000005415 magnetization Effects 0.000 description 6
- 229910052692 Dysprosium Inorganic materials 0.000 description 5
- 229910052771 Terbium Inorganic materials 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000005245 sintering Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 238000000889 atomisation Methods 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000009690 centrifugal atomisation Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- -1 ethanol) Chemical compound 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Description
本発明はR-T-B系焼結磁石の製造方法に関する。 The present invention relates to a method for producing R-T-B based sintered magnets.
近年、希土類系焼結磁石は、高い需要を示しており、その中でも、R-T-B系焼結磁石(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、TはFe、Co、Al、Mn、およびSiからなる群から選択された少なくとも1つであり、必ずFeを含む。Bは硼素である)は、最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに使用されている。R-T-B系焼結磁石は、各種モータ等の小型、軽量化を通じて、省エネルギー、環境負荷低減に貢献している。 In recent years, there has been high demand for rare earth sintered magnets, and among them, R-T-B sintered magnets (R is a rare earth element and must contain at least one selected from the group consisting of Nd, Pr and Ce; T is at least one selected from the group consisting of Fe, Co, Al, Mn and Si and must contain Fe; B is boron) are known as the most high-performance magnets, and are used in a variety of motors and home appliances, including voice coil motors (VCMs) for hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), and motors for industrial equipment. R-T-B sintered magnets contribute to energy conservation and reduced environmental impact by making various motors smaller and lighter.
R-T-B系焼結磁石は、主としてR2T14B化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。主相であるR2T14B化合物は、高い飽和磁化と異方性磁界を持つ強磁性材料であり、R-T-B系焼結磁石の特性の根幹をなしている。 R-T-B based sintered magnets are composed of a main phase consisting mainly of R 2 T 14 B compounds and a grain boundary phase located at the grain boundaries of this main phase. The R 2 T 14 B compounds that make up the main phase are ferromagnetic materials with high saturation magnetization and anisotropic magnetic field, and form the basis of the properties of R-T-B based sintered magnets.
高温では、R-T-B系焼結磁石の保磁力HcJ(以下、単に「HcJ」という場合がある)が低下するため、不可逆熱減磁が起こる。そのため、特に電気自動車用モータに使用されるR-T-B系焼結磁石では、高いHcJを有することが要求されている。 At high temperatures, the coercive force H cJ (hereinafter sometimes simply referred to as "H cJ ") of an R-T-B based sintered magnet decreases, causing irreversible thermal demagnetization. For this reason, R-T-B based sintered magnets used in electric vehicle motors, in particular, are required to have a high H cJ .
R-T-B系焼結磁石において、R2T14B化合物中のRに含まれる軽希土類元素RL(例えば、NdやPr)の一部を重希土類元素RH(例えば、TbやDy)で置換すると、HcJが向上することが知られている。RHの置換量の増加に伴い、HcJは向上する。しかし、R2T14B化合物中のRLをRHで置換すると、R-T-B系焼結磁石のHcJが向上する一方、残留磁束密度Br(以下、単に「Br」という場合がある)が低下する。また重希土類元素は資源リスクの高い原料であることからその使用量を削減または使用せずにHcJを向上させることが求められている。 It is known that in an R-T-B based sintered magnet, when a part of the light rare earth element RL (e.g., Nd or Pr) contained in R in the R 2 T 14 B compound is replaced with a heavy rare earth element RH (e.g., Tb or Dy), the H cJ improves. As the amount of RH replaced increases, the H cJ improves. However, when RL in the R 2 T 14 B compound is replaced with RH, while the H cJ of the R-T-B based sintered magnet improves, the remanence B r (hereinafter sometimes simply referred to as "B r ") decreases. In addition, since heavy rare earth elements are raw materials with high resource risk, there is a demand to improve the H cJ by reducing the amount of their use or by not using them at all.
特許文献1には、R1i-M1j(R1はY及びScを含む希土類元素、M1はAl、Si、C、P、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ag、In、Sn、Sb、Hf、Ta、W、Pb、Biから選ばれる1種又は2種以上、15<j≦99、iは残部。) かつ金属間化合物相を70体積%以上含む合金の粉末をR-T-B系焼結磁石表面に存在させた状態で熱処理し拡散させることでHcJを向上させることが開示されている。特許文献2には、R-T-B系焼結磁石の表面に粘着剤を塗布し、Dy及びTbの少なくとも一方である重希土類元素の合金または化合物の粉末を付着させて熱処理することでHcJを向上させることが開示されている。 Patent Document 1 discloses that HcJ is improved by heat-treating and diffusing a powder of an alloy containing R1i-M1j (R1 is rare earth elements including Y and Sc, M1 is one or more selected from Al, Si, C, P, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ag, In, Sn, Sb, Hf, Ta, W, Pb, and Bi, 15<j≦99, i is the remainder) and 70% by volume or more of an intermetallic compound phase on the surface of an R-T-B based sintered magnet. Patent Document 2 discloses that HcJ is improved by applying an adhesive to the surface of an R-T- B based sintered magnet, adhering a powder of an alloy or compound of at least one of Dy and Tb, and heat-treating the magnet.
本発明者らは、特許文献1に記載されているようなR-M合金粉末をR-T-B系焼結磁石表面に存在させた状態で熱処理し拡散させる方法について検討したところ、熱処理後の焼結体表面に高さ0.1~0.5mmの凸部が複数個発生する場合があることがわかった。さらに調べたところ、凸部はR-M合金が溶解して生じた液相とR-T-B系焼結磁石から生じた液相が混ざった組成であり、前記液相の混合物が凝固して盛り上がった金属溜りであることがわかった。金属溜りがあると後工程において加工精度が低下するため、金属溜りを取り除く工程が増加し生産性が低下する問題が発生する。 The inventors of the present invention investigated a method of heat treating and diffusing R-M alloy powder on the surface of an R-T-B sintered magnet as described in Patent Document 1, and found that in some cases, multiple protrusions with a height of 0.1 to 0.5 mm were generated on the surface of the sintered body after heat treatment. Further investigation revealed that the protrusions are a mixture of a liquid phase formed by the melting of the R-M alloy and a liquid phase formed from the R-T-B sintered magnet, and that the mixture of liquid phases solidifies to form raised metal pools. The presence of metal pools reduces the machining accuracy in subsequent processes, which increases the number of processes for removing the metal pools, resulting in a problem of reduced productivity.
そこで、本開示の実施形態は、磁気特性の低下を抑制しつつ金属溜りの発生を抑えることが可能なR-T-B系焼結磁石の製造方法を提供する。 Therefore, an embodiment of the present disclosure provides a method for manufacturing an R-T-B based sintered magnet that can suppress the occurrence of metal pools while suppressing the deterioration of magnetic properties.
本開示のR-T-B系焼結磁石の製造方法は、例示的な実施形態において、R-T-B系焼結磁石素材(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、TはFe、Co、Al、Mn、およびSiからなる群から選択された少なくとも1つであり、必ずFeを含む)を準備する工程と、R-M-Zr系合金(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、MはAl、Cu、Zn、Ga、Fe、Co、Niからなる群から選択された少なくとも1つを必ず含む)を準備する工程と、前記R-T-B系焼結磁石素材の表面の少なくとも一部に、前記R-M-Zr系合金を付着させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する拡散工程と、を含み、前記R-M-Zr系合金における、Rの含有量は70mass%以上95mass%以下であり、Mの含有量は4.5mass%以上25mass%以下であり、Zrの含有量は0.5mass%以上5mass%以下である。
ある実施形態において、前記R-M-Zr系合金のMは、CuおよびGaの少なくとも1つを必ず含み、前記M中のCuおよびGaの合計含有割合は80%以上である。
In an exemplary embodiment, a method for producing a sintered R-T-B based magnet according to the present disclosure includes the steps of: preparing an R-T-B based sintered magnet material (R is a rare earth element and must include at least one selected from the group consisting of Nd, Pr, and Ce; T is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si; and must include Fe); and producing an R-M-Zr based alloy (R is a rare earth element and must include at least one selected from the group consisting of Nd, Pr, and Ce; M is Al, Cu, Zn, Ga, Fe, Co). , and Ni) and a diffusion step of attaching the R-M-Zr alloy to at least a portion of the surface of the R-T-B based sintered magnet material, and heating the R-M-Zr alloy at a temperature of 700° C. or more and 1100° C. or less in a vacuum or inert gas atmosphere, wherein the R content in the R-M-Zr alloy is 70 mass% or more and 95 mass% or less, the M content is 4.5 mass% or more and 25 mass% or less, and the Zr content is 0.5 mass% or more and 5 mass% or less.
In one embodiment, M of the RM-Zr alloy necessarily contains at least one of Cu and Ga, and the total content of Cu and Ga in M is 80% or more.
本開示の実施形態によると、磁気特性の低下を抑制しつつ金属溜りの発生を抑えることが可能なR-T-B系焼結磁石の製造方法を提供することができる。 According to an embodiment of the present disclosure, a method for manufacturing an R-T-B based sintered magnet can be provided that can suppress the occurrence of metal pools while suppressing the deterioration of magnetic properties.
まず、本開示によるR-T-B系焼結磁石の基本構造について説明をする。R-T-B系焼結磁石は、原料合金の粉末粒子が焼結によって結合した構造を有しており、主としてR2T14B化合物粒子からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。 First, the basic structure of the R-T-B based sintered magnet according to the present disclosure will be described. An R-T-B based sintered magnet has a structure in which powder particles of a raw material alloy are bonded by sintering, and is composed of a main phase consisting mainly of R 2 T 14 B compound particles, and a grain boundary phase located at the grain boundaries of this main phase.
図1Aは、R-T-B系焼結磁石の一部を拡大して模式的に示す断面図であり、図1Bは図1Aの破線矩形領域内を更に拡大して模式的に示す断面図である。図1Aには、一例として長さ5μmの矢印が大きさを示す基準の長さとして参考のために記載されている。図1Aおよび図1Bに示されるように、R-T-B系焼結磁石は、主としてR2T14B化合物からなる主相12と、主相12の粒界部分に位置する粒界相14とから構成されている。また、粒界相14は、図1Bに示されるように、2つのR2T14B化合物粒子(グレイン)が隣接する二粒子粒界相14aと、3つのR2T14B化合物粒子が隣接する粒界三重点14bとを含む。典型的な主相結晶粒径は磁石断面の円相当径の平均値で3μm以上10μm以下である。主相12であるR2T14B化合物は高い飽和磁化と異方性磁界を持つ強磁性材料である。したがって、R-T-B系焼結磁石では、主相12であるR2T14B化合物の存在比率を高めることによってBrを向上させることができる。R2T14B化合物の存在比率を高めるためには、原料合金中のR量、T量、B量を、R2T14B化合物の化学量論比(R量:T量:B量=2:14:1)に近づければよい。
FIG. 1A is a cross-sectional view showing an enlarged portion of an R-T-B based sintered magnet, and FIG. 1B is a cross-sectional view showing an enlarged portion of the dashed rectangular region in FIG. 1A. In FIG. 1A, an arrow of 5 μm in length is shown as an example for reference as a reference length showing the size. As shown in FIG. 1A and FIG. 1B, the R-T-B based sintered magnet is composed of a
また、主相であるR2T14B化合物のRの一部をDy、Tb、Hoなどの重希土類元素で置換することによって飽和磁化を下げつつ、主相の異方性磁界を高められることが知られている。特に二粒子粒界相と接する主相外殻は磁化反転の起点となりやすいため、主相外殻に優先的に重希土類元素を置換できる重希土類拡散技術は、飽和磁化の低下を抑制しつつ効率的に高いHcJが得られる。 It is also known that the anisotropic magnetic field of the main phase can be increased while decreasing the saturation magnetization by substituting a part of R in the R 2 T 14 B compound, which is the main phase, with a heavy rare earth element such as Dy, Tb, or Ho. In particular, since the outer shell of the main phase in contact with the two-particle grain boundary phase is likely to be the starting point of magnetization reversal, the heavy rare earth diffusion technique, which can preferentially substitute heavy rare earth elements in the outer shell of the main phase, can efficiently obtain a high HcJ while suppressing the decrease in saturation magnetization.
一方、二粒子粒界相14aの磁性を制御することによっても、高いHcJが得られることが知られている。具体的には二粒子粒界相中の磁性元素(Fe、Co、Ni等)の濃度を下げることによって、二粒子粒界相を非磁性に近づけることで、主相同士の磁気的な結合を弱めて磁化反転を抑制することができる。
On the other hand, it is known that a high HcJ can also be obtained by controlling the magnetism of the two-particle
本開示によるR-T-B系焼結磁石の製造方法では、R-T-B系焼結磁石素材表面から粒界を通じて磁石素材内部へ、R-M-Zr系合金に含有されるRとMを拡散させている。本発明者は検討の結果、RとMを拡散させる合金粉末にさらにZrを特定範囲含有させることで、金属溜まりの発生を抑えることができることを見出した。さらに、拡散後のR-T-B系焼結磁石内部にはZrはほとんど拡散されないことがわかった。これにより、磁気特性の低下を抑制しつつ金属溜まりの発生を抑えることができる。これは、拡散させる合金粉末として、Zrを特定範囲含有させることで、ZrをR-T-B系焼結磁石内部へほとんど拡散させずに、R-M-Zr系合金の融点を高くすることが出来るからだと考えられる。これにより磁気特性の低下を抑制しつつ、拡散時にR-M-Zr系合金から生じる液相量を減らすことで金属溜まりの発生を抑えることが可能となると考えられる。 In the manufacturing method of the R-T-B sintered magnet disclosed herein, R and M contained in the R-M-Zr alloy are diffused from the surface of the R-T-B sintered magnet material through the grain boundaries into the interior of the magnet material. As a result of research, the inventors have found that the occurrence of metal pools can be suppressed by further including Zr in a specific range in the alloy powder in which R and M are diffused. Furthermore, it was found that Zr is hardly diffused into the interior of the R-T-B sintered magnet after diffusion. This makes it possible to suppress the occurrence of metal pools while suppressing the deterioration of magnetic properties. This is believed to be because by including Zr in a specific range in the alloy powder to be diffused, it is possible to increase the melting point of the R-M-Zr alloy without diffusing Zr into the interior of the R-T-B sintered magnet. This is believed to make it possible to suppress the occurrence of metal pools by reducing the amount of liquid phase generated from the R-M-Zr alloy during diffusion while suppressing the deterioration of magnetic properties.
本開示によるR-T-B系焼結磁石の製造方法は、図2に示すように、R-T-B系焼結磁石素材を準備する工程S10とR-M-Zr系合金を準備する工程S20とを含む。R-T-B系焼結磁石素材を準備する工程S10とR-M-Zr系合金を準備する工程S20との順序は任意である。
本開示によるR-T-B系焼結磁石の製造方法は、図2に示すように、更に、R-T-B系焼結磁石素材表面の少なくとも一部にR-M-Zr系合金を付着させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する拡散工程S30を含む。
The method for producing a sintered R-T-B based magnet according to the present disclosure includes step S10 of preparing a sintered R-T-B based magnet material and step S20 of preparing an R-M-Zr based alloy, as shown in Fig. 2. The order of step S10 of preparing the sintered R-T-B based magnet material and step S20 of preparing the R-M-Zr based alloy may be arbitrary.
As shown in FIG. 2, the method for producing a sintered R-T-B based magnet according to the present disclosure further includes a diffusion step S30 in which an R-M-Zr based alloy is adhered to at least a portion of the surface of the sintered R-T-B based magnet material, and then heated at a temperature of 700° C. or higher and 1100° C. or lower in a vacuum or inert gas atmosphere.
なお、本開示において、拡散工程前および拡散工程中のR-T-B系焼結磁石を「R-T-B系焼結磁石素材」と称し、拡散工程後のR-T-B系焼結磁石を単に「R-T-B系焼結磁石」と称する。 In this disclosure, the R-T-B based sintered magnet before and during the diffusion process is referred to as the "R-T-B based sintered magnet material," and the R-T-B based sintered magnet after the diffusion process is simply referred to as the "R-T-B based sintered magnet."
(R-T-B系焼結磁石素材を準備する工程)
R-T-B系焼結磁石素材において、Rは希土類元素であり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、Rの含有量は、例えば、R-T-B系焼結磁石素材全体の27mass%以上35mass%以下である。TはFe、Co、Al、Mn、およびSiからなる群から選択された少なくとも1つであり、Tは必ずFeを含み、T全体に対するFeの含有量が80mass%以上である。
Rが27mass%未満では焼結過程で液相が十分に生成せず、焼結体を充分に緻密化することが困難になる可能性がある。一方、Rが35mass%を超えると焼結時に粒成長が起こり、HcJが低下する可能性がある。Rは28mass%以上33mass%以下であることが好ましい。
(Step of preparing R-T-B based sintered magnet material)
In the sintered R-T-B based magnet material, R is a rare earth element that necessarily contains at least one selected from the group consisting of Nd, Pr, and Ce, and the content of R is, for example, 27 mass% to 35 mass% of the entire sintered R-T-B based magnet material. T is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, T necessarily contains Fe, and the content of Fe relative to the entire T is 80 mass% or more.
If R is less than 27 mass%, the liquid phase is not sufficiently generated during the sintering process, and it may be difficult to sufficiently densify the sintered body. On the other hand, if R exceeds 35 mass%, grain growth occurs during sintering, and HcJ may decrease. R is preferably 28 mass% or more and 33 mass% or less.
R-T-B系焼結磁石素材は例えば、以下の組成範囲を有する。
R:27~35mass%、
B:0.80~1.20mass%、
Ga:0~1.0mass%、
X:0~2mass%(XはCu、Nb、Alの少なくとも一種)、
T:60mass%以上を含有する。
The RTB based sintered magnet material has, for example, the following composition range.
R: 27-35 mass%,
B: 0.80 to 1.20 mass%,
Ga: 0 to 1.0 mass%,
X: 0 to 2 mass% (X is at least one of Cu, Nb, and Al);
T: Contains 60 mass% or more.
好ましくは、R-T-B系焼結磁石素材において、Bに対するTのmol比[T]/[B]が14.0超15.0以下である。より高いHcJを得ることができる。本開示における[T]/[B]とは、Tを構成する各元素(Fe、Co、Al、MnおよびSiからなる群から選択された少なくとも1つであり、Tは必ずFeを含み、T全体に対するFeの含有量が80mass%以上)の分析値(mass%)をそれぞれの元素の原子量で除したものを求め、それらの値を合計したもの[T]と、Bの分析値(mass%)をBの原子量で除したもの[B]との比である。mol比[T]/[B]が14.0を超えるという条件は、主相(R2T14B化合物)形成に使われるT量に対して相対的にB量が少ないことを示している。mol比[T]/[B]は14.3以上15.0以下であることがさらに好ましい。さらに高いHcJを得ることができる。Bの含有量はR-T-B系焼結体全体の0.9mass%以上1.0mass%未満が好ましい。 Preferably, in the R-T-B based sintered magnet material, the molar ratio [T]/[B] of T to B is more than 14.0 and not more than 15.0. A higher H cJ can be obtained. In the present disclosure, [T]/[B] is the ratio of the analytical value (mass%) of each element constituting T (at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, T necessarily contains Fe, and the content of Fe in the whole of T is 80 mass% or more) divided by the atomic weight of each element, the total value being [T], to the analytical value (mass%) of B divided by the atomic weight of B, [B]. The condition that the molar ratio [T]/[B] exceeds 14.0 indicates that the amount of B is relatively small compared to the amount of T used to form the main phase (R 2 T 14 B compound). It is more preferable that the molar ratio [T]/[B] is 14.3 or more and 15.0 or less. It is possible to obtain a higher HcJ . The content of B is preferably 0.9 mass % or more and less than 1.0 mass % of the entire RTB based sintered body.
R-T-B系焼結磁石素材は、Nd-Fe-B系焼結磁石に代表される一般的なR-T-B系焼結磁石の製造方法を用いて準備することができる。一例を挙げると、ストリップキャスト法等で作製された原料合金を、ジェットミルなどを用いて粒径D50が2.0μm以上3.5μm以下に粉砕した後、磁界中で成形し、900℃以上1100℃以下の温度で焼結することにより焼結体を作製して準備することができる。粒径D50が2.0μm以上3.5μm以下に粉砕することにより、高いBrと高いHcJを得ることができる。好ましくは、粒径D50は、2.5μm以上3.3μm以下である。生産性の悪化を抑制した上で貴重なRHを削減しつつ、より高いBrと高いHcJを得ることができる。なお、粒径D50は、気流分散法によるレーザー回折法で得られる粒度分布において、小径側からの積算粒度分布(体積基準)が50%になる粒径である。また、粒径D50は、例えば、Sympatec社製の粒度分布計測装置「HELOS&RODOS」を用いて、分散圧:4bar、測定レンジ:R2、計測モード:HRLDの条件にて測定することができる。 The R-T-B sintered magnet material can be prepared by a general method for producing R-T-B sintered magnets, such as Nd-Fe-B sintered magnets. For example, a raw alloy produced by a strip casting method or the like is crushed to a particle size D 50 of 2.0 μm to 3.5 μm using a jet mill or the like, and then molded in a magnetic field and sintered at a temperature of 900° C. to 1100° C. to produce a sintered body. By crushing to a particle size D 50 of 2.0 μm to 3.5 μm, a high B r and a high H cJ can be obtained. Preferably, the particle size D 50 is 2.5 μm to 3.3 μm. Higher B r and high H cJ can be obtained while reducing valuable RH and suppressing deterioration of productivity. The particle size D 50 is the particle size at which the cumulative particle size distribution (volume basis) from the small diameter side becomes 50% in the particle size distribution obtained by the laser diffraction method using the airflow dispersion method. The particle size D50 can be measured, for example, using a particle size distribution measuring device "HELOS &RODOS" manufactured by Sympatec under the conditions of dispersion pressure: 4 bar, measurement range: R2, and measurement mode: HRLD.
(R-M-Zr系合金を準備する工程)
前記R-M-Zr系合金において、Rは希土類元素であり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含む。Rの含有量は、R-M-Zr系合金全体の70mass%以上95mass%以下である。Mは、Al、Cu、Zn、Ga、Fe、Co、Niからなる群から選択された少なくとも1つである。Mの含有量は、R-M-Zr系合金全体の4.5mass%以上25mass%以下である。Zrの含有量は、R-M-Zr系合金全体の0.5mass%以上5mass%以下である。R-M-Zr系合金の典型例は、TbNdPrCuZr合金、TbNdCePrCuZr合金、TbNdGaZr合金、TbNdPrGaCuZr合金などである。上記元素の他にMn、O、C、N等の不可避不純物等の元素を少量含有してもよい。
(Step of preparing RM-Zr based alloy)
In the R-M-Zr alloy, R is a rare earth element and necessarily contains at least one selected from the group consisting of Nd, Pr, and Ce. The content of R is 70 mass% or more and 95 mass% or less of the entire R-M-Zr alloy. M is at least one selected from the group consisting of Al, Cu, Zn, Ga, Fe, Co, and Ni. The content of M is 4.5 mass% or more and 25 mass% or less of the entire R-M-Zr alloy. The content of Zr is 0.5 mass% or more and 5 mass% or less of the entire R-M-Zr alloy. Typical examples of the R-M-Zr alloy include a TbNdPrCuZr alloy, a TbNdCePrCuZr alloy, a TbNdGaZr alloy, and a TbNdPrGaCuZr alloy. In addition to the above elements, small amounts of elements such as inevitable impurities, such as Mn, O, C, and N, may be contained.
Rが70mass%未満であると、HcJが低下する可能性があり、95mass%を超えるとR-M-Zr系合金の製造工程中における合金粉末が非常に活性になる。その結果、合金粉末の著しい酸化や発火などを生じる可能性がある。好ましくは、Rの含有量はR-M-Zr系合金全体の80mass%以上90mass%以下である。より高いHcJを得ることができる。
また、本開示のR-T-B系焼結磁石の製造方法は、重希土類元素(TbやDy等)の使用量を低減しつつ、高いBrと高いHcJを有するR-T-B系焼結磁石を得ることができる。そのため、好ましくは、重希土類元素の含有量は、R-M-Zr系合金全体の10mass%以上20mass%以下であり、さらに好ましくは、R-M-Zr系合金は、重希土類元素を含有しない。
If R is less than 70 mass%, HcJ may decrease, and if it exceeds 95 mass%, the alloy powder during the manufacturing process of the R-M-Zr alloy becomes very active. As a result, the alloy powder may be significantly oxidized or ignite. Preferably, the content of R is 80 mass% or more and 90 mass% or less of the entire R-M-Zr alloy. A higher HcJ can be obtained.
Furthermore, the method for producing a sintered R-T-B based magnet according to the present disclosure can obtain a sintered R-T-B based magnet having high B r and high H cJ while reducing the amount of heavy rare earth elements (Tb, Dy, etc.) used. Therefore, the content of the heavy rare earth elements is preferably 10 mass% or more and 20 mass% or less of the entire R-M-Zr based alloy, and more preferably the R-M-Zr based alloy does not contain any heavy rare earth elements.
Mが4.5mass%未満であるとRおよびMが二粒子粒界相に導入されにくくなり、HcJが十分に向上しない可能性があり、25mass%を超えるとRの含有量が低下してHcJが十分に向上しない可能性がある。好ましくは、Mの含有量は、R-M-Zr系合金全体の7mass%以上15mass%以下である。より高いHcJを得ることができる。また、MはCuおよびGaの少なくとも1つを含有した方が好ましく、CuおよびGaの両方を含有した方がさらに好ましい。前記M中のCuおよびGaの合計含有割合は80%以上が好ましい。CuおよびGaを含有することで、より高いHcJを得ることができる。 If M is less than 4.5 mass%, R and M are difficult to introduce into the two-particle grain boundary phase, and H cJ may not be sufficiently improved, and if it exceeds 25 mass%, the content of R decreases and H cJ may not be sufficiently improved. Preferably, the content of M is 7 mass% or more and 15 mass% or less of the entire R-M-Zr alloy. A higher H cJ can be obtained. Moreover, M preferably contains at least one of Cu and Ga, and more preferably contains both Cu and Ga. The total content ratio of Cu and Ga in M is preferably 80% or more. By containing Cu and Ga, a higher H cJ can be obtained.
Zrが0.5mass%未満であると、拡散後のR-T-B系焼結磁石における金属溜まりの発生を抑えることができない可能性があり、5mass%を超えると、HcJが低下する可能性がある。RとMを拡散させる合金粉末にZrを特定範囲含有させることで、磁気特性の低下を抑制しつつ金属溜りの発生を抑えることができる。好ましくは、Zrの含有量は、0.8mass%以上4mass%以下であり、さらに好ましくは、0.8mass%以上2mass%以下である。より磁気特性の低下を抑制しつつ金属溜まりの発生を抑えることができる。 If Zr is less than 0.5 mass%, it may not be possible to suppress the occurrence of metal pools in the R-T-B based sintered magnet after diffusion, and if it exceeds 5 mass%, HcJ may decrease. By including Zr in a specific range in the alloy powder in which R and M are diffused, it is possible to suppress the occurrence of metal pools while suppressing the deterioration of magnetic properties. Preferably, the content of Zr is 0.8 mass% or more and 4 mass% or less, and more preferably, 0.8 mass% or more and 2 mass% or less. It is possible to suppress the occurrence of metal pools while further suppressing the deterioration of magnetic properties.
R-M-Zr系合金の作製方法は、特に限定されない。ロール急冷法によって作製してもよいし、鋳造法で作製してもよい。また、これらの合金を粉砕して合金粉末にしてもよい。遠心アトマイズ法、回転電極法、ガスアトマイズ法、プラズマアトマイズ法などの公知のアトマイズ法で作製してもよい。 The method for producing the R-M-Zr alloy is not particularly limited. It may be produced by roll quenching or casting. These alloys may also be pulverized to produce alloy powder. It may also be produced by known atomization methods such as centrifugal atomization, rotating electrode method, gas atomization, and plasma atomization.
(拡散工程)
前述のように準備したR-T-B系焼結磁石素材の表面の少なくとも一部に、準備したR-M-Zr系合金系合金を付着させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する拡散工程を行う。これにより、R-M-Zr系合金からRおよびMを含む液相が生成し、その液相がR-T-B系焼結磁石素材中の粒界を経由して焼結素材表面から内部に拡散導入される。拡散工程におけるR-T-B系焼結磁石素材へのR-M-Zr系合金の付着量は1mass%以上5mass%以下が好ましく、さらに好ましくは、R-T-B系焼結磁石素材へのR-M-Zr系合金の付着量は1.5mass%以上3mass%以下である。より高いHcJを得ることができる。
(Diffusion process)
The R-M-Zr alloy prepared as described above is attached to at least a part of the surface of the R-T-B sintered magnet material, and a diffusion process is performed in which the alloy is heated in a vacuum or inert gas atmosphere at a temperature of 700°C to 1100°C. As a result, a liquid phase containing R and M is generated from the R-M-Zr alloy, and the liquid phase is diffused from the surface of the sintered magnet material to the inside via the grain boundaries in the R-T-B sintered magnet material. In the diffusion process, the amount of the R-M-Zr alloy attached to the R-T-B sintered magnet material is preferably 1 mass% to 5 mass%, and more preferably, the amount of the R-M-Zr alloy attached to the R-T-B sintered magnet material is 1.5 mass% to 3 mass%. A higher H cJ can be obtained.
拡散工程における加熱する温度が700℃未満であると、RおよびMを含む液相量が少なすぎて高いHcJを得ることができない可能性がある。一方、1100℃を超えるとHcJが大幅に低下する可能性がある。好ましくは、拡散工程における加熱する温度は800℃以上1000℃以下である。より高いHcJを得ることができる。また、好ましくは、拡散工程(700℃以上1100℃以下)が実施されたR-T-B系焼結磁石に対し、拡散工程を実施した温度から15℃/分以上の冷却速度で300℃まで冷却した方が好ましい。より高いHcJを得ることができる。 If the heating temperature in the diffusion step is less than 700°C, the amount of liquid phase containing R and M may be too small to obtain a high H cJ . On the other hand, if the heating temperature exceeds 1100°C, the H cJ may be significantly reduced. Preferably, the heating temperature in the diffusion step is 800°C or higher and 1000°C or lower. A higher H cJ can be obtained. Also, preferably, the R-T-B based sintered magnet that has been subjected to the diffusion step (700°C or higher and 1100°C or lower) is cooled from the temperature at which the diffusion step was performed to 300°C at a cooling rate of 15°C/min or higher. A higher H cJ can be obtained.
拡散工程は、R-T-B系焼結磁石素材表面に、任意形状のR-M-Zr系合金を配置し、公知の熱処理装置を用いて行うことができる。例えば、R-T-B系焼結磁石素材表面をR-M-Zr系合金の粉末層で覆い、拡散工程を行うことができる。例えば、塗布対象の表面に粘着剤を塗布する塗布工程と、粘着剤を塗布した領域にR-M-Zr系合金を付着させる工程を行ってもよい。粘着剤としては、PVA(ポリビニルアルコール)、PVB(ポリビニルブチラール)、PVP(ポリビニルピロリドン)などが挙げられる。粘着剤が水系の粘着剤の場合、塗布の前にR-T-B系焼結磁石素材を予備的に加熱してもよい。予備加熱の目的は余分な溶媒を除去し粘着力をコントロールすること、及び、均一に粘着剤を付着させることである。加熱温度は60~200℃が好ましい。揮発性の高い有機溶媒系の粘着剤の場合はこの工程は省略してもよい。また、例えばR-M-Zr系合金を分散媒中に分散させたスラリーをR-T-B系焼結磁石素材表面に塗布した後、分散媒を蒸発させR-M-Zr系合金とR-T-B系焼結磁石素材とを付着させてもよい。なお、分散媒として、アルコール(エタノール等)、アルデヒドおよびケトンを例示できる。 The diffusion process can be carried out by placing an R-M-Zr alloy of any shape on the surface of the R-T-B sintered magnet material and using a known heat treatment device. For example, the surface of the R-T-B sintered magnet material can be covered with a powder layer of the R-M-Zr alloy and then the diffusion process can be carried out. For example, a coating process of coating an adhesive on the surface to be coated and a process of attaching the R-M-Zr alloy to the area coated with the adhesive can be carried out. Examples of adhesives include PVA (polyvinyl alcohol), PVB (polyvinyl butyral), and PVP (polyvinylpyrrolidone). When the adhesive is a water-based adhesive, the R-T-B sintered magnet material can be preheated before coating. The purpose of the preheating is to remove excess solvent, control the adhesive strength, and to attach the adhesive uniformly. The heating temperature is preferably 60 to 200°C. In the case of a highly volatile organic solvent-based adhesive, this process may be omitted. Also, for example, a slurry in which the R-M-Zr alloy is dispersed in a dispersion medium may be applied to the surface of the R-T-B sintered magnet material, and the dispersion medium may then be evaporated to allow the R-M-Zr alloy and the R-T-B sintered magnet material to adhere to each other. Examples of the dispersion medium include alcohol (such as ethanol), aldehydes, and ketones.
(熱処理を実施する工程)
好ましくは、図2に示すように、拡散工程が実施されたR-T-B系焼結磁石に対して、真空又は不活性ガス雰囲気中、400℃以上750℃以下で、かつ、前記拡散工程で実施した温度よりも低い温度で熱処理S40を行う。熱処理を行うことにより、より高いHcJを得ることができる。
(Step of carrying out heat treatment)
2, the R-T-B based sintered magnet that has been subjected to the diffusion step is preferably subjected to a heat treatment S40 in a vacuum or inert gas atmosphere at a temperature of 400° C. to 750° C., both inclusive, and lower than the temperature used in the diffusion step. By performing the heat treatment, a higher HcJ can be obtained.
本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。 The present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
実験例1
[R-T―B系焼結磁石素材を準備する工程]
表1のNo.1に示すR-T-B系焼結磁石素材の組成になるように各元素を秤量し、ストリップキャスト法により原料合金を作製した。得られた各合金を水素粉砕法により粗粉砕し粗粉砕粉を得た。次に、前記粗粉砕粉をジェットミルにより微粉砕を行った。微粉砕により粒径D50:4.2μmの微粉末を得た。得られた微粉砕粉を磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。得られた成形体を、真空中で4時間焼結(焼結による緻密化が十分起こる温度を選定)した後、急冷しR-T-B系焼結磁石素材を得た。得られたR-T-B系焼結磁石素材の密度は7.5Mg/m3以上であった。
得られたR-T-B系焼結磁石素材の成分を求めるために、Nd、Pr、Dy、B、Co、Al、Cu、Ga、Tbの含有量を高周波誘導結合プラズマ発光分光分析法(ICP-OES)により測定した。分析した結果を表1に示す。
Experimental Example 1
[Preparing R-T-B based sintered magnet material]
Each element was weighed so as to obtain the composition of the R-T-B based sintered magnet material shown in No. 1 of Table 1, and a raw material alloy was prepared by strip casting. Each obtained alloy was coarsely pulverized by hydrogen pulverization to obtain coarsely pulverized powder. Next, the coarsely pulverized powder was finely pulverized by a jet mill. Fine powder with a particle size D 50 of 4.2 μm was obtained by fine pulverization. The obtained finely pulverized powder was molded in a magnetic field to obtain a compact. The molding device used was a so-called perpendicular magnetic field molding device (horizontal magnetic field molding device) in which the magnetic field application direction and the pressure direction are perpendicular to each other. The obtained compact was sintered in a vacuum for 4 hours (a temperature was selected at which densification by sintering would occur sufficiently), and then quenched to obtain a R-T-B based sintered magnet material. The density of the obtained R-T-B based sintered magnet material was 7.5 Mg/m 3 or more.
To determine the composition of the resulting sintered R-T-B magnet material, the contents of Nd, Pr, Dy, B, Co, Al, Cu, Ga, and Tb were measured by inductively coupled plasma optical emission spectroscopy (ICP-OES). The analysis results are shown in Table 1.
[R-M-Zr系合金を準備する工程]
表2のNo.1-A~1-Gに示す合金の組成になるように、各元素を秤量し、それらの原料を溶解して、単ロール超急冷法によりリボンまたはフレーク状の合金を得た。得られた合金(R-M-Zr系合金および比較例の合金)の組成を表2に示す。なお、表2における各成分は、高周波誘導結合プラズマ発光分光分析法を使用して測定した。
[Step of preparing RM-Zr based alloy]
Each element was weighed so as to obtain the alloy composition shown in No. 1-A to 1-G in Table 2, and the raw materials were melted and ribbon- or flake-shaped alloys were obtained by single-roll ultra-quenching. The compositions of the obtained alloys (RM-Zr alloys and comparative alloys) are shown in Table 2. The components in Table 2 were measured using high-frequency inductively coupled plasma atomic emission spectrometry.
[拡散工程]
表1のNo.1のR-T-B系焼結磁石素材を切断、切削加工し、45mm×52mm×4mmの直方体にした。加工後のR-T-B系磁石素材にディッピング法により粘着剤としてPVAをR-T-B系磁石素材の全面に塗布した。次に表3に示す条件で粘着剤を塗布したR-T-B系焼結磁石素材の全面に合金を付着させた。なお、合金付着量は、乳鉢を用いて合金をアルゴン雰囲気中で粉砕した後、目開き45~1000μmの数種類の篩を通過させ、粒度の異なる合金を用いることにより調整した。そして、真空熱処理炉を用いて、100Paに制御した減圧アルゴン雰囲気中で、表3示す条件で合金およびR-T-B系焼結磁石素材を加熱した後、冷却した。
[Diffusion process]
The R-T-B-based sintered magnet material No. 1 in Table 1 was cut and machined into a rectangular parallelepiped of 45 mm x 52 mm x 4 mm. PVA was applied as an adhesive to the entire surface of the processed R-T-B-based magnet material by dipping. Next, an alloy was attached to the entire surface of the R-T-B-based sintered magnet material coated with the adhesive under the conditions shown in Table 3. The amount of alloy attached was adjusted by crushing the alloy in an argon atmosphere using a mortar, passing it through several types of sieves with openings of 45 to 1000 μm, and using alloys with different particle sizes. Then, using a vacuum heat treatment furnace, the alloy and the R-T-B-based sintered magnet material were heated in a reduced pressure argon atmosphere controlled to 100 Pa under the conditions shown in Table 3, and then cooled.
[熱処理工程]
前記拡散工程で加熱したR-T-B系焼結磁石素材に対し、真空熱処理炉を用いて100Paに制御した減圧アルゴン中にて500℃の加熱する熱処理を行った。なお、拡散工程におけるR-M-Zr系合金およびR-T-B系焼結磁石素材の加熱温度、ならびに、拡散工程後の熱処理を実施する工程におけるR-T-B系焼結磁石の加熱温度は、それぞれ熱電対を用いて測定した。
[Heat treatment process]
The sintered R-T-B based magnet material heated in the diffusion step was subjected to a heat treatment at 500° C. in a vacuum heat treatment furnace in reduced pressure argon controlled at 100 Pa. The heating temperatures of the R-M-Zr based alloy and the sintered R-T-B based magnet material in the diffusion step, and the heating temperature of the sintered R-T-B based magnet in the step of carrying out the heat treatment after the diffusion step were each measured using a thermocouple.
[サンプル評価]
熱処理後の各サンプルに対し表面研削盤を用いて、全面を切削加工し、7.0mm×7.0mm×7.0mmの直方体形状のサンプル(R-T-B系焼結磁石)を得た。得られたサンプルを、B-Hトレーサによって残留磁束密度Brおよび保磁力HcJを測定した。結果を表3に示す。また、拡散工程後の各サンプルNoの外観を図3~図10に示す。図3はNo.1-1の外観を示す写真であり、図4はNo.1-2の外観を示す写真であり、図5はNo.1-3の外観を示す写真であり、図6はNo.1-4の外観を示す写真であり、図7はNo.1-5の外観を示す写真であり、図8はNo.1-6の外観を示す写真であり、図9はNo.1-7の外観を示す写真であり、図10はNo.1-8の外観を示す写真である。
No.1-1~1-8におけるR-T-B系焼結磁石表面上に発生した金属溜まりの個数を評価した。なお、金属溜まりは約0.5mm以上の凸部とした。比較例であるNo.1-1は金属溜まりが9個発生した。一方、本発明例であるNo.1-2~1-4はBrが1.450T以上かつHcJが2126kA/m以上の高い磁気特性が得られており、さらに金属溜まりは発生しなかった。また、比較例であるNo.1-5は高いBrおよび高いHcJが得られているが、金属溜まりが30個以上発生していた。また、比較例であるNo.1-6は金属溜まりは発生しなかったが、Brが低下した。また、比較例であるNo.1-7および1-8は高いBrおよび高いHcJが得られているが、金属溜まりがそれぞれ7個、2個発生した。
[Sample evaluation]
After the heat treatment, each sample was entirely machined using a surface grinder to obtain a rectangular parallelepiped sample (RTB-based sintered magnet) measuring 7.0 mm x 7.0 mm x 7.0 mm. The residual magnetic flux density B r and coercive force H cJ of the obtained samples were measured using a B-H tracer. The results are shown in Table 3. The appearance of each sample No. after the diffusion step is shown in Figs. 3 to 10. Fig. 3 is a photograph showing the appearance of No. 1-1, Fig. 4 is a photograph showing the appearance of No. 1-2, Fig. 5 is a photograph showing the appearance of No. 1-3, Fig. 6 is a photograph showing the appearance of No. 1-4, Fig. 7 is a photograph showing the appearance of No. 1-5, Fig. 8 is a photograph showing the appearance of No. 1-6, Fig. 9 is a photograph showing the appearance of No. 1-7, and Fig. 10 is a photograph showing the appearance of No. 1-8.
The number of metal puddles generated on the surface of the R-T-B based sintered magnet in Nos. 1-1 to 1-8 was evaluated. The metal puddles were convex portions of about 0.5 mm or more. No. 1-1, which is a comparative example, generated 9 metal puddles. On the other hand, Nos. 1-2 to 1-4, which are examples of the present invention, obtained high magnetic properties of B r of 1.450 T or more and H cJ of 2126 kA/m or more, and furthermore, no metal puddles were generated. Furthermore, No. 1-5, which is a comparative example, obtained high B r and high H cJ , but generated 30 or more metal puddles. Furthermore, No. 1-6, which is a comparative example, did not generate metal puddles, but Br decreased. Furthermore, Nos. 1-7 and 1-8, which are comparative examples, obtained high B r and high H cJ , but generated 7 and 2 metal puddles, respectively.
Claims (1)
R-M-Zr系合金(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、MはAl、Cu、Zn、Ga、Fe、Co、Niからなる群から選択された少なくとも1つであり、CuおよびGaの少なくとも1つを必ず含み、前記M中のCuおよびGaの合計含有割合は80%以上である)を準備する工程と、
前記R-T-B系焼結磁石素材の表面の少なくとも一部に、前記R-M-Zr系合金を付着させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する拡散工程と、を含み、
前記R-M-Zr系合金における、Rの含有量は70mass%以上95mass%以下であり、Mの含有量は4.5mass%以上25mass%以下であり、Zrの含有量は0.5mass%以上5mass%以下である、R-T-B系焼結磁石の製造方法。 preparing an R-T-B based sintered magnet material (R is a rare earth element and must contain at least one selected from the group consisting of Nd, Pr, and Ce, and T is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, and must contain Fe);
preparing an R-M-Zr alloy (R is a rare earth element, and must contain at least one selected from the group consisting of Nd, Pr, and Ce, M is at least one selected from the group consisting of Al, Cu, Zn, Ga, Fe, Co, and Ni, and must contain at least one of Cu and Ga , and the total content of Cu and Ga in M is 80% or more );
a diffusion step of adhering the R-M-Zr based alloy to at least a part of the surface of the R-T-B based sintered magnet material, and heating the resulting material at a temperature of 700° C. or higher and 1100° C. or lower in a vacuum or inert gas atmosphere;
The method for producing an R-T-B based sintered magnet, wherein the R content in the R-M-Zr based alloy is 70 mass% or more and 95 mass% or less, the M content is 4.5 mass% or more and 25 mass% or less, and the Zr content is 0.5 mass% or more and 5 mass% or less.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021049198A JP7631955B2 (en) | 2021-03-23 | Manufacturing method of RTB based sintered magnet | |
CN202210157064.7A CN115116724A (en) | 2021-03-23 | 2022-02-21 | Method for producing R-T-B sintered magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021049198A JP7631955B2 (en) | 2021-03-23 | Manufacturing method of RTB based sintered magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022147794A JP2022147794A (en) | 2022-10-06 |
JP7631955B2 true JP7631955B2 (en) | 2025-02-19 |
Family
ID=
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008235343A (en) | 2007-03-16 | 2008-10-02 | Shin Etsu Chem Co Ltd | Rare earth permanent magnet and manufacturing method |
JP2008263179A (en) | 2007-03-16 | 2008-10-30 | Shin Etsu Chem Co Ltd | Rare earth permanent magnet and method of manufacturing the same |
JP2011014668A (en) | 2009-07-01 | 2011-01-20 | Shin-Etsu Chemical Co Ltd | Method for preparing rare earth magnet, and rare earth magnet |
WO2011007758A1 (en) | 2009-07-15 | 2011-01-20 | 日立金属株式会社 | Process for production of r-t-b based sintered magnets and r-t-b based sintered magnets |
WO2012099186A1 (en) | 2011-01-19 | 2012-07-26 | 日立金属株式会社 | Method of producing r-t-b sintered magnet |
JP2012248828A (en) | 2011-05-02 | 2012-12-13 | Shin Etsu Chem Co Ltd | Rare earth permanent magnet and method for producing the same |
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008235343A (en) | 2007-03-16 | 2008-10-02 | Shin Etsu Chem Co Ltd | Rare earth permanent magnet and manufacturing method |
JP2008263179A (en) | 2007-03-16 | 2008-10-30 | Shin Etsu Chem Co Ltd | Rare earth permanent magnet and method of manufacturing the same |
JP2011014668A (en) | 2009-07-01 | 2011-01-20 | Shin-Etsu Chemical Co Ltd | Method for preparing rare earth magnet, and rare earth magnet |
WO2011007758A1 (en) | 2009-07-15 | 2011-01-20 | 日立金属株式会社 | Process for production of r-t-b based sintered magnets and r-t-b based sintered magnets |
WO2012099186A1 (en) | 2011-01-19 | 2012-07-26 | 日立金属株式会社 | Method of producing r-t-b sintered magnet |
JP2012248828A (en) | 2011-05-02 | 2012-12-13 | Shin Etsu Chem Co Ltd | Rare earth permanent magnet and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7588618B2 (en) | RTB series permanent magnet | |
JP6414654B1 (en) | Method for producing RTB-based sintered magnet | |
WO2018034264A1 (en) | R-t-b sintered magnet | |
JP6614084B2 (en) | Method for producing R-Fe-B sintered magnet | |
WO2016133071A1 (en) | Method for producing r-t-b system sintered magnet | |
WO2018143229A1 (en) | Method for producing r-t-b sintered magnet | |
JP2009302318A (en) | RL-RH-T-Mn-B-BASED SINTERED MAGNET | |
WO2018101239A1 (en) | R-fe-b sintered magnet and production method therefor | |
JP2018028123A (en) | Method for producing r-t-b sintered magnet | |
CN109585152B (en) | Method for producing R-T-B sintered magnet and diffusion source | |
JP6939337B2 (en) | Manufacturing method of RTB-based sintered magnet | |
JP7537536B2 (en) | RTB based sintered magnet | |
JP6939339B2 (en) | Manufacturing method of RTB-based sintered magnet | |
JP2018029108A (en) | Method of manufacturing r-t-b based sintered magnet | |
JP7059995B2 (en) | RTB-based sintered magnet | |
JP7310499B2 (en) | Method for producing RTB based sintered magnet | |
JP6508447B1 (en) | Method of manufacturing RTB based sintered magnet | |
JP7631955B2 (en) | Manufacturing method of RTB based sintered magnet | |
JP6610957B2 (en) | Method for producing RTB-based sintered magnet | |
JP7533424B2 (en) | Manufacturing method of rare earth sintered magnet | |
US11424056B2 (en) | Method for producing sintered R-T-B based magnet | |
CN115116725A (en) | Method for producing R-T-B sintered magnet and R-T-B sintered magnet | |
JP7582002B2 (en) | Manufacturing method of RTB based sintered magnet | |
JP2022151483A (en) | Manufacturing method of r-t-b system sintered magnet and r-t-b system sintered magnet | |
JP7452159B2 (en) | Manufacturing method of RTB based sintered magnet |