JP2017203152A - Fluorine resin-metal oxide mixed dispersion and method for producing the same - Google Patents
Fluorine resin-metal oxide mixed dispersion and method for producing the same Download PDFInfo
- Publication number
- JP2017203152A JP2017203152A JP2017074860A JP2017074860A JP2017203152A JP 2017203152 A JP2017203152 A JP 2017203152A JP 2017074860 A JP2017074860 A JP 2017074860A JP 2017074860 A JP2017074860 A JP 2017074860A JP 2017203152 A JP2017203152 A JP 2017203152A
- Authority
- JP
- Japan
- Prior art keywords
- fluororesin
- oxide
- metal oxide
- fine particles
- mixed dispersion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D201/00—Coating compositions based on unspecified macromolecular compounds
- C09D201/02—Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
- C09D201/04—Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/02—Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
- C08L101/04—Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
- C09D1/02—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances alkali metal silicates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Paints Or Removers (AREA)
Abstract
Description
本発明は、金属、カーボン、プラスチックス、ガラス、セラミックス、木材等の各種材料表面およびこれら材料から成る製品表面の被覆用コーティング液や前記材料の繊維や粉体の含浸液、およびその製造方法に関する。 The present invention relates to the surface of various materials such as metals, carbon, plastics, glass, ceramics, and wood, and the coating liquid for coating the surface of products made of these materials, the impregnating liquid for fibers and powders of the materials, and the production method thereof .
フッ素樹脂は、ポリエチレンやポリプロピレンなど通常のプラスチックスや有機高分子に比べ耐熱性・耐寒性に優れ、酸やアルカリをはじめ種々の薬品に対する耐性すなわち耐薬品性・耐蝕性が高く、不燃性で電気絶縁性も高く誘電損失も少ないうえに、非粘着・非濡れ性で水も油も弾き、低摩擦性で適度な弾力性も備えていることから、型材、容器、電線、温度計、各種センサー、ガスケット、パッキンやフライパン等の各種材料・製品表面の被覆に用いられている。
これらの被覆は、通常、フッ素樹脂フィルムのライニングやフッ素樹脂微粒子の分散液のコーティングや含浸等で行われ、多種多様なフッ素樹脂フィルムや分散液が市販されており、新規製品の開発も行われている(例えば、特許文献1)。
Fluorine resin is superior in heat resistance and cold resistance compared to ordinary plastics such as polyethylene and polypropylene, and organic polymers, and has high resistance to various chemicals including acid and alkali, that is, chemical resistance and corrosion resistance. Insulation and low dielectric loss, non-adhesive and non-wetting, water and oil repelling, low friction and moderate elasticity, mold material, container, electric wire, thermometer, various sensors It is used to coat various materials and product surfaces such as gaskets, packings and frying pans.
These coatings are usually performed by lining a fluororesin film, coating or impregnating a dispersion of fluororesin fine particles, and a wide variety of fluororesin films and dispersions are commercially available, and new products are being developed. (For example, Patent Document 1).
しかしながら、フッ素樹脂は、その他の有機高分子に比べ、不燃で耐熱性に優れるが、その他の有機高分子樹脂と比べて柔らかいため、成形時の寸法が安定し難く、多機能化や高機能化に有益なコーティングや修飾等の表面処理を施し難い。 However, fluoropolymers are nonflammable and have excellent heat resistance compared to other organic polymers, but because they are softer than other organic polymer resins, their dimensions during molding are difficult to stabilize, making them multifunctional and highly functional. It is difficult to perform surface treatment such as coating or modification that is beneficial to the environment.
また、フッ素樹脂は極めて優れた絶縁材料であるため、非常に帯電しやすく、帯電列では最もマイナスに帯電しやすい物質として位置付けられている。帯電は可燃性ガス・溶剤の引火爆発やフッ素樹脂製品自体の絶縁破壊の原因ともなるので、フッ素樹脂の帯電防止・静電気除去対策は極めて重要である。 In addition, since the fluororesin is an extremely excellent insulating material, it is very easily charged, and is positioned as a substance that is most easily negatively charged in the charge train. Since electrification can cause flammable explosions of flammable gases and solvents and dielectric breakdown of fluororesin products themselves, antistatic and antistatic measures for fluororesins are extremely important.
帯電の除去は、通常、フッ素樹脂およびその製品にアースを付けたり、フッ素樹脂に導電物質を混ぜることで行っているが、このような方法が困難な場合も多い。
例えば、多機能化・高性能化のために、表面のコーティングや修飾は頻繁に行われる操作・工程であるが、フッ素樹脂は極めて容易に強く帯電するため、塗布液が弾かれ、コーティング出来ないことが多い。
コーティング出来ない場合に、アースを利用するとしても作業性が悪く、現行の導電性物質であるカーボンブラック(CB)、カーボン繊維(CF)、カーボンナノチューブ(CNT)や金属微粉を混入する場合は、それらの混入で生じた表面がその後のコーティングや修飾に適合しない場合がある。
The removal of the charge is usually performed by attaching a ground to the fluororesin and its product or mixing a conductive material with the fluororesin, but such a method is often difficult.
For example, surface coating and modification are frequently performed operations / processes for multi-functionality and high performance, but fluororesin is very easily and strongly charged, so the coating solution is repelled and cannot be coated. There are many cases.
When the coating is not possible, workability is poor even if ground is used, and when carbon black (CB), carbon fiber (CF), carbon nanotube (CNT) or metal fine powders, which are current conductive materials, are mixed, The resulting surface may not be compatible with subsequent coatings or modifications.
さらに、フッ素樹脂の非濡れ性と非粘着性は、汚れ難いという大きな利点を有するが、表面コーティングや修飾に対しては、塗布液が塗れ難くなるため大きな障害となる。 Furthermore, the non-wetting property and non-adhesiveness of the fluororesin have a great advantage that they are difficult to get dirty, but it is a major obstacle to surface coating and modification because the coating liquid is difficult to apply.
通常、有機高分子からなるプラスチックスでは、加工性、耐候性、耐久性、剛性、耐衝撃性、摺動性、耐摩耗性、難燃性、耐熱性、遮音性、ガス遮蔽性等を高めるため、あるいは帯電防止や摩擦性など表面特性を改良するために、添加剤(フィラー)を混入させる。
フィラーには、金属酸化物や金属、具体的には、タルク、マイカ、酸化ケイ素(シリカ)、チタニア、アルミナ、マグネシア、黒鉛、硫化モリブデン、炭酸カルシウム、鉄粉等の微粒子や繊維など、多種多様なものが存在し、これらは目的と対策に応じて選択され使用されている(非特許文献1−3)。
Usually, plastics made of organic polymers improve processability, weather resistance, durability, rigidity, impact resistance, slidability, wear resistance, flame resistance, heat resistance, sound insulation, gas shielding, etc. Therefore, an additive (filler) is mixed in order to improve surface characteristics such as antistatic or friction.
There are a wide variety of fillers, including metal oxides and metals, specifically talc, mica, silicon oxide (silica), titania, alumina, magnesia, graphite, molybdenum sulfide, calcium carbonate, iron powder, and other fine particles and fibers. These are selected and used according to the purpose and countermeasures (Non-Patent Documents 1-3).
例えば、力学的・熱的補強にはタルク、シリカ、炭酸カルシウム、アルミナ、モンモリロナイトや合成マイカ等、電磁波・静電気対策にはCB、CNTや金属粉等、高周波対策にはシリカや窒化ホウ素等、放熱には窒化アルミニウム、窒化ホウ素やアルミナ等、難燃化には水酸化アルミニウム、水酸化マグネシウム、酸化アンチモン、ハイドロタルサイトやシリカ等、ガスバリヤー対策にはモンモリロナイトや合成マイカ等、アンチブロッキング対策にはシリカ、タルクや炭酸カルシウム等、殺菌・抗菌には銀・ゼオライトや銀・シリカ等が、それぞれフィラーとして用いられている(非特許文献2)。 For example, talc, silica, calcium carbonate, alumina, montmorillonite, synthetic mica, etc. for mechanical and thermal reinforcement, CB, CNT, metal powder, etc. for electromagnetic and electrostatic countermeasures, silica, boron nitride, etc. for high frequency countermeasures, heat dissipation Aluminum nitride, boron nitride, alumina, etc., flame retardant aluminum hydroxide, magnesium hydroxide, antimony oxide, hydrotalcite, silica, etc., gas barrier measures, montmorillonite, synthetic mica, etc., anti-blocking measures Silver, zeolite, silver, silica, and the like are used as fillers for sterilization and antibacterial, such as silica, talc, and calcium carbonate (Non-patent Document 2).
フッ素樹脂においては、無機フィラーは通常、ガラス繊維、カーボン繊維、グラファイト、カーボン、CNT、二硫化モリブデン、シリカ等であり、それらは主として耐摩耗性、耐圧縮特性、耐コールドフロー特性、摺動特性、導電性等の改良・向上のために添加されている。
これらは、濡れ性、粘着性、帯電性の調整や改良等のフッ素樹脂の多機能化・高機能化のための表面特性の改質を意図したものではなく、表面特性の改質に合致するものとは言い難い。
In fluororesins, inorganic fillers are usually glass fibers, carbon fibers, graphite, carbon, CNT, molybdenum disulfide, silica, etc., which are mainly wear resistant, compression resistant, cold flow resistant, sliding properties. It is added to improve and improve conductivity.
These are not intended to modify the surface properties for multifunctional / high functionality of fluororesin, such as adjustment and improvement of wettability, adhesiveness, and chargeability, but match the modification of the surface properties. It's hard to say.
一般に、フッ素樹脂の粉体、フィルムおよびコーティング膜等の固形成形体は、その微粒子水性分散液から水分を蒸発し乾燥して得られる。このような操作・工程では、フィラー成分は予めフッ素樹脂微粒子水性分散液(エマルジョン)に添加・混合され、フッ素樹脂微粒子とフィラー成分(添加剤)の均一混合分散液となっていることが望ましい。
しかしながら、フッ素樹脂微粒子水性分散液への添加・混合で、均一混合分散液となる添加剤の種類は非常に少ない。
In general, solid molded articles such as fluororesin powders, films and coating films are obtained by evaporating moisture from the fine particle aqueous dispersion and drying. In such operations / processes, it is desirable that the filler component is added and mixed in advance to the fluororesin fine particle aqueous dispersion (emulsion) to form a homogeneous mixed dispersion of the fluororesin fine particles and the filler component (additive).
However, there are very few types of additives that can be added to and mixed with the fluororesin fine particle aqueous dispersion to form a uniform mixed dispersion.
特許文献2−4では、フッ素樹脂エマルジョンとの混合で均一分散する添加剤として無機微粒子のコロイダルゾル液が開示されており、具体的にはシリカ、酸化チタン、ゼオライト、酸化アルミニウム(アルミナ)、酸化亜鉛、五酸化アンチモン、炭化ケイ素、窒化ケイ素、窒化アルミニウム、酸化鉛、酸化スズ、酸化マグネシウム等が挙げられ、多くの種類の添加剤がフッ素樹脂エマルジョンとの均一混合分散液調製に適合するとしている。
しかしながら、前記特許文献における実施例では、均一混合分散液の調製は全てシリカに限定されており、シリカ以外の前記無機微粒子のコロイダル溶液については、実施例が記載されておらず、混合に用いる無機微粒子ゾルの性質、組成や構成等についても記載はなく、無機微粒子ゾルの物質名のみが記載されているのみである。
Patent Documents 2-4 disclose colloidal sol solutions of inorganic fine particles as additives that are uniformly dispersed by mixing with a fluororesin emulsion. Specifically, silica, titanium oxide, zeolite, aluminum oxide (alumina), oxidation are disclosed. Zinc, antimony pentoxide, silicon carbide, silicon nitride, aluminum nitride, lead oxide, tin oxide, magnesium oxide, etc. are mentioned, and many kinds of additives are said to be suitable for preparing homogeneous mixed dispersion with fluororesin emulsion .
However, in the examples in the patent document, the preparation of the homogeneous mixed dispersion is limited to silica, and no examples are described for the colloidal solution of the inorganic fine particles other than silica. There is no description about the properties, composition, configuration, etc. of the fine particle sol, only the substance name of the inorganic fine particle sol is described.
したがって、フッ素樹脂エマルジョンとの混合で均一分散する添加剤はほとんどが粘性安定に優れるシリカゾルやオルガノシリケート溶液であり、ごく一部にアルミナゾルが知られているに過ぎない(特許文献1−6)。
これらの添加は、最終的に得られるフッ素樹脂固体の機械的強度、耐熱性、寸法安定性、圧縮クリープ特性および溶融成形性の改善を狙ったもので、表面特性の改質・調整を意図したものではなく、フッ素樹脂の表面特性の改質や調整に使用可能な混合分散液は入手困難である。
Therefore, most of the additives that are uniformly dispersed by mixing with the fluororesin emulsion are silica sol and organosilicate solution with excellent viscosity stability, and only a part of alumina sol is known (Patent Documents 1-6).
These additions are aimed at improving the mechanical properties, heat resistance, dimensional stability, compression creep properties and melt moldability of the final fluoropolymer solids, and are intended to improve and adjust the surface properties. However, it is difficult to obtain a mixed dispersion that can be used to modify or adjust the surface properties of the fluororesin.
上記した理由から、フッ素樹脂の多機能化・高機能化のための表面特性の改質、具体的には、濡れ性、粘着性、帯電性の調整や改良を意図としたフィラー(添加剤)の研究や技術開発は、フッ素樹脂粉体、フィルムやコーティング膜等の固体やその成形体のみならず、それらの元となるフッ素樹脂微粒子水性分散液においても、未発達な状況である。 For the reasons mentioned above, fillers (additives) intended to modify the surface properties for multifunctional and advanced functionality of fluororesins, specifically to adjust and improve wettability, adhesiveness, and chargeability This research and technical development are not yet developed for not only solids such as fluororesin powders, films and coating films, and molded articles thereof, but also aqueous dispersions of fluororesin fine particles, which are their origin.
本発明は、上記したような従来技術の問題点を解決すべくなされたものであって、発明者らは、フッ素樹脂の微粒子水性分散液やエマルジョンと金属酸化物コロイダルゾルの組み合わせについて広範に探索を行うと共に、それらの配合・調製方法について試行錯誤を繰り返し、鋭意研究を重ねることにより、最終的に得られるフッ素樹脂粉体、フィルムやコーティング膜等の固体表面の濡れ性、粘着性、帯電性の調整や改良を可能とするフッ素樹脂微粒子と金属酸化物微粒子とが水性溶媒中に均一に浮遊分散した混合分散液(ゾル)の開発に成功した。 The present invention has been made to solve the above-mentioned problems of the prior art, and the inventors have extensively searched for a fine particle aqueous dispersion of fluororesin or a combination of an emulsion and a metal oxide colloidal sol. In addition to repeated trial and error with regard to their blending and preparation methods, and repeated earnest research, the final wettability, tackiness, and charging properties of solid surfaces such as fluororesin powders, films and coating films We have succeeded in developing a mixed dispersion (sol) in which fluororesin fine particles and metal oxide fine particles that can be adjusted and improved are suspended and dispersed uniformly in an aqueous solvent.
請求項1に係る発明は、フッ素樹脂微粒子の水性分散液と、酸化チタン、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化セリウムあるいは酸化スズのいずれか1つの適正pH値の金属酸化物微粒子ゾル、とを混合してなる水系のフッ素樹脂−金属酸化物混合分散液であって、前記フッ素樹脂微粒子および前記金属酸化物微粒子が共に凝集沈殿、ゲル化・凝固および/または相分離を生ずることなく浮遊分散し、前記浮遊分散状態が室温保存で3日間以上安定に維持されることを特徴とするとともにこのフッ素樹脂−金属酸化物混合分散液から溶媒を蒸発飛散して得られる固形物の水接触角が130°以下、表面抵抗率が2.0×1012Ω/□以下となることを特徴とするフッ素樹脂−金属酸化物混合分散液に関する。 The invention according to claim 1 includes an aqueous dispersion of fluororesin fine particles, and metal oxide fine particle sol having an appropriate pH value of any one of titanium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, cerium oxide, and tin oxide. An aqueous fluororesin-metal oxide mixed dispersion obtained by mixing the fluororesin fine particles and the metal oxide fine particles together without floating and dispersing without causing aggregation precipitation, gelation / coagulation and / or phase separation. The floating dispersion state is stably maintained for 3 days or more when stored at room temperature, and the water contact angle of the solid obtained by evaporating and scattering the solvent from the fluororesin-metal oxide mixed dispersion is The present invention relates to a fluororesin-metal oxide mixed dispersion characterized by being 130 ° or less and having a surface resistivity of 2.0 × 10 12 Ω / □ or less.
請求項2に係る発明は、前記金属酸化物微粒子ゾルの適正pH値が、酸化チタンでは2.5−13.5、酸化ジルコニウムでは6.5−9、酸化ランタンでは7−10、酸化ネオジムでは7−10、酸化セリウムでは6.5−9.5、酸化スズでは9−11であることを特徴とする請求項1に記載のフッ素樹脂−金属酸化物混合分散液に関する。 In the invention according to claim 2, the appropriate pH value of the metal oxide fine particle sol is 2.5-13.5 for titanium oxide, 6.5-9 for zirconium oxide, 7-10 for lanthanum oxide, and neodymium oxide. 7. The fluororesin-metal oxide mixed dispersion according to claim 1, wherein 7-10, cerium oxide is 6.5-9.5, and tin oxide is 9-11.
請求項3に係る発明は、前記フッ素樹脂−金属酸化物混合分散液が、該分散液中の前記金属酸化物微粒子の含有量に対して重量比で、フッ素樹脂微粒子が3−100倍、水が5−120倍で構成されることを特徴とする請求項1又は2に記載のフッ素樹脂−金属酸化物混合分散液に関する。 According to a third aspect of the present invention, the fluororesin-metal oxide mixed dispersion is in a weight ratio with respect to the content of the metal oxide fine particles in the dispersion, and the fluororesin fine particles are 3 to 100 times more water. It is comprised by 5-120 times, It is related with the fluororesin-metal oxide mixed dispersion of Claim 1 or 2.
請求項4に係る発明は、フッ素樹脂微粒子の水性分散液と、酸化チタン、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化セリウムあるいは酸化スズのいずれか1つの適正pH値の金属酸化物微粒子ゾル、とを常圧下、5−100℃の温度で、液中の金属酸化物微粒子の含有量に対して重量比で、フッ素樹脂微粒子を3−100倍、水を5−120倍として混合し、製造することを特徴とする請求項1乃至3のいずれか1つに記載のフッ素樹脂−金属酸化物混合分散液の製造方法に関する。 The invention according to claim 4 includes an aqueous dispersion of fluororesin fine particles, and metal oxide fine particle sol having an appropriate pH value of any one of titanium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, cerium oxide, and tin oxide. At a temperature of 5 to 100 ° C. under normal pressure and mixed in a weight ratio with respect to the content of the metal oxide fine particles in the liquid, 3 to 100 times the fluororesin fine particles and 5 to 120 times the water. The method for producing a fluororesin-metal oxide mixed dispersion according to any one of claims 1 to 3.
請求項5に係る発明は、前記金属酸化物微粒子ゾルの適正pH値が、酸化チタンでは2.5−13.5、酸化ジルコニウムでは6.5−9、酸化ランタンでは7−10、酸化ネオジムでは7−10、酸化セリウムでは6.5−9.5、酸化スズでは9−11であることを特徴とする請求項4に記載のフッ素樹脂−金属酸化物混合分散液の製造方法に関する。 In the invention according to claim 5, the appropriate pH value of the metal oxide fine particle sol is 2.5-13.5 for titanium oxide, 6.5-9 for zirconium oxide, 7-10 for lanthanum oxide, and neodymium oxide. 7. The method for producing a fluororesin-metal oxide mixed dispersion according to claim 4, wherein 7-10, cerium oxide is 6.5-9.5, and tin oxide is 9-11.
本発明のフッ素樹脂−金属酸化物混合分散液は、フッ素樹脂および金属酸化物の微粒子が沈殿を起こすような凝集や集合が無く、それら本来の大きさ、あるいは多少凝集を起こした場合においても元の大きさに近い大きさで、すなわち重力に抗って水溶媒中に浮遊分散できる大きさで水溶媒中に均一に混合分散しているため、本発明の混合分散液を被覆対象物に塗布、含浸あるいはディップ(浸)した後、乾燥・熱処理するという簡便な操作・作業で、金属酸化物添加フッ素樹脂(テフロン(登録商標))層被覆を自在の厚さで、しかも微粒子の緻密集積から始まるがゆえに無空隙で施すことができる。
また、本発明の混合分散液を用いる操作・作業は簡便であるため、省エネルギー且つ非常に安全であり、経済的にも極めて優れている。
The fluororesin-metal oxide mixed dispersion of the present invention has no aggregation or aggregation that causes precipitation of the fluororesin and metal oxide fine particles, and even when the original size or some aggregation occurs. The mixed dispersion of the present invention is applied to the object to be coated because it is uniformly mixed and dispersed in the water solvent in a size close to the size of the water, that is, in a size capable of floating and dispersing in the water solvent against gravity. The metal oxide-added fluororesin (Teflon (registered trademark)) layer can be coated at any thickness and with the fine accumulation of fine particles by a simple operation and work of impregnation or dipping (drying), drying and heat treatment. Since it starts, it can be applied without voids.
In addition, since the operation and work using the mixed dispersion of the present invention is simple, it is energy-saving and extremely safe, and is extremely excellent economically.
<フッ素樹脂−金属酸化物混合分散液の構成>
本発明のフッ素樹脂−金属酸化物混合分散液は、基本的にはフッ素樹脂微粒子、金属酸化物微粒子および水により構成されるフッ素樹脂微粒子および金属酸化物微粒子が浮遊分散した水性分散液である。なお、フッ素樹脂−金属酸化物混合分散液の構成物はこれらに限定されず、その他の構成物が含まれていてもよい。
<Configuration of fluororesin-metal oxide mixed dispersion>
The fluororesin-metal oxide mixed dispersion of the present invention is basically an aqueous dispersion in which fluororesin fine particles and metal oxide fine particles composed of fluororesin fine particles, metal oxide fine particles and water are suspended and dispersed. In addition, the structure of a fluororesin-metal oxide mixed dispersion is not limited to these, The other structure may be contained.
本明細書におけるフッ素樹脂微粒子とは、テトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、パーフルオロ(アルキルビニルエーテル)、ビニリデンフルオライド及びビニルフルオライド等から選択されるモノマーの重合体またはそれらの共重合体からなる樹脂微粒子であることが好ましく、これらのうちで水に分散するものが、本発明のフッ素樹脂−金属酸化物混合分散液の調製に好適に用いられる。
尚、水に分散するものであれば、上記したモノマー以外のモノマーあるいは共重合体を使用してもよい。
In the present specification, the fluororesin fine particles are a polymer of monomers selected from tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, perfluoro (alkyl vinyl ether), vinylidene fluoride, vinyl fluoride, and the like, or a copolymer thereof. It is preferable that it is the resin fine particle which consists of a polymer, and what disperse | distributes to water among these is used suitably for preparation of the fluororesin-metal oxide mixed dispersion liquid of this invention.
In addition, as long as it disperse | distributes to water, you may use monomers or copolymers other than the above-mentioned monomer.
また、本発明における金属酸化物微粒子とは酸化チタン(チタニア)、酸化ジルコニウム(ジルコニア)、酸化ランタン(ランタナ)、酸化ネオジム、酸化セリウム(セリア)、酸化スズを意味し、これら微粒子の水性コロイダルゾルが本発明のフッ素樹脂−金属酸化物混合分散液を得るために用いられる。 Further, the metal oxide fine particles in the present invention mean titanium oxide (titania), zirconium oxide (zirconia), lanthanum oxide (lanthanum), neodymium oxide, cerium oxide (ceria), tin oxide, and an aqueous colloidal sol of these fine particles. Is used to obtain the fluororesin-metal oxide mixed dispersion of the present invention.
フッ素樹脂微粒子や金属酸化物微粒子において、粒子はそのサイズが大きくなるにつれ、沈降、沈殿しやすくなる。したがって、フッ素樹脂および金属酸化物の微粒子が水性溶媒中で浮遊分散状態を長期間保つためには、それらの粒子のサイズは小さい方が良い。
より具体的には、フッ素樹脂微粒子では一次粒子の平均粒子径が0.1−0.5μmの範囲にあることが好ましく、金属酸化物微粒子ではその平均粒子径が2−150nm、好ましくは2−50nmの範囲にあることが望ましい。しかし、水性溶媒中で浮遊分散状態を長期間保つことができるのであれば、フッ素樹脂および金属酸化物の微粒子のサイズは、上記に限定されない。なお、金属酸化物微粒子の平均粒子径は、(株)堀場製作所製「動的光散乱式粒径分布測定装置 LB−500」で測定した際のメジアン径である。
In fluororesin fine particles and metal oxide fine particles, the particles tend to settle and precipitate as the size increases. Therefore, in order for the fluororesin and metal oxide fine particles to maintain a suspended dispersion state in an aqueous solvent for a long period of time, it is better that the size of the particles is small.
More specifically, the average particle diameter of primary particles is preferably in the range of 0.1 to 0.5 μm for fluororesin fine particles, and the average particle diameter for metal oxide fine particles is 2-150 nm, preferably 2- It is desirable to be in the range of 50 nm. However, the size of the fluororesin and metal oxide fine particles is not limited to the above as long as the suspended dispersion state can be maintained in an aqueous solvent for a long period of time. In addition, the average particle diameter of metal oxide microparticles | fine-particles is a median diameter at the time of measuring with "Dynamic light scattering type particle size distribution measuring device LB-500" by Horiba, Ltd.
粒子の溶媒中での均一浮遊分散には、その溶媒との親和性は勿論、粒子同士を凝集させないための考慮および工夫が重要である。凝集によって増粘し凝固・ゲル化が起こり、沈殿が生じるからである。したがって、粒子同士の集合および凝集を防ぐことが必要であり、このための方策として、粒子に同じ電荷を持たせ(帯電させ)粒子同士を反発させることおよび粒子を界面活性剤で囲み複合ミセルとすること等が行われる。
金属酸化物コロイドの場合は、複合ミセルとした場合においても、帯電で粒子同士を反発させ分散させているものが多い。
In order to uniformly float and disperse particles in a solvent, not only the affinity with the solvent but also considerations and ideas for preventing the particles from aggregating are important. This is because the coagulation causes thickening and coagulation / gelation, resulting in precipitation. Therefore, it is necessary to prevent aggregation and aggregation of particles, and as a measure for this, the particles have the same charge (charge) and the particles are repelled, and the particles are surrounded by a surfactant and combined with the micelle. And so on.
In the case of a metal oxide colloid, even in the case of a composite micelle, many particles are repelled and dispersed by charging.
一般に、粒子の帯電量は溶液のpHに密接に関係し、pHに極めて敏感である。したがって、本発明のフッ素樹脂−金属酸化物混合分散液の調製に用いる金属酸化物ゾルのpHにも、その凝集を防ぐための適正範囲があり、これは金属種によって異なる。
本発明に用いる金属酸化物ゾルのpHは、チタニアでは2.5−13.5、好ましくは3−13、ジルコニアでは6.5−9、好ましくは7−8.5、ランタナでは7−10、好ましくは7.5−9.5、酸化ネオジムでは7−10、好ましくは7.5−9.5、セリアでは6.5−9.5、好ましくは7−9、および酸化スズでは9−11、好ましくは9.5−10.5であることが望ましい。
In general, the charge amount of the particles is closely related to the pH of the solution and is extremely sensitive to the pH. Therefore, the pH of the metal oxide sol used for the preparation of the fluororesin-metal oxide mixed dispersion of the present invention also has an appropriate range for preventing the aggregation, and this varies depending on the metal species.
The pH of the metal oxide sol used in the present invention is 2.5-13.5, preferably 3-13 for titania, 6.5-9, preferably 7-8.5 for zirconia, 7-10 for lantana, Preferably 7.5-9.5, neodymium oxide 7-10, preferably 7.5-9.5, ceria 6.5-9.5, preferably 7-9, and tin oxide 9-11 , Preferably 9.5 to 10.5.
フッ素樹脂−金属酸化物混合分散液の調製に用いるフッ素樹脂微粒子水性分散液のpHは、一般的には、7−11であることが望ましい。 In general, the pH of the fluororesin fine particle aqueous dispersion used for the preparation of the fluororesin-metal oxide mixed dispersion is desirably 7-11.
フッ素樹脂−金属酸化物混合分散液のpH範囲は、1−13であることが好ましい。上記pH範囲は、より好ましくは、3−12である。フッ素樹脂微粒子水性分散液と金属酸化物ゾルの種類と量は、両者を混合して得られるフッ素樹脂−金属酸化物混合分散液のpH範囲が上記範囲となるように、また、所定の分散安定性等の特性が得られるように、適切に設定することが望ましい。なお、得られたフッ素樹脂−金属酸化物混合分散液のpH範囲が1−13から外れていたときは、適当な酸又はアルカリを用いて上記pH範囲内となるように調整することが好ましい。 The pH range of the fluororesin-metal oxide mixed dispersion is preferably 1-13. The pH range is more preferably 3-12. The kind and amount of the fluororesin fine particle aqueous dispersion and the metal oxide sol are adjusted so that the pH range of the fluororesin-metal oxide mixed dispersion obtained by mixing both is within the above range, and a predetermined dispersion stability. It is desirable to set appropriately so that characteristics such as sex can be obtained. In addition, when the pH range of the obtained fluororesin-metal oxide mixed dispersion is out of 1-13, it is preferable to adjust the pH to be within the above pH range using an appropriate acid or alkali.
本明細書において、フッ素樹脂−金属酸化物混合分散液の浮遊分散状態が安定に維持されるとは、少なくとも3日間の室温保存の条件でフッ素樹脂−金属酸化物混合分散液中のフッ素樹脂微粒子および金属酸化物微粒子が共に凝集沈殿、ゲル化・凝固および/または相分離を生ずることなく浮遊分散している状態が維持されることをいう。 In the present specification, the fact that the suspended dispersion state of the fluororesin-metal oxide mixed dispersion is stably maintained means that the fluororesin fine particles in the fluororesin-metal oxide mixed dispersion are kept at room temperature for at least 3 days. In addition, the state in which the metal oxide fine particles are both suspended and dispersed without causing aggregation, gelation / coagulation and / or phase separation is maintained.
本発明に係るフッ素樹脂−金属酸化物混合分散液は、フッ素樹脂−金属酸化物混合分散液から溶媒を蒸発飛散したときに得られる固形物の水接触角が130°以下、表面抵抗率が2.0×1012Ω/□以下となる特性を有するものである。水接触角の好ましい範囲は120°以下である。 The fluororesin-metal oxide mixed dispersion according to the present invention has a water contact angle of 130 ° or less and a surface resistivity of 2 when a solid is obtained by evaporating and scattering the solvent from the fluororesin-metal oxide mixed dispersion. 0.0 × 10 12 Ω / □ or less. A preferable range of the water contact angle is 120 ° or less.
本発明における水接触角、表面抵抗率の各値は、以下の測定方法によって得られるものである。
水接触角は、フッ素樹脂−金属酸化物混合分散液をガラス基板上に塗布し、これを150℃/30分間乾燥することにより得られる塗布膜を自動接触角計によって測定する。
表面抵抗率は、フッ素樹脂−金属酸化物混合分散液をガラス基板上にスピンコーターで塗布(回転数16.67s−1/10秒間)し、これを150℃で30分間通風乾燥することにより得られる薄膜を高抵抗率計によって測定する。
Each value of the water contact angle and the surface resistivity in the present invention is obtained by the following measuring method.
The water contact angle is measured with an automatic contact angle meter by applying a fluororesin-metal oxide mixed dispersion on a glass substrate and drying it at 150 ° C./30 minutes.
The surface resistivity is obtained by applying a fluororesin-metal oxide mixed dispersion on a glass substrate with a spin coater (rotation speed: 16.67 s −1 / 10 seconds), and drying by ventilation at 150 ° C. for 30 minutes. The thin film is measured with a high resistivity meter.
上述したように、微粒子の浮遊分散状態の安定化には、界面活性剤の添加もしばしば大いに効果がある。
添加する界面活性剤は、金属酸化物およびフッ素樹脂の微粒子並びに溶媒との親和性、生じる複合ミセルの静電反発性等を考慮して選択されるが、フッ素樹脂微粒子水性分散液と金属酸化物ゾルとの単純混合で分散液が得られる場合、界面活性剤は必須成分ではない。
しかしながら、適切な界面活性剤の適当量の添加で分散状態を安定に維持する期間が長引くこともあるため、本発明は界面活性剤の添加を排除するものではない。むしろ、安定期間延長に効果的な界面活性剤、例えば、ポリオキシアルキレンアルキルエーテルやポリオキシアルキレンアルキルフェニルエーテル等の通常使用される非イオン性界面活性剤を使用してもよい。
界面活性剤の添加によって、フッ素樹脂−金属酸化物混合分散液のpH範囲が1−13から外れたときは、適当な酸又はアルカリを用いて上記pH範囲内となるように調整することが好ましい。
As described above, the addition of a surfactant is often very effective in stabilizing the suspended and dispersed state of fine particles.
The surfactant to be added is selected in consideration of the affinity with the fine particles of metal oxide and fluororesin and the solvent, the electrostatic repulsion of the resulting composite micelles, etc., but the fluororesin fine particle aqueous dispersion and the metal oxide When a dispersion is obtained by simple mixing with a sol, the surfactant is not an essential component.
However, the addition of an appropriate amount of an appropriate surfactant may prolong the period for stably maintaining the dispersion state, and the present invention does not exclude the addition of a surfactant. Rather, a surfactant that is effective for extending the stability period, for example, a commonly used nonionic surfactant such as polyoxyalkylene alkyl ether or polyoxyalkylene alkylphenyl ether may be used.
When the pH range of the fluororesin-metal oxide mixed dispersion is deviated from 1-13 due to the addition of a surfactant, it is preferably adjusted to be within the above pH range using an appropriate acid or alkali. .
フッ素樹脂−金属酸化物混合分散液中に界面活性剤が存在する場合は、界面活性剤は金属酸化物微粒子および/またはフッ素樹脂微粒子とファンデルワールス相互作用や静電相互作用などを通して、ある種の分子間会合を行うことによって、均一分散状態を維持する。
界面活性剤の代わりに、それと似たような働きをする物質で金属酸化物微粒子および/またはフッ素樹脂微粒子の表面をあらかじめ修飾しておくことや、このような役割を持つ修飾剤を金属酸化物微粒子および/またはフッ素樹脂微粒子それぞれの分散液に添加しておくことも、フッ素樹脂−金属酸化物混合分散液の均一浮遊分散状態を長期間維持することに有効である場合もあり、このような処理を行ってもよい。
上記処理について具体的に述べると、金属酸化物微粒子の表面をシランカップリング剤等で修飾することや、金属酸化物微粒子ゾルにシランカップリング剤等を添加すること等を例として挙げることができるが、これらに限定されず、通常使用される修飾方法であってもよい。
In the case where a surfactant is present in the fluororesin-metal oxide mixed dispersion, the surfactant may be subjected to certain kinds of metal oxide and / or fluororesin microparticles through van der Waals interaction or electrostatic interaction. By maintaining the intermolecular association, a uniformly dispersed state is maintained.
Instead of a surfactant, the surface of the metal oxide fine particles and / or fluororesin fine particles may be modified in advance with a substance that functions in a similar manner, or a modifier having such a role may be used as a metal oxide. It may be effective to add to the dispersion of each of the fine particles and / or fluororesin fine particles, and to maintain a uniform floating dispersion state of the fluororesin-metal oxide mixed dispersion for a long time. Processing may be performed.
Specifically, the above treatment can be exemplified by modifying the surface of the metal oxide fine particles with a silane coupling agent or the like, or adding a silane coupling agent or the like to the metal oxide fine particle sol. However, the modification method is not limited to these and may be a commonly used modification method.
微粒子の凝集はその濃度と密接に関係する。
濃度が高くなれば、増粘し凝固・ゲル化を起こしやすくなり、凝集沈殿も起きやすくなる。したがって、フッ素樹脂−金属酸化物混合分散液中のフッ素樹脂微粒子と金属酸化物微粒子の均一混合分散状態の達成並びにその長期間の保持には、両方の微粒子の液中濃度を下げること、すなわち低粒子濃度が効果的である。
しかしながら、粒子濃度が低いと、塗布や含浸等の操作で得られる膜は薄く、乾燥や焼成など熱処理工程で相対的に溶媒の蒸発飛散に多大なエネルギーを消費することになり不経済であるので、この観点からは粒子濃度は高い方が好ましい。
かかる観点から、フッ素樹脂−金属酸化物混合分散液は、液中の金属酸化物微粒子の含有量に対して重量比で、フッ素樹脂微粒子が3−100倍で、水が5−120倍で構成されることが望ましいが、これに限定されず、所望の性質を達成するために、任意の重量比から選択され得る。
Agglomeration of fine particles is closely related to its concentration.
When the concentration is high, the viscosity is increased and coagulation / gelation is likely to occur, and aggregation and precipitation are also likely to occur. Therefore, in order to achieve a uniform mixed dispersion state of the fluororesin fine particles and the metal oxide fine particles in the fluororesin-metal oxide mixed dispersion and to maintain it for a long period of time, it is necessary to lower the concentration of both fine particles in the liquid, that is, low The particle concentration is effective.
However, when the particle concentration is low, the film obtained by operations such as coating and impregnation is thin, and it is uneconomical because it consumes a great deal of energy for evaporation and evaporation of the solvent in heat treatment processes such as drying and baking. From this point of view, a higher particle concentration is preferable.
From this point of view, the fluororesin-metal oxide mixed dispersion is composed of the fluororesin fine particles 3-100 times and the water 5-120 times by weight with respect to the content of the metal oxide fine particles in the liquid. Desirably, but not limited thereto, any weight ratio may be selected to achieve the desired properties.
<フッ素樹脂−金属酸化物混合分散液の製造方法>
本発明に係るフッ素樹脂−金属酸化物混合分散液は、フッ素樹脂微粒子の水性分散液と金属酸化物微粒子ゾルとを撹拌下で混合することで調製する。
この混合液の構成は、金属酸化物微粒子の含有量に対して重量比で、フッ素樹脂微粒子が3−100倍で、水が5−120倍の範囲になるように調製することが好ましい。
混合に際しての撹拌には特に規定はなく、混合時の粒子濃度や混合液の粘性、液温度などを考慮して適宜、最適撹拌条件が選択される。
撹拌時の温度は、通常は室温であるが、混合液の粘性等を考慮して、室温よりも下げることも上げることも可能であり、状況に応じて撹拌温度は適宜選択される。
混合および撹拌時の圧力についても特に規定はなく、通常は常圧下で行われる。しかしながら、溶媒の粘性や濃縮の観点から加圧や減圧が必要であれば、目的に応じて適宜圧力を選択できる。
<Method for producing fluororesin-metal oxide mixed dispersion>
The fluororesin-metal oxide mixed dispersion according to the present invention is prepared by mixing an aqueous dispersion of fluororesin fine particles and a metal oxide fine particle sol with stirring.
The composition of the mixed solution is preferably prepared such that the fluororesin fine particles are 3 to 100 times and the water is 5 to 120 times by weight with respect to the content of the metal oxide fine particles.
There is no particular restriction on stirring during mixing, and optimum stirring conditions are appropriately selected in consideration of the particle concentration at the time of mixing, the viscosity of the liquid mixture, the liquid temperature, and the like.
The temperature at the time of stirring is usually room temperature, but it can be lowered or raised below room temperature in consideration of the viscosity of the mixed solution, and the stirring temperature is appropriately selected according to the situation.
There are no particular restrictions on the pressure during mixing and stirring, and the reaction is usually carried out under normal pressure. However, if pressurization or decompression is necessary from the viewpoint of viscosity or concentration of the solvent, the pressure can be appropriately selected according to the purpose.
<原料について>
本発明に係るフッ素樹脂−金属酸化物混合分散液を調製するにあたり、以下のフッ素微粒子の水性分散液やエマルジョン、および金属酸化物微粒子のコロイダルゾルを用いた。本明細書において、A−1からA−3、B−1からB−7までの記号を付す。
<About raw materials>
In preparing the fluororesin-metal oxide mixed dispersion according to the present invention, the following aqueous dispersion and emulsion of fluorine fine particles and colloidal sol of metal oxide fine particles were used. In the present specification, symbols A-1 to A-3 and B-1 to B-7 are attached.
・フッ素樹脂微粒子水性分散液
A−1:三井・デュポンフロロケミカル製、PTFE 31−JR(PTFE固形分:60重量%、平均分子量:2×104−1×107、PTFE一次粒子の平均粒子径:0.1−0.5μm、pH:10.5)
A−2:ダイキン工業製、ポリフロン(登録商標) D−111(PTFE固形分:60重量%、平均分子量:2×104−1×107、PTFE一次粒子の平均粒子径:0.1−0.5μm、pH:9.7)
A−3:旭硝子製、Fluon(登録商標) PTFE ディスパージョン AD911E(PTFE固形分:60重量%、PTFE一次粒子の平均粒子径:0.1−0.5μm、平均分子量:2×104−1×107、pH:10)
Fluorine resin fine particle aqueous dispersion A-1: PTFE 31-JR (PTFE solid content: 60% by weight, average molecular weight: 2 × 10 4 −1 × 10 7 , PTFE primary particles, manufactured by Mitsui DuPont Fluorochemical (Diameter: 0.1-0.5 μm, pH: 10.5)
A-2: manufactured by Daikin Industries, Polyflon (registered trademark) D-111 (PTFE solid content: 60% by weight, average molecular weight: 2 × 10 4 −1 × 10 7 , average particle size of PTFE primary particles: 0.1- 0.5 μm, pH: 9.7)
A-3: Asahi Glass, Fluon (registered trademark) PTFE dispersion AD911E (PTFE solid content: 60 wt%, average particle diameter of PTFE primary particles: 0.1-0.5 μm, average molecular weight: 2 × 10 4 −1 × 10 7 , pH: 10)
・金属酸化物ゾル
B−1:多木化学製、タイノックA−6(TiO2重量%:6、平均粒子径:20nm、pH:12)
B−2:多木化学製、タイノックAM−15(TiO2重量%:15、平均粒子径:20nm、pH:4)
B−3:多木化学製、バイラールZr−C20(ZrO2重量%:20、平均粒子径:40nm、pH:8)
B−4:多木化学製、バイラールLa−C10(La2O3重量%:10、平均粒子径:40nm、pH:8)
B−5:多木化学製、バイラールNd−C10(Nd2O3重量%:10、平均粒子径:20nm、pH:9)
B−6:多木化学製、ニードラールB−10(CeO2重量%:10、平均粒子径:20nm、pH:8)
B−7:多木化学製、セラメースS−8(SnO2重量%:8、平均粒子径:8nm、pH:10)
Metal oxide sol B-1: manufactured by Taki Chemical Co., Ltd., Tynock A-6 (TiO 2 wt%: 6, average particle size: 20 nm, pH: 12)
B-2: manufactured by Taki Chemical Co., Ltd., Tynock AM-15 (TiO 2 wt%: 15, average particle size: 20 nm, pH: 4)
B-3: manufactured by Taki Chemical Co., Ltd., Viral Zr-C20 (ZrO 2 % by weight: 20, average particle size: 40 nm, pH: 8)
B-4: manufactured by Taki Chemical Co., Ltd., Viral La-C10 (La 2 O 3 wt%: 10, average particle size: 40 nm, pH: 8)
B-5: manufactured by Taki Chemical Co., Ltd., viral Nd-C10 (Nd 2 O 3 % by weight: 10, average particle size: 20 nm, pH: 9)
B-6: Nidral B-10 (manufactured by Taki Chemical Co., Ltd., CeO 2 wt%: 10, average particle size: 20 nm, pH: 8)
B-7: manufactured by Taki Chemical, Cerames S-8 (SnO 2 wt%: 8, average particle size: 8 nm, pH: 10)
<フッ素樹脂−金属酸化物混合分散液の用途>
本発明のフッ素樹脂−金属酸化物混合分散液は、金属、カーボン、プラスチックス、ガラス、セラミックス、木材等の各種材料表面およびこれら材料から成る製品表面の被覆用コーティング液や前記材料の繊維や粉体の含浸液として好適であり、具体的には、電線や温度計、各種センサー、ガスケットやパッキン等各種材料・製品表面の被覆用塗布・コーティング材、多機能・高機能のための多層・多段コーティングにおけるアンダーコーティング材として極めて優れた性能を発揮する。
<Uses of fluororesin-metal oxide mixed dispersion>
The fluororesin-metal oxide mixed dispersion of the present invention is a coating liquid for coating on the surfaces of various materials such as metals, carbon, plastics, glass, ceramics, and wood, and the surfaces of products made of these materials, and fibers and powders of the above materials. Suitable as a body impregnating solution, specifically, various materials such as electric wires, thermometers, various sensors, gaskets and packing, coating / coating materials for product surfaces, multi-layer / multi-stage for multi-function / high function Excellent performance as an undercoating material in coating.
以下、実施例によって本発明をより詳細に説明するが、本発明は、かかる実施例によって限定されるものではない。なお、実施例で示したフッ素樹脂−金属酸化物混合分散液から得られる固形分の表面抵抗率と水接触角は、それぞれ次のようにして測定した。表面抵抗率は、当該混合液をガラス基板上にスピンコーター(回転数16.67s−1/10秒間)塗布し、通風乾燥機で乾燥(150℃/30分)し塗布薄膜としたのち、高抵抗率計(三菱化学(株)製MCP−450)を用いて、当該塗膜の表面抵抗率を測定した。水接触角は、当該混合液をガラス基板(接着剤無し)またはフェノール系接着剤つきSUS基板に塗布し乾燥(100℃/60分または150℃/30分)することで塗布膜として、自動接触角計(共和界面化学社製Dms−400)により測定した。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example. In addition, the surface resistivity and water contact angle of the solid content obtained from the fluororesin-metal oxide mixed dispersion shown in the examples were measured as follows. The surface resistivity is high after applying the liquid mixture on a glass substrate by spin coating (rotation number: 16.67 s −1 / 10 seconds) and drying with a ventilator (150 ° C./30 minutes) to form a coated thin film. The surface resistivity of the coating film was measured using a resistivity meter (MCP-450 manufactured by Mitsubishi Chemical Corporation). The water contact angle is automatically contacted as a coating film by applying the mixture to a glass substrate (no adhesive) or a SUS substrate with a phenolic adhesive and drying (100 ° C / 60 minutes or 150 ° C / 30 minutes). It measured with the angle meter (Kyowa Interface Chemical Co., Ltd. Dms-400).
<フッ素樹脂―金属酸化物混合分散液における金属酸化物ゾルの金属種の影響>
(実施例1)
フッ素樹脂微粒子水性分散液: A−1;30g
金属酸化物微粒子ゾル: B−1;24g
混合条件:室温・常圧
攪拌時間:30分
結果:調製したフッ素樹脂−チタニア混合分散液は、室温保存において15日間以上、凝固ゲル化や凝集沈殿、および相分離を起こさず、保存試験後も粘度はほとんど変わらなかった。また、流動性は極めて良好で、フッ素樹脂被覆用塗布液や含浸液として用いるのに、15日後も何の支障もなかった。
(実施例2)
フッ素樹脂微粒子水性分散液: A−2;30g
金属酸化物微粒子ゾル: B−1;24g
混合条件:室温・常圧
攪拌時間:30分
結果:調製したフッ素樹脂−チタニア混合分散液は、室温保存において15日間以上、凝固ゲル化や凝集沈殿、および相分離を起こさず、保存試験後も粘度はほとんど変わらなかった。また、流動性は極めて良好で、フッ素樹脂被覆用塗布液や含浸液として用いるのに、15日後も何の支障もなかった。
(実施例3)
フッ素樹脂微粒子水性分散液: A−3;30g
金属酸化物微粒子ゾル: B−1;24g
混合条件:室温・常圧
攪拌時間:30分
結果:調製したフッ素樹脂−チタニア混合分散液は、室温保存において15日間以上、凝固ゲル化や凝集沈殿、および相分離を起こさず、保存試験後も粘度はほとんど変わらなかった。また、流動性は極めて良好で、フッ素樹脂被覆用塗布液や含浸液として用いるのに、15日後も何の支障もなかった。
(実施例4)
フッ素樹脂微粒子水性分散液: A−1;30g
金属酸化物微粒子ゾル: B−2;24g
混合条件:室温・常圧
攪拌時間:60分
結果:調製したフッ素樹脂−チタニア混合分散液は、室温保存において5日間以上、凝固ゲル化や凝集沈殿、および相分離を起こさず、保存試験後も粘度はほとんど変わらなかった。また、流動性は極めて良好で、フッ素樹脂被覆用塗布液や含浸液として用いるのに、5日後も何の支障もなかった。
(実施例5)
フッ素樹脂微粒子水性分散液: A−2;30g
金属酸化物微粒子ゾル: B−2;24g
混合条件:室温・常圧
攪拌時間:60分
結果:調製したフッ素樹脂−チタニア混合分散液のpHは4.8であり、室温保存において5日間以上、凝固ゲル化や凝集沈殿、および相分離を起こさず、保存試験後も粘度はほとんど変わらなかった。また、流動性は極めて良好で、フッ素樹脂被覆用塗布液や含浸液として用いるのに、5日後も何の支障もなかった。
尚、調製したフッ素樹脂−チタニア混合分散溶液を用いて、ガラス基板(乾燥:150℃/30分)またはフェノール系接着剤つきSUS基板(乾燥:100℃/60分または150℃/30分)上に作製した塗布膜の水接触角はそれぞれ90.7°、105.3°および102.9°であり、フッ素樹脂膜PTFEメンブレンの130〜140°に比べかなり低いものであった。また、スピンコート法でガラス基板(乾燥:150℃/30分)上に作成した膜の表面抵抗率は6.9×1011Ω/□で、同じ条件でのフッ素樹脂微粒子水性分散液(A−2:ダイキン工業製ポリフロンD−111)から得られる膜の表面抵抗率2.5×1012Ω/□に比べかなり小さかった。
(実施例6)
フッ素樹脂微粒子水性分散液: A−3;30g
金属酸化物微粒子ゾル: B−2;24g
混合条件:室温・常圧
攪拌時間:60分
結果:調製したフッ素樹脂−チタニア混合分散液は、室温保存において5日間以上、凝固ゲル化や凝集沈殿、および相分離を起こさず、保存試験後も粘度はほとんど変わらなかった。また、流動性は極めて良好で、フッ素樹脂被覆用塗布液や含浸液として用いるのに、5日後も何の支障もなかった。
(実施例7)
フッ素樹脂微粒子水性分散液: A−1;30g
金属酸化物微粒子ゾル: B−3;24g
混合条件:室温・常圧
攪拌時間:30分
結果:調製したフッ素樹脂−ジルコニア混合分散液は、室温保存において10日間以上、凝固ゲル化や凝集沈殿、および相分離を起こさず、保存試験後も粘度はほとんど変わらなかった。また、流動性は極めて良好で、フッ素樹脂被覆用塗布液や含浸液として用いるのに、10日後も何の支障もなかった。
(実施例8)
フッ素樹脂微粒子水性分散液: A−2;30g
金属酸化物微粒子ゾル: B−3;24g
混合条件:室温・常圧
攪拌時間:30分
結果:調製したフッ素樹脂−ジルコニア混合分散液のpHは8.6であり、室温保存において10日間以上、凝固ゲル化や凝集沈殿、および相分離を起こさず、保存試験後も粘度はほとんど変わらなかった。また、流動性は極めて良好で、フッ素樹脂被覆用塗布液や含浸液として用いるのに、10日後も何の支障もなかった。
尚、調製したフッ素樹脂−ジルコニア混合分散液を用いて、上述の実施例5と全く同じ手順で、塗布膜を作製したところ、水接触角はガラス基板(乾燥:150℃/30分)またはフェノール系接着剤つきSUS基板(乾燥:100℃/60分または150℃/30分)それぞれで78.3°、104.8°および99.3°であり、スピンコート法による膜の表面抵抗率は2.6×1011Ω/□であった。
(実施例9)
フッ素樹脂微粒子水性分散液: A−3;30g
金属酸化物微粒子ゾル: B−3;24g
混合条件:室温・常圧
攪拌時間:30分
結果:調製したフッ素樹脂−ジルコニア混合分散液は、室温保存において10日間以上、凝固ゲル化や凝集沈殿、および相分離を起こさず、保存試験後も粘度はほとんど変わらなかった。また、流動性は極めて良好で、フッ素樹脂被覆用塗布液や含浸液として用いるのに、10日後も何の支障もなかった。
(実施例10)
フッ素樹脂微粒子水性分散液: A−1;30g
金属酸化物微粒子ゾル: B−4;24g
混合条件:室温・常圧
攪拌時間:30分
結果:調製したフッ素樹脂−ランタナ混合分散液は、室温保存において7日間以上、凝固ゲル化や凝集沈殿、および相分離を起こさず、保存試験後も粘度はほとんど変わらなかった。また、流動性は極めて良好で、フッ素樹脂被覆用塗布液や含浸液として用いるのに、10日後も何の支障もなかった。
(実施例11)
フッ素樹脂微粒子水性分散液: A−2;30g
金属酸化物微粒子ゾル: B−4;24g
混合条件:室温・常圧
攪拌時間:30分
結果:調製したフッ素樹脂−ランタナ混合分散液のpHは9.2であり、室温保存において7日間以上、凝固ゲル化や凝集沈殿、および相分離を起こさず、保存試験後も粘度はほとんど変わらなかった。また、流動性は極めて良好で、フッ素樹脂被覆用塗布液や含浸液として用いるのに、10日後も何の支障もなかった。
尚、調製したフッ素樹脂−ランタナ混合分散液を用いて、上述の実施例5と全く同じ手順で、塗布膜を作製したところ、水接触角はガラス基板(乾燥:150℃/30分)またはフェノール系接着剤つきSUS基板(乾燥:100℃/60分または150℃/30分)それぞれで95.9°、122.8°および121.4°であり、スピンコート法による膜の表面抵抗率は2.5×1011Ω/□であった。
(実施例12)
フッ素樹脂微粒子水性分散液: A−3;30g
金属酸化物微粒子ゾル: B−4;24g
混合条件:室温・常圧
攪拌時間:30分
結果:調製したフッ素樹脂−ランタナ混合分散液は、室温保存において7日間以上、凝固ゲル化や凝集沈殿、および相分離を起こさず、保存試験後も粘度はほとんど変わらなかった。また、流動性は極めて良好で、フッ素樹脂被覆用塗布液や含浸液として用いるのに、10日後も何の支障もなかった。
(実施例13)
フッ素樹脂微粒子水性分散液: A−1;30g
金属酸化物微粒子ゾル: B−5;9g
混合条件:室温・常圧
攪拌時間:60分
結果:調製したフッ素樹脂−酸化ネオジム混合分散液は、室温保存において7日間以上、凝固ゲル化や凝集沈殿、および相分離を起こさず、保存試験後も粘度はほとんど変わらなかった。また、流動性は極めて良好で、フッ素樹脂被覆用塗布液や含浸液として用いるのに、10日後も何の支障もなかった。
(実施例14)
フッ素樹脂微粒子水性分散液: A−2;30g
金属酸化物微粒子ゾル: B−5;9g
混合条件:室温・常圧
攪拌時間:60分
結果:調製したフッ素樹脂−酸化ネオジム混合分散液は、室温保存において7日間以上、凝固ゲル化や凝集沈殿、および相分離を起こさず、保存試験後も粘度はほとんど変わらなかった。また、流動性は極めて良好で、フッ素樹脂被覆用塗布液や含浸液として用いるのに、10日後も何の支障もなかった。
尚、調製したフッ素樹脂−酸化ネオジム分散液を用いて、上述の実施例5と全く同じ手順で、塗布膜を作製したところ、水接触角はガラス基板(乾燥:150℃/30分)またはフェノール系接着剤つきSUS基板(乾燥:150℃/30分)それぞれで82.6°および115.2°であり、スピンコート法による膜の表面抵抗率は2.8×1011Ω/□であった。
(実施例15)
フッ素樹脂微粒子水性分散液: A−3;30g
金属酸化物微粒子ゾル: B−5;9g
混合条件:室温・常圧
攪拌時間:60分
結果:調製したフッ素樹脂−酸化ネオジム混合分散液は、室温保存において7日間以上、凝固ゲル化や凝集沈殿、および相分離を起こさず、保存試験後も粘度はほとんど変わらなかった。また、流動性は極めて良好で、フッ素樹脂被覆用塗布液や含浸液として用いるのに、10日後も何の支障もなかった。
<Effect of metal species of metal oxide sol in fluororesin-metal oxide mixed dispersion>
Example 1
Fluororesin fine particle aqueous dispersion: A-1; 30 g
Metal oxide fine particle sol: B-1; 24 g
Mixing conditions: room temperature and normal pressure stirring time: 30 minutes Result: The prepared fluororesin-titania mixed dispersion does not cause coagulation gelation, coagulation precipitation, and phase separation for 15 days or more in storage at room temperature, and after storage test The viscosity was almost unchanged. Further, the fluidity was extremely good, and there was no problem even after 15 days when used as a coating solution or impregnating solution for coating a fluororesin.
(Example 2)
Fluororesin fine particle aqueous dispersion: A-2; 30 g
Metal oxide fine particle sol: B-1; 24 g
Mixing conditions: room temperature and normal pressure stirring time: 30 minutes Result: The prepared fluororesin-titania mixed dispersion does not cause coagulation gelation, coagulation precipitation, and phase separation for 15 days or more in storage at room temperature, and after storage test The viscosity was almost unchanged. Further, the fluidity was extremely good, and there was no problem even after 15 days when used as a coating solution or impregnating solution for coating a fluororesin.
(Example 3)
Fluororesin fine particle aqueous dispersion: A-3; 30 g
Metal oxide fine particle sol: B-1; 24 g
Mixing conditions: room temperature and normal pressure stirring time: 30 minutes Result: The prepared fluororesin-titania mixed dispersion does not cause coagulation gelation, coagulation precipitation, and phase separation for 15 days or more in storage at room temperature, and after storage test The viscosity was almost unchanged. Further, the fluidity was extremely good, and there was no problem even after 15 days when used as a coating solution or impregnating solution for coating a fluororesin.
Example 4
Fluororesin fine particle aqueous dispersion: A-1; 30 g
Metal oxide fine particle sol: B-2; 24 g
Mixing conditions: room temperature and normal pressure stirring time: 60 minutes Result: The prepared fluororesin-titania mixed dispersion does not cause coagulation gelation, coagulation precipitation, and phase separation for 5 days or more in storage at room temperature, and after storage test The viscosity was almost unchanged. Further, the fluidity was extremely good, and there was no problem even after 5 days when used as a coating solution or impregnating solution for coating a fluororesin.
(Example 5)
Fluororesin fine particle aqueous dispersion: A-2; 30 g
Metal oxide fine particle sol: B-2; 24 g
Mixing conditions: room temperature and normal pressure stirring time: 60 minutes Result: The pH of the prepared fluororesin-titania mixed dispersion is 4.8, and solidification gelation, aggregation precipitation, and phase separation are performed for 5 days or more when stored at room temperature. The viscosity did not change even after the storage test. Further, the fluidity was extremely good, and there was no problem even after 5 days when used as a coating solution or impregnating solution for coating a fluororesin.
The prepared fluororesin-titania mixed dispersion solution was used on a glass substrate (drying: 150 ° C./30 minutes) or a SUS substrate with a phenol-based adhesive (drying: 100 ° C./60 minutes or 150 ° C./30 minutes). The water contact angles of the coating films prepared in the above were 90.7 °, 105.3 ° and 102.9 °, respectively, which were considerably lower than the 130-140 ° of the fluororesin film PTFE membrane. The surface resistivity of the film prepared on the glass substrate (drying: 150 ° C./30 minutes) by spin coating is 6.9 × 10 11 Ω / □, and the fluororesin fine particle aqueous dispersion (A -2: The surface resistivity of the film obtained from Daikin Industries' polyflon D-111) was considerably smaller than 2.5 × 10 12 Ω / □.
(Example 6)
Fluororesin fine particle aqueous dispersion: A-3; 30 g
Metal oxide fine particle sol: B-2; 24 g
Mixing conditions: room temperature and normal pressure stirring time: 60 minutes Result: The prepared fluororesin-titania mixed dispersion does not cause coagulation gelation, coagulation precipitation, and phase separation for 5 days or more in storage at room temperature, and after storage test The viscosity was almost unchanged. Further, the fluidity was extremely good, and there was no problem even after 5 days when used as a coating solution or impregnating solution for coating a fluororesin.
(Example 7)
Fluororesin fine particle aqueous dispersion: A-1; 30 g
Metal oxide fine particle sol: B-3; 24 g
Mixing conditions: room temperature and normal pressure stirring time: 30 minutes Result: The prepared fluororesin-zirconia mixed dispersion does not cause coagulation gelation, coagulation precipitation, and phase separation for 10 days or more in storage at room temperature, and after storage test The viscosity was almost unchanged. Further, the fluidity was extremely good, and there was no problem even after 10 days when used as a coating solution or impregnating solution for coating a fluororesin.
(Example 8)
Fluororesin fine particle aqueous dispersion: A-2; 30 g
Metal oxide fine particle sol: B-3; 24 g
Mixing conditions: room temperature, normal pressure stirring time: 30 minutes Result: The pH of the prepared fluororesin-zirconia mixed dispersion is 8.6, and solidification gelation, coagulation precipitation, and phase separation are performed for 10 days or more when stored at room temperature. The viscosity did not change even after the storage test. Further, the fluidity was extremely good, and there was no problem even after 10 days when used as a coating solution or impregnating solution for coating a fluororesin.
In addition, when the coating film was produced in the completely same procedure as the above-mentioned Example 5 using the prepared fluororesin-zirconia mixed dispersion liquid, the water contact angle was a glass substrate (drying: 150 ° C./30 minutes) or phenol. SUS substrate with an adhesive (drying: 100 ° C./60 minutes or 150 ° C./30 minutes) is 78.3 °, 104.8 ° and 99.3 °, respectively, and the surface resistivity of the film by spin coating is It was 2.6 × 10 11 Ω / □.
Example 9
Fluororesin fine particle aqueous dispersion: A-3; 30 g
Metal oxide fine particle sol: B-3; 24 g
Mixing conditions: room temperature and normal pressure stirring time: 30 minutes Result: The prepared fluororesin-zirconia mixed dispersion does not cause coagulation gelation, coagulation precipitation, and phase separation for 10 days or more in storage at room temperature, and after storage test The viscosity was almost unchanged. Further, the fluidity was extremely good, and there was no problem even after 10 days when used as a coating solution or impregnating solution for coating a fluororesin.
(Example 10)
Fluororesin fine particle aqueous dispersion: A-1; 30 g
Metal oxide fine particle sol: B-4; 24 g
Mixing conditions: room temperature and normal pressure stirring time: 30 minutes Result: The prepared fluororesin-Lantana mixed dispersion is free from coagulation gelation, coagulation precipitation, and phase separation for 7 days or more after storage at room temperature. The viscosity was almost unchanged. Further, the fluidity was extremely good, and there was no problem even after 10 days when used as a coating solution or impregnating solution for coating a fluororesin.
(Example 11)
Fluororesin fine particle aqueous dispersion: A-2; 30 g
Metal oxide fine particle sol: B-4; 24 g
Mixing conditions: room temperature and normal pressure stirring time: 30 minutes Result: pH of the prepared fluororesin-Lantana mixed dispersion is 9.2, and solidification gelation, coagulation precipitation, and phase separation are performed for 7 days or more when stored at room temperature. The viscosity did not change even after the storage test. Further, the fluidity was extremely good, and there was no problem even after 10 days when used as a coating solution or impregnating solution for coating a fluororesin.
When a coating film was prepared using the prepared fluororesin-lantana mixed dispersion in exactly the same manner as in Example 5 above, the water contact angle was glass substrate (drying: 150 ° C./30 minutes) or phenol. SUS substrate with an adhesive (drying: 100 ° C./60 minutes or 150 ° C./30 minutes) is 95.9 °, 122.8 ° and 121.4 °, respectively, and the surface resistivity of the film by spin coating is It was 2.5 × 10 11 Ω / □.
Example 12
Fluororesin fine particle aqueous dispersion: A-3; 30 g
Metal oxide fine particle sol: B-4; 24 g
Mixing conditions: room temperature and normal pressure stirring time: 30 minutes Result: The prepared fluororesin-Lantana mixed dispersion is free from coagulation gelation, coagulation precipitation, and phase separation for 7 days or more after storage at room temperature. The viscosity was almost unchanged. Further, the fluidity was extremely good, and there was no problem even after 10 days when used as a coating solution or impregnating solution for coating a fluororesin.
(Example 13)
Fluororesin fine particle aqueous dispersion: A-1; 30 g
Metal oxide fine particle sol: B-5; 9 g
Mixing conditions: room temperature and normal pressure stirring time: 60 minutes Result: The prepared fluororesin-neodymium oxide mixed dispersion is free from coagulation gelation, coagulation precipitation, and phase separation for 7 days or more after storage at room temperature. The viscosity was almost unchanged. Further, the fluidity was extremely good, and there was no problem even after 10 days when used as a coating solution or impregnating solution for coating a fluororesin.
(Example 14)
Fluororesin fine particle aqueous dispersion: A-2; 30 g
Metal oxide fine particle sol: B-5; 9 g
Mixing conditions: room temperature and normal pressure stirring time: 60 minutes Result: The prepared fluororesin-neodymium oxide mixed dispersion is free from coagulation gelation, coagulation precipitation, and phase separation for 7 days or more after storage at room temperature. The viscosity was almost unchanged. Further, the fluidity was extremely good, and there was no problem even after 10 days when used as a coating solution or impregnating solution for coating a fluororesin.
In addition, when the coating film was produced in the completely same procedure as the above-mentioned Example 5 using the prepared fluororesin-neodymium oxide dispersion liquid, the water contact angle was a glass substrate (drying: 150 ° C./30 minutes) or phenol. The SUS substrate with an adhesive (drying: 150 ° C./30 minutes) was 82.6 ° and 115.2 °, respectively, and the surface resistivity of the film by spin coating was 2.8 × 10 11 Ω / □. It was.
(Example 15)
Fluororesin fine particle aqueous dispersion: A-3; 30 g
Metal oxide fine particle sol: B-5; 9 g
Mixing conditions: room temperature and normal pressure stirring time: 60 minutes Result: The prepared fluororesin-neodymium oxide mixed dispersion is free from coagulation gelation, coagulation precipitation, and phase separation for 7 days or more after storage at room temperature. The viscosity was almost unchanged. Further, the fluidity was extremely good, and there was no problem even after 10 days when used as a coating solution or impregnating solution for coating a fluororesin.
以上の例からわかるように、いずれのフッ素樹脂微粒子水性分散液もチタニア、ジルコニア、ランタナ及び酸化ネオジムの各ゾルと相溶性が良く、均一混合分散液を容易に形成することができる。 As can be seen from the above examples, any of the fluororesin fine particle aqueous dispersions is compatible with titania, zirconia, lantana and neodymium oxide sols, and a uniform mixed dispersion can be easily formed.
(実施例16)
フッ素樹脂微粒子水性分散液: A−2;30g
金属酸化物微粒子ゾル: B−6;10g
混合条件:室温・常圧
攪拌時間:60分
結果:調製したフッ素樹脂−セリア混合分散液は、室温保存において3日間以上、凝固ゲル化や凝集沈殿、および相分離を起こさず、保存試験後も粘度はほとんど変わらなかった。また、流動性は極めて良好で、フッ素樹脂被覆用塗布液や含浸液として用いるのに、4日後も何の支障もなかった。
尚、調製したフッ素樹脂−セリア混合分散液を用いて、上述の実施例5と全く同じ手順で、塗布膜を作製したところ、水接触角はガラス基板(乾燥:150℃/30分)またはフェノール系接着剤つきSUS基板(乾燥:150℃/30分)それぞれで116.9°および124.5°であり、スピンコート法による膜の表面抵抗率は0.9×1011Ω/□であった。
(実施例17)
フッ素樹脂微粒子水性分散液: A−3;30g
金属酸化物微粒子ゾル: B−6;10g
混合条件:室温・常圧
攪拌時間:60分
結果:調製したフッ素樹脂−セリア混合分散液は、室温保存において3日間以上、凝固ゲル化や凝集沈殿、および相分離を起こさず、保存試験後も粘度はほとんど変わらなかった。また、流動性は極めて良好で、フッ素樹脂被覆用塗布液や含浸液として用いるのに、4日後も何の支障もなかった。
(実施例18)
フッ素樹脂微粒子水性分散液: A−2;30g
金属酸化物微粒子ゾル: B−7;24g
混合条件:室温・常圧
攪拌時間:60分
結果:調製したフッ素樹脂−酸化スズ混合分散液のpHは9.8であり、室温保存において3日間以上、凝固ゲル化や凝集沈殿、および相分離を起こさず、保存試験後も粘度はほとんど変わらなかった。また、流動性は極めて良好で、フッ素樹脂被覆用塗布液や含浸液として用いるのに、3日後も何の支障もなかった。
尚、調製したフッ素樹脂−酸化スズ混合分散液を用いて、上述の実施例5と全く同じ手順で、塗布膜を作製したところ、水接触角はガラス基板(乾燥:150℃/30分)またはフェノール系接着剤つきSUS基板(乾燥:100℃/60分または150℃/30分)それぞれで113.0°、121.1°および126.6°であり、スピンコート法による膜の表面抵抗率は1.9×1011Ω/□であった。
(Example 16)
Fluororesin fine particle aqueous dispersion: A-2; 30 g
Metal oxide fine particle sol: B-6; 10 g
Mixing conditions: room temperature and normal pressure stirring time: 60 minutes Result: The prepared fluororesin-ceria mixed dispersion does not cause coagulation gelation, coagulation precipitation, and phase separation for 3 days or more when stored at room temperature, and after storage test The viscosity was almost unchanged. Also, the fluidity was extremely good, and there was no problem even after 4 days when used as a coating solution or impregnating solution for coating fluororesin.
When a coating film was prepared using the prepared fluororesin-ceria mixed dispersion in exactly the same procedure as in Example 5 above, the water contact angle was glass substrate (drying: 150 ° C./30 minutes) or phenol. The SUS substrate with an adhesive (drying: 150 ° C./30 minutes) was 116.9 ° and 124.5 °, respectively, and the surface resistivity of the film by spin coating was 0.9 × 10 11 Ω / □. It was.
(Example 17)
Fluororesin fine particle aqueous dispersion: A-3; 30 g
Metal oxide fine particle sol: B-6; 10 g
Mixing conditions: room temperature and normal pressure stirring time: 60 minutes Result: The prepared fluororesin-ceria mixed dispersion does not cause coagulation gelation, coagulation precipitation, and phase separation for 3 days or more when stored at room temperature, and after storage test The viscosity was almost unchanged. Also, the fluidity was extremely good, and there was no problem even after 4 days when used as a coating solution or impregnating solution for coating fluororesin.
(Example 18)
Fluororesin fine particle aqueous dispersion: A-2; 30 g
Metal oxide fine particle sol: B-7; 24 g
Mixing conditions: room temperature and normal pressure stirring time: 60 minutes Result: pH of the prepared fluororesin-tin oxide mixed dispersion is 9.8, and coagulation gelation, coagulation precipitation, and phase separation for 3 days or more when stored at room temperature The viscosity did not change even after the storage test. Further, the fluidity was extremely good, and there was no problem even after 3 days when it was used as a coating solution or impregnating solution for coating a fluororesin.
In addition, when the coating film was produced in the completely same procedure as the above-mentioned Example 5 using the prepared fluororesin-tin oxide mixed dispersion, the water contact angle was a glass substrate (drying: 150 ° C./30 minutes) or SUS substrate with a phenol-based adhesive (drying: 100 ° C./60 minutes or 150 ° C./30 minutes), respectively, at 113.0 °, 121.1 ° and 126.6 °, and the surface resistivity of the film by spin coating Was 1.9 × 10 11 Ω / □.
上述の実施例16−18より、フッ素樹脂微粒子水性分散液のA−2はセリアおよび酸化スズと相溶性が良く、均一混合分散液を容易に形成することができる。また、フッ素樹脂微粒子水性分散液のA−3はセリアと相溶性が良く、均一混合分散液を容易に形成することができる。 From Examples 16-18 described above, A-2 of the fluororesin fine particle aqueous dispersion has good compatibility with ceria and tin oxide, and a uniform mixed dispersion can be easily formed. In addition, A-3 of the fluororesin fine particle aqueous dispersion is compatible with ceria and can easily form a uniform mixed dispersion.
<発明の優位性>
上記実施例から明らかなように、フッ素樹脂に混合した金属酸化物はフッ素樹脂の帯電の抑制および水接触角の低下すなわち非濡れ性や非粘着性の改良・調整に効果があることが明らかとなった。
<Advantages of the invention>
As is clear from the above examples, it is clear that the metal oxide mixed with the fluororesin is effective in suppressing charging of the fluororesin and reducing the water contact angle, that is, improving / adjusting non-wetting and non-adhesiveness. became.
<本発明の応用と効能>
本発明により、フッ素樹脂の帯電を抑制・制御し、かつその濡れ性や粘着性を改善・向上させることが可能である。これはSUS基板上の被覆膜の碁盤目試験による剥離において確認された。すなわち、フェノール系接着剤つきSUS基板にフッ素樹脂―チタニア混合分散液を塗布し形成させた被覆膜(実施例5参照)と、同じ接着剤を用いて同じSUS基板にPTFEメンブレンを張り付けた被覆膜とを、ナイフで碁盤の目のように切り、剥離を試みたところ、前者は全く剥がれないのに対して、後者では容易に、しかも完全に剥がれることが確認された。これは、フッ素樹脂にチタニア等金属酸化物を混入すると、その濡れ性および粘着性が格段に向上することを示している。
さらに、金属酸化物の混入で、フッ素樹脂のその後の高機能化・多機能化のための表面修飾・処理が可能となったことも示している。
また、フッ素樹脂のみであるとその表面は柔らかいため、硬いものに接触すると容易に傷がつきやすいが、この種の金属酸化物の混入で、フッ素樹脂が固くなり耐熱性が増すと同時に、傷つき難い表面となる効能も生まれる。
<Application and effect of the present invention>
According to the present invention, it is possible to suppress / control the charging of the fluororesin and to improve / improve its wettability and adhesiveness. This was confirmed in peeling by a cross-cut test of the coating film on the SUS substrate. That is, a coating film (see Example 5) formed by applying a fluororesin-titania mixed dispersion on a SUS substrate with a phenol-based adhesive, and a PTFE membrane attached to the same SUS substrate using the same adhesive. When the film was cut with a knife like a grid and peeled, it was confirmed that the former did not peel at all, but the latter easily and completely peeled off. This indicates that when a metal oxide such as titania is mixed in the fluororesin, its wettability and adhesiveness are remarkably improved.
Furthermore, it is also shown that the surface modification and treatment for higher functionality and multi-function of the fluororesin became possible by mixing metal oxide.
In addition, since the surface of soft fluororesin alone is soft, it can easily be damaged when it comes into contact with hard materials. However, the contamination of this type of metal oxide increases the hardness of the fluororesin and increases the heat resistance. It also has the effect of becoming a difficult surface.
本発明のフッ素樹脂−金属酸化物混合分散液は、金属、カーボン、プラスチックス、ガラス、セラミックス、グラファイト、炭素繊維、炭化繊維等各種材料表面およびこれらの材料からなる製品表面の被覆用コーティング液や前記材料の繊維や粉体の含浸液として好適である。
具体的には、電線や温度計、各種センサー、ガスケットやパッキン等各種材料・製品表面の高機能・多機能化のための被覆用塗布・コーティング材として用いられる。
The fluororesin-metal oxide mixed dispersion of the present invention is a coating liquid for coating on the surface of various materials such as metal, carbon, plastics, glass, ceramics, graphite, carbon fiber, carbonized fiber and the surface of products made of these materials. It is suitable as a fiber or powder impregnation liquid for the above materials.
Specifically, they are used as coating / coating materials for high functionality and multi-functionality of various materials and product surfaces such as electric wires, thermometers, various sensors, gaskets and packings.
Claims (5)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710300175.8A CN107353545A (en) | 2016-05-09 | 2017-05-02 | Fluororesin metal oxide mixed dispersion liquid and preparation method thereof |
US15/587,619 US20170321070A1 (en) | 2016-05-09 | 2017-05-05 | Fluororesin polymer-metallic oxide mixed dispersion and method manufacturing the same |
KR1020170057194A KR20170126411A (en) | 2016-05-09 | 2017-05-08 | Fluororesin-metal oxide mixed dispersion and method of manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016094163 | 2016-05-09 | ||
JP2016094163 | 2016-05-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017203152A true JP2017203152A (en) | 2017-11-16 |
Family
ID=60323160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017074860A Pending JP2017203152A (en) | 2016-05-09 | 2017-04-04 | Fluorine resin-metal oxide mixed dispersion and method for producing the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2017203152A (en) |
KR (1) | KR20170126411A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019143084A (en) * | 2018-02-23 | 2019-08-29 | 住化ポリカーボネート株式会社 | Flame-retardant polycarbonate resin composition and electronic device body containing the same |
JP2019163434A (en) * | 2018-03-20 | 2019-09-26 | ジャパンマテックス株式会社 | Solid molding of fluorine resin and metal oxide, and method for producing the solid |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0539451A (en) * | 1990-06-23 | 1993-02-19 | Sumitomo Electric Ind Ltd | Fluororesin coating |
JPH07102207A (en) * | 1993-10-07 | 1995-04-18 | Nissan Motor Co Ltd | Oil-and water-repellent coating liquid |
JPH08258228A (en) * | 1995-03-22 | 1996-10-08 | Asahi Glass Co Ltd | Agricultural fluoroplastic laminate |
JP2002040856A (en) * | 2000-05-15 | 2002-02-06 | Canon Inc | Fixing member, fixing device, and image forming apparatus |
JP2007119769A (en) * | 2005-09-30 | 2007-05-17 | Du Pont Mitsui Fluorochem Co Ltd | Resin composite composition and method for production of the same |
JP2008115335A (en) * | 2006-11-07 | 2008-05-22 | Du Pont Mitsui Fluorochem Co Ltd | Transparent member comprising fluororesin composite composition |
-
2017
- 2017-04-04 JP JP2017074860A patent/JP2017203152A/en active Pending
- 2017-05-08 KR KR1020170057194A patent/KR20170126411A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0539451A (en) * | 1990-06-23 | 1993-02-19 | Sumitomo Electric Ind Ltd | Fluororesin coating |
JPH07102207A (en) * | 1993-10-07 | 1995-04-18 | Nissan Motor Co Ltd | Oil-and water-repellent coating liquid |
JPH08258228A (en) * | 1995-03-22 | 1996-10-08 | Asahi Glass Co Ltd | Agricultural fluoroplastic laminate |
JP2002040856A (en) * | 2000-05-15 | 2002-02-06 | Canon Inc | Fixing member, fixing device, and image forming apparatus |
JP2007119769A (en) * | 2005-09-30 | 2007-05-17 | Du Pont Mitsui Fluorochem Co Ltd | Resin composite composition and method for production of the same |
JP2008115335A (en) * | 2006-11-07 | 2008-05-22 | Du Pont Mitsui Fluorochem Co Ltd | Transparent member comprising fluororesin composite composition |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019143084A (en) * | 2018-02-23 | 2019-08-29 | 住化ポリカーボネート株式会社 | Flame-retardant polycarbonate resin composition and electronic device body containing the same |
JP7018783B2 (en) | 2018-02-23 | 2022-02-14 | 住化ポリカーボネート株式会社 | Flame-retardant polycarbonate resin composition and electronic device housing containing it |
JP2019163434A (en) * | 2018-03-20 | 2019-09-26 | ジャパンマテックス株式会社 | Solid molding of fluorine resin and metal oxide, and method for producing the solid |
Also Published As
Publication number | Publication date |
---|---|
KR20170126411A (en) | 2017-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6066581B2 (en) | Polymer particles, aqueous dispersion containing the same, and fluororesin coating composition using the same | |
US8779046B2 (en) | Polymer composition with uniformly distributed nano-sized inorganic particles | |
RU2010153665A (en) | MIXED COMPOSITIONS OF FLUOROPOLYMERS | |
CN115232523A (en) | Coating compositions, coating films and laminates | |
WO1999032565A2 (en) | Fluororesin powder liquid dispersion capable of forming thick coatings | |
US20170321070A1 (en) | Fluororesin polymer-metallic oxide mixed dispersion and method manufacturing the same | |
JP2017203152A (en) | Fluorine resin-metal oxide mixed dispersion and method for producing the same | |
JP7023076B2 (en) | A mold on which a coating film made of a fluororesin paint composition is formed. | |
KR20010033429A (en) | Fluororesin Powder Liquid Dispersion Capable of Forming Thick Coatings | |
JP7646387B2 (en) | Powder coating composition | |
KR20210015867A (en) | Fluoropolymer coating composition | |
JP6166577B2 (en) | Fluororesin composition and molded product thereof | |
CN104927256A (en) | Film-like ternary composite of polyphenylene sulfide polytetrafluoroethylene and glass fiber cloth | |
JP2018059032A (en) | Solid molding of fluorine resin and metal oxide, and method for producing the solid | |
KR102339592B1 (en) | Polyimide―fluorine resin mixed aqueous dispersion, mixed powder and methods for manufacturing the same | |
JP2019163434A (en) | Solid molding of fluorine resin and metal oxide, and method for producing the solid | |
US10294384B2 (en) | Fluororesin-aluminum oxide mixed dispersion and method of manufacturing the same | |
JP2022125043A (en) | Aqueous coating composition and coated article | |
JP6757934B2 (en) | Fluorine-based resin-aluminum oxide mixed dispersion and its manufacturing method | |
JP6603589B2 (en) | Gland packing and manufacturing method thereof | |
JP2025034716A (en) | Powder particles, powder coating composition containing powder particles and fluororesin, and method for producing the same | |
JPS6338065B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180110 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180925 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181015 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181211 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190305 |