JP2018172257A - リチウム金属複合酸化物の製造方法 - Google Patents
リチウム金属複合酸化物の製造方法 Download PDFInfo
- Publication number
- JP2018172257A JP2018172257A JP2017072871A JP2017072871A JP2018172257A JP 2018172257 A JP2018172257 A JP 2018172257A JP 2017072871 A JP2017072871 A JP 2017072871A JP 2017072871 A JP2017072871 A JP 2017072871A JP 2018172257 A JP2018172257 A JP 2018172257A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- metal composite
- composite oxide
- lithium metal
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Complex oxides containing nickel and at least one other metal element
- C01G53/42—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
- C01G53/44—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (MnO2)n-, e.g. Li(NixMn1-x)O2 or Li(MyNixMn1-x-y)O2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
リチウム複合金属酸化物の製造工程において、洗浄工程後の熱処理工程は、洗浄液を除去し、乾燥するために必要な工程である。水分を除去するためには、引用文献1にも記載のように、120℃〜550℃の温度で熱処理することが好ましい。しかしながら、熱処理温度によっては、電力容量維持率が低下するという課題があった。
本発明は上記事情に鑑みてなされたものであって、水分を除去し、かつ、高い電力容量維持率を有するリチウム複合金属酸化物の製造方法を提供することを目的とする。
[1]リチウムイオンをドープ・脱ドープ可能な、少なくともニッケルを含むリチウム金属複合酸化物の製造方法であって、少なくともニッケルを含む金属複合化合物とリチウム化合物とを混合し、混合物を得る混合工程と、前記混合物を酸素含有雰囲気で焼成し、焼成物を得る焼成工程と、前記焼成物を洗浄し、洗浄物を得る洗浄工程と、前記洗浄物を熱処理する熱処理工程と、を有し、前記混合工程において、前記金属複合化合物中の金属元素に対する、前記リチウム化合物中のリチウムの比(モル比)が1を超える比率となるように混合し、前記熱処理工程を、昇温速度100℃/hr以上、かつ、保持温度が550℃を超え、900℃以下で行うことを特徴とするリチウム金属複合酸化物の製造方法。
[2]前記熱処理工程を、昇温速度600℃/hr以下で行う、[1]に記載のリチウム金属複合酸化物の製造方法。
[3]前記リチウム金属複合酸化物が下記組成式(I)で表されるα−NaFeO2型の結晶構造を有する、[1]又は[2]に記載のリチウム複合金属酸化物の製造方法。
Li[Lix(Ni(1−y−z−w)CoyMnzMw)1−x]O2 ・・・(I)
(式(I)中、0<x≦0.2、0<y≦0.5、0≦z≦0.5、0≦w≦0.1、y+z+w<1、MはMg、Ca、Sr、Ba、Zn、B、Al、Ga、Ti、Zr、Ge、Fe、Cu、Cr、V、W、Mo、Sc、Y、Nb、La、Ta、Tc、Ru、Rh、Pd、Ag、Cd、In、及びSnからなる群より選択される1種以上の金属を表す。)
[4]前記組成式(I)において、y+z+w≦0.3となる、[3]に記載のリチウム金属複合酸化物の製造方法。
[5]前記洗浄工程後であって、前記熱処理工程の前に、前記リチウム金属複合酸化物とAl2O3とを混合し、前記熱処理工程において、前記リチウム金属複合酸化物の粒子表面にAl被覆層を形成する、[1]〜[4]のいずれか1つに記載のリチウム金属複合酸化物の製造方法。
[6]前記リチウム金属複合酸化物を、CuKα線を使用した粉末X線回折測定を行った場合において、2θ=18.7±1°の範囲内のピークにおける積分強度Aと、2θ=44.6±1°の範囲内のピークにおける積分強度Bとの比(A/B)が1.20以上1.29以下となる、[1]〜[5]のいずれか1つに記載のリチウム金属複合酸化物の製造方法。
[7]前記リチウム金属複合酸化物の比表面積が1.2m2/g以下である、[1]〜[6]のいずれか1つに記載のリチウム金属複合酸化物の製造方法。
本発明は、リチウムイオンをドープ・脱ドープ可能な、少なくともニッケルを含むリチウム金属複合酸化物の製造方法である。
本発明は、少なくともニッケルを含む金属複合化合物とリチウム化合物とを混合する混合工程と、酸素含有雰囲気で焼成する焼成工程と、リチウム金属複合酸化物を洗浄する洗浄工程と、熱処理工程とを有する。
以下、各工程について説明する。
金属複合化合物は、通常公知のバッチ共沈殿法又は連続共沈殿法により製造することが可能である。以下、金属として、ニッケル、コバルト及びマンガンを含む金属複合水酸化物を例に、その製造方法を詳述する。
上記金属複合酸化物又は水酸化物を乾燥した後、リチウム塩と混合する。乾燥条件は、特に制限されないが、例えば、金属複合酸化物又は水酸化物が酸化・還元されない条件(酸化物が酸化物のまま維持される、水酸化物が水酸化物のまま維持される)、金属複合水酸化物が酸化される条件(水酸化物が酸化物に酸化される)、金属複合酸化物が還元される条件(酸化物が水酸化物に還元される)のいずれの条件でもよい。酸化・還元がされない条件のためには、窒素、ヘリウム及びアルゴン等の希ガス等の不活性ガスを使用すればよく、水酸化物が酸化される条件では、酸素又は空気を雰囲気下として行えばよい。また、金属複合酸化物が還元される条件としては、不活性ガス雰囲気下、ヒドラジン、亜硫酸ナトリウム等の還元剤を使用すればよい。リチウム塩としては、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、水酸化リチウム水和物、酸化リチウムのうち何れか一つ、または、二つ以上を混合して使用することができる。
本実施形態においては、前記金属複合化合物中の金属元素に対する、前記リチウム化合物中のリチウムの比(モル比)が1を超える比率となるように混合する。
例えば、ニッケルコバルトマンガン複合水酸化物を用いる場合、リチウム塩と当該複合金属水酸化物は、Li[Lix(Ni(1−y−z)CoyMnz)1−x]O2(式中、0<x)の組成比に対応する割合で用いられる。
ニッケルコバルトマンガン複合金属水酸化物及びリチウム塩の混合物を焼成することによって、リチウム−ニッケルコバルトマンガン複合酸化物が得られる。焼成には、酸素雰囲気が用いられ、必要ならば複数の加熱工程が実施される。
焼成後に、得られた焼成物を洗浄する。洗浄には、純水やアルカリ性洗浄液を用いることができる。
アルカリ性洗浄液としては、例えば、LiOH(水酸化リチウム)、NaOH(水酸化ナトリウム)、KOH(水酸化カリウム)、Li2CO3(炭酸リチウム)、Na2CO3(炭酸ナトリウム)、K2CO3(炭酸カリウム)および(NH4)2CO3(炭酸アンモニウム)からなる群より選ばれる1種以上の無水物並びにその水和物の水溶液を挙げることができる。また、アルカリとして、アンモニアを使用することもできる。
上記洗浄工程後、ろ過等により洗浄液から洗浄物を分離する。その後昇温速度100℃/hr以上、かつ、保持温度が550℃を超え、900℃以下で洗浄物を熱処理する。
熱処理工程は、前記洗浄工程後の洗浄物の水分を除去する工程である。水分を乾燥させ、除去するためには、洗浄物を400℃付近の温度で熱処理すればよいが、本発明者らは、400℃付近の温度で熱処理すると、リチウム複合金属酸化物の粒子表面のニッケル成分が酸化され、酸化ニッケル層の生成が促進されるという問題を発見した。酸化ニッケル層の生成は電力容量維持率の低下の原因となると推察している。
そこで、本実施形態においては、短時間で高温に昇温させ、酸化ニッケル層が生成する温度領域の滞留時間を短くすることで、酸化ニッケル層の生成を抑制しつつ、水分を除去することができる。
また、昇温速度の上限値は特に限定されず、使用する装置の最高昇温速度まで上げることができるが、一例を挙げると、600℃/hr以下が好ましく、500℃/hr以下がより好ましく、400℃/hr以下が特に好ましい。
昇温速度を上記特定の範囲とすることにより、酸化ニッケル層が生成する温度領域の滞留時間を短くすることができ、リチウム複合金属酸化物の粒子表面に酸化ニッケル層が生成することを抑制できると推察される。
熱処理工程を上記の下限値以上の温度で行うことにより、酸化ニッケル層の生成を抑制しつつ水分を十分に除去できる。また、熱処理工程を上記上限値以下の温度で行うことにより、リチウム複合金属酸化物の層構造の崩れを抑制できる。
本実施形態においては、前記洗浄工程後であって、前記熱処理工程の前に、前記リチウム金属複合酸化物とAl2O3とを混合し、前記熱処理工程において、前記リチウム金属複合酸化物の粒子表面にAl被覆層を形成することが好ましい。Al被覆層を形成することで前記リチウム複合金属酸化物の水分量を低減することができる。
Li[Lix(Ni(1−y−z−w)CoyMnzMw)1−x]O2 ・・・(I)
(式(I)中、0<x≦0.2、0<y≦0.5、0≦z≦0.5、0≦w≦0.1、y+z+w<1、MはMg、Ca、Sr、Ba、Zn、B、Al、Ga、Ti、Zr、Ge、Fe、Cu、Cr、V、W、Mo、Sc、Y、Nb、La、Ta、Tc、Ru、Rh、Pd、Ag、Cd、In、及びSnからなる群より選択される1種以上の金属を表す。)
xの上限値と下限値は任意に組み合わせることができる。
yの上限値と下限値は任意に組み合わせることができる。
zの上限値と下限値は任意に組み合わせることができる。
wの上限値と下限値は任意に組み合わせることができる。
A/Bの上限値と下限値は任意に組み合わせることができる。
まず、リチウム金属複合酸化物について、CuKα線を使用した粉末X線回折測定において、2θ=18.7±1°の範囲内の回折ピーク(以下、ピークA’と呼ぶこともある)を決定する。2θ=44.4±1°の範囲内の回折ピーク(以下、ピークB’と呼ぶこともある)を決定する。
さらに、決定したピークA’の積分強度A及びピークB’の積分強度Bを算出し、積分強度Aと積分強度Bの比(A/B)を算出する。
本実施形態において、高い電流レートでの放電容量が高いリチウム二次電池用正極活物質を得る観点から、リチウム金属複合酸化物のBET比表面積(m2/g)は、1.2m2/g以下が好ましく、0.8m2/g以下がより好ましく、0.5m2/g以下が特に好ましい。下限値は特に限定されないが、一例を挙げると、0.1m2/g以上であることが好ましく、0.15m2/g以上であることがより好ましく、0.20m2/g以上であることがさらに好ましい。
リチウム金属複合酸化物のBET比表面積(m2/g)の上限値と下限値は任意に組み合わせることができる。
リチウムニッケル複合酸化物の結晶構造は、層状構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。
リチウム二次電池用正極活物質のハンドリング性を高める観点から、リチウム金属複合酸化物粉末に含まれる炭酸リチウム成分は0.4質量%以下であることが好ましく、0.39質量%以下であることがより好ましく、0.38質量%以下であることが特に好ましい。
また、リチウム二次電池用正極活物質のハンドリング性を高める観点から、リチウム金属複合酸化物粉末に含まれる水酸化リチウム成分は0.35質量%以下であることが好ましく、0.25質量%以下であることがより好ましく、0.2質量%以下であることが特に好ましい。
被覆粒子又は被覆層は、LiとXとのリチウム含有金属複合酸化物を含む。XはB、Al、Ti、Zr及びWから選ばれる1種以上であり、Al又はWであることが好ましい。
被覆粒子又は被覆層は、XとしてWを選択した場合には、Li2WO4、Li4WO5のいずれか1種以上であることが好ましい。
次いで、リチウム二次電池の構成を説明しながら、本発明のリチウム金属複合酸化物を、リチウム二次電池の正極活物質として用いた正極、およびこの正極を有するリチウム二次電池について説明する。
(正極)
本実施形態の正極は、まず正極活物質、導電材およびバインダーを含む正極合剤を調整し、正極合剤を正極集電体に担持させることで製造することができる。
本実施形態の正極が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)、繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きいため、少量を正極合剤中に添加することにより正極内部の導電性を高め、充放電効率および出力特性を向上させることができるが、多く入れすぎるとバインダーによる正極合剤と正極集電体との結着力、および正極合剤内部の結着力がいずれも低下し、かえって内部抵抗を増加させる原因となる。
本実施形態の正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。この熱可塑性樹脂としては、ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。
本実施形態の正極が有する正極集電体としては、Al、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。なかでも、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工したものが好ましい。
(負極)
本実施形態のリチウム二次電池が有する負極は、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能であればよく、負極活物質を含む負極合剤が負極集電体に担持されてなる電極、および負極活物質単独からなる電極を挙げることができる。
負極が有する負極活物質としては、炭素材料、カルコゲン化合物(酸化物、硫化物など)、窒化物、金属又は合金で、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能な材料が挙げられる。
負極が有する負極集電体としては、Cu、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。なかでも、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
本実施形態のリチウム二次電池が有するセパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。
本実施形態のリチウム二次電池が有する電解液は、電解質および有機溶媒を含有する。
リチウム金属複合酸化物粉末1gを窒素雰囲気中、105℃で30分間乾燥させた後、マウンテック社製Macsorb(登録商標)を用いて測定した。
粉末X線回折測定は、X線回折装置(PANalytical社製、X‘Pert PRO)を用いて行った。リチウム金属複合酸化物粉末を専用の基板に充填し、Cu−Kα線源を用いて、回折角2θ=10°〜90°の範囲にて測定を行うことで、粉末X線回折図形を得た。粉末X線回折パターン総合解析ソフトウェアJADE5を用い、該粉末X線回折図形から2θ=18.7±1°の範囲内の回折ピークの半値幅A及び、2θ=44.4±1°の範囲内の回折ピークの半値幅Bを求め、A/Bを算出した。
半値幅Aの回折ピーク: 2θ=18.7±1°
半値幅Bの回折ピーク: 2θ=44.4±1°
後述の方法で製造されるリチウム金属複合酸化物粉末の組成分析は、得られたリチウム金属複合酸化物の粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて行った。
後述する製造方法で得られるリチウム金属複合酸化物を正極活物質とし、該正極活物質と導電材(アセチレンブラック)とバインダー(PVdF)とを、リチウム二次電池用正極活物質:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製した。正極合剤の調製時には、N−メチル−2−ピロリドンを有機溶媒として用いた。
以下の操作を、アルゴン雰囲気のグローブボックス内で行った。
「リチウム二次電池用正極の作製」で作製したリチウム二次電池用正極を、コイン型電池R2032用のパーツ(宝泉株式会社製)の下蓋にアルミ箔面を下に向けて置き、その上に積層フィルムセパレータ(ポリエチレン製多孔質フィルムの上に、耐熱多孔層を積層(厚み16μm))を置いた。ここに電解液を300μl注入した。電解液は、エチレンカーボネート(以下、ECと称することがある。)とジメチルカーボネート(以下、DMCと称することがある。)とエチルメチルカーボネート(以下、EMCと称することがある。)の30:35:35(体積比)混合液にLiPF6を1mol/lとなるように溶解したもの(以下、LiPF6/EC+DMC+EMCと表すことがある。)を用いた。
<リチウム二次電池(コイン型ハーフセル)の作製>で作製したコイン型ハーフセルを用いて、以下に示す条件でレート試験を実施した。
試験温度:25℃
充電最大電圧4.3V、充電時間6時間、充電電流1.0CA、定電流定電圧充電
放電最小電圧2.5V、放電時間5時間、放電電流0.2CA、定電流放電
<3C充放電試験条件>
試験温度:25℃
充電最大電圧4.3V、充電時間6時間、充電電流1.0CA、定電流定電圧充電
放電最小電圧2.5V、放電時間5時間、放電電流3.0CA、定電流放電
<電力容量の算出>
0.2C電力容量を0.2C放電容量×0.2C平均放電電圧で算出した。
3.0C電力容量を3.0C放電容量×3.0C平均放電電圧で算出した。
0.2C、3.0C平均放電電圧は10秒又は10mVごとに抽出した電圧の平均値である。
<電力容量維持率の算出>
3C電力容量÷0.2C電力容量×100で算出した。
水分量の測定は電量法カールフィッシャー水分計(831 Coulometer、Metrohm社製)を用いて実施した。
リチウム金属複合酸化物1の製造
[ニッケルコバルトマンガンアルミニウム複合水酸化物製造工程]
攪拌器およびオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
以上のようにして得られたニッケルコバルトマンガンアルミニウム複合水酸化物1と水酸化リチウム粉末とをLi/(Ni+Co+Mn+Al)=1.07となるように秤量して混合した。
その後、上記混合工程で得られた混合物を、酸素雰囲気下820℃で6時間焼成し、焼成物1を得た。
その後、得られた焼成物1を水で洗浄した。洗浄工程は、焼成物1を、純水に加えて得られるスラリー状の液を10分間撹拌し、脱水することにより行った。
その後、上記洗浄工程で得られたウエットケーキを105℃で時間乾燥させ、リチウム複合酸化物洗浄乾燥粉1を得た。
上記乾燥工程後、リチウム金属複合酸化物洗浄乾燥粉1を、室温から、昇温速度160℃/時間で700℃まで昇温し、5時間熱処理し、リチウム金属複合酸化物1を得た。
得られたリチウム金属複合酸化物1の組成分析を行い、組成式(I)に対応させたところ、x=0.03、y=0.10、z=0.14、w=0.01であった。
リチウム複合金属酸化物2の製造
[ニッケルコバルトマンガン複合水酸化物製造工程]
攪拌器およびオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
以上のようにして得られたニッケルコバルトマンガン複合水酸化物2と水酸化リチウム粉末とをLi/(Ni+Co+Mn)=1.07となるように秤量して混合した。
その後、上記混合工程で得た混合物を酸素雰囲気下820℃で6時間焼成し、焼成物2を得た。
その後、得られた焼成物2を水で洗浄した。洗浄工程は、焼成物2を、純水に加えて得られるスラリー状の液を10分間撹拌し、脱水することにより行った。
その後、洗浄工程で得られたウエットケーキを105℃で時間乾燥させ、リチウム複合金属酸化物洗浄乾燥粉2を得た。
乾燥工程後、リチウム複合金属酸化物洗浄乾燥粉2を、室温から、昇温速度200℃/時間で850℃まで昇温し、5時間熱処理し、リチウム複合金属酸化物2を得た。
得られたリチウム複合金属酸化物2の組成分析を行い、組成式(I)に対応させたところ、x=0.04、y=0.10、z=0.15、w=0.00であった。
上記リチウム複合金属酸化物洗浄乾燥粉2を、熱処理工程を下記表1に示す昇温速度、保持温度で行ったこと以外は実施例2と同様の方法により、リチウム複合金属酸化物3、H1〜H3を製造した。
得られたリチウム複合金属酸化物3の組成分析を行い、組成式(I)に対応させたところ、x=0.04、y=0.10、z=0.15、w=0.00であった。
得られたリチウム複合金属酸化物H1の組成分析を行い、組成式(I)に対応させたところ、x=0.05、y=0.10、z=0.15、w=0.00であった。
得られたリチウム複合金属酸化物H2の組成分析を行い、組成式(I)に対応させたところ、x=0.01、y=0.10、z=0.15、w=0.00であった。
得られたリチウム複合金属酸化物H3の組成分析を行い、組成式(I)に対応させたところ、x=0.04、y=0.10、z=0.15、w=0.00であった。
リチウム複合金属酸化物4の製造
[ニッケルコバルトマンガンアルミニウム複合水酸化物製造工程]
攪拌器およびオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
以上のようにして得られたニッケルコバルトマンガンアルミニウム複合水酸化物4と水酸化リチウム粉末とをLi/(Ni+Co+Mn+Al)=1.07となるように秤量して混合した。
その後、上記混合工程で得られた混合物を酸素雰囲気下820℃で6時間焼成し、焼成物4を得た。
その後、得られた焼成物4を水で洗浄した。洗浄工程は、焼成物4を、純水に加えて得られるスラリー状の液を10分間撹拌し、脱水することにより行った。
その後、乾燥工程で得られたウエットケーキを105℃で時間乾燥させ、リチウム複合金属酸化物洗浄乾燥粉4を得た。
上記乾燥工程後、リチウム複合金属酸化物洗浄乾燥粉4を、室温から、昇温速度170℃/時間で740℃まで昇温し、5時間熱処理し、リチウム複合金属酸化物4を得た。
得られたリチウム複合金属酸化物4の組成分析を行い、組成式(I)に対応させたところ、x=0.04、y=0.07、z=0.02、w=0.01であった。
上記リチウム複合金属酸化物洗浄乾燥粉4のICP組成分析の結果、Ni:Co:Mn:Al=90:7:2:1の原子比であった。リチウム複合金属酸化物洗浄乾燥粉4を熱処理工程前にリチウム複合金属酸化物洗浄乾燥粉4に含まれるNi+Co+Mn+Alの原子数に対してAl2O3に含まれるAlの原子数比が0.015となるように秤量し、混合する以外は実施例4と同様の方法により、リチウム複合金属酸化物5を製造した。
上記リチウム複合金属酸化物4を、熱処理工程を下記表1に示す昇温速度、保持温度で行ったこと以外は実施例4と同様の方法により、リチウム複合金属酸化物H4を製造した。
Claims (7)
- リチウムイオンをドープ・脱ドープ可能な、少なくともニッケルを含むリチウム金属複合酸化物の製造方法であって、
少なくともニッケルを含む金属複合化合物とリチウム化合物とを混合し、混合物を得る混合工程と、
前記混合物を酸素含有雰囲気で焼成し、焼成物を得る焼成工程と、
前記焼成物を洗浄し、洗浄物を得る洗浄工程と、
前記洗浄物を熱処理する熱処理工程と、
を有し、
前記混合工程において、前記金属複合化合物中の金属元素に対する、前記リチウム化合物中のリチウムの比(モル比)が1を超える比率となるように混合し、
前記熱処理工程を、昇温速度100℃/hr以上、かつ、保持温度が550℃を超え、900℃以下で行うことを特徴とするリチウム金属複合酸化物の製造方法。 - 前記熱処理工程を、昇温速度600℃/hr以下で行う、請求項1に記載のリチウム金属複合酸化物の製造方法。
- 前記リチウム金属複合酸化物が下記組成式(I)で表されるα−NaFeO2型の結晶構造を有する、請求項1又は2に記載のリチウム複合金属酸化物の製造方法。
Li[Lix(Ni(1−y−z−w)CoyMnzMw)1−x]O2 ・・・(I)
(式(I)中、0<x≦0.2、0<y≦0.5、0≦z≦0.5、0≦w≦0.1、y+z+w<1、MはMg、Ca、Sr、Ba、Zn、B、Al、Ga、Ti、Zr、Ge、Fe、Cu、Cr、V、W、Mo、Sc、Y、Nb、La、Ta、Tc、Ru、Rh、Pd、Ag、Cd、In、及びSnからなる群より選択される1種以上の金属を表す。) - 前記組成式(I)において、y+z+w≦0.3となる、請求項3に記載のリチウム金属複合酸化物の製造方法。
- 前記洗浄工程後であって、前記熱処理工程の前に、前記リチウム金属複合酸化物とAl2O3とを混合し、前記熱処理工程において、前記リチウム金属複合酸化物の粒子表面にAl被覆層を形成する、請求項1〜4のいずれか1項に記載のリチウム金属複合酸化物の製造方法。
- 前記リチウム金属複合酸化物を、CuKα線を使用した粉末X線回折測定を行った場合において、2θ=18.7±1°の範囲内のピークにおける積分強度Aと、2θ=44.6±1°の範囲内のピークにおける積分強度Bとの比(A/B)が1.20以上1.29以下となる、請求項1〜5のいずれか1項に記載のリチウム金属複合酸化物の製造方法。
- 前記リチウム金属複合酸化物の比表面積が1.2m2/g以下である、請求項1〜6のいずれか1項に記載のリチウム金属複合酸化物の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017072871A JP6879803B2 (ja) | 2017-03-31 | 2017-03-31 | リチウム金属複合酸化物の製造方法 |
CN201880021372.9A CN110461770B (zh) | 2017-03-31 | 2018-03-28 | 锂金属复合氧化物的制造方法 |
PCT/JP2018/012881 WO2018181530A1 (ja) | 2017-03-31 | 2018-03-28 | リチウム金属複合酸化物の製造方法 |
KR1020197027858A KR102480533B1 (ko) | 2017-03-31 | 2018-03-28 | 리튬 금속 복합 산화물의 제조 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017072871A JP6879803B2 (ja) | 2017-03-31 | 2017-03-31 | リチウム金属複合酸化物の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018172257A true JP2018172257A (ja) | 2018-11-08 |
JP6879803B2 JP6879803B2 (ja) | 2021-06-02 |
Family
ID=63675970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017072871A Active JP6879803B2 (ja) | 2017-03-31 | 2017-03-31 | リチウム金属複合酸化物の製造方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6879803B2 (ja) |
KR (1) | KR102480533B1 (ja) |
CN (1) | CN110461770B (ja) |
WO (1) | WO2018181530A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020208872A1 (ja) * | 2019-04-12 | 2020-10-15 | 住友化学株式会社 | リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質 |
WO2020208873A1 (ja) * | 2019-04-12 | 2020-10-15 | 住友化学株式会社 | リチウム複合金属酸化物粉末及びリチウム二次電池用正極活物質 |
KR20220055942A (ko) * | 2020-10-27 | 2022-05-04 | 주식회사 에코프로비엠 | 리튬 이차전지용 양극 활물질의 제조 방법 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6630864B1 (ja) * | 2019-04-12 | 2020-01-15 | 住友化学株式会社 | リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、及びリチウム金属複合酸化物粉末の製造方法 |
KR102618005B1 (ko) * | 2020-08-18 | 2023-12-27 | 주식회사 엘지화학 | 양극 활물질의 제조 방법 |
KR20230051497A (ko) * | 2020-08-19 | 2023-04-18 | 스미또모 가가꾸 가부시끼가이샤 | 리튬 금속 복합 산화물의 제조 방법 |
CN113328210B (zh) * | 2021-05-27 | 2022-09-27 | 贵州梅岭电源有限公司 | 一种锂电池锂金属负极板及其制备方法 |
CN113328211B (zh) * | 2021-05-27 | 2022-09-27 | 贵州梅岭电源有限公司 | 一种高能量密度锂一次电池负极板及其制备方法 |
KR20240058235A (ko) * | 2022-10-25 | 2024-05-03 | 주식회사 에코프로비엠 | 리튬 복합 산화물 및 이를 포함하는 이차전지용 양극활물질 |
JP7454642B1 (ja) | 2022-12-22 | 2024-03-22 | 住友化学株式会社 | リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004273451A (ja) * | 2003-02-21 | 2004-09-30 | Sumitomo Metal Mining Co Ltd | 非水系電解質二次電池用正極活物質および非水系電解質二次電池 |
JP2011057518A (ja) * | 2009-09-11 | 2011-03-24 | Kansai Shokubai Kagaku Kk | 高密度ニッケル・コバルト・マンガン共沈水酸化物及びその製造方法 |
JP2011216472A (ja) * | 2010-03-18 | 2011-10-27 | Sumitomo Chemical Co Ltd | 正極用粉末 |
JP2013033698A (ja) * | 2010-09-02 | 2013-02-14 | Sumitomo Chemical Co Ltd | 正極活物質の製造方法および正極活物質 |
JP2013095603A (ja) * | 2011-10-28 | 2013-05-20 | Sumitomo Chemical Co Ltd | リチウム複合金属酸化物の製造方法、リチウム複合金属酸化物および非水電解質二次電池用二次電池 |
WO2014007357A1 (ja) * | 2012-07-06 | 2014-01-09 | 住友化学株式会社 | リチウム複合金属酸化物、正極活物質、正極および非水電解質二次電池 |
JP2015041583A (ja) * | 2013-08-23 | 2015-03-02 | 日本電気株式会社 | リチウム鉄マンガン系複合酸化物およびそれを用いたリチウムイオン二次電池 |
JP2016025017A (ja) * | 2014-07-23 | 2016-02-08 | 株式会社豊田自動織機 | リチウムイオン二次電池用正極とその製造方法及びリチウムイオン二次電池 |
JP2016185905A (ja) * | 2012-07-06 | 2016-10-27 | 住友化学株式会社 | リチウム複合金属酸化物、正極活物質、正極および非水電解質二次電池 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102325781B1 (ko) | 2013-05-22 | 2021-11-15 | 스미토모 긴조쿠 고잔 가부시키가이샤 | 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법 |
-
2017
- 2017-03-31 JP JP2017072871A patent/JP6879803B2/ja active Active
-
2018
- 2018-03-28 KR KR1020197027858A patent/KR102480533B1/ko active Active
- 2018-03-28 WO PCT/JP2018/012881 patent/WO2018181530A1/ja active Application Filing
- 2018-03-28 CN CN201880021372.9A patent/CN110461770B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004273451A (ja) * | 2003-02-21 | 2004-09-30 | Sumitomo Metal Mining Co Ltd | 非水系電解質二次電池用正極活物質および非水系電解質二次電池 |
JP2011057518A (ja) * | 2009-09-11 | 2011-03-24 | Kansai Shokubai Kagaku Kk | 高密度ニッケル・コバルト・マンガン共沈水酸化物及びその製造方法 |
JP2011216472A (ja) * | 2010-03-18 | 2011-10-27 | Sumitomo Chemical Co Ltd | 正極用粉末 |
JP2013033698A (ja) * | 2010-09-02 | 2013-02-14 | Sumitomo Chemical Co Ltd | 正極活物質の製造方法および正極活物質 |
JP2013095603A (ja) * | 2011-10-28 | 2013-05-20 | Sumitomo Chemical Co Ltd | リチウム複合金属酸化物の製造方法、リチウム複合金属酸化物および非水電解質二次電池用二次電池 |
WO2014007357A1 (ja) * | 2012-07-06 | 2014-01-09 | 住友化学株式会社 | リチウム複合金属酸化物、正極活物質、正極および非水電解質二次電池 |
JP2016185905A (ja) * | 2012-07-06 | 2016-10-27 | 住友化学株式会社 | リチウム複合金属酸化物、正極活物質、正極および非水電解質二次電池 |
JP2015041583A (ja) * | 2013-08-23 | 2015-03-02 | 日本電気株式会社 | リチウム鉄マンガン系複合酸化物およびそれを用いたリチウムイオン二次電池 |
JP2016025017A (ja) * | 2014-07-23 | 2016-02-08 | 株式会社豊田自動織機 | リチウムイオン二次電池用正極とその製造方法及びリチウムイオン二次電池 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020208872A1 (ja) * | 2019-04-12 | 2020-10-15 | 住友化学株式会社 | リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質 |
WO2020208873A1 (ja) * | 2019-04-12 | 2020-10-15 | 住友化学株式会社 | リチウム複合金属酸化物粉末及びリチウム二次電池用正極活物質 |
JP2020172420A (ja) * | 2019-04-12 | 2020-10-22 | 住友化学株式会社 | リチウム複合金属酸化物粉末及びリチウム二次電池用正極活物質 |
KR20220055942A (ko) * | 2020-10-27 | 2022-05-04 | 주식회사 에코프로비엠 | 리튬 이차전지용 양극 활물질의 제조 방법 |
WO2022092477A1 (ko) * | 2020-10-27 | 2022-05-05 | 주식회사 에코프로비엠 | 리튬 이차전지용 양극 활물질의 제조 방법 |
KR102461125B1 (ko) * | 2020-10-27 | 2022-11-01 | 주식회사 에코프로비엠 | 리튬 이차전지용 양극 활물질의 제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
KR102480533B1 (ko) | 2022-12-22 |
JP6879803B2 (ja) | 2021-06-02 |
CN110461770A (zh) | 2019-11-15 |
CN110461770B (zh) | 2022-04-01 |
KR20190127756A (ko) | 2019-11-13 |
WO2018181530A1 (ja) | 2018-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6495997B1 (ja) | リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 | |
JP6412094B2 (ja) | リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 | |
JP6026679B2 (ja) | リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池 | |
JP6256956B1 (ja) | リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 | |
JP6108141B2 (ja) | リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池 | |
KR102437198B1 (ko) | 리튬 2 차 전지용 정극 활물질, 리튬 2 차 전지용 정극 및 리튬 2 차 전지 | |
WO2016060105A1 (ja) | リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 | |
JP6368022B1 (ja) | リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 | |
KR102480533B1 (ko) | 리튬 금속 복합 산화물의 제조 방법 | |
JP6646130B1 (ja) | リチウム二次電池正極活物質用前駆体、リチウム二次電池正極活物質用前駆体の製造方法及びリチウム複合金属化合物の製造方法 | |
WO2018079816A1 (ja) | リチウム二次電池用正極活物質前駆体、リチウム二次電池用正極活物質の製造方法 | |
JP6929682B2 (ja) | リチウムニッケル複合酸化物の製造方法 | |
JP2019003955A (ja) | リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 | |
JP6500001B2 (ja) | リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 | |
JP6388978B1 (ja) | リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 | |
JPWO2017078136A1 (ja) | リチウム二次電池用正極活物質、リチウム二次電池用正極活物質の製造方法、リチウム二次電池用正極及びリチウム二次電池 | |
KR102545342B1 (ko) | 리튬 복합 금속 산화물의 제조 방법 | |
JPWO2018105481A1 (ja) | リチウム二次電池用正極活物質の製造方法 | |
WO2018021453A1 (ja) | リチウムニッケル複合酸化物の製造方法 | |
JP2018081937A (ja) | リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 | |
JP6470380B1 (ja) | リチウム複合金属化合物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 | |
KR20210100108A (ko) | 리튬 천이 금속 복합 산화물 분말, 니켈 함유 천이 금속 복합 수산화물 분말, 리튬 이차 전지용 정극 활물질, 리튬 이차 전지용 정극 및 리튬 이차 전지 | |
JP6360374B2 (ja) | リチウム含有複合金属酸化物の製造方法 | |
JP2018095546A (ja) | リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 | |
JP2018098217A (ja) | リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210406 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210430 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6879803 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |