[go: up one dir, main page]

JP2018079428A - Hydrocarbon adsorbent and hydrocarbon removal method - Google Patents

Hydrocarbon adsorbent and hydrocarbon removal method Download PDF

Info

Publication number
JP2018079428A
JP2018079428A JP2016223691A JP2016223691A JP2018079428A JP 2018079428 A JP2018079428 A JP 2018079428A JP 2016223691 A JP2016223691 A JP 2016223691A JP 2016223691 A JP2016223691 A JP 2016223691A JP 2018079428 A JP2018079428 A JP 2018079428A
Authority
JP
Japan
Prior art keywords
hydrocarbon
copper
lev
type zeolite
hydrocarbon adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016223691A
Other languages
Japanese (ja)
Inventor
圭太 中尾
Keita Nakao
圭太 中尾
亮 三橋
Akira Mihashi
亮 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2016223691A priority Critical patent/JP2018079428A/en
Publication of JP2018079428A publication Critical patent/JP2018079428A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

【課題】従来の炭化水素吸着剤と比べ、吸着した炭化水素の脱離温度の低下が抑制された炭化水素吸着剤を提供する。【解決手段】銅を含有するLEV型ゼオライトを含む炭化水素吸着剤。前記LEV型ゼオライトの銅含有量は、LEV型ゼオライトに対する銅の重量割合が1.0〜7.0重量%であることが好ましい。好ましくは、LEV型ゼオライトの平均粒子径が、0.5μmであり、前記LEV型ゼオライトのアルミナに対するシリカのモル比が10〜50である、炭化水素吸着剤。【選択図】なしPROBLEM TO BE SOLVED: To provide a hydrocarbon adsorbent in which a decrease in the desorption temperature of adsorbed hydrocarbon is suppressed as compared with a conventional hydrocarbon adsorbent. A hydrocarbon adsorbent containing a LEV-type zeolite containing copper. The copper content of the LEV-type zeolite is preferably 1.0 to 7.0% by weight in terms of the weight ratio of copper to the LEV-type zeolite. Preferably, the hydrocarbon adsorbent has an average particle size of 0.5 μm of the LEV-type zeolite and a molar ratio of silica to alumina of the LEV-type zeolite of 10 to 50. [Selection diagram] None

Description

本発明は、炭化水素の吸着剤及び炭化水素の吸着方法に関する。特に排出ガス浄化システムへの適用に適した炭化水素の吸着剤にかかる。   The present invention relates to a hydrocarbon adsorbent and a hydrocarbon adsorption method. In particular, it relates to hydrocarbon adsorbents suitable for application to exhaust gas purification systems.

自動車や船舶などの移動体に使用されている内燃機関から排出される排ガスは炭化水素を多く含む。移動体から排出される排ガスから炭化水素を除去するため、内燃機関の後に触媒等を設けた排ガス処理システムが実用化されている。排ガス処理システムにおける炭化水素の除去触媒として、貴金属を含む三元触媒が広く使用されている。しかしながら、三元触媒が機能するためには250℃以上の温度環境が必要であるため、内燃機関の起動時など、温度が低い状態では三元触媒では炭化水素を分解することができず、内燃機関から排出された炭化水素がそのまま移動体の外へと排出される。   Exhaust gas discharged from an internal combustion engine used for moving bodies such as automobiles and ships contains a large amount of hydrocarbons. In order to remove hydrocarbons from exhaust gas discharged from a moving body, an exhaust gas treatment system in which a catalyst or the like is provided after an internal combustion engine has been put into practical use. Three-way catalysts containing precious metals are widely used as hydrocarbon removal catalysts in exhaust gas treatment systems. However, in order for the three-way catalyst to function, a temperature environment of 250 ° C. or higher is necessary. Therefore, the three-way catalyst cannot decompose hydrocarbons at a low temperature, such as when the internal combustion engine is started. The hydrocarbons discharged from the engine are discharged out of the moving body as they are.

そのため、排ガス処理システムでは三元触媒と炭化水素吸着剤を組合せることで、三元触媒が機能する前に炭化水素吸着剤に炭化水素を吸着させ、三元触媒が機能する温度になった時点で吸着した炭化水素を炭化水素吸着剤から脱離させ、これを三元触媒で分解除去することにより、炭化水素の大気中への排出を抑制している(例えば、特許文献1)。炭素数の少ない炭化水素を吸着及び脱離は難しいため、これまで、排ガス浄化システムにおける炭化水素吸着剤について、炭素数の少ない炭化水素の吸着及び脱離特性の改善が検討されている。   Therefore, when the exhaust gas treatment system combines a three-way catalyst and a hydrocarbon adsorbent, the hydrocarbon adsorbent is adsorbed to the hydrocarbon adsorbent before the three-way catalyst functions, and the temperature at which the three-way catalyst functions is reached. The hydrocarbons adsorbed in the above are desorbed from the hydrocarbon adsorbent and decomposed and removed with a three-way catalyst to suppress the release of hydrocarbons into the atmosphere (for example, Patent Document 1). Since it is difficult to adsorb and desorb hydrocarbons having a small number of carbon atoms, improvement of adsorption and desorption characteristics of hydrocarbons having a small number of carbon atoms has been studied for hydrocarbon adsorbents in exhaust gas purification systems.

例えば、特許文献1では、三元触媒の下流に、シリカ/アルミナ比の異なる2種のゼオライトを組み合わせたガソリンエンジンの排ガス浄化システムが開示されている。さらに、特許文献1では、低級炭化水素を吸着するためにZSM−5を用いることが好ましい旨が記載されている。特許文献2には、銀でイオン交換したフェリエライト、モルデナイト、ZSM−5及びβ型ゼオライトがエチレンの吸着剤として使用できることが開示されている。さらに、特許文献3では、プロトン型のSUZ−4がプロピレンの吸着性能に優れることが開示されている。   For example, Patent Document 1 discloses an exhaust gas purification system for a gasoline engine in which two types of zeolites having different silica / alumina ratios are combined downstream of a three-way catalyst. Furthermore, Patent Document 1 describes that it is preferable to use ZSM-5 to adsorb lower hydrocarbons. Patent Document 2 discloses that ferrierite, mordenite, ZSM-5, and β-type zeolite ion-exchanged with silver can be used as an adsorbent for ethylene. Furthermore, Patent Document 3 discloses that proton-type SUZ-4 is excellent in propylene adsorption performance.

特開平11−192427JP-A-11-192427 特表2009−518162Special table 2009-518162 特許2011−062664Patent 2011-062664

排ガス処理システムに適用される炭化水吸着剤は、炭化水素の吸着機能に加え、200〜300℃で吸着した炭化水素を脱離する機能が必要とされる。これに加え、排ガス処理システムの炭化水素吸着剤は600℃以上、更には900℃以上高温の排ガスに晒される一方、内燃機関の停止時には室温、更には零下にまで晒されるため、熱負荷が非常に大きい。   The hydrocarbon adsorbent applied to the exhaust gas treatment system is required to have a function of desorbing hydrocarbons adsorbed at 200 to 300 ° C. in addition to the hydrocarbon adsorption function. In addition to this, the hydrocarbon adsorbent of the exhaust gas treatment system is exposed to exhaust gas at a temperature of 600 ° C or higher, more preferably 900 ° C or higher, while it is exposed to room temperature and further to zero when the internal combustion engine is stopped. Big.

しかしながら、従来報告された炭化水素吸着剤は、熱負荷のため、長期間の使用により炭化水素を脱離する温度が著しく低下するため、特に安定した炭化水素の脱離特性を有していなかった。   However, the conventionally reported hydrocarbon adsorbents did not have particularly stable hydrocarbon desorption characteristics because the temperature at which hydrocarbons are desorbed significantly decreases due to heat load due to heat load. .

このような課題に鑑み、本発明は、従来の炭化水素吸着剤と比べ、吸着した炭化水素の脱離温度の低下が抑制された炭化水素吸着剤を提供することを目的とする。   In view of such problems, an object of the present invention is to provide a hydrocarbon adsorbent in which a decrease in the desorption temperature of adsorbed hydrocarbons is suppressed as compared with conventional hydrocarbon adsorbents.

本発明者らは、内燃機関の排ガス処理システムとしての適用に適した炭化水素吸着剤について検討を重ねた。その結果、特定の構造を有する小細孔ゼオライトに金属を含有させることで、熱負荷後の炭化水素の脱離特性の変化が小さくなること見出し、本発明を完成するに至ったものである。   The inventors of the present invention repeatedly studied a hydrocarbon adsorbent suitable for application as an exhaust gas treatment system for an internal combustion engine. As a result, it has been found that the inclusion of a metal in a small pore zeolite having a specific structure reduces the change in the desorption characteristics of hydrocarbons after heat load, and has completed the present invention.

すなわち、本発明の要旨は以下のとおりである。
[1] 銅を含有するLEV型ゼオライトを含む炭化水素吸着剤。
[2] 前記LEV型ゼオライトの銅含有量が、LEV型ゼオライトに対する銅の重量割合として1.0重量%以上7.0重量%以下である上記[1]に記載の炭化水素吸着剤。
[3] 前記LEV型ゼオライトのアルミナに対するシリカのモル比が10以上50以下である上記[1]又は[2]のいずれかに記載の炭化水素吸着剤。
[4] 前記LEV型ゼオライトの平均粒子径が0.5μm以上である上記[1]乃至[3]のいずれかに記載の炭化水素吸着剤。
[5] 上記[1]乃至[4]のいずれかに記載の炭化水素吸着剤を使用することを特徴とする炭化水素含有ガスの処理方法。
[6] 上記[1]乃至[4]のいずれかに記載の炭化水素吸着剤を使用することを特徴とする炭化水素の吸着方法。
That is, the gist of the present invention is as follows.
[1] A hydrocarbon adsorbent containing LEV-type zeolite containing copper.
[2] The hydrocarbon adsorbent according to [1], wherein the copper content of the LEV-type zeolite is 1.0% by weight or more and 7.0% by weight or less as a weight ratio of copper with respect to the LEV-type zeolite.
[3] The hydrocarbon adsorbent according to any one of [1] or [2] above, wherein the molar ratio of silica to alumina in the LEV-type zeolite is 10 or more and 50 or less.
[4] The hydrocarbon adsorbent according to any one of [1] to [3], wherein the LEV-type zeolite has an average particle size of 0.5 μm or more.
[5] A method for treating a hydrocarbon-containing gas, wherein the hydrocarbon adsorbent according to any one of [1] to [4] is used.
[6] A hydrocarbon adsorption method using the hydrocarbon adsorbent according to any one of [1] to [4].

本発明により、従来の炭化水素吸着剤と比べ、吸着した炭化水素の脱離温度の変化が少ない炭化水素吸着剤を提供することができる。   According to the present invention, it is possible to provide a hydrocarbon adsorbent in which a change in the desorption temperature of the adsorbed hydrocarbon is small as compared with a conventional hydrocarbon adsorbent.

以下、本発明の炭化水素吸着剤について説明する。   Hereinafter, the hydrocarbon adsorbent of the present invention will be described.

本発明の炭化水素吸着剤は、銅を含有するLEV型ゼオライトを含む。LEV型ゼオライトは、LEV構造を有する結晶性アルミノシリケートである。LEV構造は、国際ゼオライト学会(International ZeoliteAssociation;以下、「IZA」)のStructure Commissionが定めているIUPAC構造コードで、LEV型となる構造である。結晶性アルミノシリケートは、アルミニウム(Al)とケイ素(Si)とが酸素(O)を介したネットワークの繰返しからなる構造(以下、「ネットワーク構造」ともいう。)を有する。   The hydrocarbon adsorbent of the present invention contains LEV-type zeolite containing copper. LEV-type zeolite is a crystalline aluminosilicate having a LEV structure. The LEV structure is an IUPAC structure code defined by the Structure Commission of the International Zeolite Association (hereinafter referred to as “IZA”), and is a LEV structure. The crystalline aluminosilicate has a structure (hereinafter also referred to as “network structure”) in which aluminum (Al) and silicon (Si) are formed by repeating a network through oxygen (O).

本発明の炭化水素吸着剤に含まれる、銅を含有するLEV型ゼオライト(以下、「銅含有LEV型ゼオライト」ともいう。)は銅を含有する。銅は銀やパラジウム等の貴金属と比べて安価であるため、銅を含有する本発明の炭化水素吸着剤はこれらと比べて、価格あたりの炭化水素吸着量が多くなりやすい。銅は、少なくともLEV型の細孔に含まれていることが好ましい。   The LEV-type zeolite containing copper (hereinafter, also referred to as “copper-containing LEV-type zeolite”) contained in the hydrocarbon adsorbent of the present invention contains copper. Since copper is cheaper than noble metals such as silver and palladium, the hydrocarbon adsorbent of the present invention containing copper tends to increase the amount of hydrocarbon adsorption per price as compared with these. Copper is preferably contained in at least LEV type pores.

銅含有LEV型ゼオライトは、銅含有量が、LEV型ゼオライトに対する銅の重量割合として1.0重量%以上7.0重量%以下、更には2.0重量%以上5.0重量%以下であることが好ましい。銅含有量が多くなるほど、吸着した炭化水素の脱離温度が高くなる傾向がある。本発明における銅含有量は、銅含有LEV型ゼオライトに対する銅の重量割合である。   The copper-containing LEV-type zeolite has a copper content of 1.0% by weight or more and 7.0% by weight or less, more preferably 2.0% by weight or more and 5.0% by weight or less as a weight ratio of copper to the LEV-type zeolite. It is preferable. As the copper content increases, the desorption temperature of the adsorbed hydrocarbon tends to increase. The copper content in the present invention is the weight ratio of copper to the copper-containing LEV-type zeolite.

本発明の炭化水素吸着剤に含まれる銅含有LEV型ゼオライトは、アルミナに対するシリカのモル比(以下、「SiO/Alモル比」ともいう。)が、10以上50以下、更には30以上40以下であることが好ましい。SiO/Alモル比が高くなることで耐熱性が高くなる傾向があるが、SiO/Alモル比が高くなりすぎると炭化水素の吸着量が低くなる傾向がある。SiO/Alモル比を10以上50以下とすることで、熱負荷に対して実用的な耐性を有し、なおかつ、実用的な炭化水素吸着量を示す。 The copper-containing LEV-type zeolite contained in the hydrocarbon adsorbent of the present invention has a silica to alumina molar ratio (hereinafter also referred to as “SiO 2 / Al 2 O 3 molar ratio”) of 10 or more and 50 or less, and further It is preferably 30 or more and 40 or less. Tend to heat resistance is high by SiO 2 / Al 2 O 3 molar ratio is higher, the adsorption amount of hydrocarbon SiO 2 / Al 2 O 3 molar ratio is too high tends to be low. By setting the SiO 2 / Al 2 O 3 molar ratio to 10 or more and 50 or less, it has practical resistance to a heat load and shows a practical amount of adsorbing hydrocarbons.

本発明の炭化水素吸着剤に含まれる銅含有LEV型ゼオライトは、平均結晶径が0.5μm以上、更には0.8μm以上であることが好ましい。平均結晶径が0.5μm以上であることで、熱履歴後の炭化水素吸着量の低下が抑制されやすくなる。   The copper-containing LEV-type zeolite contained in the hydrocarbon adsorbent of the present invention preferably has an average crystal diameter of 0.5 μm or more, more preferably 0.8 μm or more. When the average crystal diameter is 0.5 μm or more, a decrease in the amount of adsorbed hydrocarbon after the thermal history is easily suppressed.

本発明における結晶径とは、一次粒子の粒径であり、電子顕微鏡で観察される独立した最小単位の粒子の直径である。平均結晶径は、電子顕微鏡で無作為に抽出した30個以上の一次粒子の結晶径を相加平均した値である。そのため、複数の一次粒子が凝集した二次粒子の直径である二次粒子径や平均二次粒子径と、結晶径や平均結晶径とは異なる。一次粒子の形状は、立方晶形状、正方晶形状、並びに、立方晶形状又は正方晶形状が複合化した双晶形状からなる群の少なくとも1種であってもよい。   The crystal diameter in the present invention is the particle diameter of primary particles, and is the diameter of independent minimum unit particles observed with an electron microscope. The average crystal diameter is a value obtained by arithmetically averaging the crystal diameters of 30 or more primary particles randomly extracted with an electron microscope. Therefore, the secondary particle diameter and average secondary particle diameter, which are the diameters of secondary particles in which a plurality of primary particles are aggregated, are different from the crystal diameter and average crystal diameter. The shape of the primary particles may be at least one selected from the group consisting of a cubic shape, a tetragonal shape, and a twin shape in which a cubic shape or a tetragonal shape is combined.

本発明の炭化水素吸着剤の形状は任意であり、粉末又は成形体のいずれの形状としてもよい。本発明の炭化水素吸着剤を粉末状で使用する場合、これをハニカム等の基材に塗布又はウォシュコートした触媒部材としてもよい。本発明の炭化水素吸着剤を成形体として使用する場合、球状、略球状、楕円状、円板状、円柱状、多面体状、不定形状及び花弁状からなる群の少なくとも1種の形状、その他用途に適した形状とすればよい。   The shape of the hydrocarbon adsorbent of the present invention is arbitrary, and may be any shape of a powder or a molded body. When the hydrocarbon adsorbent of the present invention is used in powder form, it may be used as a catalyst member coated or wash coated on a substrate such as a honeycomb. When the hydrocarbon adsorbent of the present invention is used as a molded body, it is at least one shape selected from the group consisting of a spherical shape, a substantially spherical shape, an elliptical shape, a disc shape, a cylindrical shape, a polyhedral shape, an indefinite shape, and a petal shape, and other uses. The shape may be suitable for the case.

また、本発明の炭化水素吸着剤を成形体とする場合、本発明の炭化水素吸着剤は銅含有LEV型ゼオライトに加え、シリカ、アルミナ、カオリン、アタパルガイト、モンモリロナイト、ベントナイト、アロフェン及びセピオライトからなる群の少なくとも1種の粘土を含んでいてもよい。   When the hydrocarbon adsorbent of the present invention is used as a molded article, the hydrocarbon adsorbent of the present invention is a group consisting of silica, alumina, kaolin, attapulgite, montmorillonite, bentonite, allophane and sepiolite in addition to the copper-containing LEV-type zeolite. The at least 1 sort (s) of clay may be included.

本発明の炭化水素吸着剤は、炭化水素含有気体の処理方法、炭化水素の吸着方法、炭化水素の吸着脱離方法などに使用することができ、、炭化水素含有気体からの炭化水素吸着剤、特に炭素数の少ない炭化水素(以下、「低級炭化水素」ともいう。)の吸着剤としての使用に適している。本発明の炭化水素吸着剤を使用して炭化水素を吸着させる場合、被処理ガスとして炭化水素含有気体を用い、これと本発明の炭化水素吸着剤とを接触させればよい。本発明の炭化水素吸着剤と炭化水素含有気体とを接触させる場合、温度を−30℃以上250℃未満とすることで、炭化水素を吸着することできる。また、炭化水素を吸着した炭化水素吸着剤を250℃以上とすることで、吸着した炭化水素を脱離することができる。さらに、本発明の炭化水素吸着剤は、炭化水素の脱離開始温度が250℃以上、更には260℃以上である。特に本発明の炭化水素吸着剤は、高温高湿下に晒された後であっても炭化水素の脱離開始温度は250℃以上、更には260℃以上であり、なおかつ、高温高湿下に晒される前後の炭化水素の脱離開始温度の温度差は50℃以下、更には30℃以下と小さい。移動体の内燃機関の排ガス処理システムとして使用された場合であっても、高い炭化水素吸着能を示す。なお、炭化水素の脱離量が多くなる温度、いわゆる脱離ピーク温度は、通常、脱離開始温度よりも高くなる。このように本発明の炭化水素吸着剤は250℃未満で炭化水素を吸着し、なおかつ、250℃以上で炭化水素を脱離する、炭化水素の吸着脱離材としても使用することができる。   The hydrocarbon adsorbent of the present invention can be used in a hydrocarbon-containing gas treatment method, a hydrocarbon adsorption method, a hydrocarbon adsorption-desorption method, etc., and a hydrocarbon adsorbent from a hydrocarbon-containing gas, In particular, it is suitable for use as an adsorbent for hydrocarbons having a small number of carbon atoms (hereinafter also referred to as “lower hydrocarbons”). In the case of adsorbing hydrocarbons using the hydrocarbon adsorbent of the present invention, a hydrocarbon-containing gas may be used as the gas to be treated and brought into contact with the hydrocarbon adsorbent of the present invention. When the hydrocarbon adsorbent of the present invention is brought into contact with the hydrocarbon-containing gas, the hydrocarbon can be adsorbed by setting the temperature to -30 ° C or higher and lower than 250 ° C. Moreover, the adsorbed hydrocarbon can be desorbed by setting the hydrocarbon adsorbent adsorbing hydrocarbon to 250 ° C. or higher. Furthermore, the hydrocarbon adsorbent of the present invention has a hydrocarbon desorption start temperature of 250 ° C. or higher, more preferably 260 ° C. or higher. In particular, the hydrocarbon adsorbent of the present invention has a hydrocarbon desorption start temperature of 250 ° C. or higher, more preferably 260 ° C. or higher, even after being exposed to high temperature and high humidity. The temperature difference between the desorption start temperatures of the hydrocarbons before and after exposure is as small as 50 ° C. or less, and further 30 ° C. or less. Even when used as an exhaust gas treatment system for a moving internal combustion engine, it exhibits a high hydrocarbon adsorption capacity. The temperature at which the hydrocarbon desorption amount increases, so-called desorption peak temperature, is usually higher than the desorption start temperature. Thus, the hydrocarbon adsorbent of the present invention can also be used as a hydrocarbon adsorption / desorption material that adsorbs hydrocarbons at less than 250 ° C. and desorbs hydrocarbons at 250 ° C. or more.

炭化水素含有気体は炭化水素を含んでいる気体であればよく、具体的に、内燃機関の排ガス、更にはディーゼルエンジン又はガソリンエンジンの排ガスを挙げることができる。炭化水素含有気体は炭化水素以外に、一酸化炭素、二酸化炭素、水素、酸素、窒素、窒素酸化物、硫黄酸化物及び水からなる群の少なくとも1種を含んでいてもよい。炭化水素含有気体として以下の組成を例示することができる。
炭化水素 :0.001〜5体積%、更には0.005〜3体積%(メタン換算)
一酸化炭素 :0〜1体積%
二酸化炭素 :0〜10体積%
酸素 :0〜20体積%
窒素酸化物 :0〜1体積%
硫黄酸化物 :0〜0.05体積%
水(HO):0〜15体積%
窒素 :残部
The hydrocarbon-containing gas may be any gas containing hydrocarbons, and specifically includes exhaust gas from an internal combustion engine, and further exhaust gas from a diesel engine or a gasoline engine. The hydrocarbon-containing gas may contain at least one member selected from the group consisting of carbon monoxide, carbon dioxide, hydrogen, oxygen, nitrogen, nitrogen oxides, sulfur oxides, and water in addition to hydrocarbons. The following composition can be illustrated as a hydrocarbon containing gas.
Hydrocarbon: 0.001 to 5% by volume, further 0.005 to 3% by volume (in terms of methane)
Carbon monoxide: 0 to 1% by volume
Carbon dioxide: 0 to 10% by volume
Oxygen: 0 to 20% by volume
Nitrogen oxide: 0 to 1% by volume
Sulfur oxide: 0 to 0.05% by volume
Water (H 2 O): 0~15% by volume
Nitrogen: balance

本発明の炭化水素吸着剤で吸着する炭化水素は特に限定されないが、低級炭化水素は炭素数1以上3以下の炭化水素、更にはメタン、エタン、エチレン、プロパン及びプロピレンからなる群の少なくとも1種を挙げることができる。   The hydrocarbon adsorbed by the hydrocarbon adsorbent of the present invention is not particularly limited, but the lower hydrocarbon is a hydrocarbon having 1 to 3 carbon atoms, and at least one member selected from the group consisting of methane, ethane, ethylene, propane and propylene. Can be mentioned.

本発明において、炭化水素の脱離開始温度は、水素イオン化検出器(FID)を用い、本発明の炭化水素吸着剤を通過した後のガス中の炭化水素を定量分析することでもとめればよい。本発明の炭化水素吸着剤通過前の炭化水素含有ガスの炭化水素濃度(以下、「吸着前炭化水素濃度」とする。)と、本発明の炭化水素吸着剤通過後の炭化水素含有ガスの炭化水素濃度(以下、「吸着後炭化水素濃度」とする。)を測定し、吸着前炭化水素濃度が吸着後炭化水素濃度より高い状態を吸着段階、吸着後炭化水素濃度が吸着前炭化水素濃度より高い状態を脱離段階とみなし、吸着段階と脱離段階とが切り替わった温度をもって、炭化水素の脱離開始温度とすればよい。   In the present invention, the hydrocarbon desorption start temperature can be determined by quantitatively analyzing hydrocarbons in the gas after passing through the hydrocarbon adsorbent of the present invention using a hydrogen ionization detector (FID). . The hydrocarbon concentration of the hydrocarbon-containing gas before passing through the hydrocarbon adsorbent of the present invention (hereinafter referred to as “the hydrocarbon concentration before adsorption”) and the carbonization of the hydrocarbon-containing gas after passing through the hydrocarbon adsorbent of the present invention Measure the hydrogen concentration (hereinafter referred to as “post-adsorption hydrocarbon concentration”), the state where the pre-adsorption hydrocarbon concentration is higher than the post-adsorption hydrocarbon concentration, and the post-adsorption hydrocarbon concentration from the pre-adsorption hydrocarbon concentration. A high state is regarded as a desorption stage, and the temperature at which the adsorption stage and the desorption stage are switched may be used as the hydrocarbon desorption start temperature.

次に、本発明の炭化水素吸着剤の製造方法について説明する。   Next, the manufacturing method of the hydrocarbon adsorbent of this invention is demonstrated.

本発明の炭化水素吸着剤は、上述した銅含有LEV型ゼオライトを含めば、その製造方法は任意である。本発明の炭化水素吸着剤の製造方法として、カチオンタイプがH型又はNH型のいずれかであるLEV型ゼオライトと銅化合物と接触させる銅含有工程、を有する製造方法を挙げることができる。 The hydrocarbon adsorbent of the present invention can be produced by any method as long as it includes the above-described copper-containing LEV-type zeolite. Examples of the method for producing the hydrocarbon adsorbent of the present invention include a production method having a copper-containing step in which a LEV-type zeolite whose cation type is either H-type or NH 4 -type and a copper compound are brought into contact with each other.

銅含有工程に供する、カチオンタイプがH型又はNH型のいずれかであるLEV型ゼオライト(以下、「原料ゼオライト」ともいう。)は、公知の方法で得られたものを使用することができる。 As the LEV-type zeolite (hereinafter also referred to as “raw material zeolite”) whose cation type is either H-type or NH 4 -type used in the copper-containing step, those obtained by a known method can be used. .

LEVの公知の製造方法として、例えば、シリカ源、アルミナ源、アルカリ源、有機構造指向剤及び水を含む組成物(以下、「原料組成物」ともいう。)を結晶化する結晶化工程、を有するLEV型ゼオライトの製造方法を挙げることができる。上記の各種原料に加えて、さらに銅源を含む原料組成物を結晶化する結晶化工程、を有する製造方法であってもよい。   As a known method for producing LEV, for example, a crystallization step of crystallizing a composition containing a silica source, an alumina source, an alkali source, an organic structure directing agent and water (hereinafter also referred to as “raw material composition”). The manufacturing method of the LEV type zeolite which has can be mentioned. In addition to the above-described various raw materials, a production method may further include a crystallization step of crystallizing a raw material composition containing a copper source.

なお、LEV型ゼオライトのカチオンタイプがNa型やK型である場合、これを塩化アンモニウム水溶液と混合することでカチオンタイプがNH型の原料ゼオライトとすることができ、また、カチオンタイプがNH型のLEV型ゼオライトを焼成することでカチオンタイプがH型の原料ゼオライトとすることができる。 When the cation type of the LEV type zeolite is Na type or K type, it can be mixed with an ammonium chloride aqueous solution to obtain a raw material zeolite whose cation type is NH 4 type, and the cation type is NH 4 type. By calcining the type LEV-type zeolite, it is possible to obtain a raw material zeolite whose cation type is H-type.

銅含有工程では、原料ゼオライトと銅化合物とを接触させる。これにより、原料ゼオライトの細孔中に銅が挿入される。原料ゼオライトと銅化合物との接触方法として、イオン交換法、含浸担持法、蒸発乾固法、沈殿担持法及び物理混合法からなる群の少なくとも1種、更にはイオン交換法又は含浸担持法の少なくともいずれか、を挙げることができる。   In the copper-containing step, the raw material zeolite and the copper compound are brought into contact. Thereby, copper is inserted into the pores of the raw material zeolite. As a contact method between the raw material zeolite and the copper compound, at least one selected from the group consisting of an ion exchange method, an impregnation support method, an evaporation to dryness method, a precipitation support method and a physical mixing method, and at least an ion exchange method or an impregnation support method. Either can be mentioned.

銅含有工程に供する銅源及び銅化合物は任意の化合物が使用で、硝酸塩、硫酸塩、酢酸塩、塩化物、錯塩、酸化物及び複合酸化物からなる群の少なくとも1種の銅化合物であればよく、塩化物、硝酸塩及び酸化物からなる群の少なくとも1種であることが好ましい。   As long as the copper source and the copper compound to be used for the copper-containing process are any compounds, and are at least one copper compound in the group consisting of nitrate, sulfate, acetate, chloride, complex salt, oxide and complex oxide It is preferable that it is at least one member selected from the group consisting of chlorides, nitrates and oxides.

銅含有工程では、銅化合物と接触させた後の銅含有LEV型ゼオライトを500℃以上900℃以下で加熱処理することが好ましい。これにより、銅含有LEV型ゼオライトの表面等に存在する銅が細孔内に分散性が高い状態で取込まれやすくなる。   In the copper-containing step, it is preferable to heat-treat the copper-containing LEV-type zeolite after being brought into contact with the copper compound at 500 ° C. or more and 900 ° C. or less. Thereby, copper existing on the surface of the copper-containing LEV-type zeolite or the like is easily taken into the pores in a highly dispersible state.

以下、実施例において本発明を更に詳細に説明する。しかし、本発明はこれらの実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to these examples.

実施例1
NH型のLEV型ゼオライトに硝酸銅水溶液を含浸することで銅含有LEV型ゼオライトを得た。すなわち、NH型のLEV型ゼオライトを10gに1mol/Lの硝酸銅水溶液を4.5mL添加した後、乳鉢で混練した。混練後、空気中、110℃で一晩乾燥し、さらに空気中、800℃で5時間、加熱処理することで、銅を細孔内に分散させた。得られた銅含有LEV型ゼオライトは、SiO/Alモル比は31、銅含有量が2.7重量%及び平均結晶粒径が1.0μmであった。
Example 1
A copper-containing LEV-type zeolite was obtained by impregnating NH 4 -type LEV-type zeolite with an aqueous copper nitrate solution. That is, after adding 4.5 mL of 1 mol / L copper nitrate aqueous solution to 10 g of NH 4 type LEV type zeolite, the mixture was kneaded in a mortar. After kneading, it was dried in air at 110 ° C. overnight, and further heated in air at 800 ° C. for 5 hours to disperse copper in the pores. The obtained copper-containing LEV-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 31, a copper content of 2.7% by weight, and an average crystal grain size of 1.0 μm.

当該銅含有LEV型ゼオライトライトを本実施例の炭化水素吸着剤とした。   The copper-containing LEV type zeolite light was used as the hydrocarbon adsorbent of this example.

実施例2
硝酸銅水溶液との混練後の加熱処理の温度を600℃としたこと以外は実施例1と同様な方法で本実施例の銅含有LEV型ゼオライトを得た。得られた銅含有LEV型ゼオライトは、SiO/Alモル比は31、銅含有量が2.8重量%及び平均結晶粒径が1.0μmであった。
Example 2
A copper-containing LEV-type zeolite of this example was obtained in the same manner as in Example 1 except that the temperature of the heat treatment after kneading with the aqueous copper nitrate solution was 600 ° C. The obtained copper-containing LEV-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 31, a copper content of 2.8% by weight, and an average crystal grain size of 1.0 μm.

当該銅含有LEV型ゼオライトライトを本実施例の炭化水素吸着剤とした。   The copper-containing LEV type zeolite light was used as the hydrocarbon adsorbent of this example.

実施例3
硝酸銅水溶液として1mol/Lの硝酸銅水溶液6.5mLを使用したこと以外は実施例1と同様な方法で本実施例の銅含有LV型ゼオライトを得た。得られた銅含有LEV型ゼオライトは、SiO/Alモル比は31、銅含有量が4.0重量%及び平均結晶粒径が1.0μmであった。
Example 3
A copper-containing LV zeolite of this example was obtained in the same manner as in Example 1 except that 6.5 mL of a 1 mol / L aqueous copper nitrate solution was used as the aqueous copper nitrate solution. The obtained copper-containing LEV-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 31, a copper content of 4.0% by weight and an average crystal grain size of 1.0 μm.

当該銅含有LEV型ゼオライトライトを本実施例の炭化水素吸着剤とした。   The copper-containing LEV type zeolite light was used as the hydrocarbon adsorbent of this example.

実施例4
無水硫酸銅、純水、エチレンジアミン、沈降法シリカ、アルミン酸ソーダ、1−アダマンチルアミン及びチャバザイト型ゼオライトを含み、原料組成物を180℃、72時間で結晶化した後、空気中、600℃、2時間で焼成し、細孔に銅を含むLEV型ゼオライトを得た。得られた銅含有LEV型ゼオライトは、SiO/Alモル比は22、銅含有量が3.6重量%及び平均結晶粒径が5.1μmであった。
Example 4
Anhydrous copper sulfate, pure water, ethylenediamine, precipitated silica, sodium aluminate, 1-adamantylamine and chabazite-type zeolite were crystallized at 180 ° C. for 72 hours, then in air, at 600 ° C., 2 The LEV-type zeolite containing copper in the pores was obtained by calcining with time. The obtained copper-containing LEV-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 22, a copper content of 3.6% by weight, and an average crystal grain size of 5.1 μm.

当該銅含有LEV型ゼオライトライトを本実施例の炭化水素吸着剤とした。   The copper-containing LEV type zeolite light was used as the hydrocarbon adsorbent of this example.

実施例5
無水硫酸銅、純水、トリエチレンテトラミン沈降法シリカ、アルミン酸ソーダ、1−アダマンチルアミン及びチャバザイト型ゼオライトを含み、原料組成物を180℃、135時間で結晶化した後、空気中、600℃、2時間で焼成し、細孔に銅を含むLEV型ゼオライトを得た。得られた銅含有LEV型ゼオライトは、SiO/Alモル比は33、銅含有量が1.8重量%及び平均結晶粒径が4.5μmであった。
Example 5
Anhydrous copper sulfate, pure water, triethylenetetramine precipitated silica, sodium aluminate, 1-adamantylamine and chabazite-type zeolite were crystallized at 180 ° C. for 135 hours, then in air, at 600 ° C., Calcination was performed for 2 hours to obtain LEV-type zeolite containing copper in the pores. The obtained copper-containing LEV-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 33, a copper content of 1.8% by weight, and an average crystal grain size of 4.5 μm.

当該銅含有LEV型ゼオライトライトを本実施例の炭化水素吸着剤とした。   The copper-containing LEV type zeolite light was used as the hydrocarbon adsorbent of this example.

比較例1
実施例1と同様な方法でNH型のLEV型ゼオライトを得た。得られたNH4型のLEV型ゼオライト10gを0.3mol/Lの硝酸銀水溶液60mLに添加し、60℃、4時間攪拌することで、銀イオン交換を行った。
Comparative Example 1
NH 4 type LEV-type zeolite was obtained in the same manner as in Example 1. Silver ion exchange was performed by adding 10 g of the obtained NH4 type LEV type zeolite to 60 mL of 0.3 mol / L silver nitrate aqueous solution and stirring at 60 ° C. for 4 hours.

銀イオン交換後、固液分離、洗浄及び空気中、110℃で一晩乾燥することで、銀含有LEV型ゼオライトを得た。得られた銀含有LEV型ゼオライトは、SiO/Alモル比は31、銀含有量が4.2重量%及び平均結晶粒径が1.0μmであった。 After the silver ion exchange, silver-containing LEV-type zeolite was obtained by solid-liquid separation, washing, and drying in air at 110 ° C. overnight. The obtained silver-containing LEV-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 31, a silver content of 4.2% by weight, and an average crystal grain size of 1.0 μm.

当該銅含有LEV型ゼオライトライトを本比較例の炭化水素吸着剤とした。   The copper-containing LEV type zeolite light was used as the hydrocarbon adsorbent of this comparative example.

比較例2
NH型のLEV型ゼオライトの代わりに、NH型のCHA型ゼオライトを使用したこと、硝酸銅水溶液との混練後、空気中、600℃で2時間加熱したこと以外は実施例1と同様な方法で銅含有CHA型ゼオライトを得た。得られた銅含有CHA型ゼオライトは、SiO/Alモル比は31及び銅含有量が3.0重量%であった。
Comparative Example 2
Similar to Example 1 except that NH 4 type CHA type zeolite was used instead of NH 4 type LEV type zeolite, and kneading with an aqueous copper nitrate solution was followed by heating in air at 600 ° C. for 2 hours. A copper-containing CHA-type zeolite was obtained by this method. The obtained copper-containing CHA-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 31 and a copper content of 3.0% by weight.

当該銅含有CHA型ゼオライトライトを本比較例の炭化水素吸着剤とした。   The copper-containing CHA-type zeolite light was used as the hydrocarbon adsorbent of this comparative example.

比較例3
NH型のLEV型ゼオライトの代わりに、NH型のMFI型ゼオライトを使用したこと、硝酸銅水溶液との混練後、空気中、600℃で2時間加熱したこと以外は実施例1と同様な方法で銅含有CHA型ゼオライトを得た。得られた銅含有CHA型ゼオライトは、SiO/Alモル比は31及び銅含有量が3.0重量%であった。
Comparative Example 3
The same as in Example 1 except that NH 4 type MFI type zeolite was used instead of NH 4 type LEV type zeolite, and the mixture was kneaded with an aqueous copper nitrate solution and then heated in air at 600 ° C. for 2 hours. A copper-containing CHA-type zeolite was obtained by this method. The obtained copper-containing CHA-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 31 and a copper content of 3.0% by weight.

当該銅含有CHA型ゼオライトライトを本比較例の炭化水素吸着剤とした。   The copper-containing CHA-type zeolite light was used as the hydrocarbon adsorbent of this comparative example.

測定例1
以下の組成を有する炭化水素含有ガスを用いて、炭化水素の脱離開始温度の評価を行った。
プロピレン :1000体積ppmC(メタン換算の濃度)
水 :10体積%
窒素 :残部
Measurement example 1
The hydrocarbon desorption start temperature was evaluated using a hydrocarbon-containing gas having the following composition.
Propylene: 1000 ppm by volume (concentration in terms of methane)
Water: 10% by volume
Nitrogen: balance

(測定試料の作製及び前処理)
実施例及び比較例で得られた炭化水素吸着剤を、それぞれ、加圧成形及び粉砕し、凝集径20〜30メッシュの不定形成形体を得た。成形後の炭化水素吸着剤を常圧固定床流通式反応管に充填し、窒素流通下、500℃で一時間前処理した後50℃まで冷却した。
(炭化水素の脱離温度の測定)
前処理後、窒素ガスを炭化水素含有ガスに切り替え、以下の条件で炭化水素吸着剤に炭化水素含有ガスを流通させながら、炭化水素の脱離温度を測定した。
測定温度 :50〜600℃
昇温速度 :10℃/分
炭化水素含有ガスの流量 :200mL/分
(Preparation and pretreatment of measurement sample)
The hydrocarbon adsorbents obtained in Examples and Comparative Examples were respectively pressure-molded and pulverized to obtain indefinitely formed bodies having an aggregate diameter of 20 to 30 mesh. The molded hydrocarbon adsorbent was filled into an atmospheric pressure fixed bed flow type reaction tube, pretreated at 500 ° C. for 1 hour under nitrogen flow, and then cooled to 50 ° C.
(Measurement of hydrocarbon desorption temperature)
After the pretreatment, the nitrogen gas was switched to a hydrocarbon-containing gas, and the hydrocarbon desorption temperature was measured while flowing the hydrocarbon-containing gas through the hydrocarbon adsorbent under the following conditions.
Measurement temperature: 50-600 ° C
Temperature increase rate: 10 ° C / min
Flow rate of hydrocarbon-containing gas: 200 mL / min

水素イオン化検出器(FID)により、炭化水素吸着剤を通過した後のガス中の炭化水素を連続的に定量分析した。常圧固定床流通式反応管の入口側の炭化水素含有ガスの炭化水素濃度(以下、「入口炭化水素濃度」とする。)と、常圧固定床流通式反応管の出口側の炭化水素含有ガスの炭化水素濃度(以下、「出口炭化水素濃度」とする。)を測定し、入口炭化水素濃度が出口炭化水素濃度より高い状態を吸着段階、出口炭化水素濃度が入口炭化水素濃度より高い状態を脱離段階とみなし、吸着段階と脱離段階とが切り替わった温度をもって、炭化水素の脱離開始温度とした。結果を表1に示す。   The hydrocarbon in the gas after passing through the hydrocarbon adsorbent was continuously quantitatively analyzed by a hydrogen ionization detector (FID). The hydrocarbon concentration of the hydrocarbon-containing gas on the inlet side of the normal pressure fixed bed flow type reaction tube (hereinafter referred to as “inlet hydrocarbon concentration”) and the hydrocarbon content on the outlet side of the normal pressure fixed bed flow type reaction tube The gas hydrocarbon concentration (hereinafter referred to as “exit hydrocarbon concentration”) is measured, and the state where the inlet hydrocarbon concentration is higher than the outlet hydrocarbon concentration is the adsorption stage, and the outlet hydrocarbon concentration is higher than the inlet hydrocarbon concentration. Was regarded as the desorption stage, and the temperature at which the adsorption stage and the desorption stage were switched was defined as the hydrocarbon desorption start temperature. The results are shown in Table 1.

測定例2
実施例及び比較例で得られた炭化水素吸着剤に水熱耐久処理を施した後、測定例1と同様な方法で、炭化水素の脱離開始温度を測定した。結果を表1に示す。
Measurement example 2
After subjecting the hydrocarbon adsorbents obtained in the examples and comparative examples to hydrothermal durability treatment, the hydrocarbon desorption start temperature was measured in the same manner as in Measurement Example 1. The results are shown in Table 1.

水熱耐久処理は炭化水素吸着剤を加圧成形及び粉砕して得られた凝集径20〜30メッシュに凝集粒子を常圧固定床流通式反応管に充填し、以下の条件で混合ガスを流通することで行った。   Hydrothermal endurance treatment is performed by filling aggregated particles into a 20-30 mesh agglomerated diameter obtained by pressure-molding and pulverizing a hydrocarbon adsorbent into a normal pressure fixed bed flow type reaction tube, and circulating the mixed gas under the following conditions: It was done by doing.

処理ガス :プロピレン 3000ppmC(メタン換算の濃度)
水 10体積%
窒素 残部
流量 :200mL/分
処理温度 :900℃
処理時間 :5時間
Process gas: Propylene 3000ppmC (Methane equivalent concentration)
10% by volume of water
Nitrogen remainder Flow rate: 200 mL / min Processing temperature: 900 ° C.
Processing time: 5 hours

Figure 2018079428
Figure 2018079428

表1から、実施例の炭化水素吸着剤は高温高湿雰囲気に晒される前後において、炭化水素の脱離温度が低下しておらず、更には、炭化水素の脱離開始温度が高くなる傾向があった。これに対し、銀を含有するLEV型ゼオライトからなる炭化水素吸着剤、LEV型ゼオライト以外のゼオライトからなる炭化水素吸着剤は、いずれも高温高湿雰囲気に晒されることによって脱離開始温度が大きく低下することが確認できた。   From Table 1, the hydrocarbon adsorbents of the examples did not decrease the hydrocarbon desorption temperature before and after being exposed to a high-temperature and high-humidity atmosphere, and further, the hydrocarbon desorption start temperature tends to increase. there were. On the other hand, the hydrocarbon adsorbent composed of LEV-type zeolite containing silver and the hydrocarbon adsorbent composed of zeolite other than LEV-type zeolite are both greatly reduced in desorption start temperature when exposed to a high-temperature and high-humidity atmosphere. I was able to confirm.

本発明の熱水耐久処理後も吸着性能の劣化の小さいCu担持LEV型ゼオライトからなる炭化水素吸着剤は、自動車排ガス中に含まれる炭化水素を浄化する吸着剤として利用可能である。   The hydrocarbon adsorbent composed of the Cu-supported LEV-type zeolite with little deterioration in adsorption performance even after the hydrothermal durability treatment of the present invention can be used as an adsorbent for purifying hydrocarbons contained in automobile exhaust gas.

Claims (6)

銅を含有するLEV型ゼオライトを含む炭化水素吸着剤。   A hydrocarbon adsorbent comprising a LEV-type zeolite containing copper. 前記LEV型ゼオライトの銅含有量が、LEV型ゼオライトに対する銅の重量割合として1.0重量%以上7.0重量%以下である請求項1に記載の炭化水素吸着剤。   2. The hydrocarbon adsorbent according to claim 1, wherein the copper content of the LEV-type zeolite is 1.0% by weight or more and 7.0% by weight or less as a weight ratio of copper to the LEV-type zeolite. 前記LEV型ゼオライトのアルミナに対するシリカのモル比が10以上50以下である請求項1又は2のいずれかに記載の炭化水素吸着剤。   3. The hydrocarbon adsorbent according to claim 1, wherein a molar ratio of silica to alumina in the LEV-type zeolite is 10 or more and 50 or less. 前記LEV型ゼオライトの平均粒子径が0.5μm以上である請求項1乃至3のいずれか一項に記載の炭化水素吸着剤。   The hydrocarbon adsorbent according to any one of claims 1 to 3, wherein the LEV-type zeolite has an average particle size of 0.5 µm or more. 請求項1乃至4のいずれか一項に記載の炭化水素吸着剤を使用することを特徴とする炭化水素含有ガスの処理方法。   A method for treating a hydrocarbon-containing gas, wherein the hydrocarbon adsorbent according to any one of claims 1 to 4 is used. 請求項1乃至4のいずれか一項に記載の炭化水素吸着剤を使用することを特徴とする炭化水素の吸着方法。   A hydrocarbon adsorption method according to any one of claims 1 to 4, wherein the hydrocarbon adsorption method is used.
JP2016223691A 2016-11-17 2016-11-17 Hydrocarbon adsorbent and hydrocarbon removal method Pending JP2018079428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016223691A JP2018079428A (en) 2016-11-17 2016-11-17 Hydrocarbon adsorbent and hydrocarbon removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016223691A JP2018079428A (en) 2016-11-17 2016-11-17 Hydrocarbon adsorbent and hydrocarbon removal method

Publications (1)

Publication Number Publication Date
JP2018079428A true JP2018079428A (en) 2018-05-24

Family

ID=62197407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016223691A Pending JP2018079428A (en) 2016-11-17 2016-11-17 Hydrocarbon adsorbent and hydrocarbon removal method

Country Status (1)

Country Link
JP (1) JP2018079428A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021126614A (en) * 2020-02-13 2021-09-02 株式会社エムダイヤ Board processing equipment
JPWO2021187304A1 (en) * 2020-03-19 2021-09-23
JP2022083429A (en) * 2020-11-24 2022-06-03 コリア ユニバーシティ リサーチ アンド ビジネス ファウンデーション Hydrocarbon adsorption / desorption complex including gas adsorption part and reinforcement part and its manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010307A (en) * 2004-05-26 2006-01-12 Mitsubishi Chemicals Corp Humidification device and humidification method
US20110312486A1 (en) * 2010-06-18 2011-12-22 Tokyo Institute Of Technology Alkali-Free Synthesis of Zeolitic Materials of the LEV-Type Structure
JP2013532112A (en) * 2010-06-18 2013-08-15 ビーエーエスエフ ソシエタス・ヨーロピア Organic template-free synthesis method for the production of LEV-type structured zeolite materials
JP2014530797A (en) * 2011-09-06 2014-11-20 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Synthesis of zeolitic materials using N, N-dimethyl organic template
WO2014199945A1 (en) * 2013-06-14 2014-12-18 東ソー株式会社 Lev-type zeolite and production method therefor
JP2015155364A (en) * 2014-01-16 2015-08-27 東ソー株式会社 Lev type zeolite and method of producing the same
JP2016064975A (en) * 2014-09-18 2016-04-28 国立大学法人広島大学 LEV-type zeolite containing phosphorus, process for producing the same, and catalyst containing LEV-type zeolite containing phosphorus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010307A (en) * 2004-05-26 2006-01-12 Mitsubishi Chemicals Corp Humidification device and humidification method
US20110312486A1 (en) * 2010-06-18 2011-12-22 Tokyo Institute Of Technology Alkali-Free Synthesis of Zeolitic Materials of the LEV-Type Structure
JP2013532112A (en) * 2010-06-18 2013-08-15 ビーエーエスエフ ソシエタス・ヨーロピア Organic template-free synthesis method for the production of LEV-type structured zeolite materials
JP2014530797A (en) * 2011-09-06 2014-11-20 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Synthesis of zeolitic materials using N, N-dimethyl organic template
WO2014199945A1 (en) * 2013-06-14 2014-12-18 東ソー株式会社 Lev-type zeolite and production method therefor
JP2015155364A (en) * 2014-01-16 2015-08-27 東ソー株式会社 Lev type zeolite and method of producing the same
JP2016064975A (en) * 2014-09-18 2016-04-28 国立大学法人広島大学 LEV-type zeolite containing phosphorus, process for producing the same, and catalyst containing LEV-type zeolite containing phosphorus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021126614A (en) * 2020-02-13 2021-09-02 株式会社エムダイヤ Board processing equipment
JPWO2021187304A1 (en) * 2020-03-19 2021-09-23
WO2021187304A1 (en) * 2020-03-19 2021-09-23 三井金属鉱業株式会社 Hydrocarbon adsorbent
JP7460753B2 (en) 2020-03-19 2024-04-02 三井金属鉱業株式会社 hydrocarbon adsorbent
US12330134B2 (en) 2020-03-19 2025-06-17 Mitsui Mining & Smelting Co., Ltd. Hydrocarbon adsorbent
JP2022083429A (en) * 2020-11-24 2022-06-03 コリア ユニバーシティ リサーチ アンド ビジネス ファウンデーション Hydrocarbon adsorption / desorption complex including gas adsorption part and reinforcement part and its manufacturing method
JP7240025B2 (en) 2020-11-24 2023-03-15 コリア ユニバーシティ リサーチ アンド ビジネス ファウンデーション Hydrocarbon adsorption/desorption composite including gas adsorption part and reinforcing part, and method for producing the same

Similar Documents

Publication Publication Date Title
CN101516778B (en) Beta zeolite for SCR catalyst and method for purifying nitrogen oxide using same
US6042797A (en) Adsorbent for ethylene, method for adsorbing and removing ethylene and method for purifying an exhaust gas
CN102666387B (en) Novel metal silicate and method for producing the same, nitrogen oxide removing catalyst and method for producing the same, and nitrogen oxide removing method using the catalyst
EP2876086B1 (en) Fe(II)-SUBSTITUTED BETA-TYPE ZEOLITE, PRODUCTION METHOD THEREFOR AND GAS ADSORBENT INCLUDING SAME, AND NITRIC OXIDE AND HYDROCARBON REMOVAL METHOD
CN103402918A (en) Fe(II) substituted beta type zeolite, gas adsorbent containing same and method for producing same, and method for removing nitric monoxide and hydrocarbon
JP7318193B2 (en) Hydrocarbon adsorbent and hydrocarbon adsorption method
JP2018079428A (en) Hydrocarbon adsorbent and hydrocarbon removal method
JP5594121B2 (en) Novel metallosilicate and nitrogen oxide purification catalyst
JP6926459B2 (en) Hydrocarbon adsorbent containing SZR-type zeolite and method for adsorbing hydrocarbon
JPH11216358A (en) Hydrocarbon adsorbent and exhaust gas purification catalyst
EP4129464A1 (en) Zeolite composition having yfi structure, hydrocarbon adsorbent, and hydrocarbon adsorption method
JP5387269B2 (en) Hydrocarbon adsorbent in automobile exhaust gas comprising SUZ-4 zeolite and method for adsorbing and removing hydrocarbons
JP2001293368A (en) Hydrocarbon adsorbent and method for adsorbing and removing hydrocarbon
WO2018221194A1 (en) Cha aluminosilicate and production method therefor, and exhaust gas purification catalyst, exhaust gas purification apparatus and exhaust gas purification method using same
JP3975557B2 (en) Ethylene adsorption removal method
JP7310229B2 (en) hydrocarbon adsorbent
CN115397551A (en) Hydrocarbon adsorbent and method for adsorbing hydrocarbon
JP2019137560A (en) Novel zeolite and hydrocarbon adsorbent containing the same
JP2022169847A (en) Hydrocarbon adsorber, method for producing hydrocarbon adsorber and hydrocarbon adsorbing method
WO2022255383A1 (en) Yfi-type zeolite, production method therefor, hydrocarbon adsorbent, and hydrocarbon adsorption method
JP2022108644A (en) Hydrocarbon adsorbent and hydrocarbon adsorption method
JP2024011057A (en) Copper-containing FAU type zeolite
JPH09253484A (en) Adsorbent for purification of hydrocarbons in exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210720