[go: up one dir, main page]

JP2018059032A - Solid molding of fluorine resin and metal oxide, and method for producing the solid - Google Patents

Solid molding of fluorine resin and metal oxide, and method for producing the solid Download PDF

Info

Publication number
JP2018059032A
JP2018059032A JP2016199565A JP2016199565A JP2018059032A JP 2018059032 A JP2018059032 A JP 2018059032A JP 2016199565 A JP2016199565 A JP 2016199565A JP 2016199565 A JP2016199565 A JP 2016199565A JP 2018059032 A JP2018059032 A JP 2018059032A
Authority
JP
Japan
Prior art keywords
fluororesin
metal oxide
fine particles
oxide
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016199565A
Other languages
Japanese (ja)
Inventor
勝朗 塚本
Katsuro Tsukamoto
勝朗 塚本
浩晃 塚本
Hiroaki Tsukamoto
浩晃 塚本
水上 富士夫
Fujio Mizukami
富士夫 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Matex KK
Original Assignee
Japan Matex KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Matex KK filed Critical Japan Matex KK
Priority to JP2016199565A priority Critical patent/JP2018059032A/en
Publication of JP2018059032A publication Critical patent/JP2018059032A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide various round-bar solid moldings, such as films or rods, formed by mixing fluororesin fine particles with metal oxide fine particles, and a method for producing the solid.SOLUTION: The present invention provides a fluorine resin-metal oxide solid mixture in which fluorine resin fine particles with a particle size of 100-500 nm and fine particles of one or more metal oxides with a particle size of 5-200 nm are uniformly dispersed mixedly.SELECTED DRAWING: Figure 1

Description

本発明はフッ素系樹脂微粒子と金属酸化物微粒子との混合で構成されるフィルムやロッド等各種丸棒成形体固形物、および当該固形物の製造方法に関する。 The present invention relates to various round bar molded body solids such as films and rods composed of a mixture of fluororesin fine particles and metal oxide fine particles, and a method for producing the solids.

従来のフッ素樹脂は、ポリエチレンやポリプロピレンなど通常のプラスチックスや有機高分子に比べ耐熱性・耐寒性に優れ、酸やアルカリをはじめ種々の薬品に対する耐性すなわち耐薬品性・耐蝕性が高く、不燃性で電気絶縁性も高く誘電損失も少ないうえに、非粘着・非濡れ性で水も油も弾き、しかも低摩擦性で適度な弾力性も備えていることから、型材、容器、電線、温度計、各種センサー、ガスケットやパッキン、さらにはフライパン等各種材料・製品表面の被覆に盛んに用いられている。この種の被覆は、通常、フッ素樹脂フィルムのライニングやフッ素樹脂微粒子の分散液のコーティングや含浸等で行われている。(例えば、特許文献1)。   Conventional fluoropolymers are superior in heat resistance and cold resistance compared to ordinary plastics such as polyethylene and polypropylene, and organic polymers, and have high resistance to various chemicals including acid and alkali, that is, chemical resistance and corrosion resistance, and are nonflammable. In addition, it has high electrical insulation and low dielectric loss, and is non-adhesive and non-wetting, repels water and oil, and has low friction and moderate elasticity, so it can be used for molds, containers, wires, and thermometers. It is widely used for coating various materials and product surfaces such as various sensors, gaskets and packings, and frying pans. This type of coating is usually performed by lining a fluororesin film, coating or impregnating a dispersion of fluororesin fine particles. (For example, patent document 1).

しかしながら、従来のフッ素樹脂は、通常の有機高分子に比べ、不燃で耐熱性に優れるが、その熱膨張係数は通常の有機高分子樹脂のそれに比べおおよそ一桁大きく、そして柔らかい。例えば、室温の熱膨張係数(x10−6/℃)は、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂、ポリアミド(PA)、ポリイミド(PI)、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリ塩化ビニル(PVC)およびエポキシ樹脂(EP)ではそれぞれ74、80、54、70、60、70および62であるのに対して、従来のフッ素樹脂では200−790である。このため、フッ素樹脂では、成形時の寸法が安定しないことや、多機能化や高機能化に有益なコーティングや修飾などの表面処理を施し難かった。 However, the conventional fluororesin is incombustible and excellent in heat resistance as compared with a normal organic polymer, but its thermal expansion coefficient is approximately an order of magnitude larger than that of a normal organic polymer resin and is soft. For example, the thermal expansion coefficient at room temperature (x10 −6 / ° C.) is acrylonitrile butadiene styrene (ABS) resin, polyamide (PA), polyimide (PI), polycarbonate (PC), polyethylene terephthalate (PET), polyvinyl chloride (PVC) and epoxy resin (EP) are 74, 80, 54, 70, 60, 70 and 62, respectively, whereas conventional fluororesins are 200-790. For this reason, in the fluororesin, the dimension at the time of shaping | molding was not stabilized, and it was difficult to give surface treatments, such as a coating and modification useful for multifunctionalization and high functionality.

従来のフッ素樹脂は極めて優れた絶縁材料でもあり、非常に帯電しやすい。実際、帯電列では最もマイナスに帯電しやすい物質として位置付けられている。帯電は可燃性ガス・溶剤の引火爆発やフッ素樹脂製品自体の絶縁破壊の原因ともなるため、フッ素樹脂の帯電防止・静電気除去対策は極めて重要であった。   Conventional fluororesins are also extremely excellent insulating materials and are very easily charged. In fact, it is positioned as a substance that is most likely to be negatively charged in the charge train. Since electrification can cause flammable explosions of flammable gases and solvents and dielectric breakdown of fluororesin products themselves, antistatic and antistatic measures for fluororesins were extremely important.

帯電の除去は、通常、フッ素樹脂およびその製品にアースを付けたり、フッ素樹脂に導電物質を混ぜることで行っているが、このような方法が困難な場合も多い。例えば、表面のコーティングや修飾は多機能化・高性能化のために頻繁にあるいは必須に行われる操作・工程であるが、極めて容易に、しかも強く帯電するフッ素樹脂では、その帯電故に、塗布液が弾かれ、コーティング不能であることが多い。この際に、アースを利用するとしても、それでは作業性が悪く、現行の導電性物質すなわちカーボンブラック(CB)、カーボン繊維(CF)、カーボンナノチューブ(CNT)や金属微粉と混合すると、それらの混合により生じた表面ではその後のコーティングや修飾に適合しない場合がある。 The removal of the charge is usually performed by attaching a ground to the fluororesin and its product or mixing a conductive material with the fluororesin, but such a method is often difficult. For example, surface coating or modification is an operation or process that is frequently or indispensably performed to achieve multiple functions and high performance, but in the case of fluororesins that are extremely easily and strongly charged, the coating solution Is often played and cannot be coated. At this time, even if the earth is used, the workability is poor, and if mixed with the current conductive material, that is, carbon black (CB), carbon fiber (CF), carbon nanotube (CNT) or metal fine powder, the mixture thereof The resulting surface may not be compatible with subsequent coatings or modifications.

さらに、フッ素樹脂の非濡れ性と非粘着性は、汚れ難いという大きな利点を有するものの、表面コーティングや修飾に対しては、塗布液が塗れ難くなるため大きな障害となる。 Furthermore, although the non-wetting property and non-adhesiveness of the fluororesin have a great advantage that they are difficult to get dirty, the coating solution is difficult to be applied to surface coating and modification, which is a major obstacle.

従来フッ素樹脂において、耐摩耗性、耐圧縮特性、耐コールドフロー特性、摺動特性、導電性などの改良・向上のため無機フィラーが添加され、無機フィラーとしてはガラス繊維、カーボン繊維、グラファイト、カーボン、CNT、二硫化モリブデン、シリカなどを用いる。
しかしこれらは濡れ性、粘着性、帯電性の調整や改良などフッ素樹脂の多機能化・高機能化のための表面特性の改質を意図したものではなく、それらフィラー(添加剤)は目的とする表面特性の改質に合致するものとは言い難かった。
In conventional fluororesins, inorganic fillers are added to improve and improve wear resistance, compression resistance, cold flow characteristics, sliding characteristics, electrical conductivity, etc., and glass fiber, carbon fiber, graphite, carbon CNT, molybdenum disulfide, silica and the like are used.
However, these are not intended to modify the surface properties for multifunctional / high functionality of fluororesin, such as adjustment and improvement of wettability, adhesiveness, and chargeability. It was difficult to say that it was consistent with the modification of surface characteristics.

従来フィラー入りフッ素樹脂固形物は、通常、予めフィラー成分を添加・混合しておいたフッ素樹脂微粒子水性分散液の蒸発乾固や、フッ素樹脂粉体とフィラー粉体とを混錬すること、およびその後の必要に応じての成形処理で得られる。混合度合い、すなわち相互の粒子の混合分散性は、一般には、粉体同士の混錬に比べ混合分散液の蒸発乾固によるものの方が高いと期待されるが、実際に、そうなるためには混合液中でフッ素樹脂微粒子とフィラー成分とが均一に分散し、混ざり合っていることが必須である。しかしながら、フッ素樹脂微粒子水性分散液へのフィラーの添加・混合により、均一混合分散液となるフィラーの種類は非常に数少ない。 Conventional filler-containing fluororesin solids are usually obtained by evaporating and drying an aqueous dispersion of fluororesin fine particles in which filler components have been added and mixed in advance, kneading fluororesin powder and filler powder, and It is obtained by a subsequent molding process. In general, the degree of mixing, that is, the mixing and dispersibility of the particles, is expected to be higher by evaporating and drying the mixed dispersion than by kneading the powders. It is essential that the fluororesin fine particles and the filler component are uniformly dispersed and mixed in the mixed solution. However, there are very few types of fillers that become a homogeneous mixed dispersion by adding and mixing the filler to the fluororesin fine particle aqueous dispersion.

特許文献2−4では、フッ素樹脂エマルジョンとの混合で均一分散する添加剤として無機微粒子のコロイダルゾル液、具体的にはシリカ、酸化チタン、ゼオライト、酸化アルミニウム(アルミナ)、酸化亜鉛、五酸化アンチモン、炭化ケイ素、窒化ケイ素、窒化アルミニウム、酸化鉛、酸化スズ、酸化マグネシウムなどを挙げ、かなりの種類の添加剤がフッ素樹脂エマルジョンとの均一混合分散液調製に適合するとしている。しかしながら、前記特許文献における実施例では、均一混合分散液調製は全てシリカに限定されており、シリカ以外の前記無機微粒子のコロイダル溶液については、実施例が全くない。 In Patent Document 2-4, colloidal sol solution of inorganic fine particles, specifically silica, titanium oxide, zeolite, aluminum oxide (alumina), zinc oxide, antimony pentoxide, as an additive that is uniformly dispersed by mixing with a fluororesin emulsion. , Silicon carbide, silicon nitride, aluminum nitride, lead oxide, tin oxide, magnesium oxide, and the like, and many types of additives are said to be suitable for preparing a homogeneous mixed dispersion with a fluororesin emulsion. However, in the examples in the above-mentioned patent documents, the preparation of homogeneous mixed dispersions is all limited to silica, and there are no examples of colloidal solutions of inorganic fine particles other than silica.

またフッ素樹脂エマルジョンとの混合で均一分散する添加剤はほとんどが粘性安定に優れるシリカゾルやオルガノシリケート溶液であり、ごく一部にアルミナゾルが知られている(特許文献1−6)。しかも、これらの添加は最終的に得られるフッ素樹脂固形物の機械的強度、耐熱性、寸法安定性、圧縮クリープ特性および溶融成形性の改善を狙ったもので、表面特性の改質・調整を意図したものではない。 Further, most of the additives that are uniformly dispersed by mixing with the fluororesin emulsion are silica sol and organosilicate solution having excellent viscosity stability, and alumina sol is known to some extent (Patent Documents 1-6). In addition, these additions are aimed at improving the mechanical strength, heat resistance, dimensional stability, compression creep properties and melt moldability of the fluororesin solids finally obtained. Not intended.

加えてフッ素樹脂エマルジョンと金属酸化物を混合させたフッ素樹脂−金属酸化物混合溶液は混合させた直後は金属酸化物が均一に分散していてもしばらく放置しておくと液液分離や固液分離を起こすという欠点があった。
それ故、フッ素樹脂の表面特性の改質や調整を意図したフィラー混入のフッ素樹脂粉体やフィルム等固形物はもとより混合分散液も入手困難であった。
In addition, the fluororesin-metal oxide mixed solution in which the fluororesin emulsion and the metal oxide are mixed is immediately after mixing, even if the metal oxide is uniformly dispersed, if it is left for a while, liquid-liquid separation or solid-liquid There was a disadvantage of causing separation.
Therefore, it is difficult to obtain mixed dispersions as well as solid materials such as filler-containing fluororesin powders and films intended to modify and adjust the surface properties of the fluororesin.

特開2006−117900JP 2006-117900 A 特開2007−119769JP2007-119769A 特開2008−115335JP 2008-115335 A 特開2008−115336JP 2008-115336 A 特開平8−258228JP-A-8-258228 特開2012−219126JP2012-219126

上記課題に鑑みフッ素樹脂エマルジョンと金属酸化物が均一分散した固形物及びその製造方法を提供することである。   In view of the above problems, it is an object to provide a solid material in which a fluororesin emulsion and a metal oxide are uniformly dispersed, and a method for producing the same.

上記課題を解決するため、発明者らはフッ素樹脂の微粒子水性分散液やエマルジョンと金属酸化物コロイダルゾルの組み合わせについて広範に探索を行うと共に、それらの配合・調合方法について試行錯誤を繰り返し、鋭意研究を重ねた。発明者らは混合撹拌し均一状態にした液を素早く乾燥させることで粒子径100〜500nmのフッソ樹脂微粒子と粒子径5〜200nmの一種以上の金属酸化物微粒子とが、均一に混合分散されかつ、フィルム、コーティング膜、バルク等固形物表面の濡れ性、粘着性および帯電性が調整・改良されたフッ素樹脂―金属酸化物混合固形物およびその製造方法を発見した。   In order to solve the above-mentioned problems, the inventors have extensively searched for a combination of a fluororesin fine particle aqueous dispersion or emulsion and a metal oxide colloidal sol, and repeatedly conducted trial and error on their blending and blending methods. Repeated. The inventors quickly dried the liquid that was mixed and stirred to obtain a uniform state, whereby the fluororesin fine particles having a particle size of 100 to 500 nm and one or more metal oxide fine particles having a particle size of 5 to 200 nm were uniformly mixed and dispersed. Have discovered a fluororesin-metal oxide mixed solid having improved and improved wettability, adhesiveness and chargeability on the surface of solids such as films, coating films and bulk, and a method for producing the same.

請求項1に記載の発明は、粒子径100〜500nmのフッソ樹脂微粒子と粒子径5〜200nmの一種以上の金属酸化物微粒子とが、均一に混合分散されたフッ素樹脂−金属酸化物混合固形物に関する。 The invention according to claim 1 is a fluororesin-metal oxide mixed solid in which fluorine resin fine particles having a particle size of 100 to 500 nm and one or more metal oxide fine particles having a particle size of 5 to 200 nm are uniformly mixed and dispersed. About.

請求項2に係る発明は、前記フッ素樹脂微粒子がテトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、パーフルオロ(アルキルビニルエーテル)、ビニリデンフルオライト及びビニルフルオライドから選ばれるモノマーの重合体又は共重合体からなる樹脂微粒子で、その分子量が1×10〜1×10である請求項1に記載のフッ素樹脂−金属酸化物混合固形物に関する。 The invention according to claim 2 is a polymer or copolymer of monomers in which the fluororesin fine particles are selected from tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, perfluoro (alkyl vinyl ether), vinylidene fluoride and vinyl fluoride. 2. The fluororesin-metal oxide mixed solid according to claim 1, which is a resin fine particle composed of a coalescence and has a molecular weight of 1 × 10 4 to 1 × 10 7 .

請求項3に係る発明は、前記金属酸化物がアルミナ、酸化チタン、酸化ジルコニウム、酸化ランタン、酸化ネオジウム、酸化セリウム、酸化鉄、酸化スズ及び酸化ニオブのうちから選択される1種以上の金属酸化物である請求項1または2のいずれか一つに記載のフッ素樹脂−金属酸化物混合固形物に関する。 The invention according to claim 3 is characterized in that the metal oxide is one or more metal oxides selected from alumina, titanium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, cerium oxide, iron oxide, tin oxide and niobium oxide. The fluororesin-metal oxide mixed solid according to claim 1, which is a product.

請求項4に係る発明は、前記フッ素樹脂−金属酸化物混合固形物中のフッ素樹脂含有量が重量比で、金属酸化物含有量の3〜100倍である請求項1乃至3のいずれか一つに記載のフッ素樹脂−金属酸化物混合固形物に関する。 In the invention according to claim 4, the fluororesin content in the fluororesin-metal oxide mixed solid is 3 to 100 times the metal oxide content in weight ratio. The fluororesin-metal oxide mixed solid described in 1.

請求項5に係る発明は、フッ素樹脂微粒子の水性分散液と金属酸化物微粒子ゾルとを常圧下、温度5〜300℃で、液中の金属酸化物微粒子の含有量に対して重量比でフッ素樹脂微粒子を3〜100倍及び水を10〜120倍で、さらに界面活性剤を入れあるいは界面活性剤を入れずに混合し均一混合分散液を得る工程と、
前記均一混合分散液を噴霧乾燥して均一混合粉体を製造する工程と、を含むことを特徴とする請求項1乃至4のいずれか一つに記載のフッ素樹脂−金属酸化物混合固形物の製造方法に関する。
According to a fifth aspect of the invention, an aqueous dispersion of fluororesin fine particles and a metal oxide fine particle sol are fluorine at a weight ratio with respect to the content of metal oxide fine particles in the liquid at a temperature of 5 to 300 ° C. under normal pressure. A step of obtaining a uniform mixed dispersion by mixing resin fine particles 3 to 100 times and water 10 to 120 times and further adding a surfactant or without adding a surfactant;
A step of producing a uniformly mixed powder by spray-drying the uniformly mixed dispersion liquid, wherein the fluororesin-metal oxide mixed solid according to any one of claims 1 to 4 is used. It relates to a manufacturing method.

請求項6に係る発明は、均一混合粉体からフッ素樹脂−金属酸化物混合固形物を製造する方法は、ドクターブレード法、加圧、加圧・加熱、溶融、およびこれらと押し出しまたは延伸操作との組み合わせからなる群から選択される処理工程を含むことを特徴とする請求項5に記載のフッ素樹脂−金属酸化物混合固形物の製造方法に関する。 In the invention according to claim 6, the method for producing the fluororesin-metal oxide mixed solid from the homogeneously mixed powder includes a doctor blade method, pressurization, pressurization / heating, melting, and an extrusion or stretching operation thereof. The process for manufacturing a fluororesin-metal oxide mixed solid according to claim 5, comprising a treatment step selected from the group consisting of:

本発明のフッ素樹脂−金属酸化物混合固形物では、フッ素樹脂および金属酸化物の微粒子は相互に均一に混合分散している。すなわち、それら本来の大きさやほぼ元の大きさに近い大きさで、換言すればナノ粒子がそのサイズレベルで均一に分散し混ざり合っている。したがって、熱および/または加圧で、簡単に、フィルムや好みの形状のバルク体に成形できる。また、本発明の混合固形物の製造方法は、フッ素樹脂微粒子の水性分散液と金属酸化物微粒子ゾルとを常圧下、温度5〜300℃で、液中の金属酸化物微粒子の含有量に対して重量比でフッ素樹脂微粒子を3〜100倍及び水を10〜120倍で混合し、噴霧乾燥させて製造されることから、簡便で省エネルギーかつ非常に安全であり経済的にも極めて優れている。 In the fluororesin-metal oxide mixed solid of the present invention, the fluororesin and metal oxide fine particles are uniformly mixed and dispersed with each other. That is, the original size or a size close to the original size, in other words, the nanoparticles are uniformly dispersed and mixed at the size level. Therefore, it can be easily formed into a film or a bulk body of a desired shape by heat and / or pressure. Further, the method for producing a mixed solid of the present invention is based on the content of the metal oxide fine particles in the liquid at a temperature of 5 to 300 ° C. under normal pressure with an aqueous dispersion of fluororesin fine particles and a metal oxide fine particle sol. Because it is manufactured by mixing fluororesin fine particles 3 to 100 times and water 10 to 120 times by weight ratio and spray drying, it is simple, energy-saving, extremely safe and extremely economical. .

本発明のフッ素樹脂−金属酸化物混合固形物の1つの実施形態におけるSEM写真であるIt is a SEM photograph in one embodiment of the fluororesin-metal oxide mixed solid of the present invention. 本発明のフッ素樹脂−金属酸化物混合固形物の他の実施形態におけるSEM写真である。It is a SEM photograph in other embodiments of the fluororesin-metal oxide mixed solid of the present invention.

<フッ素樹脂−金属酸化物混合粉体の構成>
本発明のフッ素樹脂−金属酸化物混合固形物は、基本的には、フッ素樹脂微粒子分散液(エマルジョン)と金属酸化物微粒子分散液(ゾル)とを混合し、瞬時に噴霧乾燥することで得られるもので、フッ素樹脂微粒子と金属酸化物微粒子がそれらの粒子サイズレベルで均一に分散し混ざり合ったものである。
<Configuration of fluororesin-metal oxide mixed powder>
The fluororesin-metal oxide mixed solid of the present invention is basically obtained by mixing a fluororesin fine particle dispersion (emulsion) and a metal oxide fine particle dispersion (sol) and instantaneously spray-drying. The fluororesin fine particles and the metal oxide fine particles are uniformly dispersed and mixed at the particle size level.

本発明におけるフッ素樹脂微粒子とは、テトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、パーフルオロ(アルキルビニルエーテル)、ビニリデンフルオライド及びビニルフルオライドから選ばれるモノマーの重合体または共重合体からなる樹脂微粒子であり、これらのうちで水に分散するものが、本発明のフッ素樹脂−金属酸化物混合固形物の調製に用いられる。 The fluororesin fine particle in the present invention is a resin composed of a polymer or copolymer of a monomer selected from tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, perfluoro (alkyl vinyl ether), vinylidene fluoride and vinyl fluoride. Fine particles which are dispersed in water are used for preparing the fluororesin-metal oxide mixed solid of the present invention.

本発明における金属酸化物微粒子とは酸化チタン(チタニア)、酸化ジルコニウム(ジルコニア)、酸化ランタン(ランタナ)、酸化ネオジウム、酸化セリウム(セリア)、酸化イットリウム(イットリア)、酸化スズ、酸化鉄、酸化ニオブ、及び酸化アルミニウム(アルミナ)を意味し、これら微粒子の水性コロイダルゾルが本発明のフッ素樹脂−金属酸化物混合固形物を得るために用いられる。 The metal oxide fine particles in the present invention are titanium oxide (titania), zirconium oxide (zirconia), lanthanum oxide (lanthana), neodymium oxide, cerium oxide (ceria), yttrium oxide (yttria), tin oxide, iron oxide, niobium oxide. , And aluminum oxide (alumina), and an aqueous colloidal sol of these fine particles is used to obtain the fluororesin-metal oxide mixed solid of the present invention.

フッ素樹脂と金属酸化物との混合度合いを高めるには、フッ素樹脂微粒子及び金属酸化物微粒子はそれら粒子の分子量が小さく、またサイズも小さい方が良い。より具体的には、フッ素樹脂微粒子では分子量が1×10〜1×10で粒子サイズが100〜500nmの範囲にあることが好ましく、金属酸化物の微粒子ではそのサイズが2〜150nm、好ましくは2〜50nmの範囲にあることが望ましい。
フッ素樹脂微粒子の分子量は1×10〜1×10が好ましく、2×10〜1×10がさらに好ましい。
この範囲より小さい場合は塗膜が脆くなる傾向があり、この範囲より大きい場合は溶融粘度が高すぎてPTFE粒子同士が融着しにくくなる傾向がある。
In order to increase the degree of mixing of the fluororesin and the metal oxide, it is preferable that the fluororesin fine particles and the metal oxide fine particles have a small molecular weight and a small size. More specifically, the fluororesin fine particles preferably have a molecular weight of 1 × 10 4 to 1 × 10 7 and a particle size in the range of 100 to 500 nm, and the metal oxide fine particles preferably have a size of 2 to 150 nm, preferably Is preferably in the range of 2 to 50 nm.
The molecular weight of the fluororesin fine particles is preferably 1 × 10 4 to 1 × 10 7, more preferably 2 × 10 4 to 1 × 10 7 .
When it is smaller than this range, the coating film tends to be brittle, and when it is larger than this range, the melt viscosity is too high and the PTFE particles tend to be hardly fused.

フッ素樹脂−金属酸化物混合粉体中のフッ素樹脂の含有量は、混合粉体の用途に応じて適宜決められるが、フッ素樹脂の含有量が少なくなりすぎると可撓性や柔軟性がなくなり、一方、多すぎると表面に濡れ性や粘着性が発現しないうえに、帯電し易くかつその量も多くなるので、混入する金属酸化物量およびフッ素樹脂含有量は、フッ素樹脂の含有量は重量比で金属酸化物含有量の1〜500倍好ましくは3〜100倍である。この際に、混入する金属酸化物の種類については、一種類であってもよくまた二種類以上であっても良く目的に応じ適宜選定することができる。 The content of the fluororesin in the fluororesin-metal oxide mixed powder is appropriately determined according to the use of the mixed powder, but if the content of the fluororesin is too small, flexibility and flexibility are lost. On the other hand, if the amount is too large, the surface does not exhibit wettability and adhesiveness, and is easy to be charged and the amount thereof increases, so the amount of mixed metal oxide and fluororesin content is the weight ratio of fluororesin content. It is 1 to 500 times, preferably 3 to 100 times the metal oxide content. At this time, the type of metal oxide to be mixed may be one type or two or more types, and may be appropriately selected according to the purpose.

<フッ素樹脂−金属酸化物混合固形物の製造方法>
本発明のフッ素樹脂−金属酸化物混合固形物は、フッ素樹脂微粒子の水性分散液と金属酸化物微粒子ゾルとを混合し、噴霧・乾燥することで製造する。また、この際の混合液の構成は、金属微粒子の含有量に対して重量比で、フッ素樹脂微粒子が1〜500倍好ましくは3〜100倍、水が5〜200倍好ましくは10〜120倍の範囲になるように調合することが望ましい。
フッ素樹脂微粒子の水性分散液は、純正のフッ素樹脂パウダーを水に溶かしてもよく、市販の水性分散液でも良い。
<Method for producing fluororesin-metal oxide mixed solid>
The fluororesin-metal oxide mixed solid of the present invention is produced by mixing an aqueous dispersion of fluororesin fine particles and a metal oxide fine particle sol, and spraying and drying. In addition, the composition of the mixed solution at this time is 1 to 500 times, preferably 3 to 100 times, and 5 to 200 times, preferably 10 to 120 times as much as the fluororesin fine particles, by weight ratio with respect to the content of the metal fine particles. It is desirable to prepare so that it may become the range.
The aqueous dispersion of fluororesin fine particles may be pure fluororesin powder dissolved in water or a commercially available aqueous dispersion.

混合については、フッ素樹脂微粒子の水性分散液と金属酸化物微粒子ゾルとを合わせた混合液が一瞬であろうとも均一混合分散液になる限りにおいては、特に規定するものではない。したがって、通常は、常圧下室温で適度な粘度の均一混合分散液を噴霧・乾燥するだけでフッ素樹脂微粒子と金属酸化物微粒子とが均一に混合分散した混合粉体が得られる。勿論、混合液の粘度が高すぎる場合は噴霧・乾燥工程が円滑に進行しないので、適度な粘度とするために希釈や、温度や圧力をそれぞれ室温や常圧よりも高くするあるいは低くするなどして調整してもよい。 The mixing is not particularly defined as long as the mixed liquid of the fluororesin fine particle aqueous dispersion and the metal oxide fine particle sol becomes a homogeneous mixed dispersion even if it is instantaneous. Therefore, a mixed powder in which the fluororesin fine particles and the metal oxide fine particles are uniformly mixed and dispersed is usually obtained simply by spraying and drying a uniform mixed dispersion having an appropriate viscosity at room temperature under normal pressure. Of course, if the viscosity of the liquid mixture is too high, the spraying / drying process will not proceed smoothly. For this reason, to achieve an appropriate viscosity, dilution, temperature and pressure should be made higher or lower than room temperature and normal pressure, respectively. May be adjusted.

フッ素樹脂微粒子の水性分散液と金属酸化物微粒子ゾルとを合わせた混合液が容易に均一混合分散液を形成する場合はもちろん、十分に混ざり合わず液液分離を起こす場合においても、同様に、フッ素樹脂微粒子と金属酸化物微粒子とが均一に混合分散した混合粉体が容易に得られる。液液分離した混合液を、撹拌、特に高速撹拌で、あるいは液液分離する溶液同士をジェット噴射混合で、均一混合分散液とすることは容易であり、この状態で噴霧・乾燥操作を施すことにより均一混合分散粉体が得られる。
また界面活性剤を入れないと液液分離する混合液であっても、撹拌、特に高速撹拌で、あるいは液液分離する溶液同士をジェット噴射混合で、均一混合分散液とすることは容易であり、この状態で噴霧・乾燥操作を施すことにより均一混合分散粉体が得られるため界面活性剤を入れない均一混合分散粉体を製造することができる。
本発明ではフッ素樹脂微粒子の水性分散液と金属酸化物微粒子ゾルに界面活性剤を加えてもよく、加えなくてもよい。
界面活性剤は分子間力を高めるために配合するが、その効果によって粉末同士がまとまり塊になる傾向があったため、本発明の発明者はテフロンディスパージョンにアルミナゾル10%を加え界面活性剤なしで混合し噴霧・乾燥操作を施したところ、良好なパウダーが得られた。
この均一混合粉体を、ドクターブレード法、加圧、加圧・加熱、溶融、およびこれらと押し出しまたは延伸操作との組み合わせからなる群から選択される処理工程によりフッ素樹脂−金属酸化物混合固形物を製造する。
Similarly, when the mixed liquid of the aqueous dispersion of fluororesin fine particles and the metal oxide fine particle sol easily forms a uniform mixed dispersion liquid, and when liquid-liquid separation occurs without being mixed well, A mixed powder in which fluororesin fine particles and metal oxide fine particles are uniformly mixed and dispersed can be easily obtained. It is easy to make a liquid mixture that has been liquid-liquid separated by stirring, especially high-speed stirring, or by jet-jet mixing of liquid-liquid separated solutions to form a uniform mixed dispersion. In this state, spray and dry operations should be performed. Thus, a uniformly mixed and dispersed powder is obtained.
In addition, even a liquid mixture that undergoes liquid-liquid separation if a surfactant is not added, it is easy to make a uniform mixed dispersion by stirring, particularly high-speed stirring, or by jet-jet mixing of liquid-liquid separated solutions. In this state, by performing the spraying / drying operation, a uniformly mixed and dispersed powder can be obtained, so that a uniformly mixed and dispersed powder without a surfactant can be produced.
In the present invention, a surfactant may or may not be added to the aqueous dispersion of fluororesin fine particles and the metal oxide fine particle sol.
Surfactants are blended to increase intermolecular force. However, because of the effect, the powders tend to become agglomerated, so the inventors of the present invention added 10% alumina sol to the Teflon dispersion without any surfactant. When mixed and sprayed and dried, a good powder was obtained.
This homogeneous mixed powder is a fluororesin-metal oxide mixed solid by a treatment process selected from the group consisting of a doctor blade method, pressurization, pressurization / heating, melting, and a combination thereof with an extrusion or stretching operation. Manufacturing.

沈殿やゲル化は粒子同士の集合・凝集や粒子間に溶媒等が介在した巨大な粒子間架橋で生じる。したがって、沈殿やゲル化を防ぐには、先ず粒子の集合・凝集および架橋を防ぐことが必要であり、このための方策として、通常、粒子同士を反発させることや粒子間の距離を広げることが行われる。具体的には、粒子に同じ電荷を持たせ(帯電させ)粒子同士を反発させること、粒子を界面活性剤で囲み複合ミセルとすること、より簡単には溶媒で希釈することなどが行われる。
金属酸化物コロイドの場合は、複合ミセルとした時も帯電により粒子同士を反発させ分散させる。
Precipitation and gelation are caused by aggregation / aggregation of particles and huge cross-linking between particles with a solvent or the like interposed between the particles. Therefore, in order to prevent precipitation and gelation, it is necessary to first prevent aggregation / aggregation and cross-linking of particles. As a measure for this, it is usually to repel particles or increase the distance between particles. Done. Specifically, the particles are given the same charge (charged) to repel each other, the particles are surrounded by a surfactant to form a composite micelle, or more simply diluted with a solvent.
In the case of a metal oxide colloid, even when a composite micelle is formed, the particles are repelled and dispersed by charging.

一般に、粒子の帯電量は溶液のpHに密接に関係する。換言すれば、pHに極めて敏感である。したがって、本発明のフッ素樹脂−金属酸化物混合分散液の調製に用いる酸化物ゾルのpHにも、その凝集を防ぐための適正範囲があり、これは金属種によって異なる。かくして、本発明に用いる金属酸化物ゾルのpHは、チタニアでは2.5〜13.5好ましくは3〜13、ジルコニアでは6.5〜9好ましくは7〜8.5、ランタナでは7〜10好ましくは7.5〜9.5、酸化ネオジウムでは7以上好ましくは7〜10、セリアでは6〜10好ましくは7〜9、酸化スズでは2〜12好ましくは2〜11、酸化鉄は5.5〜8.5好ましくは6〜8及びアルミナでは3.4〜9.5好ましくは4.7〜8.5であることが望ましい。それぞれの金属酸化物ゾルのpHがそれぞれの前記範囲を外れてしまうと、フッ素樹脂微粒子水性分散液との混合では、用いるフッ素樹脂微粒子水性分散液の種類にもよるが、ゲル化や沈殿が起きやすくなり、ノズルからの噴霧が困難となる。 In general, the charge amount of the particles is closely related to the pH of the solution. In other words, it is extremely sensitive to pH. Therefore, the pH of the oxide sol used for the preparation of the fluororesin-metal oxide mixed dispersion of the present invention also has an appropriate range for preventing the aggregation, and this varies depending on the metal species. Thus, the pH of the metal oxide sol used in the present invention is 2.5 to 13.5, preferably 3 to 13 for titania, 6.5 to 9, preferably 7 to 8.5 for zirconia, and 7 to 10 for lantana. 7.5 to 9.5, 7 or more preferably 7 to 10 for neodymium oxide, 6 to 10 preferably 7 to 9 for ceria, 2 to 12 preferably 2 to 11 for tin oxide, 5.5 to iron oxide 8.5, preferably 6-8, and alumina, 3.4-9.5, preferably 4.7-8.5. If the pH of each metal oxide sol is out of the above range, gelation or precipitation occurs in mixing with the fluororesin fine particle aqueous dispersion, depending on the type of fluororesin fine particle aqueous dispersion used. This makes it easier to spray from the nozzle.

噴霧・乾燥工程で用いるフッ素樹脂−金属酸化物混合分散液の調合には、用いる金属酸化物ゾルのpHのみならずフッ素樹脂微粒子水性分散液のpHも大いに影響する。金属酸化物ゾルとフッ素樹脂微粒子水性分散液との混合で生じる混合液のpHが変わると同時に、用いる金属酸化物ゾルによってはpHの変化で沈殿を生じたり、ゲル化したりするからである。したがって、フッ素樹脂−金属酸化物混合分散液の調合に用いるフッ素樹脂微粒子水性分散液のpHは、用いる金属酸化物ゾルにもよるが、一般的には、10以上であることが望ましい。   The preparation of the fluororesin-metal oxide mixed dispersion used in the spraying / drying process is greatly influenced not only by the pH of the metal oxide sol used but also by the pH of the fluororesin fine particle aqueous dispersion. This is because the pH of the mixture produced by mixing the metal oxide sol and the fluororesin fine particle aqueous dispersion changes, and at the same time, depending on the metal oxide sol used, precipitation occurs or gelation occurs due to the change in pH. Therefore, the pH of the fluororesin fine particle aqueous dispersion used for preparing the fluororesin-metal oxide mixed dispersion is generally preferably 10 or more, although it depends on the metal oxide sol used.

微粒子の集合・凝集はその濃度とも密接に関係する。濃度が高くなれば、増粘し凝固・ゲル化を起こしやすくなるばかりか、凝集沈殿も起きやすくなる。したがって、通常よく行われる溶媒希釈も有効である。しかしながら、希釈しすぎると、すなわち粒子濃度が低すぎると、噴霧・乾燥工程における溶媒の蒸発飛散に多大なエネルギーを消費することになり不経済であるので、この観点からは粒子濃度が高い方が好ましい。かかる観点から、前述のように、液全体の金属酸化物微粒子の含有量に対して重量比で、フッ素樹脂微粒子が1〜500倍好ましくは3〜100倍で、水が5〜200倍好ましくは10〜120倍の範囲にあることが望ましい。   The aggregation / aggregation of fine particles is closely related to the concentration. When the concentration is high, not only thickening and coagulation / gelation are likely to occur, but also aggregation and precipitation are likely to occur. Therefore, solvent dilution that is usually performed is also effective. However, if diluted too much, that is, if the particle concentration is too low, it is uneconomical because it consumes a great deal of energy for the evaporation and scattering of the solvent in the spraying / drying process. preferable. From this viewpoint, as described above, the fluororesin fine particles are 1 to 500 times, preferably 3 to 100 times, and water is preferably 5 to 200 times, by weight with respect to the content of the metal oxide fine particles in the whole liquid. It is desirable to be in the range of 10 to 120 times.

<原料について>
本発明において用いるフッ素樹脂微粒子水性分散液は市販のものでよく例えば三井フロロ製、31−JR(PTFE固形分:60重量%、平均分子量:2×10〜1×10、PTFE一次粒子の平均粒子径:0.25μm、pH:10.5)、ダイキン製、ポリフロンD−111(PTFE固形分:60重量%、平均分子量:2×10〜1×10、PTFE一次粒子の平均粒子径:0.25μm、 pH:9.7)、旭硝子製、AD911E(PTFE固形分:60重量%、平均分子量:2×10〜1×10、PTFE一次粒子の平均粒子径:0.25μm、pH:10)を用いてもよいがこれらに限定されない。
金属酸化物ゾルとしては多木化学製のタイノックA−6(TiO重量%:6、平均粒子径nm:10−20、pH:11−13)、バイラールZr−C20(ZrO重量%:20、平均粒子径nm:20、pH:7)、バイラールNb−G6000(Nb重量%:6、平均粒子径nm:15、pH:8)、バイラールAl−L7(Al2O3重量%:7、平均粒子径nm:5−10、pH:8)などを用いてもよいがこれらに限定されない。
<About raw materials>
The aqueous fluororesin fine particle dispersion used in the present invention may be a commercially available product, for example, 31-JR (PTFE solid content: 60% by weight, average molecular weight: 2 × 10 4 to 1 × 10 7 , PTFE primary particles, manufactured by Mitsui Fluoro. Average particle size: 0.25 μm, pH: 10.5), manufactured by Daikin, polyflon D-111 (PTFE solid content: 60% by weight, average molecular weight: 2 × 10 4 to 1 × 10 7 , average particle of PTFE primary particles Diameter: 0.25 μm, pH: 9.7), manufactured by Asahi Glass, AD911E (PTFE solid content: 60 wt%, average molecular weight: 2 × 10 4 to 1 × 10 7 , average particle size of PTFE primary particles: 0.25 μm PH: 10) may be used, but is not limited thereto.
As the metal oxide sol, Tynoch A-6 manufactured by Taki Chemical (TiO 2 wt%: 6, average particle diameter nm: 10-20, pH: 11-13), Viral Zr-C20 (ZrO 2 wt%: 20) , Average particle diameter nm: 20, pH: 7), viral Nb-G6000 (Nb 2 O 3 wt%: 6, average particle diameter nm: 15, pH: 8), viral Al-L7 (Al 2 O 3 wt%: 7, An average particle diameter nm: 5-10, pH: 8) may be used, but is not limited thereto.

以下、実施例によって本発明をより詳細に説明するが、本発明は、かかる実施例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.

[実施例1]
実施例1はフッ素樹脂微粒子水性分散液に金属酸化物としてアルミナゾルを混合させフッ素樹脂−金属酸化物混合固形物を製造した。
混合固形物の質量濃度と原子数を表1にまとめる。
[Example 1]
In Example 1, a fluororesin-metal oxide mixed solid was produced by mixing alumina sol as a metal oxide in an aqueous fluororesin fine particle dispersion.
The mass concentration and the number of atoms of the mixed solid are summarized in Table 1.

Figure 2018059032
Figure 2018059032

[実施例2]
実施例2はフッ素樹脂微粒子水性分散液に金属酸化物としてアルミナゾルと液液の相分離をおこしやすい金属であるニオブを混合させフッ素樹脂−金属酸化物混合固形物を製造した。
混合固形物の質量濃度と原子数を表2にまとめる。
[Example 2]
In Example 2, a fluororesin-metal oxide mixed solid was prepared by mixing alumina sol as a metal oxide with niobium, which is a metal that can easily cause phase separation, in the fluororesin fine particle aqueous dispersion.
Table 2 summarizes the mass concentration and the number of atoms of the mixed solid.

Figure 2018059032
Figure 2018059032

図1に示す通り本発明の方法を用いることでフッソ樹脂微粒子と金属酸化物微粒子とが、均一に混合分散されたことが理解できる。
また図2に示す通り、フッ素樹脂微粒子水性分散液と金属酸化物ゾルとの混合では、液液の相分離が起きてしまう場合でも、高速撹拌して直ぐに噴霧乾燥を施せば金属酸化物微粒子とフッ素樹脂微粒子とが均一に混合分散し合うことがわかる。したがって、噴霧乾燥は極めて大切な必須操作であることがわかる。
As shown in FIG. 1, it can be understood that the fluororesin fine particles and the metal oxide fine particles are uniformly mixed and dispersed by using the method of the present invention.
Further, as shown in FIG. 2, in the mixing of the fluororesin fine particle aqueous dispersion and the metal oxide sol, even if the liquid-liquid phase separation occurs, the metal oxide fine particles can be obtained by spray-drying immediately after stirring at high speed. It can be seen that the fluororesin fine particles are uniformly mixed and dispersed. Therefore, it turns out that spray drying is a very important essential operation.

本発明により、フッ素樹脂微粒子水性分散液との混合で、分離を起こしやすい、それどころか、撹拌を止めると直ぐ分離してしまうような金属酸化物ゾルでも、激しく撹拌し直ちに噴霧乾燥を行うことによって、フッ素樹脂微粒子と金属酸化物微粒子とが均一に混合分散した粉体を得ることができる。   According to the present invention, by mixing with an aqueous dispersion of fluororesin fine particles, metal oxide sols that are likely to be separated, or that are separated immediately when stirring is stopped, are vigorously stirred and immediately spray-dried, A powder in which fluororesin fine particles and metal oxide fine particles are uniformly mixed and dispersed can be obtained.

本発明により、フッ素樹脂の熱膨張や帯電が抑制されるうえに、水接触角が小さいため疎水性が弱まり濡れ性や粘着性も向上するためにフッ素樹脂表面の修飾・処理が容易となり、フッ素樹脂表面の多機能化・高機能化が可能となった。また、本発明による金属酸化物の混入で、フッ素樹脂が固くなり耐熱性が増すと同時に、傷つき難い表面となる効能も生まれる。 According to the present invention, the thermal expansion and charging of the fluororesin are suppressed, and since the water contact angle is small, the hydrophobicity is weakened and the wettability and adhesiveness are improved. It has become possible to increase the functionality and functionality of the resin surface. In addition, the incorporation of the metal oxide according to the present invention hardens the fluororesin and increases the heat resistance, and at the same time has the effect of becoming a scratch-resistant surface.

本発明の方法でフッ素樹脂微粒子にチタニア、ジルコニア、ランタナ、セリア、酸化スズ及びアルミナのそれぞれが均一に混合分散した粉体を製造し、それらのフィルムをSUSフィルムに圧着し被覆膜としたところ、種々の液体やゾルが均一に濡れて、しかも良好なコーティング膜を形成することが確かめられた。一方、金属酸化物を含まない従来のフッ素樹脂フィルムでは、試した全てのゾルは弾かれた。従来のフッ素樹脂のみであるとその表面は柔らかいので、硬いものに接触すると容易に傷がつくが、本発明のフッ素樹脂では例えば、前記SUS圧着金属酸化物混入フッ素樹脂フィルムにジルコニアゾル(有機高分子塗料でもよい)を塗布し乾燥したところ、フィルム表面に非常に硬いコーティング膜ができ、表面が非常に傷つきにくくなった。 A powder in which each of titania, zirconia, lantana, ceria, tin oxide and alumina is uniformly mixed and dispersed in fluororesin fine particles by the method of the present invention is manufactured, and these films are pressure-bonded to a SUS film to form a coating film. It was confirmed that various liquids and sols were uniformly wetted and a good coating film was formed. On the other hand, in the conventional fluororesin film containing no metal oxide, all the sols tried were repelled. The surface of a conventional fluororesin alone is soft, so that it is easily scratched when it comes into contact with a hard material. When a molecular paint (which may be a molecular paint) was applied and dried, a very hard coating film was formed on the film surface, and the surface became very difficult to be damaged.

本発明のフッ素樹脂−金属酸化物混合固形物は、従来のフッ素樹脂の物性を改良・調整したフッ素樹脂フィルム、型材、バルク等フッ素樹脂成形体、具体的には、濡れ性、粘着性、耐熱性および硬度が向上し、帯電しにくくなっているため、これらの特性を必要とするフッ素樹脂およびその成形体の製造に好適である。また、本発明による粉体およびフィルムは前記特性を備えているので、密着性が良く耐熱性や高度の高い表面被覆材やライニングとして、具体的には、電線や温度計、各種センサー、ガスケットやパッキン等各種材料・製品表面の被覆フィルムやライニングとして用いられるばかりか、多機能・高機能のための多層・多段コーティングにおけるアンダーコーティング材として極めて優れた性能を発揮する。   The fluororesin-metal oxide mixed solid of the present invention is a fluororesin film, mold material, bulk fluororesin molded body, etc., which has improved / adjusted physical properties of conventional fluororesins, specifically wettability, adhesiveness, heat resistance Therefore, it is suitable for the production of a fluororesin that requires these characteristics and a molded product thereof. In addition, since the powder and film according to the present invention have the above-mentioned characteristics, as a surface coating material or lining having good adhesion and high heat resistance and high degree, specifically, an electric wire, a thermometer, various sensors, a gasket, In addition to being used as a coating film and lining for various materials and product surfaces such as packing, it exhibits extremely excellent performance as an undercoating material in multi-layer and multi-stage coating for multi-function and high-function.

Claims (6)

粒子径100〜500nmのフッソ樹脂微粒子と粒子径5〜200nmの一種以上の金属酸化物微粒子とが、均一に混合分散されたフッ素樹脂−金属酸化物混合固形物。 A fluororesin-metal oxide mixed solid in which fluorine resin fine particles having a particle size of 100 to 500 nm and one or more metal oxide fine particles having a particle size of 5 to 200 nm are uniformly mixed and dispersed. 前記フッ素樹脂微粒子がテトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、パーフルオロ(アルキルビニルエーテル)、ビニリデンフルオライト及びビニルフルオライドから選ばれるモノマーの重合体又は共重合体からなる樹脂微粒子で、その分子量が1×10〜1×10である請求項1に記載のフッ素樹脂−金属酸化物混合固形物。 The fluororesin fine particles are resin fine particles comprising a polymer or copolymer of a monomer selected from tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, perfluoro (alkyl vinyl ether), vinylidene fluoride and vinyl fluoride, and 2. The fluororesin-metal oxide mixed solid according to claim 1, which has a molecular weight of 1 × 10 4 to 1 × 10 7 . 前記金属酸化物がアルミナ、酸化チタン、酸化ジルコニウム、酸化ランタン、酸化ネオジウム、酸化セリウム、酸化鉄、酸化スズ及び酸化ニオブのうちから選択される1種以上の金属酸化物である請求項1または2のいずれか一つに記載のフッ素樹脂−金属酸化物混合固形物。 The metal oxide is one or more metal oxides selected from alumina, titanium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, cerium oxide, iron oxide, tin oxide, and niobium oxide. The fluororesin-metal oxide mixed solid according to any one of the above. 前記フッ素樹脂−金属酸化物混合固形物中のフッ素樹脂含有量が重量比で、金属酸化物含有量の3〜100倍である請求項1乃至3のいずれか一つに記載のフッ素樹脂−金属酸化物混合固形物。 The fluororesin-metal according to any one of claims 1 to 3, wherein a fluororesin content in the fluororesin-metal oxide mixed solid is 3 to 100 times the metal oxide content by weight. Oxide mixed solid. フッ素樹脂微粒子の水性分散液と金属酸化物微粒子ゾルとを常圧下、温度5〜300℃で、液中の金属酸化物微粒子の含有量に対して重量比でフッ素樹脂微粒子を3〜100倍及び水を10〜120倍で、さらに界面活性剤を入れあるいは界面活性剤を入れずに混合し均一混合分散液を得る工程と、
前記均一混合分散液を噴霧乾燥して均一混合粉体を製造する工程と、を含むことを特徴とする請求項1乃至4のいずれか一つに記載のフッ素樹脂−金属酸化物混合固形物の製造方法。
The aqueous dispersion of fluororesin fine particles and the metal oxide fine particle sol are used at a temperature of 5 to 300 ° C. under normal pressure, and the fluororesin fine particles are added 3 to 100 times in weight ratio to the content of the metal oxide fine particles in the liquid A step of obtaining a homogeneous mixed dispersion by mixing water at 10 to 120 times, further adding a surfactant or without adding a surfactant,
A step of producing a uniformly mixed powder by spray-drying the uniformly mixed dispersion liquid, wherein the fluororesin-metal oxide mixed solid according to any one of claims 1 to 4 is used. Production method.
均一混合粉体からフッ素樹脂−金属酸化物混合固形物を製造する方法は、ドクターブレード法、加圧、加圧・加熱、溶融、およびこれらと押し出しまたは延伸操作との組み合わせからなる群から選択される処理工程を含むことを特徴とする請求項5に記載のフッ素樹脂−金属酸化物混合固形物の製造方法。 The method for producing the fluororesin-metal oxide mixed solid from the uniformly mixed powder is selected from the group consisting of a doctor blade method, pressurization, pressurization / heating, melting, and a combination of these and extrusion or stretching operations. The manufacturing method of the fluororesin-metal oxide mixed solid of Claim 5 characterized by including the processing process which comprises.
JP2016199565A 2016-10-07 2016-10-07 Solid molding of fluorine resin and metal oxide, and method for producing the solid Pending JP2018059032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016199565A JP2018059032A (en) 2016-10-07 2016-10-07 Solid molding of fluorine resin and metal oxide, and method for producing the solid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016199565A JP2018059032A (en) 2016-10-07 2016-10-07 Solid molding of fluorine resin and metal oxide, and method for producing the solid

Publications (1)

Publication Number Publication Date
JP2018059032A true JP2018059032A (en) 2018-04-12

Family

ID=61908315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016199565A Pending JP2018059032A (en) 2016-10-07 2016-10-07 Solid molding of fluorine resin and metal oxide, and method for producing the solid

Country Status (1)

Country Link
JP (1) JP2018059032A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019163434A (en) * 2018-03-20 2019-09-26 ジャパンマテックス株式会社 Solid molding of fluorine resin and metal oxide, and method for producing the solid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130539A (en) * 1996-10-28 1998-05-19 Asahi Glass Co Ltd Water repellent material
JP2008115336A (en) * 2006-11-07 2008-05-22 Du Pont Mitsui Fluorochem Co Ltd Adhesive fluororesin composite composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130539A (en) * 1996-10-28 1998-05-19 Asahi Glass Co Ltd Water repellent material
JP2008115336A (en) * 2006-11-07 2008-05-22 Du Pont Mitsui Fluorochem Co Ltd Adhesive fluororesin composite composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019163434A (en) * 2018-03-20 2019-09-26 ジャパンマテックス株式会社 Solid molding of fluorine resin and metal oxide, and method for producing the solid

Similar Documents

Publication Publication Date Title
JP6066581B2 (en) Polymer particles, aqueous dispersion containing the same, and fluororesin coating composition using the same
JP5252612B2 (en) Resin composite composition and method for producing the same
EP1960457B1 (en) Process for dispersing solid particles in particulate polymers
CN102504451A (en) Preparation method of fluororesin/nanometer composite material
CN110713717A (en) High-temperature-resistant dopamine-coated barium titanate/polyimide (BT @ PDA/PI) dielectric nano composite film
US20100081747A1 (en) Polymer composition with uniformly distributed nano-sized inorganic particles
WO2014024671A1 (en) Resin composition and molded article
CN101333269A (en) Low molecular weight polytetrafluoroethylene aqueous dispersion and its production method
WO2015164296A1 (en) Fluororesin and silica composition
JPH01306219A (en) Filled polytetrafluoroethylene molding method
Gao et al. Multi-walled carbon nanotube induced co-continuity of poly (ether ether ketone)/polyimide blends for high performance conductive materials
CN115956091A (en) Modified polytetrafluoroethylene aqueous dispersion
JP2018059032A (en) Solid molding of fluorine resin and metal oxide, and method for producing the solid
CN109983088A (en) Fluorocarbon polymer coating composition
US20170321070A1 (en) Fluororesin polymer-metallic oxide mixed dispersion and method manufacturing the same
JP2017203152A (en) Fluorine resin-metal oxide mixed dispersion and method for producing the same
US9346936B2 (en) Fluororesin composition and its molded product
JP2019163434A (en) Solid molding of fluorine resin and metal oxide, and method for producing the solid
CN116194670A (en) Compression molding composition, method for producing the same, and molded product
JP2007191563A (en) Method for producing mixed polytetrafluoroethylene fine powder and mixed polytetrafluoroethylene fine powder obtained by the method for production
KR102339592B1 (en) Polyimide―fluorine resin mixed aqueous dispersion, mixed powder and methods for manufacturing the same
JP3775420B2 (en) Low molecular weight polytetrafluoroethylene granulated powder, low molecular weight polytetrafluoroethylene powder and methods for producing them
CN114040836B (en) Method for producing molded products with suppressed surface gloss
CN1331920C (en) Granulated powder of low-molecular polytetrafluoro- ethylene and powder of low-molecular polytetrafluoro- ethylene and processes for producing both
CN108610796B (en) Fluororesin-aluminum oxide mixed dispersion liquid and process for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201223