JP2019163434A - Solid molding of fluorine resin and metal oxide, and method for producing the solid - Google Patents
Solid molding of fluorine resin and metal oxide, and method for producing the solid Download PDFInfo
- Publication number
- JP2019163434A JP2019163434A JP2018053573A JP2018053573A JP2019163434A JP 2019163434 A JP2019163434 A JP 2019163434A JP 2018053573 A JP2018053573 A JP 2018053573A JP 2018053573 A JP2018053573 A JP 2018053573A JP 2019163434 A JP2019163434 A JP 2019163434A
- Authority
- JP
- Japan
- Prior art keywords
- fluororesin
- metal oxide
- fine particles
- mixed
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 102
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 62
- 239000007787 solid Substances 0.000 title claims abstract description 53
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 229920005989 resin Polymers 0.000 title claims abstract description 12
- 239000011347 resin Substances 0.000 title claims abstract description 12
- 238000000465 moulding Methods 0.000 title abstract description 14
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 title abstract description 9
- 239000011737 fluorine Substances 0.000 title abstract description 9
- 229910052731 fluorine Inorganic materials 0.000 title abstract description 9
- 239000010419 fine particle Substances 0.000 claims abstract description 96
- 239000002245 particle Substances 0.000 claims abstract description 39
- 238000002156 mixing Methods 0.000 claims abstract description 28
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 41
- 239000006185 dispersion Substances 0.000 claims description 40
- 239000007788 liquid Substances 0.000 claims description 35
- -1 hexafluoropropylene, chlorotrifluoroethylene Chemical group 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 14
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000004094 surface-active agent Substances 0.000 claims description 10
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 8
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims description 8
- 239000011812 mixed powder Substances 0.000 claims description 8
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 238000001694 spray drying Methods 0.000 claims description 7
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 6
- 229910001887 tin oxide Inorganic materials 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 4
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 claims description 3
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 3
- 229920001577 copolymer Polymers 0.000 claims description 3
- 238000007606 doctor blade method Methods 0.000 claims description 3
- 238000001125 extrusion Methods 0.000 claims description 3
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 239000000178 monomer Substances 0.000 claims description 3
- 229910000484 niobium oxide Inorganic materials 0.000 claims description 3
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 claims description 3
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 claims description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 3
- 239000008247 solid mixture Substances 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 44
- 238000000576 coating method Methods 0.000 description 19
- 239000011248 coating agent Substances 0.000 description 18
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 14
- 239000004810 polytetrafluoroethylene Substances 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 238000001035 drying Methods 0.000 description 9
- 239000000945 filler Substances 0.000 description 9
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 8
- 230000002776 aggregation Effects 0.000 description 8
- 238000004220 aggregation Methods 0.000 description 8
- 239000000839 emulsion Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000005507 spraying Methods 0.000 description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 238000001879 gelation Methods 0.000 description 5
- 239000011256 inorganic filler Substances 0.000 description 5
- 229910003475 inorganic filler Inorganic materials 0.000 description 5
- 239000011259 mixed solution Substances 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 229920000620 organic polymer Polymers 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 4
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 3
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 239000011164 primary particle Substances 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- 241000003832 Lantana Species 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- LJCFOYOSGPHIOO-UHFFFAOYSA-N antimony pentoxide Chemical compound O=[Sb](=O)O[Sb](=O)=O LJCFOYOSGPHIOO-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000012847 fine chemical Substances 0.000 description 2
- 238000009775 high-speed stirring Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000693 micelle Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 241000467686 Eschscholzia lobbii Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920006361 Polyflon Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000010981 drying operation Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000003678 scratch resistant effect Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Description
本発明はフッ素系樹脂微粒子と金属酸化物微粒子との混合で構成されるフィルムやロッド等、各種丸棒成形体固形物、および当該固形物、並びにその製造方法に関する。 The present invention relates to various round bar molded body solids such as films and rods composed of a mixture of fluororesin fine particles and metal oxide fine particles, the solids, and a method for producing the same.
フッ素樹脂は、ポリエチレンやポリプロピレンなど通常のプラスチックスや有機高分子に比べて、耐熱性・耐寒性に優れ、酸やアルカリをはじめとする種々の薬品に対する耐性、すなわち耐薬品性・耐蝕性が高い。
加えて、フッ素樹脂は、不燃性で電気絶縁性も高く誘電損失も少なく、非粘着・非濡れ性で水や油を弾き、しかも低摩擦性で適度な弾力性も備えている。
そのため、フッ素樹脂は、型材、容器、電線、温度計、各種センサー、ガスケット、パッキン、さらにはフライパン等の各種の材料や製品表面の被覆に盛んに用いられている。
フッ素樹脂の被覆は、通常、フッ素樹脂フィルムのライニングやフッ素樹脂微粒子の分散液のコーティングや含浸等により行われている(例えば、特許文献1参照)。
Fluorine resin is superior to ordinary plastics such as polyethylene and polypropylene and organic polymers, and has excellent heat resistance and cold resistance, and has high resistance to various chemicals including acids and alkalis, that is, high chemical resistance and corrosion resistance. .
In addition, fluororesin is nonflammable, has high electrical insulation and low dielectric loss, is non-adhesive and non-wetting, repels water and oil, and has low friction and moderate elasticity.
For this reason, fluororesins are actively used for various materials such as molds, containers, electric wires, thermometers, various sensors, gaskets, packings, and frying pans, and product surface coatings.
The coating of fluororesin is usually performed by lining a fluororesin film, coating or impregnating a dispersion of fluororesin fine particles (for example, see Patent Document 1).
上記の通り、フッ素樹脂は、その他の有機高分子に比べ、不燃で耐熱性に優れる。
しかしながら、フッ素樹脂の熱膨張係数は、その他の有機高分子樹脂の熱膨張係数に比べておおよそ一桁大きい。
また、フッ素樹脂は、その他の有機高分子と比べて柔らかい。
例えば、室温の熱膨張係数(x10−6/℃)は、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂、ポリアミド(PA)、ポリイミド(PI)、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリ塩化ビニル(PVC)およびエポキシ樹脂(EP)ではそれぞれ74、80、54、70、60、70および62である一方、フッ素樹脂は200〜790である。
このため、フッ素樹脂は、成形時の寸法が安定せず、多機能化や高機能化に有益なコーティングや修飾などの表面処理を施し難かった。
As described above, the fluororesin is nonflammable and excellent in heat resistance compared to other organic polymers.
However, the thermal expansion coefficient of fluororesin is approximately an order of magnitude larger than that of other organic polymer resins.
In addition, the fluororesin is softer than other organic polymers.
For example, the thermal expansion coefficient at room temperature (x10 −6 / ° C.) is acrylonitrile butadiene styrene (ABS) resin, polyamide (PA), polyimide (PI), polycarbonate (PC), polyethylene terephthalate (PET), polyvinyl chloride (PVC) and epoxy resin (EP) are 74, 80, 54, 70, 60, 70 and 62, respectively, while the fluororesin is 200-790.
For this reason, the dimensions of the fluororesin are not stable, and it is difficult to perform surface treatments such as coating and modification that are beneficial for multi-functionality and high functionality.
フッ素樹脂は極めて優れた絶縁材料でもあり、非常に帯電しやすい。
実際、帯電列では最もマイナスに帯電しやすい物質として位置付けられている。
帯電は可燃性ガス・溶剤の引火爆発やフッ素樹脂製品自体の絶縁破壊の原因ともなるため、フッ素樹脂の帯電防止・静電気除去対策は極めて重要であった。
Fluororesin is also an extremely excellent insulating material and is very easily charged.
In fact, it is positioned as a substance that is most likely to be negatively charged in the charge train.
Since electrification can cause flammable explosions of flammable gases and solvents and dielectric breakdown of fluororesin products themselves, antistatic and antistatic measures for fluororesins were extremely important.
帯電は、通常、フッ素樹脂やその製品にアースを付けたり、フッ素樹脂に導電物質を混ぜることにより除去しているが、このような方法が困難な場合も多い。
例えば、表面のコーティングや修飾は、多機能化・高性能化のために頻繁にあるいは必須に行われる操作・工程である。しかしながら、極めて容易に、しかも強く帯電するフッ素樹脂では、その帯電故に、塗布液が弾かれ、コーティング不能であることが多い。
この際に、アースを利用した場合、作業性が悪くなってしまう。
また、フッ素樹脂に、現行の導電性物質、すなわちカーボンブラック(CB)、カーボン繊維(CF)、カーボンナノチューブ(CNT)や金属微粉を混合した場合、それらの混合により生じた表面ではその後のコーティングや修飾に適合しない場合がある。
The charging is usually removed by attaching a ground to the fluororesin or its product, or mixing a conductive material with the fluororesin, but such a method is often difficult.
For example, surface coating and modification are operations / processes that are frequently or indispensably performed to achieve multiple functions and high performance. However, in the case of a fluororesin that is extremely easily and strongly charged, the coating liquid is repelled due to the charging, and coating is often impossible.
At this time, when grounding is used, workability is deteriorated.
In addition, when the current conductive material, that is, carbon black (CB), carbon fiber (CF), carbon nanotube (CNT), or metal fine powder is mixed with fluororesin, the coating formed on the surface resulting from the mixing or subsequent coating It may not fit the modification.
さらに、フッ素樹脂の非濡れ性と非粘着性は、汚れ難いという大きな利点を有するものの、表面コーティングや修飾に対しては、塗布液が塗れ難くなるため大きな障害となる。 Furthermore, although the non-wetting property and non-adhesiveness of the fluororesin have a great advantage that they are difficult to get dirty, the coating solution is difficult to be applied to surface coating and modification, which is a major obstacle.
フッ素樹脂において、耐摩耗性、耐圧縮特性、耐コールドフロー特性、摺動特性、導電性などの改良・向上のために、無機フィラーがフッ素樹脂に添加される。
無機フィラーとしてはガラス繊維、カーボン繊維、グラファイト、カーボン、CNT、二硫化モリブデン、シリカなどを用いる。
しかしながら、これらの無機フィラーは、濡れ性、粘着性、帯電性の調整や改良など、フッ素樹脂の多機能化・高機能化のための表面特性の改質を意図したものではない。
そのため、無機フィラー(添加剤)の添加は、表面特性の改質に合致するものとは言い難かった。
In the fluororesin, an inorganic filler is added to the fluororesin in order to improve / improve wear resistance, compression resistance, cold flow resistance, sliding characteristics, conductivity, and the like.
As the inorganic filler, glass fiber, carbon fiber, graphite, carbon, CNT, molybdenum disulfide, silica, or the like is used.
However, these inorganic fillers are not intended to modify the surface properties for multifunctional / high functionality of the fluororesin, such as adjustment and improvement of wettability, adhesiveness, and chargeability.
For this reason, it has been difficult to say that the addition of the inorganic filler (additive) matches the modification of the surface characteristics.
従来の無機フィラー含有フッ素樹脂固形物は、通常、フィラー成分を予め添加・混合しておいたフッ素樹脂微粒子の水性分散液の蒸発乾固や、フッ素樹脂粉体とフィラー粉体との混錬、およびその後必要に応じて成形処理することにより得られる。
混合度合い、すなわち相互の粒子の混合分散性は、一般には、粉体同士の混錬に比べ混合分散液の蒸発乾固による方が高くなることが期待される。
実際に高い混合度合いを得るためには、混合液中でフッ素樹脂微粒子とフィラー成分とが均一に分散し、混ざり合っていることが必須となる。
しかしながら、フッ素樹脂微粒子水性分散液へのフィラーの添加・混合により、均一混合分散液となるフィラーの種類は非常に数少ない。
Conventional inorganic filler-containing fluororesin solids are usually evaporated to dryness of an aqueous dispersion of fluororesin fine particles to which filler components have been added and mixed in advance, or kneading of fluororesin powder and filler powder. And after that, it is obtained by subjecting it to a molding treatment if necessary.
In general, it is expected that the degree of mixing, that is, the mixing and dispersibility of each particle, is higher when the mixed dispersion is evaporated to dryness than when the powders are kneaded.
In order to actually obtain a high degree of mixing, it is essential that the fluororesin fine particles and the filler component are uniformly dispersed and mixed in the mixed solution.
However, there are very few types of fillers that become a homogeneous mixed dispersion by adding and mixing the filler to the fluororesin fine particle aqueous dispersion.
特許文献2〜4では、フッ素樹脂エマルジョンとの混合で均一分散するフィラーとして、無機微粒子のコロイダルゾル液、具体的にはシリカ、酸化チタン、ゼオライト、酸化アルミニウム(アルミナ)、酸化亜鉛、五酸化アンチモン、炭化ケイ素、窒化ケイ素、窒化アルミニウム、酸化鉛、酸化スズ、酸化マグネシウムなどが記載されており、多くの種類のフィラーがフッ素樹脂エマルジョンとの均一混合分散液の調製に適合するとしている。
しかしながら、特許文献2〜4における実施例では、均一混合分散液の調製は全てシリカに限定されており、シリカ以外の無機微粒子のコロイダル溶液については、実施例が全く記載されていない。
In Patent Documents 2 to 4, colloidal sol solution of inorganic fine particles, specifically silica, titanium oxide, zeolite, aluminum oxide (alumina), zinc oxide, antimony pentoxide, as a filler that is uniformly dispersed by mixing with a fluororesin emulsion. Silicon carbide, silicon nitride, aluminum nitride, lead oxide, tin oxide, magnesium oxide, etc. are described, and many types of fillers are said to be suitable for the preparation of a homogeneous mixed dispersion with a fluororesin emulsion.
However, in the examples in Patent Documents 2 to 4, the preparation of the uniform mixed dispersion is all limited to silica, and no examples are described for colloidal solutions of inorganic fine particles other than silica.
また、フッ素樹脂エマルジョンとの混合により均一分散するフィラーのほとんどは、粘性安定に優れるシリカゾルやオルガノシリケート溶液であり、ごく一部にアルミナゾルが知られている(特許文献1〜6)。
しかも、これらの添加は最終的に得られるフッ素樹脂固形物の機械的強度、耐熱性、寸法安定性、圧縮クリープ特性および溶融成形性の改善を狙ったもので、表面特性の改質・調整を意図したものではない。
Moreover, most of the fillers that are uniformly dispersed by mixing with the fluororesin emulsion are silica sols and organosilicate solutions that are excellent in viscosity stability, and alumina sols are known to some extent (Patent Documents 1 to 6).
In addition, these additions are aimed at improving the mechanical strength, heat resistance, dimensional stability, compression creep properties and melt moldability of the fluororesin solids finally obtained. Not intended.
加えて、フッ素樹脂エマルジョンと金属酸化物を混合したフッ素樹脂−金属酸化物混合溶液は、混合した直後は金属酸化物が均一に分散しても、しばらく放置しておくと液液分離や固液分離を起こすという欠点があった。
それ故、フッ素樹脂の表面特性の改質や調整を意図したフィラー含有フッ素樹脂粉体やフィルム等の固形物はもとより混合分散液も入手困難であった。
In addition, a fluororesin-metal oxide mixed solution in which a fluororesin emulsion and a metal oxide are mixed may be liquid-liquid separation or solid-liquid if the metal oxide is evenly dispersed immediately after mixing but left for a while. There was a disadvantage of causing separation.
Therefore, it is difficult to obtain mixed dispersions as well as solid materials such as filler-containing fluororesin powders and films intended to modify and adjust the surface properties of the fluororesin.
本発明は、上記課題を解決すべくなされたものであって、フッ素樹脂微粒子と金属酸化物が均一に分散した固形物及びその製造方法を提供するものである。 The present invention has been made to solve the above problems, and provides a solid material in which fluororesin fine particles and a metal oxide are uniformly dispersed, and a method for producing the same.
上記課題を解決するため、本発明者らは、フッ素樹脂の微粒子水性分散液やエマルジョンと金属酸化物コロイダルゾルの組み合わせについて広範に探索を行うと共に、それらの配合・調合方法について試行錯誤を繰り返し、鋭意研究を重ねた。
本発明者らは、混合撹拌して均一状態にした液を素早く乾燥させることで粒子径100〜500nmのフッ素樹脂微粒子と粒子径5〜200nmの一種以上の金属酸化物微粒子とが、均一に混合分散し、且つフィルム、コーティング膜、バルク等固形物表面の濡れ性、粘着性および帯電性が調整・改良されたフッ素樹脂−金属酸化物混合固形物およびその製造方法を発見した。
In order to solve the above-mentioned problems, the present inventors have extensively searched for a combination of a fluororesin fine particle aqueous dispersion or emulsion and a metal oxide colloidal sol, and repeated trial and error for their blending / preparation method, Researched earnestly.
The inventors of the present invention uniformly mixed a fluororesin fine particle having a particle size of 100 to 500 nm and one or more metal oxide fine particles having a particle size of 5 to 200 nm by quickly drying the liquid that has been mixed and stirred to a uniform state. The present inventors have discovered a fluororesin-metal oxide mixed solid that has been dispersed and whose wettability, adhesion, and chargeability on the surface of a solid such as a film, coating film, and bulk are adjusted and improved, and a method for producing the same.
請求項1に係る発明は、粒子径100〜500nmのフッ素樹脂微粒子と粒子径5〜200nmの一種以上の金属酸化物微粒子とが、均一に混合分散されたフッ素樹脂−金属酸化物混合固形物に関する。 The invention according to claim 1 relates to a fluororesin-metal oxide mixed solid in which fluororesin fine particles having a particle size of 100 to 500 nm and one or more metal oxide fine particles having a particle size of 5 to 200 nm are uniformly mixed and dispersed. .
請求項2に係る発明は、前記フッ素樹脂微粒子がテトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、パーフルオロ(アルキルビニルエーテル)、ビニリデンフルオライト及びビニルフルオライドから選ばれるモノマーの重合体又は共重合体からなる樹脂微粒子で、その分子量が1×104〜1×107である請求項1に記載のフッ素樹脂−金属酸化物混合固形物に関する。 The invention according to claim 2 is a polymer or copolymer of monomers in which the fluororesin fine particles are selected from tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, perfluoro (alkyl vinyl ether), vinylidene fluoride and vinyl fluoride. 2. The fluororesin-metal oxide mixed solid according to claim 1, which is a resin fine particle composed of a coalescence and has a molecular weight of 1 × 10 4 to 1 × 10 7 .
請求項3に係る発明は、前記金属酸化物がアルミナ、酸化チタン、酸化ジルコニウム、酸化ランタン、酸化ネオジウム、酸化セリウム、酸化鉄、酸化スズ及び酸化ニオブのうちから選択される1種以上の金属酸化物である請求項1または2に記載のフッ素樹脂−金属酸化物混合固形物に関する。 The invention according to claim 3 is characterized in that the metal oxide is one or more metal oxides selected from alumina, titanium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, cerium oxide, iron oxide, tin oxide and niobium oxide. The fluororesin-metal oxide mixed solid according to claim 1 or 2, which is a product.
請求項4に係る発明は、前記フッ素樹脂−金属酸化物混合固形物中のフッ素樹脂含有量が重量比で、金属酸化物含有量の3〜100倍である請求項1乃至3のいずれか1項に記載のフッ素樹脂−金属酸化物混合固形物に関する。 In the invention according to claim 4, the fluororesin content in the fluororesin-metal oxide mixed solid is 3 to 100 times the metal oxide content in weight ratio. The fluororesin-metal oxide mixed solid described in the item.
請求項5に係る発明は、フッ素樹脂微粒子の水性分散液と金属酸化物微粒子ゾルとを常圧下、温度5〜300℃で、液中の金属酸化物微粒子の含有量に対して重量比でフッ素樹脂微粒子を3〜100倍及び水を10〜120倍で、さらに界面活性剤を入れあるいは界面活性剤を入れずに混合し均一混合分散液を得る工程と、
前記均一混合分散液を噴霧乾燥して均一混合粉体を製造する工程と、を含むことを特徴とする請求項1乃至4のいずれか1項に記載のフッ素樹脂−金属酸化物混合固形物の製造方法に関する。
According to a fifth aspect of the invention, an aqueous dispersion of fluororesin fine particles and a metal oxide fine particle sol are fluorine at a weight ratio with respect to the content of metal oxide fine particles in the liquid at a temperature of 5 to 300 ° C. under normal pressure. A step of obtaining a uniform mixed dispersion by mixing resin fine particles 3 to 100 times and water 10 to 120 times and further adding a surfactant or without adding a surfactant;
A step of producing a uniform mixed powder by spray-drying the uniform mixed dispersion liquid, wherein the fluororesin-metal oxide mixed solid according to any one of claims 1 to 4 is used. It relates to a manufacturing method.
請求項6に係る発明は、均一混合粉体からフッ素樹脂−金属酸化物混合固形物を製造する方法は、ドクターブレード法、加圧、加圧・加熱、溶融、およびこれらと押し出しまたは延伸操作との組み合わせからなる群から選択される処理工程を含むことを特徴とする請求項5に記載のフッ素樹脂−金属酸化物混合固形物の製造方法に関する。 In the invention according to claim 6, the method for producing the fluororesin-metal oxide mixed solid from the homogeneously mixed powder includes a doctor blade method, pressurization, pressurization / heating, melting, and an extrusion or stretching operation thereof. The process for manufacturing a fluororesin-metal oxide mixed solid according to claim 5, comprising a treatment step selected from the group consisting of:
本発明のフッ素樹脂−金属酸化物混合固形物は、フッ素樹脂および金属酸化物の微粒子が相互に均一に混合分散している。
すなわち、それら本来の大きさや元の大きさに近い大きさで、換言すればナノ粒子がそのサイズレベルで均一に分散し混ざり合っている。
したがって、熱および/または加圧によって、フィルムや好みの形状のバルク体に容易に成形できる。
また、本発明の混合固形物の製造方法は、フッ素樹脂微粒子の水性分散液と金属酸化物微粒子ゾルとを常圧下、温度5〜300℃で、液中の金属酸化物微粒子の含有量に対して重量比でフッ素樹脂微粒子を3〜100倍及び水を10〜120倍で混合し、噴霧乾燥させて製造されることから、簡便で省エネルギーかつ非常に安全であり経済的にも極めて優れている。
加えて、本発明のフッ素樹脂−金属酸化物混合固形物は、フッ素樹脂からなる固形物と比較して、熱膨張率が低く、優れた寸法安定性を備えている。
In the fluororesin-metal oxide mixed solid of the present invention, fluororesin and metal oxide fine particles are uniformly mixed and dispersed with each other.
In other words, the original size and the size close to the original size, in other words, the nanoparticles are uniformly dispersed and mixed at the size level.
Therefore, it can be easily formed into a film or a bulk body of a desired shape by heat and / or pressure.
Further, the method for producing a mixed solid of the present invention is based on the content of the metal oxide fine particles in the liquid at a temperature of 5 to 300 ° C. under normal pressure with an aqueous dispersion of fluororesin fine particles and a metal oxide fine particle sol. Because it is manufactured by mixing fluororesin fine particles 3 to 100 times and water 10 to 120 times by weight ratio and spray drying, it is simple, energy-saving, extremely safe and extremely economical. .
In addition, the fluororesin-metal oxide mixed solid of the present invention has a low coefficient of thermal expansion and excellent dimensional stability as compared with a solid made of fluororesin.
<フッ素樹脂−金属酸化物混合固形物の構成>
本発明のフッ素樹脂−金属酸化物混合固形物は、基本的には、フッ素樹脂微粒子分散液(エマルジョン)と金属酸化物微粒子分散液(ゾル)とを混合し、噴霧乾燥することで得られるもので、フッ素樹脂微粒子と金属酸化物微粒子がそれらの粒子サイズレベルで均一に分散し混ざり合ったものである。
また、本発明のフッ素樹脂−金属酸化物混合固形物は、フッ素樹脂微粒子(粉体)と金属酸化物微粒子(粉体)、フッ素樹脂微粒子(粉体)と金属酸化物微粒子分散液(ゾル)、あるいはフッ素樹脂微粒子分散液(エマルジョン)と金属酸化物微粒子(粉体)を混合して製造しても良い。
<Configuration of fluororesin-metal oxide mixed solid>
The fluororesin-metal oxide mixed solid of the present invention is basically obtained by mixing a fluororesin fine particle dispersion (emulsion) and a metal oxide fine particle dispersion (sol) and spray drying. Thus, the fluororesin fine particles and the metal oxide fine particles are uniformly dispersed and mixed at the particle size level.
In addition, the fluororesin-metal oxide mixed solid of the present invention includes fluororesin fine particles (powder) and metal oxide fine particles (powder), fluororesin fine particles (powder) and metal oxide fine particle dispersion (sol). Alternatively, a fluororesin fine particle dispersion (emulsion) and metal oxide fine particles (powder) may be mixed to produce.
本発明におけるフッ素樹脂微粒子とは、テトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、パーフルオロ(アルキルビニルエーテル)、ビニリデンフルオライド及びビニルフルオライドから選ばれるモノマーの重合体または共重合体からなる樹脂微粒子であり、これらのうちで水に分散するものが、本発明のフッ素樹脂−金属酸化物混合固形物の調製に用いられる。 The fluororesin fine particle in the present invention is a resin composed of a polymer or copolymer of a monomer selected from tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, perfluoro (alkyl vinyl ether), vinylidene fluoride and vinyl fluoride. Fine particles which are dispersed in water are used for preparing the fluororesin-metal oxide mixed solid of the present invention.
本発明における金属酸化物微粒子とは酸化チタン(チタニア)、酸化ジルコニウム(ジルコニア)、酸化ランタン(ランタナ)、酸化ネオジウム、酸化セリウム(セリア)、酸化イットリウム(イットリア)、酸化スズ、酸化鉄、酸化ニオブ、及び酸化アルミニウム(アルミナ)を意味し、これら微粒子の水性コロイダルゾルあるいは粉体が本発明のフッ素樹脂−金属酸化物混合固形物を得るために用いられる。 The metal oxide fine particles in the present invention are titanium oxide (titania), zirconium oxide (zirconia), lanthanum oxide (lanthana), neodymium oxide, cerium oxide (ceria), yttrium oxide (yttria), tin oxide, iron oxide, niobium oxide. , And aluminum oxide (alumina), and an aqueous colloidal sol or powder of these fine particles is used to obtain the fluororesin-metal oxide mixed solid of the present invention.
フッ素樹脂と金属酸化物との混合度合いを高めるには、フッ素樹脂微粒子及び金属酸化物微粒子はそれら粒子の分子量が小さく、またサイズも小さい方が良い。より具体的には、フッ素樹脂微粒子は、分子量が1×104〜1×107で粒子サイズが100〜500nmの範囲にあることが好ましく、金属酸化物の微粒子は、そのサイズが2〜150nmの範囲にあることが好ましく、2〜50nmの範囲にあることがさらに好ましい。
フッ素樹脂微粒子の分子量は1×104〜1×107が好ましく、2×104〜1×107がさらに好ましい。
上記範囲より粒子サイズが小さい場合は、塗膜が脆くなる傾向があり、上記範囲より粒子サイズが大きい場合は、溶融粘度が高すぎてフッ素樹脂微粒子の粒子同士が融着しにくくなる傾向がある。
In order to increase the degree of mixing of the fluororesin and the metal oxide, it is preferable that the fluororesin fine particles and the metal oxide fine particles have a small molecular weight and a small size. More specifically, the fluororesin fine particles preferably have a molecular weight of 1 × 10 4 to 1 × 10 7 and a particle size in the range of 100 to 500 nm, and the metal oxide fine particles have a size of 2 to 150 nm. Is preferably in the range of 2 to 50 nm.
The molecular weight of the fluororesin fine particles is preferably 1 × 10 4 to 1 × 10 7, more preferably 2 × 10 4 to 1 × 10 7 .
When the particle size is smaller than the above range, the coating film tends to be brittle, and when the particle size is larger than the above range, the melt viscosity is too high and the particles of the fluororesin fine particles tend to be difficult to fuse. .
フッ素樹脂−金属酸化物混合固形物中のフッ素樹脂の含有量は、混合粉体の用途に応じて適宜決められるが、フッ素樹脂の含有量が少なくなりすぎると可撓性や柔軟性がなくなり、一方、多すぎると表面に濡れ性や粘着性が発現しないうえに、帯電し易くかつその量も多くなる。
それゆえに、フッ素樹脂−金属酸化物混合固形物中のフッ素樹脂の含有量は、重量比で金属酸化物の含有量の1〜500倍であることが好ましく、3〜100倍であることがさらに好ましい。
この際に、混入する金属酸化物の種類については、一種類であってもよく、また二種類以上であっても良く、目的に応じ適宜選定することができる。
The fluororesin content in the fluororesin-metal oxide mixed solid is appropriately determined according to the use of the mixed powder, but if the fluororesin content is too low, flexibility and flexibility are lost. On the other hand, when the amount is too large, wettability and adhesiveness are not exhibited on the surface, and the surface is easily charged and the amount thereof is increased.
Therefore, the content of the fluororesin in the fluororesin-metal oxide mixed solid is preferably 1 to 500 times, more preferably 3 to 100 times the content of the metal oxide by weight ratio. preferable.
At this time, the type of metal oxide to be mixed may be one type or two or more types, and can be appropriately selected according to the purpose.
<フッ素樹脂−金属酸化物混合固形物の製造方法>
本発明のフッ素樹脂−金属酸化物混合固形物は、フッ素樹脂微粒子の水性分散液と金属酸化物微粒子ゾルとを混合し、噴霧・乾燥する、あるいは単に乾燥させることで製造する。
フッ素樹脂微粒子の水性分散液と金属酸化物微粒子ゾルの混合液の構成は、金属微粒子の含有量に対して重量比で、フッ素樹脂微粒子が1〜500倍、好ましくは3〜100倍、水が5〜200倍、好ましくは10〜120倍の範囲になるようにすることが望ましい。
フッ素樹脂微粒子の水性分散液は、フッ素樹脂パウダーを水に溶かしたものでもよく、市販の水性分散液でも良い。
<Method for producing fluororesin-metal oxide mixed solid>
The fluororesin-metal oxide mixed solid of the present invention is produced by mixing an aqueous dispersion of fluororesin fine particles and a metal oxide fine particle sol, and spraying and drying, or simply drying.
The composition of the mixture of the aqueous dispersion of fluororesin fine particles and the metal oxide fine particle sol is 1 to 500 times, preferably 3 to 100 times, preferably 3 to 100 times greater than the content of metal fine particles. It is desirable to be in the range of 5 to 200 times, preferably 10 to 120 times.
The aqueous dispersion of fluororesin fine particles may be obtained by dissolving fluororesin powder in water, or a commercially available aqueous dispersion.
フッ素樹脂微粒子の水性分散液と金属酸化物微粒子ゾルの混合方法は、フッ素樹脂微粒子の水性分散液と金属酸化物微粒子ゾルとを合わせた混合液が一瞬であろうとも均一に混合分散した混合液になる限りにおいては、特に規定するものではない。
したがって、通常は、常圧下室温で適度な粘度の均一に混合分散した混合液を噴霧・乾燥するだけでフッ素樹脂微粒子と金属酸化物微粒子とが均一に混合分散した混合粉体が得られる。
勿論、混合液の粘度が高すぎる場合は噴霧・乾燥工程が円滑に進行しないので、適度な粘度とするために希釈や、温度や圧力をそれぞれ室温や常圧よりも高くするあるいは低くするなどして調整してもよい。
The mixing method of the aqueous dispersion of fluororesin fine particles and the metal oxide fine particle sol is a mixed liquid in which the mixed liquid of the aqueous dispersion of fluororesin fine particles and the metal oxide fine particle sol is uniformly mixed and dispersed even for a moment. As long as it becomes, it is not specified.
Therefore, normally, a mixed powder in which the fluororesin fine particles and the metal oxide fine particles are uniformly mixed and dispersed can be obtained simply by spraying and drying a mixed solution in which the viscosity is uniformly mixed and dispersed at room temperature under normal pressure.
Of course, if the viscosity of the liquid mixture is too high, the spraying / drying process will not proceed smoothly. For this reason, to achieve an appropriate viscosity, dilution, temperature and pressure should be made higher or lower than room temperature and normal pressure, respectively. May be adjusted.
フッ素樹脂微粒子の水性分散液と金属酸化物微粒子ゾルとを混合した混合液が容易に均一に混合分散した混合液を形成する場合はもちろん、十分に混ざり合わずに、液液分離を起こした場合においても、同様に、フッ素樹脂微粒子と金属酸化物微粒子とが均一に混合分散した混合粉体が容易に得られる。
液液分離した混合液を、撹拌、特に高速撹拌により、あるいは液液分離する溶液同士をジェット噴射混合により、均一に混合分散した混合液を得ることは容易であり、この状態で噴霧・乾燥操作を施すことにより均一に混合分散した粉体が得られる。
また界面活性剤を入れないと液液分離する混合液であっても、撹拌、特に高速撹拌により、あるいは液液分離する溶液同士をジェット噴射混合により、均一に混合分散した混合液を得ることは容易であり、この状態で噴霧・乾燥操作を施すことにより均一に混合分散した粉体が得られるため、界面活性剤を入れずに均一に混合分散した粉体を製造することができる。
本発明ではフッ素樹脂微粒子の水性分散液と金属酸化物微粒子ゾルに界面活性剤を加えてもよく、加えなくてもよい。
界面活性剤は分子間力を高めるために配合するが、その効果によって粉体同士がまとまり塊になる傾向があったため、本発明者らはテフロンディスパージョンにアルミナゾル1%〜10%を加え、さらに必要に応じ粘土を加え、界面活性剤なしで混合し噴霧・乾燥操作を施したところ、良好な粉体が得られた。
この均一混合粉体を、ドクターブレード法、加圧、加圧・加熱、溶融、およびこれらと押し出しまたは延伸操作との組み合わせからなる群から選択される処理工程によりフッ素樹脂−金属酸化物混合固形物を製造する。
When a mixture of an aqueous dispersion of fluororesin fine particles and a metal oxide fine particle sol easily forms a mixed solution that is uniformly mixed and dispersed, or when liquid-liquid separation occurs without sufficient mixing Similarly, a mixed powder in which fluororesin fine particles and metal oxide fine particles are uniformly mixed and dispersed can be easily obtained.
It is easy to obtain a mixed solution in which liquid-liquid separated liquid mixture is uniformly mixed and dispersed by stirring, especially high-speed stirring, or by jet-jet mixing of liquid-liquid-separated solutions. To obtain a uniformly mixed and dispersed powder.
Moreover, even for a mixed liquid that is liquid-liquid separated if no surfactant is added, it is possible to obtain a mixed liquid that is uniformly mixed and dispersed by stirring, particularly high-speed stirring, or by jet-jet mixing of liquid-liquid separating solutions. Since it is easy to obtain a uniformly mixed and dispersed powder by performing spraying and drying operations in this state, it is possible to produce a uniformly mixed and dispersed powder without adding a surfactant.
In the present invention, a surfactant may or may not be added to the aqueous dispersion of fluororesin fine particles and the metal oxide fine particle sol.
Surfactants are blended to increase intermolecular force, but because of the effect, there was a tendency for powders to become agglomerated, so we added 1% to 10% alumina sol to the Teflon dispersion, When necessary, clay was added, mixed without a surfactant, and sprayed / dried. As a result, a good powder was obtained.
This homogeneous mixed powder is a fluororesin-metal oxide mixed solid by a treatment process selected from the group consisting of a doctor blade method, pressurization, pressurization / heating, melting, and a combination thereof with an extrusion or stretching operation. Manufacturing.
沈殿やゲル化は粒子同士の集合・凝集や粒子間に溶媒等が介在した巨大な粒子間架橋で生じる。
したがって、沈殿やゲル化を防ぐには、先ず粒子の集合・凝集および架橋を防ぐことが必要であり、このための方策として、通常、粒子同士を反発させることや粒子間の距離を広げることが行われる。具体的には、粒子に同じ電荷を持たせ(帯電させ)粒子同士を反発させること、粒子を界面活性剤で囲み複合ミセルとすること、より簡単には溶媒で希釈することなどが行われる。
金属酸化物コロイドの場合は、複合ミセルとした時も帯電により粒子同士を反発させ分散させる。
Precipitation and gelation are caused by aggregation / aggregation of particles and huge cross-linking between particles with a solvent or the like interposed between the particles.
Therefore, in order to prevent precipitation and gelation, it is necessary to first prevent aggregation / aggregation and cross-linking of particles. As a measure for this, it is usually to repel particles or increase the distance between particles. Done. Specifically, the particles are given the same charge (charged) to repel each other, the particles are surrounded by a surfactant to form a composite micelle, or more simply diluted with a solvent.
In the case of a metal oxide colloid, even when a composite micelle is formed, the particles are repelled and dispersed by charging.
一般に、粒子の帯電量は溶液のpHに密接に関係する。換言すれば、pHに極めて敏感である。
したがって、フッ素樹脂−金属酸化物混合分散液の調製に用いる金属酸化物ゾルのpHにも、その凝集を防ぐための適正範囲があり、これは金属種によって異なる。
かくして、本発明に用いる金属酸化物ゾルのpHは、チタニアでは2.5〜13.5であり、より好ましくは3〜13であり、ジルコニアでは6.5〜9であり、より好ましくは7〜8.5であり、ランタナでは7〜10であり、より好ましくは7.5〜9.5であり、酸化ネオジウムでは7以上であり、より好ましくは7〜10であり、セリアでは6〜10であり、より好ましくは7〜9であり、酸化スズでは2〜12であり、より好ましくは2〜11であり、酸化鉄は5.5〜8.5であり、より好ましくは6〜8であり、アルミナでは3.4〜9.5であり、より好ましくは4.7〜8.5であることが望ましい。
それぞれの金属酸化物ゾルのpHが前記範囲をそれぞれ外れてしまうと、フッ素樹脂微粒子水性分散液との混合では、用いるフッ素樹脂微粒子水性分散液の種類にもよるが、ゲル化や沈殿が起きやすくなり、ノズルからの噴霧が困難となる。
In general, the charge amount of the particles is closely related to the pH of the solution. In other words, it is extremely sensitive to pH.
Therefore, the pH of the metal oxide sol used for the preparation of the fluororesin-metal oxide mixed dispersion also has an appropriate range for preventing the aggregation, and this varies depending on the metal species.
Thus, the pH of the metal oxide sol used in the present invention is 2.5 to 13.5 for titania, more preferably 3 to 13, and 6.5 to 9 for zirconia, more preferably 7 to 8.5, 7-10 for Lantana, more preferably 7.5-9.5, 7 or more for neodymium oxide, more preferably 7-10, 6-10 for ceria. Yes, more preferably 7-9, tin oxide 2-12, more preferably 2-11, iron oxide 5.5-8.5, more preferably 6-8 In the case of alumina, it is 3.4 to 9.5, more preferably 4.7 to 8.5.
If the pH of each metal oxide sol is out of the above range, gelation and precipitation are likely to occur in mixing with the fluororesin fine particle aqueous dispersion, depending on the type of fluororesin fine particle aqueous dispersion used. It becomes difficult to spray from the nozzle.
噴霧・乾燥工程で用いるフッ素樹脂−金属酸化物混合分散液の調製には、用いる金属酸化物ゾルのpHのみならずフッ素樹脂微粒子水性分散液のpHも大いに影響する。
金属酸化物ゾルとフッ素樹脂微粒子水性分散液との混合で生じる混合液のpHが変わると同時に、用いる金属酸化物ゾルによってはpHの変化で沈殿を生じたり、ゲル化したりするからである。
したがって、フッ素樹脂−金属酸化物混合分散液の調製に用いるフッ素樹脂微粒子水性分散液のpHは、用いる金属酸化物ゾルにもよるが、一般的には、10以上であることが望ましい。
The preparation of the fluororesin-metal oxide mixed dispersion used in the spraying / drying step is greatly influenced not only by the pH of the metal oxide sol used but also by the pH of the fluororesin fine particle aqueous dispersion.
This is because the pH of the mixture produced by mixing the metal oxide sol and the fluororesin fine particle aqueous dispersion changes, and at the same time, depending on the metal oxide sol used, precipitation occurs or gelation occurs due to the change in pH.
Accordingly, the pH of the fluororesin fine particle aqueous dispersion used for preparing the fluororesin-metal oxide mixed dispersion is generally preferably 10 or more, although it depends on the metal oxide sol used.
微粒子の集合・凝集はその濃度とも密接に関係する。濃度が高くなれば、増粘し凝固・ゲル化を起こしやすくなるばかりか、凝集沈殿も起きやすくなる。
したがって、通常よく行われる溶媒希釈も有効である。
しかしながら、希釈しすぎる、すなわち粒子濃度が低すぎると、噴霧・乾燥工程における溶媒の蒸発飛散に多大なエネルギーを消費することになり不経済であるので、この観点からは粒子濃度が高い方が好ましい。
かかる観点から、前述のように、液全体の金属酸化物微粒子の含有量に対して重量比で、フッ素樹脂微粒子が1〜500倍であり、より好ましくは3〜100倍であり、水が5〜200倍であり、より好ましくは10〜120倍の範囲にあることが望ましい。
The aggregation / aggregation of fine particles is closely related to the concentration. When the concentration is high, not only thickening and coagulation / gelation are likely to occur, but also aggregation and precipitation are likely to occur.
Therefore, solvent dilution that is usually performed is also effective.
However, too much dilution, that is, too low a particle concentration, is uneconomical because it consumes a great deal of energy for the evaporation and scattering of the solvent in the spraying and drying process. From this point of view, a higher particle concentration is preferable. .
From this viewpoint, as described above, the fluororesin fine particles are 1 to 500 times, more preferably 3 to 100 times, and water is 5 times by weight with respect to the content of the metal oxide fine particles in the entire liquid. It is desired to be in the range of ˜200 times, more preferably in the range of 10 to 120 times.
<原料について>
本発明において用いるフッ素樹脂微粒子水性分散液は市販のものでよく、例えば三井フロロ製の31−JR(PTFE固形分:60重量%、平均分子量:2×104〜1×107、PTFE一次粒子の平均粒子径:0.25μm、pH:10.5)、ダイキン製のポリフロンD−111(PTFE固形分:60重量%、平均分子量:2×104〜1×107、PTFE一次粒子の平均粒子径:0.25μm、pH:9.7)、旭硝子製のAD911E(PTFE固形分:60重量%、平均分子量:2×104〜1×107、PTFE一次粒子の平均粒子径:0.25μm、pH:10)などを用いてもよいがこれらに限定されない。
また、フッ素樹脂微粒子(粉体)としては、PTFEモールディンングパウダー「M81」(東岳社製)などを用いてもよいがこれに限定されない。
<About raw materials>
The fluororesin fine particle aqueous dispersion used in the present invention may be commercially available, for example, 31-JR (PTFE solid content: 60% by weight, average molecular weight: 2 × 10 4 to 1 × 10 7 , PTFE primary particles manufactured by Mitsui Fluoro. Average particle diameter: 0.25 μm, pH: 10.5), Daikin polyflon D-111 (PTFE solid content: 60% by weight, average molecular weight: 2 × 10 4 to 1 × 10 7 , average of PTFE primary particles Particle size: 0.25 μm, pH: 9.7), AD911E manufactured by Asahi Glass (PTFE solid content: 60% by weight, average molecular weight: 2 × 10 4 to 1 × 10 7) , average particle size of PTFE primary particles: 0.00. 25 μm, pH: 10) and the like may be used, but are not limited thereto.
Further, as the fluororesin fine particles (powder), PTFE molding powder “M81” (manufactured by Todake Co., Ltd.) or the like may be used, but is not limited thereto.
本発明において用いる金属酸化物ゾルは市販のものでよく、例えば多木化学製のタイノックA−6(TiO2重量%:6、平均粒子径nm:10−20、pH:11−13)、バイラールZr−C20(ZrO2重量%:20、平均粒子径nm:20、pH:7)、バイラールNb−G6000(Nb2O3重量%:6、平均粒子径nm:15、pH:8)、バイラールAl−L7(Al2O3重量%:7、平均粒子径nm:5−10、pH:8)などを用いてもよいがこれらに限定されない。
また、アルミナゾルとしては、例えば、アルミナゾル−10A(Al2O3換算重量%:9.8〜10.2、平均粒子径nm:5−15、粘度25℃,mPa/s:<50、pH:3.4−4.2、川研ファインケミカル製)、アルミナゾル−A2(Al2O3換算重量%:9.8〜10.2、平均粒子径nm:10−20、粘度25℃,mPa/s:<200、pH:3.4−4.2、川研ファインケミカル製)、アルミナゾル−CSA−110AD(Al2O3換算重量%:6.0〜6.4、平均粒子径nm:5−15、粘度25℃,mPa/s:<50、pH:3.8−4.5、川研ファインケミカル製)、アルミナゾル−F1000(Al2O3換算重量%:4.8〜5.2、平均粒子径nm:1400、粘度25℃,mPa/s:<1000、pH:2.9−3.3、川研ファインケミカル製)、アルミナゾル−F3000(Al2O3換算重量%:4.8〜5.2、平均粒子径nm:2000−4500、粘度25℃,mPa/s:<1000、pH:2.7−3.3、川研ファインケミカル製)などを用いてもよいがこれらに限定されない。
The metal oxide sol used in the present invention may be commercially available, for example, Tynoch A-6 (TiO 2 wt%: 6, average particle size nm: 10-20, pH: 11-13) manufactured by Taki Chemical, viral Zr—C20 (ZrO 2 wt%: 20, average particle diameter nm: 20, pH: 7), viral Nb-G6000 (Nb 2 O 3 wt%: 6, average particle diameter nm: 15, pH: 8), viral Al-L7 (Al2O3 wt%: 7, average particle diameter nm: 5-10, pH: 8) may be used, but is not limited thereto.
As the alumina sol, for example, alumina sol-10A (Al 2 O 3 equivalent weight%: 9.8 to 10.2, average particle diameter nm: 5-15, viscosity 25 ° C., mPa / s: <50, pH: 3.4-4.2, manufactured by Kawaken Fine Chemical Co., Ltd.), Alumina Sol-A2 (Al 2 O 3 equivalent weight%: 9.8 to 10.2, Average particle diameter nm: 10-20, Viscosity 25 ° C., mPa / s : <200, pH: 3.4-4.2, manufactured by Kawaken Fine Chemical Co., Ltd., Alumina Sol-CSA-110AD (Al 2 O 3 equivalent weight%: 6.0-6.4, average particle diameter nm: 5-15 , Viscosity 25 ° C., mPa / s: <50, pH: 3.8-4.5, manufactured by Kawaken Fine Chemical), Alumina Sol-F1000 (Al 2 O 3 equivalent weight%: 4.8-5.2, average particle) Diameter nm: 1400, viscosity 25 ° C, mP /S:<1000,PH:2.9-3.3, manufactured by Kawaken Fine Chemicals), alumina sol -F3000 (Al 2 O 3 in terms of weight%: 4.8-5.2, an average particle size nm: 2000-4500 Viscosity 25 ° C., mPa / s: <1000, pH: 2.7-3.3, manufactured by Kawaken Fine Chemical Co., Ltd.) and the like may be used, but are not limited thereto.
以下、実施例によって本発明をより詳細に説明するが、本発明は、かかる実施例によって限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.
[実施例1]
実施例1はフッ素樹脂微粒子(PTFEモールディンングパウダー「M81」(東岳社製))に金属酸化物としてアルミナゾル(アルミナゾル「A2」(川研ファインケミカル社製))を混合し、噴霧乾燥させてフッ素樹脂−金属酸化物混合固形物を製造した。
混合固形物の質量濃度と原子数を表1にまとめる。
[Example 1]
In Example 1, alumina resin sol (alumina sol “A2” (manufactured by Kawaken Fine Chemicals Co., Ltd.)) as a metal oxide was mixed with fluororesin fine particles (PTFE molding powder “M81” (manufactured by Todake Co., Ltd.)), spray-dried, and fluorine A resin-metal oxide mixed solid was produced.
The mass concentration and the number of atoms of the mixed solid are summarized in Table 1.
[実施例2]
実施例2はフッ素樹脂微粒子(PTFEモールディンングパウダー「M81」(東岳社製))に金属酸化物としてアルミナゾル(アルミナゾル「A2」(川研ファインケミカル社製))と、相分離をおこしやすい金属であるニオブ(バイラールNb−G6000(Nb2O3重量%:6、平均粒子径nm:15、pH:8))を混合し、噴霧乾燥させてフッ素樹脂−金属酸化物混合固形物を製造した。
混合固形物の質量濃度と原子数を表2にまとめる。
[Example 2]
Example 2 is made of fluororesin fine particles (PTFE molding powder “M81” (manufactured by Todake Co., Ltd.)), alumina sol (alumina sol “A2” (manufactured by Kawaken Fine Chemical Co., Ltd.)) as a metal oxide, and a metal that easily undergoes phase separation. Certain niobium (Bialal Nb-G6000 (Nb 2 O 3 wt%: 6, average particle size nm: 15, pH: 8)) was mixed and spray-dried to produce a fluororesin-metal oxide mixed solid.
Table 2 summarizes the mass concentration and the number of atoms of the mixed solid.
図1に示す通り、本発明の方法を用いることでフッ素樹脂微粒子と金属酸化物微粒子とが、均一に混合分散されたことが理解できる。
また図2に示す通り、フッ素樹脂微粒子と金属酸化物ゾルとの混合では、相分離が起きてしまう場合でも、高速撹拌して直ぐに噴霧乾燥を施せば金属酸化物微粒子とフッ素樹脂微粒子とが均一に混合分散し合うことがわかる。したがって、噴霧乾燥は極めて重要な操作であることがわかる。
As shown in FIG. 1, it can be understood that the fluororesin fine particles and the metal oxide fine particles were uniformly mixed and dispersed by using the method of the present invention.
Further, as shown in FIG. 2, in the case of mixing the fluororesin fine particles and the metal oxide sol, even if phase separation occurs, the metal oxide fine particles and the fluororesin fine particles are uniform if spray drying is performed immediately after stirring at high speed. It can be seen that they are mixed and dispersed. Therefore, it turns out that spray drying is a very important operation.
本発明により、フッ素樹脂微粒子との混合で、分離を起こしやすい、それどころか、撹拌を止めると直ぐ分離してしまうような金属酸化物ゾルでも、激しく撹拌し直ちに噴霧乾燥を行うことによって、フッ素樹脂微粒子と金属酸化物微粒子とが均一に混合分散した粉体を得ることができる。 By virtue of the present invention, it is easy to cause separation by mixing with fluororesin fine particles. On the contrary, even if a metal oxide sol that would be separated immediately when stirring is stopped, by vigorously stirring and immediately spray drying, fluororesin fine particles And a powder in which metal oxide fine particles are uniformly mixed and dispersed can be obtained.
[実施例3]
実施例3では、本発明に係るフッ素樹脂−金属酸化物混合固形物の熱膨張率を測定した。以下の実施例3−1〜3−3および比較例1〜2の熱膨張率を測定した。
[Example 3]
In Example 3, the thermal expansion coefficient of the fluororesin-metal oxide mixed solid according to the present invention was measured. The thermal expansion coefficients of the following Examples 3-1 to 3-3 and Comparative Examples 1-2 were measured.
<実施例3−1>
実施例3−1は、以下のフッ素樹脂(粉)とアルミナゾル(液)を混合して作製した。
フッ素樹脂:PTFEモールディンングパウダー「M81」(東岳社製)
アルミナゾル:アルミナゾル「A2」(川研ファインケミカル社製)
上記フッ素樹脂およびアルミナゾルを用いて、以下の手順で実施例3−1を作製した。
・フッ素樹脂(粉)35.59gとアルミナゾル(液)3.6gをポリボトルに入れ、攪拌した。
・フッ素樹脂(粉)とアルミナゾル(液)の混合液をPFAトレーに入れ、乾燥炉にて120℃で2時間乾燥させた。
・乾燥させたフッ素樹脂(粉)とアルミナゾル(粉)の混合物を成型用の金型に充填した。
・アムスラー試験機を用いて、面圧40MPaで加圧した。
・徐圧後、成型体を金型から取り出した。
・電気炉を用いて、成型体を380℃で3時間焼成した。
<Example 3-1>
Example 3-1 was prepared by mixing the following fluororesin (powder) and alumina sol (liquid).
Fluorine resin: PTFE molding powder “M81” (manufactured by Tougaku)
Alumina sol: Alumina sol "A2" (manufactured by Kawaken Fine Chemical Co., Ltd.)
Example 3-1 was produced by the following procedure using the fluororesin and alumina sol.
-35.59 g of fluororesin (powder) and 3.6 g of alumina sol (liquid) were placed in a plastic bottle and stirred.
-A mixed liquid of fluororesin (powder) and alumina sol (liquid) was put in a PFA tray and dried at 120 ° C for 2 hours in a drying furnace.
A mold for molding was filled with a mixture of dried fluororesin (powder) and alumina sol (powder).
-Pressurized with a surface pressure of 40 MPa using an Amsler tester.
-After slow pressure, the molded body was removed from the mold.
-The molded object was baked at 380 degreeC for 3 hours using the electric furnace.
<実施例3−2>
実施例3−2は、以下のフッ素樹脂(粉)とアルミナゾル(粉)を混合して作製した。
フッ素樹脂:PTFEモールディンングパウダー「M81」(東岳社製)
アルミナゾル:アルミナゾル「A2」(川研ファインケミカル社製)
上記フッ素樹脂およびアルミナゾルを用いて、以下の手順で実施例3−2を作製した。
・アルミナゾル(液)をアルミカップに入れ、乾燥炉にて120℃で2時間乾燥させた。
・乾燥させたアルミナゾル(粉)を乳鉢で粉状に粉砕した。
・フッ素樹脂(粉)35.59gと粉砕したアルミナゾル(粉)3.6gをポリボトルに入れ、攪拌した。
・フッ素樹脂(粉)とアルミナゾル(粉)の混合物を成型用の金型に充填した。
・アムスラー試験機を用いて、面圧40MPaで加圧した。
・徐圧後、成型体を金型から取り出した。
・電気炉を用いて、成型体を380℃で3時間焼成した。
<Example 3-2>
Example 3-2 was prepared by mixing the following fluororesin (powder) and alumina sol (powder).
Fluorine resin: PTFE molding powder “M81” (manufactured by Tougaku)
Alumina sol: Alumina sol "A2" (manufactured by Kawaken Fine Chemical Co., Ltd.)
Example 3-2 was produced by the following procedure using the fluororesin and alumina sol.
Alumina sol (liquid) was put in an aluminum cup and dried at 120 ° C. for 2 hours in a drying furnace.
-The dried alumina sol (powder) was pulverized into powder in a mortar.
-35.59 g of fluororesin (powder) and 3.6 g of pulverized alumina sol (powder) were placed in a plastic bottle and stirred.
A mixture of fluororesin (powder) and alumina sol (powder) was filled into a molding die.
-Pressurized with a surface pressure of 40 MPa using an Amsler tester.
-After slow pressure, the molded body was removed from the mold.
-The molded object was baked at 380 degreeC for 3 hours using the electric furnace.
<実施例3−3>
実施例3−3は、以下のフッ素樹脂(液)とアルミナゾル(液)を混合して作製した。
フッ素樹脂:PTFEディスパージョン「D−111」(ダイキン社製)
アルミナゾル:アルミナゾル「A2」(川研ファインケミカル社製)
上記フッ素樹脂およびアルミナゾルを用いて、以下の手順で実施例3−3を作製した。
・フッ素樹脂(液)58.8gとアルミナゾル(液)18.5gをポリボトルに入れ、攪拌した。
・フッ素樹脂(液)とアルミナゾル(液)の混合液をアルミ皿に入れ、電気炉にて300℃で48時間乾燥させた。
・乾燥させたフッ素樹脂(粉)とアルミナゾル(粉)の混合物を成型用の金型に充填した。
・アムスラー試験機を用いて、面圧40MPaで加圧した。
・徐圧後、成型体を金型から取り出した。
・電気炉を用いて、成型体を380℃で3時間焼成した。
<Example 3-3>
Example 3-3 was prepared by mixing the following fluororesin (liquid) and alumina sol (liquid).
Fluororesin: PTFE dispersion "D-111" (Daikin)
Alumina sol: Alumina sol "A2" (manufactured by Kawaken Fine Chemical Co., Ltd.)
Example 3-3 was produced by the following procedure using the fluororesin and alumina sol.
-58.8 g of fluororesin (liquid) and 18.5 g of alumina sol (liquid) were put in a plastic bottle and stirred.
-A mixed liquid of fluororesin (liquid) and alumina sol (liquid) was put in an aluminum dish and dried in an electric furnace at 300 ° C for 48 hours.
A mold for molding was filled with a mixture of dried fluororesin (powder) and alumina sol (powder).
-Pressurized with a surface pressure of 40 MPa using an Amsler tester.
-After slow pressure, the molded body was removed from the mold.
-The molded object was baked at 380 degreeC for 3 hours using the electric furnace.
<比較例1>
比較例1は、以下のフッ素樹脂(粉)を用いて作製した。
フッ素樹脂:PTFEモールディンングパウダー「M81」(東岳社製)
上記フッ素樹脂を用いて、以下の手順で比較例1を作製した。
・フッ素樹脂(粉)35.66gを成型用の金型に充填した。
・アムスラー試験機を用いて、面圧40MPaで加圧した。
・徐圧後、成型体を金型から取り出した。
・電気炉を用いて、成型体を380℃で3時間焼成した。
<Comparative Example 1>
The comparative example 1 was produced using the following fluororesins (powder).
Fluorine resin: PTFE molding powder “M81” (manufactured by Tougaku)
Using the fluororesin, Comparative Example 1 was produced according to the following procedure.
-35.66 g of fluororesin (powder) was filled in a molding die.
-Pressurized with a surface pressure of 40 MPa using an Amsler tester.
-After slow pressure, the molded body was removed from the mold.
-The molded object was baked at 380 degreeC for 3 hours using the electric furnace.
<比較例2>
比較例2は、以下のフッ素樹脂(液)を用いて作製した。
フッ素樹脂:PTFEディスパージョン「D−111」(ダイキン社製)
上記フッ素樹脂を用いて、以下の手順で比較例2を作製した。
・フッ素樹脂(液)59.7gをアルミ皿に入れ、電気炉にて300℃で48時間乾燥させた。
・乾燥させたフッ素樹脂(粉)を成型用の金型に充填した。
・アムスラー試験機を用いて、面圧40MPaで加圧した。
・徐圧後、成型体を金型から取り出した。
・電気炉を用いて、成型体を380℃で3時間焼成した。
<Comparative example 2>
Comparative Example 2 was prepared using the following fluororesin (liquid).
Fluororesin: PTFE dispersion "D-111" (Daikin)
Using the fluororesin, Comparative Example 2 was produced according to the following procedure.
-59.7 g of fluororesin (liquid) was put in an aluminum dish and dried at 300 ° C. for 48 hours in an electric furnace.
-The mold for molding was filled with the dried fluororesin (powder).
-Pressurized with a surface pressure of 40 MPa using an Amsler tester.
-After slow pressure, the molded body was removed from the mold.
-The molded object was baked at 380 degreeC for 3 hours using the electric furnace.
作製した実施例3−1〜3−3および比較例1〜2を用いて、以下の条件にて線膨張率を測定した。
測定方法:TMA(熱機械分析)
測定機器:TMA/SS7100(エスアイアイ・ナノテクノロジー社製)
測定温度域:30℃〜300℃
上記条件により測定した線膨張率の結果を以下の表3に示す。
Using the produced Examples 3-1 to 3-3 and Comparative Examples 1 and 2, the linear expansion coefficient was measured under the following conditions.
Measuring method: TMA (Thermo-mechanical analysis)
Measuring instrument: TMA / SS7100 (manufactured by SII Nanotechnology)
Measurement temperature range: 30 ° C to 300 ° C
The results of linear expansion coefficient measured under the above conditions are shown in Table 3 below.
表3に示した線膨張率の測定結果より、実施例3−1および実施例3−2は、同じフッ素樹脂を用いた比較例1に比べて、線膨張率が減少していることがわかった。
また、実施例3−3は、同じフッ素樹脂を用いた比較例2に比べて、線膨張率が大きく減少していることがわかった。
これらの結果から、本発明に係るフッ素樹脂−金属酸化物混合固形物は、フッ素樹脂固形物と比較して、熱膨張率が低く、熱膨張を抑制できることがわかった。
From the measurement results of the linear expansion coefficient shown in Table 3, it can be seen that Example 3-1 and Example 3-2 have a smaller linear expansion coefficient than Comparative Example 1 using the same fluororesin. It was.
Moreover, in Example 3-3, it was found that the linear expansion coefficient was greatly reduced as compared with Comparative Example 2 using the same fluororesin.
From these results, it was found that the fluororesin-metal oxide mixed solid according to the present invention has a lower coefficient of thermal expansion than the fluororesin solid and can suppress thermal expansion.
本発明により、フッ素樹脂の熱膨張や帯電が抑制されるうえに、水接触角が小さいため疎水性が弱まり濡れ性や粘着性も向上するためにフッ素樹脂表面の修飾・処理が容易となり、フッ素樹脂表面の多機能化・高機能化が可能となった。
また、本発明による金属酸化物の混入で、フッ素樹脂が固くなり耐熱性が増すと同時に、傷つき難い表面となる効能も生まれる。
According to the present invention, the thermal expansion and charging of the fluororesin are suppressed, and since the water contact angle is small, the hydrophobicity is weakened and the wettability and adhesiveness are improved. It has become possible to increase the functionality and functionality of the resin surface.
In addition, the incorporation of the metal oxide according to the present invention hardens the fluororesin and increases the heat resistance, and at the same time has the effect of becoming a scratch-resistant surface.
本発明の方法でフッ素樹脂微粒子にチタニア、ジルコニア、ランタナ、セリア、酸化スズ及びアルミナのそれぞれが均一に混合分散した粉体を製造し、それらのフィルムをSUSフィルムに圧着し被覆膜としたところ、種々の液体やゾルが均一に濡れて、しかも良好なコーティング膜を形成することが確かめられた。
一方、金属酸化物を含まない従来のフッ素樹脂フィルムでは、試した全てのゾルは弾かれた。従来のフッ素樹脂のみであるとその表面は柔らかいので、硬いものに接触すると容易に傷がつくが、本発明のフッ素樹脂では例えば、SUS圧着金属酸化物混入フッ素樹脂フィルムにジルコニアゾル(有機高分子塗料でもよい)を塗布し乾燥したところ、フィルム表面に非常に硬いコーティング膜ができ、表面が非常に傷つきにくくなった。
A powder in which each of titania, zirconia, lantana, ceria, tin oxide and alumina is uniformly mixed and dispersed in fluororesin fine particles by the method of the present invention is manufactured, and these films are pressure-bonded to a SUS film to form a coating film. It was confirmed that various liquids and sols were uniformly wetted and a good coating film was formed.
On the other hand, in the conventional fluororesin film containing no metal oxide, all the sols tried were repelled. Since the surface of the conventional fluororesin alone is soft, it is easily scratched when it comes into contact with a hard material. However, in the fluororesin of the present invention, for example, zirconia sol (organic polymer When a paint was applied and dried, a very hard coating film was formed on the film surface, and the surface became very difficult to be damaged.
本発明のフッ素樹脂−金属酸化物混合固形物は、フッ素樹脂の物性を改良・調整したフッ素樹脂フィルム、型材、バルク等フッ素樹脂成形体、具体的には、濡れ性、粘着性、耐熱性および硬度が向上し、帯電しにくくなっているため、これらの特性を必要とするフッ素樹脂およびその成形体の製造に好適である。
また、本発明に係る粉体およびフィルムは前記特性を備えているので、密着性が良く耐熱性や高度の高い表面被覆材やライニングとして、具体的には、電線や温度計、各種センサー、ガスケットやパッキン等各種材料・製品表面の被覆フィルムやライニングとして用いられるばかりか、多機能・高機能のための多層・多段コーティングにおけるアンダーコーティング材として極めて優れた性能を発揮する。
The fluororesin-metal oxide mixed solid of the present invention is a fluororesin film, mold material, bulk fluororesin molded body such as a fluororesin film having improved / adjusted properties of the fluororesin, specifically wettability, adhesiveness, heat resistance and Since it has improved hardness and is less likely to be charged, it is suitable for the production of fluororesins that require these characteristics and molded articles thereof.
Further, since the powder and film according to the present invention have the above-mentioned characteristics, specifically, as a surface coating material or lining having good adhesion and high heat resistance and high degree, specifically, an electric wire, a thermometer, various sensors, and a gasket. In addition to being used as a coating film and lining for various materials and product surfaces such as packing and packing, it exhibits extremely excellent performance as an undercoating material in multi-layer and multi-stage coating for multi-function and high-function.
Claims (6)
前記均一混合分散液を噴霧乾燥して均一混合粉体を製造する工程と、を含むことを特徴とする請求項1乃至4のいずれか1項に記載のフッ素樹脂−金属酸化物混合固形物の製造方法。 The aqueous dispersion of fluororesin fine particles and the metal oxide fine particle sol are used at a temperature of 5 to 300 ° C. under normal pressure, and the fluororesin fine particles are added 3 to 100 times in weight ratio to the content of the metal oxide fine particles in the liquid. A step of obtaining a homogeneous mixed dispersion by mixing water at 10 to 120 times, further adding a surfactant or without adding a surfactant,
A step of producing a uniform mixed powder by spray-drying the uniform mixed dispersion liquid, wherein the fluororesin-metal oxide mixed solid according to any one of claims 1 to 4 is used. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018053573A JP2019163434A (en) | 2018-03-20 | 2018-03-20 | Solid molding of fluorine resin and metal oxide, and method for producing the solid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018053573A JP2019163434A (en) | 2018-03-20 | 2018-03-20 | Solid molding of fluorine resin and metal oxide, and method for producing the solid |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019163434A true JP2019163434A (en) | 2019-09-26 |
Family
ID=68065863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018053573A Pending JP2019163434A (en) | 2018-03-20 | 2018-03-20 | Solid molding of fluorine resin and metal oxide, and method for producing the solid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019163434A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008115336A (en) * | 2006-11-07 | 2008-05-22 | Du Pont Mitsui Fluorochem Co Ltd | Adhesive fluororesin composite composition |
JP2017203152A (en) * | 2016-05-09 | 2017-11-16 | ジャパンマテックス株式会社 | Fluorine resin-metal oxide mixed dispersion and method for producing the same |
JP2018059032A (en) * | 2016-10-07 | 2018-04-12 | ジャパンマテックス株式会社 | Solid molding of fluorine resin and metal oxide, and method for producing the solid |
-
2018
- 2018-03-20 JP JP2018053573A patent/JP2019163434A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008115336A (en) * | 2006-11-07 | 2008-05-22 | Du Pont Mitsui Fluorochem Co Ltd | Adhesive fluororesin composite composition |
JP2017203152A (en) * | 2016-05-09 | 2017-11-16 | ジャパンマテックス株式会社 | Fluorine resin-metal oxide mixed dispersion and method for producing the same |
JP2018059032A (en) * | 2016-10-07 | 2018-04-12 | ジャパンマテックス株式会社 | Solid molding of fluorine resin and metal oxide, and method for producing the solid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5854146B2 (en) | Resin composition and molded product | |
JP6066581B2 (en) | Polymer particles, aqueous dispersion containing the same, and fluororesin coating composition using the same | |
JP7335685B2 (en) | Hot-melt fluororesin composition and injection-molded article made from the same | |
CN102504451A (en) | Preparation method of fluororesin/nanometer composite material | |
WO2015164296A1 (en) | Fluororesin and silica composition | |
JPH01306219A (en) | Filled polytetrafluoroethylene molding method | |
Gao et al. | Multi-walled carbon nanotube induced co-continuity of poly (ether ether ketone)/polyimide blends for high performance conductive materials | |
CN114729171A (en) | Dispersion liquid, method for producing dispersion liquid, and molded article | |
CN109983088A (en) | Fluorocarbon polymer coating composition | |
JP2018059032A (en) | Solid molding of fluorine resin and metal oxide, and method for producing the solid | |
US9346936B2 (en) | Fluororesin composition and its molded product | |
JP2019163434A (en) | Solid molding of fluorine resin and metal oxide, and method for producing the solid | |
US20170321070A1 (en) | Fluororesin polymer-metallic oxide mixed dispersion and method manufacturing the same | |
KR20230146585A (en) | powder coating composition | |
CN116194670A (en) | Compression molding composition, method for producing the same, and molded product | |
JP2017203152A (en) | Fluorine resin-metal oxide mixed dispersion and method for producing the same | |
TWI748469B (en) | A mixed aqueous dispersion for heat-resistant impregnation agent, coating agent or paint being formed by polyimide-fluorine resin, a mixed powder for molding material being formed by polyimide-fluorine resin, and a method for producing thereof | |
TWI805976B (en) | Film forming method, polyphenylene sulfide powder coating, coating film, and coated article | |
CN114040836B (en) | Method for producing molded products with suppressed surface gloss | |
JP6603589B2 (en) | Gland packing and manufacturing method thereof | |
JPH04185647A (en) | Method for producing filler-containing polytetrafluoroethylene granulated powder | |
WO2013101817A1 (en) | Conductive fluororesin composition and molded product thereof | |
JPS6338065B2 (en) | ||
Jasim et al. | The Influence of Silica Nanoparticle-Based Modifying Agent on the Application of Hydrophobic Coatings | |
JP2017110220A (en) | Fluorine-based resin-aluminum oxide mixed dispersion and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201105 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211108 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20220425 |