JP2018069131A - Chemical cleaning method and particle collecting apparatus - Google Patents
Chemical cleaning method and particle collecting apparatus Download PDFInfo
- Publication number
- JP2018069131A JP2018069131A JP2016209578A JP2016209578A JP2018069131A JP 2018069131 A JP2018069131 A JP 2018069131A JP 2016209578 A JP2016209578 A JP 2016209578A JP 2016209578 A JP2016209578 A JP 2016209578A JP 2018069131 A JP2018069131 A JP 2018069131A
- Authority
- JP
- Japan
- Prior art keywords
- cleaning
- metal
- particles
- chemical
- cleaned
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Cleaning In General (AREA)
- Cleaning By Liquid Or Steam (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Abstract
【課題】ボイラ再稼働時の妨げとなるパウダースケールに代表されるスラッジの微粒子を、負荷が小さくかつ廃棄物も少ない方法で捕集し、洗浄後のボイラを清浄に保持することができる、化学洗浄方法及び粒子捕集装置を提供する。
【解決手段】洗浄対象物1に洗浄薬剤を注入し、洗浄対象物に固着している金属酸化物を溶解又は剥離させ、剥離した金属酸化物の粒子、溶解した金属イオン及び洗浄薬剤を含む洗浄循環液の全量を、単一の金属線条又は複数の金属線条の集合体を設置した洗浄循環液流路及び金属線条を磁化する超伝導磁石を含む粒子捕集装置3に通液して、磁化された金属線条に粒子を磁気的に吸着させて除去した後、洗浄対象物に再循環させる、ことを特徴とする化学洗浄方法。
【選択図】図1[PROBLEMS] To collect fine particles of sludge represented by powder scale, which hinders the re-operation of a boiler, by a method with a small load and a small amount of waste, so that the boiler after cleaning can be kept clean. A cleaning method and a particle collecting device are provided.
A cleaning agent is injected into an object to be cleaned 1 and a metal oxide fixed to the object to be cleaned is dissolved or peeled off, and the cleaning includes the peeled metal oxide particles, the dissolved metal ions and the cleaning agent. The entire amount of the circulating fluid is passed through a particle collecting device 3 including a cleaning circulating fluid flow path in which a single metal filament or a collection of metal filaments is installed and a superconducting magnet that magnetizes the metal filament. Then, after the particles are magnetically adsorbed on the magnetized metal filaments and removed, the chemical cleaning method is recycled to the object to be cleaned.
[Selection] Figure 1
Description
本発明は、洗浄対象物に洗浄薬剤を循環させる化学洗浄方法及び当該化学洗浄方法において用いる粒子捕集装置に関し、特に、火力発電プラントや化学プラントなどの稼働によって発生する固形分を洗浄薬剤により溶解又は剥離させ、剥離した粒子を捕集して除去する化学洗浄方法及び粒子捕集装置に関する。 The present invention relates to a chemical cleaning method for circulating a cleaning chemical to an object to be cleaned and a particle collecting device used in the chemical cleaning method, and in particular, a solid content generated by operation of a thermal power plant or a chemical plant is dissolved by the cleaning chemical. Alternatively, the present invention relates to a chemical cleaning method and a particle collecting apparatus that exfoliate and collect and remove the separated particles.
特に発電用の貫流ボイラなど、内壁にスケールが付着して連続運転ができなくなる各種化学プラントからスケールを除去する方法として、洗浄薬剤を循環させる化学洗浄方法が一般的に採用されている。化学洗浄方法においては、洗浄対象物であるボイラに洗浄薬剤を接触させることにより、スケールの構成成分を溶解又は剥離させて除去する。剥離されたスケール(「スラッジ」ともいう)は、洗浄薬剤と共に循環する。スラッジに含まれる固形物の粒径は、スケールの構成成分に大きく依存し、ひいてはボイラの水処理に大きく依存する。 In particular, a chemical cleaning method in which a cleaning chemical is circulated is generally employed as a method for removing scale from various chemical plants such as a once-through boiler for power generation where scales adhere to the inner wall and cannot be operated continuously. In the chemical cleaning method, a cleaning chemical is brought into contact with a boiler, which is an object to be cleaned, to dissolve or remove constituents of the scale. The peeled scale (also referred to as “sludge”) circulates with the cleaning agent. The particle size of the solid contained in the sludge depends greatly on the constituent components of the scale, and thus greatly depends on the water treatment of the boiler.
貫流ボイラの水処理は、ボイラ・タービン系統内での腐食発生、スケール生成及び付着、タービンへのキャリオーバなどの障害を防止するために行われており、揮発性物質処理(AVT)及び酸素処理(中性水処理:NWT、及び複合水処理:CWT)がある。 Water treatment of once-through boilers is carried out to prevent failures such as corrosion, scale formation and adhesion, and carryover to the turbine in the boiler / turbine system. Volatile material treatment (AVT) and oxygen treatment ( Neutral water treatment: NWT and composite water treatment: CWT).
揮発性物質処理(AVT)は、pH調整剤のアンモニアと酸素除去剤のヒドラジンで水質調整を行い、溶存酸素濃度を低く保持し腐食を防止する方法であり、マグネタイトを主体とするスケールが生成される。マグネタイトが主体のスケールは、ボイラ内壁面に波状に成長し、ボイラの差圧上昇が起こりやすいため、化学洗浄の間隔も3〜5年と短い。マグネタイトが主体のスケールを化学洗浄する場合に発生するスラッジに含まれる粒子の平均粒子径は、20μm〜40μm程度である。このスラッジはボイラ内に残留すると、起動時のクリーンアップでの水質が悪化し、浄化のための使用水量が増加するため、コストアップにつながってしまう。 Volatile substance treatment (AVT) is a method that adjusts the water quality with ammonia as a pH adjuster and hydrazine as an oxygen remover to keep the dissolved oxygen concentration low and prevent corrosion. A scale mainly composed of magnetite is generated. The The scale mainly composed of magnetite grows in a wavy shape on the inner wall surface of the boiler, and the pressure difference of the boiler is likely to increase. Therefore, the interval between chemical cleanings is as short as 3 to 5 years. The average particle diameter of the particles contained in the sludge generated when chemically cleaning the scale mainly composed of magnetite is about 20 μm to 40 μm. If this sludge remains in the boiler, the water quality at the cleanup at the time of startup deteriorates and the amount of water used for purification increases, leading to an increase in cost.
酸素処理は、高濃度の水中で、難溶解性の酸化物を鋼の表面上に密着させて適切に保持することによって、その後の鋼の腐食及び腐食生成物の水中への溶出を抑制する方法である。中性水処理は中性の水に溶存酸素を共存させる方法であり、複合水処理はアンモニアによってpHを8.0〜9.3の弱アルカリ性の条件において溶存酸素を共存させる方法である。酸素処理は、揮発性物質処理の問題であるボイラ差圧やスケールの成長を抑制することができる。酸素処理で発生するスケールは、パウダースケールといわれるヘマタイト主体の外層と、揮発性処理のスケールに近いマグネタイト主体の内層との二層構造になる。スケールの成長が遅く、波状にも成長しないため、化学洗浄の間隔は10年程度に延伸できるとされている。しかし、このパウダースケールは化学洗浄で微細化し、粒子径1μm〜20μm程度の微粒子として、難溶解性のスラッジを構成することになる。 Oxygen treatment is a method for suppressing subsequent corrosion of steel and elution of corrosion products into water by adhering poorly soluble oxides on the surface of steel and keeping them appropriately in high-concentration water. It is. Neutral water treatment is a method in which dissolved oxygen is allowed to coexist in neutral water, and composite water treatment is a method in which dissolved oxygen is allowed to coexist with ammonia under a weakly alkaline condition of pH 8.0 to 9.3. Oxygen treatment can suppress boiler differential pressure and scale growth, which are problems of volatile substance treatment. The scale generated by the oxygen treatment has a two-layer structure of an outer layer mainly composed of hematite called powder scale and an inner layer mainly composed of magnetite close to the scale of volatile treatment. Since the growth of the scale is slow and it does not grow in a wavy manner, it is said that the interval of chemical cleaning can be extended to about 10 years. However, this powder scale is refined by chemical cleaning and constitutes a hardly soluble sludge as fine particles having a particle diameter of about 1 μm to 20 μm.
このパウダースケールおよびそのスラッジは、一般的な化学洗浄液の組成(クエン酸+グリコール酸+還元剤)と温度(80℃〜90℃)における溶解性は小さいため、洗浄液中に残留することになる。これが洗浄後のボイラ内に残留し、起動後の火炉壁管内面に付着し、火炉壁管メタル温度の上昇や蒸気側のエロージョンの要因となっている。(非特許文献1) This powder scale and its sludge remain in the cleaning liquid because they have a low solubility in a general chemical cleaning liquid composition (citric acid + glycolic acid + reducing agent) and temperature (80 ° C. to 90 ° C.). This remains in the boiler after cleaning, adheres to the inner surface of the furnace wall tube after startup, and causes a rise in the furnace wall tube metal temperature and steam side erosion. (Non-Patent Document 1)
上記の懸念から、化学洗浄時にスラッジをなるべく除去するというニーズは高く、様々な技術が提案されている。 Because of the above concerns, there is a high need for removing sludge as much as possible during chemical cleaning, and various techniques have been proposed.
たとえば、揮発性物質処理(AVT)ボイラの化学洗浄方法として、洗浄用酸液を被洗浄部分に循環させる際に、循環路の途中に磁石を備えたスラッジ捕捉手段を用いて除去する方法(特許文献1)、薬液が循環する管系に遠心分離器を併設して未溶解物質を除去する方法(特許文献2)が提案されている。 For example, as a chemical cleaning method for a volatile substance treatment (AVT) boiler, when a cleaning acid solution is circulated through a portion to be cleaned, a method of removing it using a sludge trapping means having a magnet in the middle of the circulation path (patent) Reference 1) and a method for removing undissolved substances by providing a centrifuge in a pipe system through which a chemical solution circulates have been proposed (Patent Document 2).
特許文献1の方法では、マグネタイトのような強磁性のスラッジは除去できるが、ヘマタイトのような常磁性のスラッジは除去できない。特許文献2の方法では、遠心分離器を用いてスラッジの分離を行うので、その分級能力は小さく、30μm程度が限度であり、微細なヘマタイトのスラッジ(1μm〜20μm)はほとんど除去できない。 According to the method of Patent Document 1, ferromagnetic sludge such as magnetite can be removed, but paramagnetic sludge such as hematite cannot be removed. In the method of Patent Document 2, since the sludge is separated using a centrifuge, its classification ability is small, the limit is about 30 μm, and fine hematite sludge (1 μm to 20 μm) can hardly be removed.
また、スラッジの回収にフィルタを使用する化学洗浄方法が提案されている(特許文献3)。特許文献3には、10μm前後の粒径のスラッジを回収するために粒径2.5μm以下のろ過能力を有するプリーツ型メンブランフィルタ又は中空糸フィルタを用いることが開示されている。特許文献3の実施例によれば、洗浄液の循環流量は400m3/h、ろ過面積は150m2とあり、例えば標準の3Sプリーツフィルタ(75cm)を用いる場合には107本を要することになり、破瓜後のフィルタは廃棄することになるから、廃棄物が大量に発生することになり、実用的ではない。 Further, a chemical cleaning method using a filter for collecting sludge has been proposed (Patent Document 3). Patent Document 3 discloses the use of a pleated membrane filter or a hollow fiber filter having a filtration capacity of 2.5 μm or less in order to collect sludge having a particle size of around 10 μm. According to the example of Patent Document 3, the circulation flow rate of the cleaning liquid is 400 m 3 / h and the filtration area is 150 m 2. For example, when a standard 3S pleated filter (75 cm) is used, 107 pipes are required. Since the filter after destruction is discarded, a large amount of waste is generated, which is not practical.
さらに、酸素処理ボイラの化学洗浄方法として、遠心分離機による粗固形物の除去と、フィルタ又は膜ろ過による微固形物の除去とを組み合わせる方法が提案されている(特許文献4)。 Furthermore, as a chemical cleaning method for an oxygen treatment boiler, a method is proposed in which the removal of coarse solids by a centrifugal separator and the removal of fine solids by a filter or membrane filtration are combined (Patent Document 4).
特許文献4には、酸素処理ボイラの化学洗浄で発生する固形物量は、揮発性処理ボイラの化学洗浄で発生する固形物量の2倍以上であること、粒径が20μmを越える粗固形物は21%及び29%であること、洗浄液中の固形物濃度は600mg/l及び1200mg/lであることが記載されている。例えば、洗浄液中の固形物濃度が600mg/Lである場合、遠心分離機で粗粒子として21%が除去されたとすると、フィルタ又は膜ろ過で捕集すべき微粒子は474mg/Lとなる。洗浄液の総量が400m3の場合には、総量189.6kgの微粒子を捕集することになる。特許文献4にはフィルタの具体例が記載されていないが、例えば標準の3Sプリーツフィルタ(75cm)を用いると、ヘマタイトのろ過比抵抗と孔径から捕集能力は最大400g/m2程度であり、300m2のろ過面積が必要となるから、3Sプリーツフィルタの必要数は200本にもなり、大量の廃棄物が発生し、実用的でない。 In Patent Document 4, the amount of solids generated by chemical cleaning of an oxygen treatment boiler is at least twice the amount of solids generated by chemical cleaning of a volatile treatment boiler, and the number of coarse solids having a particle size exceeding 20 μm is 21. % And 29%, and the solids concentration in the cleaning solution is 600 mg / l and 1200 mg / l. For example, when the solid matter concentration in the cleaning liquid is 600 mg / L, if 21% is removed as coarse particles by the centrifuge, the fine particles to be collected by the filter or membrane filtration are 474 mg / L. When the total amount of the cleaning liquid is 400 m 3 , the total amount of fine particles of 189.6 kg is collected. Although a specific example of the filter is not described in Patent Document 4, for example, when a standard 3S pleated filter (75 cm) is used, the collection ability is about 400 g / m 2 at the maximum from the filtration specific resistance and pore diameter of hematite Since a filtration area of 300 m 2 is required, the required number of 3S pleated filters is 200, and a large amount of waste is generated, which is not practical.
特許文献4では、遠心分離後の液の一部だけ(50〜75%)をフィルタまたは膜ろ過で捕集し、残液はボイラに供給するとしており、残液中の微粒子が474mg/Lの場合には、最大118.5mg/L〜237mg/Lの微粒子が洗浄液の循環によりボイラ内に再度戻されることになる。粒径20μm以下の微粒子は洗浄液に対して難溶解性であるため、ボイラの低流速部分に滞留する可能性が高く、非特許文献1によれば、パウダースケールとして火炉壁管メタル温度上昇の要因となる。 In Patent Document 4, only a part (50 to 75%) of the liquid after centrifugation is collected by a filter or membrane filtration, and the residual liquid is supplied to the boiler. The fine particles in the residual liquid are 474 mg / L. In this case, a maximum of 118.5 mg / L to 237 mg / L of fine particles are returned again into the boiler by circulation of the cleaning liquid. Fine particles with a particle size of 20 μm or less are hardly soluble in the cleaning liquid, and therefore highly likely to stay in the low flow rate portion of the boiler. According to Non-Patent Document 1, the cause of the furnace wall tube metal temperature rise as a powder scale It becomes.
本発明は、上記従来技術の問題点を解消し、ボイラ再稼働時の妨げとなるパウダースケールに代表されるスラッジの微粒子を、負荷が小さくかつ廃棄物も少ない方法で捕集し、洗浄後のボイラを清浄に保持することができる、化学洗浄方法及び粒子捕集装置を提供することを目的とする。 The present invention solves the above-mentioned problems of the prior art, collects sludge fine particles typified by powder scale, which hinders boiler re-operation, by a method with a small load and a small amount of waste. It is an object of the present invention to provide a chemical cleaning method and a particle collecting device that can keep a boiler clean.
本発明によれば、下記の化学洗浄方法及び粒子捕集装置が提供される。
[1]洗浄対象物に洗浄薬剤を循環させる化学洗浄方法であって、
洗浄対象物に洗浄薬剤を注入し、洗浄対象物に固着している金属酸化物を溶解又は剥離させ、
剥離した金属酸化物の粒子、溶解した金属イオン及び洗浄薬剤を含む洗浄循環液の全量を、単一の金属線条又は複数の金属線条の集合体を設置した洗浄循環液流路及び当該金属線条を磁化する超伝導磁石を含む粒子捕集装置に通液して、磁化された当該金属線条に当該粒子を磁気的に吸着させて除去した後、洗浄対象物に再循環させる、
ことを特徴とする化学洗浄方法。
[2]前記洗浄循環液の全量を前記粒子捕集装置に通液する前に、前記洗浄循環液の全量を遠心分離処理して金属酸化物の粗粒子を除去し、金属酸化物の微粒子、金属イオン及び洗浄薬剤を含む洗浄循環液の全量を前記微粒子捕集装置に通液することを特徴とする、[1]に記載の化学洗浄方法。
[3]前記粒子捕集装置にて捕集される粒子は、強磁性、常磁性又はこれらの組み合わせから選択される磁性粒子であることを特徴とする、[1]または[2]に記載の化学洗浄方法。
[4]前記強磁性の微粒子はマグネタイトを含むことを特徴とする、[3]に記載の化学洗浄方法。
[5]前記常磁性の微粒子はヘマタイトを含むことを特徴とする、[3]に記載の化学洗浄方法。
[6]前記洗浄対象物は、給水処理に酸素処理を適用しているボイラであることを特徴とする、[1]〜[5]のいずれか1に記載の化学洗浄方法。
[7]前記粗粒子は粒径が20μmよりも大きく40μm以下の粒子であり、前記微粒子は粒径が20μm以下の粒子であることを特徴とする、[2]〜[6]のいずれか1に記載の化学洗浄方法。
[8]洗浄対象物に洗浄薬剤を循環させる化学洗浄方法において用いる粒子捕集装置であって、
単一の金属線条又は複数の金属線条の集合体を装填した洗浄循環液流路及び当該金属線条を磁化する超伝導磁石を含むことを特徴とする粒子捕集装置。
According to the present invention, the following chemical cleaning method and particle collecting apparatus are provided.
[1] A chemical cleaning method for circulating a cleaning chemical to an object to be cleaned,
Inject the cleaning chemical into the object to be cleaned, dissolve or peel off the metal oxide fixed to the object to be cleaned,
A cleaning circulation liquid flow path in which a single metal filament or an assembly of a plurality of metal filaments is installed and the metal in which the total amount of the cleaning circulation liquid containing the separated metal oxide particles, dissolved metal ions, and the cleaning agent is installed The liquid is passed through a particle collecting device including a superconducting magnet that magnetizes the filament, and the particles are magnetically adsorbed and removed by the magnetized metal filament, and then recycled to the object to be cleaned.
The chemical cleaning method characterized by the above-mentioned.
[2] Before passing the entire amount of the cleaning circulating liquid through the particle collecting device, the entire amount of the cleaning circulating liquid is centrifuged to remove the metal oxide coarse particles, and the metal oxide fine particles, The chemical cleaning method according to [1], wherein the entire amount of the circulating cleaning liquid containing metal ions and the cleaning chemical is passed through the fine particle collecting apparatus.
[3] The particles collected by the particle collecting apparatus are magnetic particles selected from ferromagnetism, paramagnetism, or a combination thereof, according to [1] or [2] Chemical cleaning method.
[4] The chemical cleaning method according to [3], wherein the ferromagnetic fine particles include magnetite.
[5] The chemical cleaning method according to [3], wherein the paramagnetic fine particles include hematite.
[6] The chemical cleaning method according to any one of [1] to [5], wherein the object to be cleaned is a boiler applying oxygen treatment to water supply treatment.
[7] Any one of [2] to [6], wherein the coarse particles are particles having a particle size larger than 20 μm and not larger than 40 μm, and the fine particles are particles having a particle size not larger than 20 μm. The chemical cleaning method described in 1.
[8] A particle collecting device used in a chemical cleaning method for circulating a cleaning chemical to an object to be cleaned,
A particle collecting apparatus comprising: a cleaning circulating fluid channel loaded with a single metal filament or an assembly of a plurality of metal filaments; and a superconducting magnet that magnetizes the metal filament.
本発明の化学洗浄方法によれば、揮発性物質処理(AVT)を行なうボイラにおけるスケールの主成分であり、酸素処理を行なうボイラにおけるパウダースケールの一部に含有され、また内層スケールの主成分である強磁性体のマグネタイト(Fe3O4)ばかりでなく、酸素処理を行なうボイラにおけるパウダースケールの主成分であり、外層スケールである常磁性体のヘマタイト(Fe2O3)をも効率的に分離除去することができ、マグネタイト及びヘマタイトをボイラに再循環することを防止できる。 According to the chemical cleaning method of the present invention, it is the main component of the scale in the boiler that performs volatile substance treatment (AVT), is contained in a part of the powder scale in the boiler that performs oxygen treatment, and is the main component of the inner layer scale. Not only a certain magnetite (Fe 3 O 4 ), but also a paramagnetic hematite (Fe 2 O 3 ), which is a main component of powder scale in an oxygen-treated boiler and an outer layer scale, can be efficiently used. It can be separated and removed, and the magnetite and hematite can be prevented from being recycled to the boiler.
従来の電磁フィルタ(電磁石)や通常の磁石を用いる化学洗浄方法では、常磁性体を吸着除去できる程の磁力を印加することができず、パウダースケールの回収は困難であった。本発明では、単一の金属線条又は複数の金属線条の集合体を装填した洗浄循環液流路及び当該金属線条を磁化する超伝導磁石を含むことを特徴とする粒子捕集装置を用いて、常磁性体を吸着できる程度に金属線条の磁力を強めることができる。 The conventional chemical cleaning method using an electromagnetic filter (electromagnet) or a normal magnet cannot apply a magnetic force enough to adsorb and remove the paramagnetic material, and it is difficult to recover the powder scale. In the present invention, there is provided a particle collecting apparatus comprising a cleaning circulating fluid channel loaded with a single metal filament or an assembly of a plurality of metal filaments and a superconducting magnet that magnetizes the metal filament. It is possible to increase the magnetic force of the metal filaments to such an extent that the paramagnetic material can be adsorbed.
金属線条は、フィルタと異なり、目詰まりしないため、稼働期間を長期化することができ、廃棄物を大幅に減量することができる。中空糸フィルタや膜ろ過による従来の粒子捕集方法では、例えば酸素処理ボイラ化学洗浄の微粒子スラッジの捕集には少なくとも1〜5μmの孔径が必要であり、細孔のため初期圧損が高く、フィルタ体積当たりのろ過面積も大きく取れないため装置規模がかなり大きくなるか、洗浄中のフィルタ交換が必要であった。本発明の粒子捕集装置は、磁気的に吸着するために、粒子の粒径にかかわらず粒子を捕集でき、初期圧損も小さい。 Unlike the filter, the metal wire is not clogged, so that the operation period can be extended and the amount of waste can be greatly reduced. In the conventional particle collection method using a hollow fiber filter or membrane filtration, for example, the fine particle sludge of an oxygen treatment boiler chemical cleaning requires a pore size of at least 1 to 5 μm, and the initial pressure loss is high due to the pores. Since the filtration area per volume cannot be made large, the scale of the apparatus becomes considerably large, or the filter needs to be replaced during cleaning. Since the particle collecting apparatus of the present invention is magnetically adsorbed, it can collect particles regardless of the particle diameter, and the initial pressure loss is small.
また、金属線条に磁気的に吸着された強磁性体も磁化されて、金属線条の磁力はさらに強化され、洗浄が進行するにつれて常磁性体に対する吸着力が強くなり、一旦吸着された常磁性体の微粒子が洗浄循環液の通水によって剥離されることが防止される。 In addition, the ferromagnetic material magnetically attracted to the metal filament is also magnetized, and the magnetic force of the metal filament is further strengthened. It is possible to prevent the magnetic fine particles from being peeled off by passing the cleaning circulating liquid.
従来のプリーツフィルタ等による膜ろ過では、フィルタの最大捕集量までスラッジを捕集した場合、通液を停止するとスラッジが脱離して、装置底部に滞留してしまい回収が困難になる。このため、フィルタを逆洗型にしてスラッジを含む液を系外に排出したり、送液停止後に底部から液抜きを行いフィルタ缶体の液を空にしてからフィルタを交換する必要があり、廃液が増加したり操作に時間を要していた。本発明の粒子捕集装置においては、スラッジが磁気的に吸着された金属線条を交換するだけでよいから、交換作業が極めて簡易で、逆洗も不要にできる。 In membrane filtration using a conventional pleated filter or the like, when sludge is collected up to the maximum collection amount of the filter, when the liquid flow is stopped, the sludge is detached and stays at the bottom of the apparatus, making it difficult to collect. For this reason, it is necessary to replace the filter after draining the liquid containing sludge out of the system by backwashing the filter, or draining the liquid from the bottom after stopping liquid feeding and emptying the liquid in the filter can body, Waste liquid increased and operation took time. In the particle collecting apparatus of the present invention, it is only necessary to replace the metal filaments on which the sludge is magnetically adsorbed, so that the replacement operation is extremely simple and backwashing can be eliminated.
1:酸素処理貫流ボイラ
2:ライン
3:粒子捕集装置
4:遠心分離ライン
5:遠心分離機
6:微粒子ライン
7:粗粒子ライン
8:粗粒子分離槽
9:戻りライン
10:ポンプ
11:循環ライン
31:洗浄循環液流路
32:金属線条
33:超伝導磁石
35:真空容器
36:冷凍機
37:導線
1: Oxygen treatment once-through boiler 2: Line 3: Particle collection device 4: Centrifugal line 5: Centrifuge 6: Fine particle line 7: Coarse particle line 8: Coarse particle separation tank 9: Return line 10: Pump 11: Circulation Line 31: Washing circulating fluid channel 32: Metal wire 33: Superconducting magnet 35: Vacuum vessel 36: Refrigerator 37: Conductor
以下、添付図面を参照しながら本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not limited thereto.
図1は、本発明の化学洗浄方法を酸素処理貫流ボイラに適用した一例を示すフロー図である。貫流ボイラ1には、循環ライン11から化学洗浄薬剤を含む洗浄循環液が供給される。貫流ボイラ1内に流入した洗浄循環液により、貫流ボイラ1の内壁に形成されているスケールが溶解又は剥離され、スラッジとなる。スケールに由来する金属イオン及び酸化金属粒子を含むスラッジは洗浄循環液に随伴され、全量がライン2を介して貫流ボイラ1から粒子捕集装置3に送られる。粒子捕集装置3内の洗浄循環液流路31に装填されている磁化された金属線条32に、金属イオン及び酸化物金属粒子を含むスラッジは磁気的に吸着されて除去される。粒子捕集装置3を通過したスラッジ除去後の洗浄循環液は、循環ライン11を介して再び貫流ボイラ1に流入する。 FIG. 1 is a flowchart showing an example in which the chemical cleaning method of the present invention is applied to an oxygen treatment once-through boiler. The once-through boiler 1 is supplied with a cleaning circulation liquid containing a chemical cleaning chemical from a circulation line 11. The scale formed on the inner wall of the once-through boiler 1 is dissolved or peeled off by the cleaning circulating liquid flowing into the once-through boiler 1 to form sludge. Sludge containing metal ions and metal oxide particles derived from the scale is accompanied by the cleaning circulating liquid, and the entire amount is sent from the once-through boiler 1 to the particle collecting device 3 via the line 2. Sludge containing metal ions and oxide metal particles is magnetically adsorbed and removed by the magnetized metal filaments 32 loaded in the cleaning circulating liquid flow path 31 in the particle collecting device 3. The cleaning circulating liquid after the sludge removal that has passed through the particle collecting device 3 flows into the once-through boiler 1 again through the circulation line 11.
図2は、本発明の化学洗浄方法の図1の実施態様において、粒子捕集装置3の前段に遠心分離機5を設けた一例のフロー図である。貫流ボイラ1には、循環ライン11から化学洗浄薬剤を含む洗浄循環液が供給される。貫流ボイラ1内に流入した洗浄循環液により、貫流ボイラ1の内壁に形成されているスケールが溶解又は剥離され、スラッジとなる。スケールに由来する金属イオン及び酸化金属粒子を含むスラッジは洗浄循環液に随伴され、全量が遠心分離ライン4を介して遠心分離機5に送られる。遠心分離機5において、粒径20μmを越える粗粒子と粒径20μm以下の微粒子とに分級され、粗粒子は遠心分離機5の底部にて濃縮され、粗粒子ライン7を介して粗粒子分離槽8に送られ、沈降して回収される。粗粒子分離槽8の上澄液は、戻りライン9を介して循環ポンプ10により循環ライン11を経由して貫流ボイラ1に再び流入する。遠心分離により粗粒子が除去された微粒子を含む洗浄循環液は全量が遠心分離機5の上部から微粒子ライン6を介して粒子捕集装置3に送られる。粒子捕集装置3内の洗浄循環液流路31に装填されている磁化された金属線条32に、金属イオン及び酸化物金属粒子を含むスラッジは磁気的に吸着されて除去される。粒子捕集装置3を通過したスラッジ除去後の洗浄循環液は、循環ライン11を介して再び貫流ボイラ1に流入する。遠心分離機5および粗粒子分離槽8を設置すると、スラッジの全量を粒子捕集装置3内の金属線条のみで捕集する場合よりも、金属線条における捕集量が少なくなり、金属線条の交換頻度を低下させることができる。 FIG. 2 is a flowchart of an example in which the centrifugal separator 5 is provided in the front stage of the particle collecting device 3 in the embodiment of FIG. 1 of the chemical cleaning method of the present invention. The once-through boiler 1 is supplied with a cleaning circulation liquid containing a chemical cleaning chemical from a circulation line 11. The scale formed on the inner wall of the once-through boiler 1 is dissolved or peeled off by the cleaning circulating liquid flowing into the once-through boiler 1 to form sludge. Sludge containing metal ions and metal oxide particles derived from the scale is accompanied by the washing circulating liquid, and the whole amount is sent to the centrifuge 5 through the centrifuge line 4. In the centrifugal separator 5, the coarse particles are classified into coarse particles having a particle diameter exceeding 20 μm and fine particles having a particle diameter of 20 μm or less. The coarse particles are concentrated at the bottom of the centrifugal separator 5, and the coarse particle separation tank is provided via the coarse particle line 7. 8 and settled and collected. The supernatant liquid of the coarse particle separation tank 8 flows again into the once-through boiler 1 through the return line 9 and through the circulation line 11 by the circulation pump 10. The entire amount of the washing circulating liquid containing fine particles from which coarse particles have been removed by centrifugation is sent from the upper part of the centrifugal separator 5 to the particle collecting device 3 through the fine particle line 6. Sludge containing metal ions and oxide metal particles is magnetically adsorbed and removed by the magnetized metal filaments 32 loaded in the cleaning circulating liquid flow path 31 in the particle collecting device 3. The cleaning circulating liquid after the sludge removal that has passed through the particle collecting device 3 flows into the once-through boiler 1 again through the circulation line 11. When the centrifugal separator 5 and the coarse particle separation tank 8 are installed, the amount of collection in the metal wire is less than that in the case where the entire amount of sludge is collected only by the metal wire in the particle collecting device 3, and the metal wire It is possible to reduce the frequency of replacement of the articles.
図3及び図4を参照しながら、粒子捕集装置3について説明する。粒子捕集装置3は、図示した形態において円筒形の真空容器35の中心部を貫通する洗浄循環液流路31が設けられている。洗浄循環液流路31内部には、金属線条32が装填されている。真空容器35内には、洗浄循環液流路31の周囲に、超伝導磁石(ソレノイドコイル)33が設けられている。超伝導磁石33には、真空容器35の外部に設置されている冷凍機36より4K近傍の冷熱が提供され、冷却される。超伝導磁石33には、外部の電源より電荷を印加するための導線37が接続されている。真空容器35には、超伝導磁石33からの磁力を遮蔽する磁気シールドが設けられている。粒子捕集装置3は、たとえばNb3Sn内層コイル及びNbTi外層コイルを用いた無冷媒型超電導マグネットを利用して、中央の貫通開口部に配管を着脱自在に設置もしくは接続して、洗浄循環液流路31を形成したものでもよい。 The particle collection device 3 will be described with reference to FIGS. 3 and 4. In the illustrated embodiment, the particle collecting device 3 is provided with a cleaning circulating fluid passage 31 that penetrates the center of a cylindrical vacuum vessel 35. A metal filament 32 is loaded inside the cleaning circulating fluid channel 31. A superconducting magnet (solenoid coil) 33 is provided in the vacuum container 35 around the cleaning circulating fluid channel 31. The superconducting magnet 33 is cooled by being supplied with cold heat in the vicinity of 4K from a refrigerator 36 installed outside the vacuum vessel 35. The superconducting magnet 33 is connected to a conducting wire 37 for applying a charge from an external power source. The vacuum vessel 35 is provided with a magnetic shield that shields the magnetic force from the superconducting magnet 33. The particle collection device 3 uses a non-refrigerant superconducting magnet using, for example, an Nb 3 Sn inner layer coil and an NbTi outer layer coil to detachably install or connect a pipe to the central through opening, What formed the flow path 31 may be used.
洗浄循環液流路31に装填する金属線条は、単一の金属線条若しくは複数の金属線条の集合体である。金属線条は、粒子を吸着するために表面積が大きいほど好ましい。金属線条は、直線状でも曲線状でもプリーツ形状でもよく、金属束子状の集合体がより好ましく、形状巻縮加工や表面凹凸加工が施されていてもよい。金属線条の線径は、1mm以下、好ましくは0.5mm以下、より好ましくは0.3mm以下、さらに好ましくは0.1mm以下である。線径が小さい程、磁束の勾配が大きくなり、常磁性体を吸着するために十分な磁力にまで磁化されやすい。金属線条の材質としては、洗浄薬剤に対する耐蝕性があり、磁化可能な金属であれば特に制限なく用いることができるが、強磁性体であることがより好ましく、例えばSUS430などのステンレススチールを好適に挙げることができる。強磁性体の金属線条を用いることにより、超伝導磁石により磁化された後、金属線条自体の磁化が持続する。 The metal filaments loaded in the cleaning circulating fluid channel 31 are a single metal filament or an assembly of a plurality of metal filaments. The larger the surface area of the metal filaments, the more preferable for adsorbing the particles. The metal filament may be linear, curved, or pleated, and is preferably a metal bundle-like assembly, and may be subjected to shape crimping or surface unevenness processing. The wire diameter of the metal wire is 1 mm or less, preferably 0.5 mm or less, more preferably 0.3 mm or less, and still more preferably 0.1 mm or less. The smaller the wire diameter, the larger the magnetic flux gradient and the more easily magnetized to a magnetic force sufficient to attract the paramagnetic material. As the material of the metal wire, it can be used without particular limitation as long as it has corrosion resistance against cleaning chemicals and is a magnetizable metal, but is preferably a ferromagnetic material, for example, stainless steel such as SUS430 is preferable. Can be listed. By using a ferromagnetic metal filament, the magnetization of the metal filament itself is sustained after being magnetized by the superconducting magnet.
超伝導磁石による印加磁場(磁束密度)は大きいほど強磁性体および常磁性体を捕集できる。磁場の強さは2T(テスラ)〜15Tが好ましく、より好ましくは、6T〜10Tである。 As the applied magnetic field (magnetic flux density) by the superconducting magnet is larger, the ferromagnetic material and the paramagnetic material can be collected. The strength of the magnetic field is preferably 2T (Tesla) to 15T, and more preferably 6T to 10T.
本発明において、粒子捕集装置3内に装填される金属線条の交換は極めて簡易である。洗浄循環液を抜く必要もなく、捕集したスラッジを脱離させる必要もなく、金属線条ごと回収することができる。次に同様の新品の金属線条を装填するだけで粒子捕集装置として復帰できるため、系外に排出する廃液は存在しない。 In the present invention, replacement of the metal filament loaded in the particle collecting device 3 is extremely simple. It is not necessary to drain the circulating cleaning fluid, and it is not necessary to desorb the collected sludge, and the metal filaments can be recovered. Next, since it can be restored as a particle collecting device simply by loading a similar new metal filament, there is no waste liquid to be discharged out of the system.
本発明の化学洗浄方法及び粒子捕集装置において、洗浄薬剤は特に限定されない。通常の化学洗浄方法に用いられる有機混酸(クエン酸+グリコール酸)及び酸性乃至アルカリ性の薬液を制限無く用いることができる。また、化学洗浄工程だけでなく、その後の水洗工程、リンス工程、中和工程、防錆工程、最終水洗工程の任意の1以上の工程に適用できる。 In the chemical cleaning method and the particle collecting apparatus of the present invention, the cleaning chemical is not particularly limited. Organic mixed acids (citric acid + glycolic acid) and acidic or alkaline chemicals used in ordinary chemical cleaning methods can be used without limitation. Moreover, it is applicable not only to a chemical cleaning process but also to any one or more of the subsequent water washing process, rinsing process, neutralization process, rust prevention process, and final water washing process.
本発明の化学洗浄方法及び粒子捕集装置の適用温度範囲は、洗浄循環液が循環できる温度範囲であれば特に制限されず、典型的には0℃〜150℃である。
また、図示した実施形態において、ボイラは酸素処理貫流ボイラとしたが、洗浄対象物はこれに限定されるものではなく、揮発性物質処理ボイラをはじめ、一般的に化学洗浄方法が適用されている洗浄対象物すべてに適用できる。
The application temperature range of the chemical cleaning method and the particle collecting apparatus of the present invention is not particularly limited as long as the cleaning circulating liquid can be circulated, and is typically 0 ° C to 150 ° C.
In the illustrated embodiment, the boiler is an oxygen treatment once-through boiler, but the cleaning object is not limited to this, and a chemical cleaning method is generally applied including a volatile substance treatment boiler. Applicable to all objects to be cleaned.
以下、本発明を実施例より具体的に説明するが、本発明はこれらに限定されない。 EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to these.
[参考例]
CWT処理を行ったボイラ蒸発管の実スケールを剥離させ、物理特性測定装置(PPMS,日本カンタムデザイン株式会社)を用いて質量磁化の測定を行った結果を表1に示す。
Table 1 shows the results of measurement of mass magnetization using a physical property measurement device (PPMS, Nippon Quantum Design Co., Ltd.) after peeling off the actual scale of the boiler evaporator tube subjected to CWT treatment.
CWT実スケールの前処理としては、ワイヤブラシで物理的にCWTスケールを剥離させて、ふるいで混入したワイヤを除去後、有機混酸(クエン酸+グリコール酸)8%+還元剤の混合液に投入し、90℃で30分間撹拌を行った。その試料の質量磁化を測定した。 As a pre-treatment of CWT actual scale, after physically removing the CWT scale with a wire brush and removing the wire mixed by sieving, it is put into a mixed solution of organic mixed acid (citric acid + glycolic acid) 8% + reducing agent And stirred at 90 ° C. for 30 minutes. The mass magnetization of the sample was measured.
強磁性体では、外部磁場を上昇させると測定値である質量磁化は図5に示すように初期に急激な上昇をみせ、やがて磁化が飽和に到達するのが特徴である。一方、ヘマタイトのような常磁性体では、外部磁場を掛けても質量磁化上昇の傾きは小さく、磁化が飽和しないのが特徴である。CWTの実スケールは、内層スケールおよび外層スケール(パウダースケール)共に質量磁化が初期に急激な上昇を見せることが観測されたため、強磁性体の性質を持っていることが判明した。表1より、パウダースケールの10,000Oe(ほぼ1T)における質量磁化はマグネタイトと比較すると小さいが、ヘマタイトと比較するととても大きく、本発明の方法により、磁場を増加させることで、マグネタイトばかりでなくヘマタイトをも容易に回収できる。 A feature of the ferromagnetic material is that when the external magnetic field is raised, the mass magnetization, which is a measured value, shows a rapid rise in the initial stage as shown in FIG. 5, and the magnetization eventually reaches saturation. On the other hand, a paramagnetic material such as hematite is characterized in that even when an external magnetic field is applied, the gradient of the mass magnetization rise is small and the magnetization is not saturated. The actual scale of CWT was found to have a ferromagnetic property because the mass magnetization was observed to show a sudden rise in the initial stage for both the inner layer scale and the outer layer scale (powder scale). From Table 1, the mass magnetization of powder scale at 10,000 Oe (approximately 1T) is small compared to magnetite, but very large compared to hematite. By increasing the magnetic field by the method of the present invention, not only magnetite but also hematite is obtained. Can be easily recovered.
[実施例1]
図3及び4に示す粒子捕集装置を用いて、金属線条32として線径0.1mmのSUS430ワイヤの集合体1gを洗浄循環液流路2に装填し、超伝導磁石33に電荷を印加して、表1に示す印加磁場まで金属線条32を磁化させた後、市販のマグネタイト試薬(液中平均粒子径1μm)2ppm(mg/kg)の液を流速0.5m/sで通水し、マグネタイトの捕集率を求めた。捕集量は、捕集後の金属線条の重量から初期重量を差し引き、通液量は回収した液量として算出した。
Using the particle collecting apparatus shown in FIGS. 3 and 4, 1 g of a SUS430 wire assembly having a wire diameter of 0.1 mm is loaded as the metal filament 32 into the cleaning circulating fluid flow path 2 and a charge is applied to the superconducting magnet 33. Then, after magnetizing the metal filament 32 to the applied magnetic field shown in Table 1, a commercially available magnetite reagent (average particle diameter in the liquid 1 μm) 2 ppm (mg / kg) was passed through at a flow rate of 0.5 m / s. The magnetite collection rate was determined. The collected amount was calculated by subtracting the initial weight from the weight of the metal filaments after collection, and the liquid passing amount was calculated as the recovered liquid amount.
[実施例2]
市販のヘマタイト試薬(液中平均粒子径2μm)10ppm(mg/kg)の液を流速0.5m/sで粒子捕集装置に通水した以外は実施例1と同様にして、ヘマタイトの捕集率を求めた。結果を表3に示す。
Collection of hematite in the same manner as in Example 1 except that a commercially available hematite reagent (average particle diameter in liquid 2 μm) 10 ppm (mg / kg) was passed through the particle collector at a flow rate of 0.5 m / s. The rate was determined. The results are shown in Table 3.
[実施例3]
実施例1で使用した市販のマグネタイト試薬(液中平均粒子径1μm)と実施例2で使用した市販のヘマタイト試薬(液中平均粒子径2μm)をそれぞれ2ppm(mg/kg)及び1ppm(mg/kg)となるように混合した液を表3に示す流速で通水した以外は実施例1及び2と同様にして、マグネタイト及びヘマタイトの合計の捕集率を求めた。結果を表4に示す。
The commercially available magnetite reagent used in Example 1 (average particle diameter in liquid 1 μm) and the commercially available hematite reagent used in Example 2 (average particle diameter in liquid 2 μm) were 2 ppm (mg / kg) and 1 ppm (mg / kg), respectively. kg), the total collection rate of magnetite and hematite was determined in the same manner as in Examples 1 and 2 except that the liquid mixed at a flow rate shown in Table 3 was passed. The results are shown in Table 4.
本発明の化学洗浄方法及び粒子捕集装置では、従来の技術では捕集できなかったヘマタイトを、環境負荷が小さくかつ簡易に捕集できる。従来の技術では、ヘマタイトを捕集するには膜ろ過が必要であり、これはフィルタによる物理的な捕集であり、初期差圧も高く大量のフィルタが廃棄物となっていた。本発明では、超伝導磁石により金属線条に高磁場を持たせて磁力による捕集を行なうため、初期差圧はほぼ0であり、また金属線条の重量よりも十分多い粒子を脱落することなく且つ廃液を出さずに回収できる。また洗浄対象物であるボイラの種類によっては、遠心分離機および粗粒子分離槽およびそれに付随する配管が不要であり、環境負荷や仮設装置及び配管の規模を低減できる。また、酸素処理ボイラの化学洗浄で発生するパウダースケール由来のスラッジは、ヘマタイト主体であるがマグネタイトとの複合結晶であり強磁性体の性質を有するため、ヘマタイト単独の場合よりも本発明の化学洗浄方法及び粒子捕集装置による除去効果が大きい。 In the chemical cleaning method and the particle collecting apparatus of the present invention, hematite that could not be collected by the conventional technique can be easily collected with a small environmental load. In the prior art, membrane filtration is required to collect hematite, which is physical collection by a filter, and the initial differential pressure is high, and a large amount of filter becomes waste. In the present invention, since the superconducting magnet gives the metal filament a high magnetic field and is collected by the magnetic force, the initial differential pressure is almost zero, and the particles sufficiently larger than the weight of the metal filament are dropped off. It can be recovered without any waste liquid. Further, depending on the type of boiler that is the object to be cleaned, a centrifugal separator, a coarse particle separation tank, and piping associated therewith are unnecessary, and the environmental load, temporary equipment, and piping scale can be reduced. In addition, the powder scale-derived sludge generated by chemical cleaning of oxygen-treated boilers is composed mainly of hematite, but is a composite crystal with magnetite and has the properties of a ferromagnetic material. Therefore, the chemical cleaning of the present invention is more effective than the case of hematite alone. The removal effect by the method and the particle collector is great.
Claims (8)
洗浄対象物に洗浄薬剤を注入し、洗浄対象物に固着している金属酸化物を溶解又は剥離させ、
剥離した金属酸化物の粒子、溶解した金属イオン及び洗浄薬剤を含む洗浄循環液の全量を、単一の金属線条又は複数の金属線条の集合体を設置した洗浄循環液流路及び当該金属線条を磁化する超伝導磁石を含む粒子捕集装置に通液して、磁化された当該金属線条に当該粒子を磁気的に吸着させて除去した後、洗浄対象物に再循環させる、
ことを特徴とする化学洗浄方法。 A chemical cleaning method for circulating a cleaning agent to an object to be cleaned,
Inject the cleaning chemical into the object to be cleaned, dissolve or peel off the metal oxide fixed to the object to be cleaned,
A cleaning circulation liquid flow path in which a single metal filament or an assembly of a plurality of metal filaments is installed and the metal in which the total amount of the cleaning circulation liquid containing the separated metal oxide particles, dissolved metal ions, and the cleaning agent is installed The liquid is passed through a particle collecting device including a superconducting magnet that magnetizes the filament, and the particles are magnetically adsorbed and removed by the magnetized metal filament, and then recycled to the object to be cleaned.
The chemical cleaning method characterized by the above-mentioned.
単一の金属線条又は複数の金属線条の集合体を装填した洗浄循環液流路及び当該金属線条を磁化する超伝導磁石を含むことを特徴とする粒子捕集装置。 A particle collecting device used in a chemical cleaning method for circulating a cleaning agent to an object to be cleaned,
A particle collecting apparatus comprising: a cleaning circulating fluid channel loaded with a single metal filament or an assembly of a plurality of metal filaments; and a superconducting magnet that magnetizes the metal filament.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016209578A JP6985692B2 (en) | 2016-10-26 | 2016-10-26 | Chemical cleaning method and particle collector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016209578A JP6985692B2 (en) | 2016-10-26 | 2016-10-26 | Chemical cleaning method and particle collector |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018069131A true JP2018069131A (en) | 2018-05-10 |
JP6985692B2 JP6985692B2 (en) | 2021-12-22 |
Family
ID=62113010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016209578A Active JP6985692B2 (en) | 2016-10-26 | 2016-10-26 | Chemical cleaning method and particle collector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6985692B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112902736A (en) * | 2021-03-23 | 2021-06-04 | 西安热工研究院有限公司 | Sediment cleaning system for thermal equipment after chemical cleaning and using method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5082406A (en) * | 1973-11-27 | 1975-07-03 | ||
JPS5728718U (en) * | 1980-07-28 | 1982-02-15 | ||
JPS60148013U (en) * | 1984-03-09 | 1985-10-01 | 株式会社井上ジャパックス研究所 | magnetic filter |
JPS61118188A (en) * | 1984-11-13 | 1986-06-05 | Hitachi Metals Ltd | Magnetic field treating apparatus |
JPH11300120A (en) * | 1998-04-23 | 1999-11-02 | Chubu Electric Power Co Inc | Magnetic separation method and apparatus |
JP2003245616A (en) * | 2002-02-22 | 2003-09-02 | Tokyo Electric Power Co Inc:The | Chemical cleaning method |
JP2012024735A (en) * | 2010-07-27 | 2012-02-09 | Kurita Engineering Co Ltd | Washing method and apparatus of oxygenation applying boiler |
-
2016
- 2016-10-26 JP JP2016209578A patent/JP6985692B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5082406A (en) * | 1973-11-27 | 1975-07-03 | ||
JPS5728718U (en) * | 1980-07-28 | 1982-02-15 | ||
JPS60148013U (en) * | 1984-03-09 | 1985-10-01 | 株式会社井上ジャパックス研究所 | magnetic filter |
JPS61118188A (en) * | 1984-11-13 | 1986-06-05 | Hitachi Metals Ltd | Magnetic field treating apparatus |
JPH11300120A (en) * | 1998-04-23 | 1999-11-02 | Chubu Electric Power Co Inc | Magnetic separation method and apparatus |
JP2003245616A (en) * | 2002-02-22 | 2003-09-02 | Tokyo Electric Power Co Inc:The | Chemical cleaning method |
JP2012024735A (en) * | 2010-07-27 | 2012-02-09 | Kurita Engineering Co Ltd | Washing method and apparatus of oxygenation applying boiler |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112902736A (en) * | 2021-03-23 | 2021-06-04 | 西安热工研究院有限公司 | Sediment cleaning system for thermal equipment after chemical cleaning and using method |
Also Published As
Publication number | Publication date |
---|---|
JP6985692B2 (en) | 2021-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6985692B2 (en) | Chemical cleaning method and particle collector | |
JP5077821B2 (en) | Magnetic separation device | |
WO2015194416A1 (en) | Sorting device and sorting method | |
JP3788984B2 (en) | Arsenic removal treatment method in aqueous solution and arsenic removal treatment system in aqueous solution | |
EP0127906B1 (en) | Process for removing heavy metallic elements suspended in a liquid | |
JP5569217B2 (en) | Oxygen treatment boiler cleaning method and apparatus | |
JPS6242647B2 (en) | ||
JP4353466B2 (en) | Adsorbent continuous supply / discharge type high gradient magnetic separator | |
EP1316348A1 (en) | Magnetic filter device | |
JP2005074371A5 (en) | ||
JP2968069B2 (en) | Magnetic separation device | |
JP3202605B2 (en) | Plant chemical cleaning method and equipment | |
JP2010022902A (en) | Method of cleaning magnetic filter device | |
JPH02218447A (en) | Wet magnetic separation | |
KR20130065400A (en) | Apparatus for purification of condenser wastewater of thermal power plant using superconducting magnetic separator | |
CN103641216B (en) | The method of superconduction HGMS-NZVI coupling technique process heavy metal wastewater thereby | |
JP2009183823A (en) | Method for attaching magnetic particles to non-magnetic substance and magnetic separation apparatus for non-magnetic substance | |
JP2002079011A (en) | Magnetic filter apparatus | |
JPH11300120A (en) | Magnetic separation method and apparatus | |
JPH04349908A (en) | Oil purifying apparatus | |
Kohaupt | High gradient magnetic filtration to ensure coating quality | |
CN210559666U (en) | Alloy scale remover | |
EP0169774A1 (en) | Continuously functioning electromagnetic filter | |
JP2005021801A (en) | Method and apparatus for separation and recovery of material using superconductive magnetic field | |
JP2010058084A (en) | Magnetic separation membrane and magnetic separator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170124 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191004 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200917 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201002 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20201201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210413 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210702 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211029 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211116 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6985692 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |