[go: up one dir, main page]

JP2009183823A - Method for attaching magnetic particles to non-magnetic substance and magnetic separation apparatus for non-magnetic substance - Google Patents

Method for attaching magnetic particles to non-magnetic substance and magnetic separation apparatus for non-magnetic substance Download PDF

Info

Publication number
JP2009183823A
JP2009183823A JP2008024507A JP2008024507A JP2009183823A JP 2009183823 A JP2009183823 A JP 2009183823A JP 2008024507 A JP2008024507 A JP 2008024507A JP 2008024507 A JP2008024507 A JP 2008024507A JP 2009183823 A JP2009183823 A JP 2009183823A
Authority
JP
Japan
Prior art keywords
magnetic
section
substance
magnetic particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008024507A
Other languages
Japanese (ja)
Inventor
Ryusuke Nakai
龍資 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008024507A priority Critical patent/JP2009183823A/en
Publication of JP2009183823A publication Critical patent/JP2009183823A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

【課題】磁性粒子が非磁性物質に付着する捕獲確率を高めると共に、非磁性物質に付着しなかった磁性粒子の再利用を可能とする。
【解決手段】磁性粒子を非磁性物質に付着させて磁性を帯びた非磁性物質を磁気フィルタで磁着して処理液より分離する非磁性物質の磁気分離装置であって、磁性粒子を添加した処理液の配管に磁気分離処理部を設け、該磁気分離処理部は、上流側より磁性粒子再混合区間、担磁流路区間、磁気フィルタ取出区間、磁気フィルタ装着区間、磁気フィルタ取付区間とし、かつ、磁気フィルタ取付区間から磁気フィルタ取出区間で並設する複数の磁気フィルタを下流側から上流側に向けて間欠または連続移動させる移動手段と、磁気フィルタ取出区間で最上流端側の磁気フィルタを取り出して、磁性粒子再混合部区間に再挿入し、所定時間後に該磁気フィルタを取り出して磁気フィルタ取付区間の最下流位置に再挿入する搬送手段とを備えている。
【選択図】図1
An object of the present invention is to increase the capture probability of magnetic particles adhering to a nonmagnetic substance and to recycle magnetic particles that have not adhered to a nonmagnetic substance.
A magnetic separation apparatus for a non-magnetic substance, in which magnetic particles are attached to a non-magnetic substance, and the magnetic non-magnetic substance is magnetically attached by a magnetic filter and separated from a processing solution. A magnetic separation processing unit is provided in the pipe of the processing liquid, and the magnetic separation processing unit is a magnetic particle remixing section, a magnetic-bearing flow path section, a magnetic filter extraction section, a magnetic filter mounting section, and a magnetic filter mounting section from the upstream side, And a moving means for intermittently or continuously moving a plurality of magnetic filters arranged in parallel in the magnetic filter take-out section from the magnetic filter attachment section, and a magnetic filter on the most upstream end side in the magnetic filter take-out section. A conveying means for taking out the magnetic filter and reinserting it into the magnetic particle remixing section, taking out the magnetic filter after a predetermined time, and reinserting it in the most downstream position of the magnetic filter mounting section;
[Selection] Figure 1

Description

本発明は、非磁性物質への磁性粒子の付着方法および非磁性物質の磁気分離装置に関し、詳しくは、処理液中から除去する非磁性物質に磁性粒子を効率良く付着させて、処理液から高速かつ確実に非磁性物質を除去するものであり、特に、多量の処理水から非磁性物質を除去する水処理に好適に用いられるものである。   The present invention relates to a method for attaching magnetic particles to a non-magnetic substance and a magnetic separation apparatus for non-magnetic substances. More specifically, the present invention relates to a method for efficiently attaching magnetic particles to a non-magnetic substance to be removed from a processing solution. In addition, it reliably removes nonmagnetic substances, and is particularly suitable for water treatment that removes nonmagnetic substances from a large amount of treated water.

近年、工場廃水、生活廃水等から河川や海洋の汚染が拡大している。
これらの汚染された水に含まれる固形物等を除去処理する場合、水量が大量であるため洗浄処理の高速化が要求される。
しかし、汚染の要因となる微生物、プランクトン、菌体をミクロン単位の空孔を有する濾過膜で捕捉する場合には、濾過膜の通過に時間がかかり、かつ、濾過膜に捕捉粒子が堆積して目詰まりが発生しやすいため、間欠的に洗浄が必要である等の理由から、処理水の高速大量処理が困難である。
In recent years, pollution of rivers and oceans from factory wastewater, domestic wastewater, etc. has expanded.
When removing the solids contained in the contaminated water, the amount of water is large, so that the speed of the cleaning process is required.
However, when trapping microorganisms, plankton, and bacterial cells that cause contamination with a filtration membrane having micron pores, it takes time to pass through the filtration membrane, and trapped particles accumulate on the filtration membrane. Since clogging is likely to occur, high-speed and large-scale treatment of treated water is difficult due to the necessity of intermittent cleaning.

また、近年、船舶に積載するバラスト水の処理が問題となっている。バラスト水は空荷状態でも安全に航行するために積載される海水であり、バラスト水は出港時に付近の海域から取水し、入港時の積荷の積載時に海洋へ排水され、例えば、日本から出港するオイルタンカーに日本海域の海水がバラスト水として積載され、入港地の中近東の海域に排水される。このようにバラスト水が取水した海域と異なる海域に排水されると、海水中の生物が本来の生息地でない海域に移動させられることとなり、海洋の生態系に大きな影響を及ぼすこととなる。よって、「船舶のバラスト水および沈殿物の規制および管理」のための国際条約が採択され、条約内容に沿ってバラスト水を浄化処理することが求められている。   In recent years, the treatment of ballast water loaded on ships has become a problem. Ballast water is seawater that is loaded for safe navigation even in an empty state. Ballast water is taken from the nearby waters when leaving the port, drained into the ocean when loading the cargo when entering the port, for example, leaving from Japan Seawater from the Japan Sea area is loaded on the oil tanker as ballast water and drained into the Middle East sea area. When ballast water is discharged into a sea area different from the sea area where water is taken, organisms in the seawater are moved to sea areas that are not originally habitats, which greatly affects the marine ecosystem. Therefore, an international convention for “regulation and management of ship ballast water and sediment” has been adopted, and it is required to purify ballast water in accordance with the contents of the convention.

この種の水浄化装置として、本出願人は、特開2000−254544号公報(特許文献1)において、藻等の植物性微生物からなる被除去物を含む原水を、比較的高速で被除去物を分離除去できる磁気分離装置を提供している。
該磁気分離装置は、原水に鉄酸化物粒子を添加して、被除去物に磁性を付与した後に、磁気フィルタを通過させて、被除去物を磁気フィルタに磁着して分離除去している。このように磁気で被除去物を分離除去しているため、磁気フィルタの水通過用の空孔を広くしても被除去物を分離除去でき、水処理の高速化を図ることができる。
該特許文献1の磁気分離装置では、磁気により磁性を付与した被除去物を捕捉するため、磁気フィルタの空孔を大きくすることができ、よって、膜濾過より目詰まりが極めて生じにくく、大量かつ高速での水処理が可能となるという利点を有する。
As this type of water purification apparatus, the present applicant, in Japanese Patent Application Laid-Open No. 2000-254544 (Patent Document 1), removes raw water containing an object to be removed made of plant microorganisms such as algae at a relatively high speed. Is provided for separating and removing the magnetic field.
In the magnetic separation device, iron oxide particles are added to raw water to impart magnetism to the object to be removed, and then passed through a magnetic filter, and the object to be removed is magnetically attached to the magnetic filter and separated and removed. . Since the object to be removed is separated and removed by magnetism as described above, the object to be removed can be separated and removed even if the water passage hole of the magnetic filter is widened, and the water treatment can be speeded up.
In the magnetic separation device of Patent Document 1, since the removal object to which magnetism is imparted by magnetism is captured, the pores of the magnetic filter can be enlarged, and therefore, clogging is extremely unlikely to occur than membrane filtration. There is an advantage that water treatment at high speed becomes possible.

特開2000−254544号公報JP 2000-254544 A

しかしながら、前記磁気分離装置では、磁性粒子が被除去物に付着する捕獲確率は高いとは言えず、被除去物に磁性粒子が付着せずに磁性が付与されない被除去物を捕捉できず、除去率を確実に高めることは困難であり、この点で改善の余地がある。
また、被除去物に付着できなかった磁性粒子も磁気フィルタに磁着して原水より分離除去されてしまうため、被除去物に対して大量の磁性粒子が必要となりコスト高となっており、この点でも改善の余地がある。
However, in the magnetic separation device, it cannot be said that the capture probability that the magnetic particles adhere to the object to be removed is high, and the object to be removed cannot be captured and removed without the magnetic particles adhering to the object to be removed. It is difficult to reliably increase the rate, and there is room for improvement in this regard.
In addition, since magnetic particles that could not adhere to the object to be removed are magnetically attached to the magnetic filter and separated and removed from the raw water, a large amount of magnetic particles are required for the object to be removed, which increases the cost. There is room for improvement.

本発明は前記問題に鑑みてなされたものであり、磁性粒子が非磁性物質に付着する捕獲確率を高める方法を提供すると共に、非磁性物質に付着しなかった磁性粒子を再利用することができる磁気分離装置を提供することを課題としている。   The present invention has been made in view of the above problems, and provides a method for increasing the capture probability of magnetic particles adhering to a nonmagnetic substance, and can reuse magnetic particles that have not adhered to a nonmagnetic substance. It is an object to provide a magnetic separation device.

前記課題を解決するため、本発明は、第1の発明として、非磁性物質を含む処理液中に磁性粒子を添加し、該磁性粒子を非磁性物質に付着させる方法であって、
前記磁性粒子を添加した前記処理液の流路に、磁石で包囲した担磁流路を設け、該担磁流路内での前記磁性粒子の泳動速度を前記処理液の流速より高速あるいは低速として速度差を持たせ、磁性粒子が非磁性物質に付着する捕獲確率を高めることを特徴とする非磁性物質への磁性粒子の付着方法を提供している。
In order to solve the above-mentioned problem, the present invention provides, as a first invention, a method of adding magnetic particles to a treatment liquid containing a nonmagnetic substance, and attaching the magnetic particles to the nonmagnetic substance,
A magnetic-bearing flow path surrounded by a magnet is provided in the flow path of the treatment liquid to which the magnetic particles have been added, and the migration speed of the magnetic particles in the magnetic support flow path is set to be higher or lower than the flow speed of the treatment liquid. There is provided a method for attaching magnetic particles to a non-magnetic substance, characterized by providing a difference in speed and increasing the capture probability that the magnetic particles adhere to the non-magnetic substance.

前記方法によれば、前記磁石によって担磁流路内に発生する磁場により、前記磁性粒子が処理液の流速より高速化あるいは低速化するため、処理液の流速で流れる前記非磁性物質との間に速度差が生じる。これにより、磁性粒子が非磁性物質と接触する確率が高くなって、磁性粒子が非磁性物質に付着する捕獲確率を高めることができる。
即ち、前記磁性粒子と非磁性物質とが同速度で流れている場合には、磁性粒子と非磁性物質とが接触しにくいため、磁性粒子が非磁性物質に付着する捕獲確率が低い。そこで、磁性粒子と非磁性物質の泳動速度に差を持たせることにより、磁性粒子の方が非磁性物質よりも高速の場合には、磁性粒子が下流を流れる非磁性物質に追いついて付着する一方、磁性粒子の方が非磁性物質よりも低速の場合には、磁性粒子が上流を流れる非磁性物質に追いつかれて付着させることができる。
具体的には、前記磁性粒子は、前記磁石(担磁流路)の軸線方向の中央に近付こうとするため、担磁流路の上流端から中央までは磁性粒子が加速されて処理液の流速よりも高速となる一方、中央から下流端までは磁性粒子が減速されて処理液の流速よりも低速となる。
According to the method, since the magnetic particles are made faster or slower than the flow velocity of the treatment liquid due to the magnetic field generated in the magnetism flow path by the magnet, the magnetic particles flow between the non-magnetic substance flowing at the treatment solution flow velocity. A speed difference occurs. Thereby, the probability that the magnetic particles come into contact with the nonmagnetic substance is increased, and the capture probability that the magnetic particles adhere to the nonmagnetic substance can be increased.
That is, when the magnetic particles and the non-magnetic substance are flowing at the same speed, the magnetic particles and the non-magnetic substance are hardly brought into contact with each other, so that the probability of capturing the magnetic particles on the non-magnetic substance is low. Therefore, by providing a difference in the migration speed between the magnetic particles and the non-magnetic substance, when the magnetic particles are faster than the non-magnetic substance, the magnetic particles catch up with the non-magnetic substance flowing downstream and adhere. When the magnetic particles are slower than the non-magnetic substance, the magnetic particles can catch up with and adhere to the non-magnetic substance flowing upstream.
Specifically, since the magnetic particles tend to approach the center in the axial direction of the magnet (magnetization channel), the magnetic particles are accelerated from the upstream end to the center of the magnetism channel, and the treatment liquid On the other hand, the magnetic particles are decelerated from the center to the downstream end and become slower than the flow rate of the processing liquid.

前記磁性粒子は処理液中に投入時に撹拌して、撹拌した状態で前記担磁流路に流通させていることが好ましい。
前記のように磁性粒子を投入する際に処理液を撹拌することにより、磁性粒子を処理液中に均一に分散させることができ、処理液中に分散する非磁性物質に効率良く付着させることができる。
It is preferable that the magnetic particles are stirred in the processing liquid when introduced, and are circulated through the magnetized flow path in a stirred state.
By stirring the treatment liquid when introducing the magnetic particles as described above, the magnetic particles can be uniformly dispersed in the treatment liquid, and can efficiently adhere to the non-magnetic substance dispersed in the treatment liquid. it can.

前記磁性粒子の平均粒径は0.1μm〜50μmとしていることが好ましく、0.1μm〜20μmとしていることがより好ましい。
前記磁性粒子の平均粒径を前記範囲とすることにより、0.1μm〜100μmの生物からなる非磁性物質を効率良く捕獲することができる。
また、磁性粒子の平均粒径を0.1μm以上とすることで、磁性粒子を非磁性物質に付着しやすくすると共に付着後に遊離させにくくできる。一方、磁性粒子の平均粒径が50μmを越えると流路を構成する配管の底に堆積して有効に働かないという問題が生じる。
The average particle size of the magnetic particles is preferably 0.1 μm to 50 μm, and more preferably 0.1 μm to 20 μm.
By setting the average particle size of the magnetic particles in the above range, it is possible to efficiently capture nonmagnetic substances made of organisms having a size of 0.1 μm to 100 μm.
In addition, by setting the average particle size of the magnetic particles to 0.1 μm or more, the magnetic particles can be easily attached to the nonmagnetic substance and can be hardly released after the attachment. On the other hand, if the average particle size of the magnetic particles exceeds 50 μm, there arises a problem that the magnetic particles are deposited on the bottom of the pipe constituting the flow path and do not work effectively.

前記処理液量を100質量%とすると磁性粒子は0.05〜5質量%添加していることが好ましい。
前記磁性粒子の配合量を0.05質量%以上とすることで、磁性粒子を処理液中の非磁性物質の90%以上に付着させることができる一方、5質量%未満とすることで過剰に添加されて、非磁性物質に付着されずに処理液中に浮遊する磁性粒子を抑制できる。
When the amount of the treatment liquid is 100% by mass, it is preferable to add 0.05 to 5% by mass of magnetic particles.
By setting the blending amount of the magnetic particles to 0.05% by mass or more, the magnetic particles can be attached to 90% or more of the non-magnetic substance in the treatment liquid, while excessively by setting it to less than 5% by mass. When added, magnetic particles floating in the treatment liquid without being attached to the nonmagnetic substance can be suppressed.

添加する磁性粒子は、鉄、ニッケル、コバルト、銀等の磁性金属の単体あるいは合金、これらの酸化物が好適に用いられ、特に、マグネタイト等の鉄酸化物粒子が好適に用いられる。
該磁性粒子として表面に水酸基を有する鉄酸化物粒子を用いると、該鉄酸化物粒子と同様に、原水中の藻等の植物性微生物が存在すると、これら植物性微生物の表面にも水酸基が存在するため、水素結合が形成され、鉄酸化物粒子により微生物に磁性を付与することができる。
As the magnetic particles to be added, simple substances or alloys of magnetic metals such as iron, nickel, cobalt, silver, and oxides thereof are preferably used, and iron oxide particles such as magnetite are particularly preferably used.
When iron oxide particles having a hydroxyl group on the surface are used as the magnetic particles, if there are plant microorganisms such as algae in the raw water as in the case of the iron oxide particles, hydroxyl groups are also present on the surface of these plant microorganisms. Therefore, hydrogen bonds are formed and magnetism can be imparted to the microorganisms by the iron oxide particles.

前記処理液の流速と担磁流路における磁性粒子の泳動速度との速度差を0.1〜50mm/secとしていることが好ましい。
前記処理液の流速と担磁流路における磁性粒子の泳動速度の速度差が0.1mm/secより小さいと、非磁性物質と磁性粒子との速度差が小さく、磁性粒子が非磁性物質に付着する捕獲確率を十分に高めることができない。一方、処理液の流速と担磁流路における磁性粒子の泳動速度の速度差が50mm/secより大きいと、磁性粒子と非磁性物質が接触しても固着せず分離してしまうという問題がある。
It is preferable that the speed difference between the flow rate of the treatment liquid and the migration speed of the magnetic particles in the magnetic channel is 0.1 to 50 mm / sec.
If the difference between the flow rate of the treatment liquid and the migration speed of the magnetic particles in the magnetic channel is less than 0.1 mm / sec, the difference in speed between the nonmagnetic material and the magnetic particles is small, and the magnetic particles adhere to the nonmagnetic material. It is not possible to sufficiently increase the capture probability. On the other hand, if the difference between the flow rate of the treatment liquid and the migration speed of the magnetic particles in the magnetic flow path is greater than 50 mm / sec, there is a problem that even if the magnetic particles and the non-magnetic substance come into contact with each other, they are not fixed and separated. .

また、本発明は、第2の発明として、非磁性物質を含む処理液中に磁性粒子を添加し、該磁性粒子を非磁性物質に付着させて磁性を帯びた前記非磁性物質を磁気フィルタで磁着して分離する非磁性物質の磁気分離装置であって、
前記磁性粒子を添加した前記処理液の配管に磁気分離処理部を設け、該磁気分離処理部の配管は透磁性材から形成し、上流端より所要間隔離れた下流部までを磁性粒子再混合区間、該磁性粒子再混合区間から下流側へ所定区間を磁石で囲んだ担磁流路区間、該担磁流路区間から下流側へ所定区間を前記配管の上部を開口した磁気フィルタ取出区間、該磁気フィルタ取出区間から下流側への所定区間を磁石で囲むと共に配管内に複数の磁気フィルタを並設した磁気フィルタ装着区間、該磁気フィルタ装着区間から下流端までを前記配管の上部を開口した磁気フィルタ取付区間とし、かつ、
前記磁気フィルタ取付区間から磁気フィルタ取出区間で並設する複数の前記磁気フィルタを下流側から上流側に向けて間欠または連続移動させる移動手段と、
前記磁気フィルタ取出区間で最上流端側の磁気フィルタを取り出して、前記磁性粒子再混合部区間に再挿入し、所定時間後に該磁気フィルタを取り出して前記磁気フィルタ取付区間の最下流位置に再挿入する搬送手段と、
を備えていることを特徴とする非磁性物質の磁気分離装置を提供している。
According to a second aspect of the present invention, as a second invention, magnetic particles are added to a treatment liquid containing a nonmagnetic substance, and the magnetic particles are adhered to the nonmagnetic substance, and the magnetized nonmagnetic substance is removed with a magnetic filter. A magnetic separation device for non-magnetic substances that are magnetically attached and separated,
A magnetic separation processing section is provided in the pipe of the processing liquid to which the magnetic particles are added, the pipe of the magnetic separation processing section is formed from a magnetically permeable material, and the magnetic particle remixing section extends from the upstream end to a downstream section that is spaced apart from the upstream end. A magnetic passage section in which a predetermined section is surrounded by a magnet downstream from the magnetic particle remixing section, a magnetic filter extraction section in which an upper portion of the pipe is opened from the magnetic bearing section to the downstream side, A magnetic filter mounting section in which a predetermined section from the magnetic filter take-out section to the downstream side is surrounded by a magnet and a plurality of magnetic filters are arranged in parallel in the pipe, and the upper part of the pipe is opened from the magnetic filter mounting section to the downstream end. A filter mounting section, and
Moving means for intermittently or continuously moving the plurality of magnetic filters arranged in parallel in the magnetic filter extraction section from the magnetic filter mounting section, from the downstream side toward the upstream side;
The magnetic filter on the most upstream end side is taken out in the magnetic filter take-out section, re-inserted into the magnetic particle remixing section section, and after a predetermined time, the magnetic filter is taken out and re-inserted into the most downstream position in the magnetic filter mounting section. Conveying means for
There is provided a magnetic separation apparatus for a non-magnetic substance.

前記構成からなる本発明の非磁性物質の磁気分離装置では、磁性粒子が付着して磁性を帯びた非磁性物質および非磁性物質に付着していない磁性粒子を前記磁気フィルタ装着区間の磁石により磁化された磁気フィルタに磁着させて捕獲することにより、処理液から非磁性物質および磁性粒子を除去できるようにしている。
さらに、非磁性物質に付着していない磁性粒子が磁気フィルタに磁着した状態のままであると、磁性粒子の無駄になるため、磁性粒子を磁着させた磁気フィルタを前記磁気フィルタ取出区間より取り出し、搬送手段により上流の前記磁性粒子再混合区間へ搬送して再挿入している。これにより、磁気フィルタに磁着させた磁性粒子が磁気フィルタから離脱して処理液内に再び遊離させて再利用することができる。
このように、非磁性物質を付着せずに磁気フィルタに磁着した磁性粒子を、再度、上流側の非磁性領域に戻して磁気フィルタに磁着した磁性粒子を離脱させて処理液に混合して再利用することにより、磁性粒子の使用量を低減することができ、コストを低減することができる。
In the non-magnetic substance magnetic separation apparatus of the present invention having the above-described configuration, the magnetic particles adhered to the magnetic non-magnetic substance and the non-magnetic substance non-magnetic substance are magnetized by the magnet in the magnetic filter mounting section. The nonmagnetic substance and the magnetic particles can be removed from the treatment liquid by being magnetized and captured by the magnetic filter.
Furthermore, if the magnetic particles that are not attached to the non-magnetic substance remain magnetically attached to the magnetic filter, the magnetic particles are wasted. Therefore, the magnetic filter having the magnetic particles attached thereto is removed from the magnetic filter extraction section. It is taken out and transported to the upstream magnetic particle remixing section by the transport means and reinserted. As a result, the magnetic particles magnetically attached to the magnetic filter can be separated from the magnetic filter and released again into the processing liquid for reuse.
In this way, the magnetic particles magnetically attached to the magnetic filter without adhering nonmagnetic substances are returned to the nonmagnetic region on the upstream side again, and the magnetic particles magnetically attached to the magnetic filter are separated and mixed with the treatment liquid. By reusing them, the amount of magnetic particles used can be reduced, and the cost can be reduced.

詳細には、磁気分離処理部に設けた担磁流路区間において、配管を囲む磁石により発生する磁場によって磁性粒子が加速または減速され、前記第1の発明と同様の方法により磁性粒子が非磁性物質に効率良く付着される。
前記担磁流路区間の下流側に設けた磁気フィルタ装着区間には複数の磁気フィルタを並設しており、これら磁気フィルタは周囲に配置された磁石により磁化されている。前記担磁流路区間で磁性粒子が付着して磁性を帯びた非磁性物質および非磁性物質に付着しなかった磁性粒子は磁化された前記磁気フィルタに磁着される。このとき、磁性粒子は上流端側の磁気フィルタから順に磁着していくため、最上流端側の磁気フィルタに最も多くの磁性粒子が磁着した状態となる。
Specifically, the magnetic particles are accelerated or decelerated by the magnetic field generated by the magnets surrounding the pipes in the magnetized flow passage section provided in the magnetic separation processing unit, and the magnetic particles are made non-magnetic by the same method as in the first invention. Efficiently adheres to substances.
A plurality of magnetic filters are juxtaposed in the magnetic filter mounting section provided on the downstream side of the magnetism passage section, and these magnetic filters are magnetized by magnets disposed around. The magnetic particles adhered to the magnetic flow passage section and magnetized, and the magnetic particles not adhered to the nonmagnetic material are magnetized on the magnetized magnetic filter. At this time, since the magnetic particles are sequentially magnetized from the magnetic filter on the upstream end side, the most magnetic particles are magnetized on the magnetic filter on the most upstream end side.

次いで、最上流端側の磁気フィルタに所定量の磁性粒子が付着した後(あるいは所定時間が経過した後)に、前記担磁流路区間と磁気フィルタ装着区間の間に設けた磁気フィルタ取出区間の上部開口より最上流端側の磁気フィルタを取り出す。
取り出した磁気フィルタを、前記担磁流路空間よりも上流側の磁性粒子再混合区間に搬送手段により搬送して再挿入すると、磁気フィルタは磁気フィルタ装着区間の磁石から離れた位置に配置されたことにより磁化されていないため、磁気フィルタに磁着していた非磁性物質および磁性粒子が磁気フィルタから遊離し、再び処理液内に混合されて磁性粒子が再利用される。このとき磁気フィルタ装着区間に並設された残りの磁気フィルタは移動手段により上流側へ移動させており、これら残りの磁気フィルタにより遊離された非磁性物質および磁性粒子を再度磁着させて捕獲する。
Next, after a predetermined amount of magnetic particles adheres to the magnetic filter on the most upstream end side (or after a predetermined time has elapsed), a magnetic filter extraction section provided between the magnetic bearing flow path section and the magnetic filter mounting section Take out the magnetic filter on the most upstream side of the upper opening.
When the taken out magnetic filter is transported and reinserted into the magnetic particle remixing section upstream of the magnetism flow passage space by the transport means, the magnetic filter is disposed at a position away from the magnet in the magnetic filter mounting section. As a result, the non-magnetic substance and magnetic particles that are magnetically attached to the magnetic filter are released from the magnetic filter, and are mixed again in the treatment liquid to reuse the magnetic particles. At this time, the remaining magnetic filters arranged in parallel in the magnetic filter mounting section are moved to the upstream side by the moving means, and the nonmagnetic substance and magnetic particles released by these remaining magnetic filters are again magnetized and captured. .

前記のように磁性粒子が遊離された磁気フィルタは、搬送手段により下流側の前記磁気フィルタ取付区間に搬送して最下流位置に再挿入し、移動手段により磁気フィルタ装着区間に移動して、再び磁性粒子の磁着に用いられる。
前記の操作を繰り返し、大半の磁性粒子が非磁性物質に付着した後に、磁気フィルタを磁気分離装置外で洗浄して、磁気フィルタに磁着した磁性粒子を再利用せずに廃棄している。
The magnetic filter from which the magnetic particles are released as described above is conveyed to the magnetic filter mounting section on the downstream side by the conveying means, reinserted at the most downstream position, moved to the magnetic filter mounting section by the moving means, and again Used for magnetic deposition of magnetic particles.
After the above operation is repeated and most of the magnetic particles adhere to the non-magnetic substance, the magnetic filter is washed outside the magnetic separation device, and the magnetic particles magnetically attached to the magnetic filter are discarded without being reused.

前記担磁流路区間および前記磁気フィルタ装着区間の配管の外周に配置する磁石として超電導コイルを装着していることが好ましい。
前記超電導コイルを形成する超電導線材は、高温超電導線材(Bi−2223系銀シース線材、Re系薄膜線材)を用い、高温超電導コイルとしていることが好ましい。
この高温超電導コイルの冷却は、冷媒を用いない(冷媒フリー)の冷凍機冷却型システムとしても良いし、液体窒素を用いた液体窒素冷却または液体窒素過冷却システムとしても良い。
It is preferable that a superconducting coil is mounted as a magnet disposed on the outer periphery of the piping in the magnetism flow passage section and the magnetic filter mounting section.
The superconducting wire forming the superconducting coil is preferably a high-temperature superconducting coil using a high-temperature superconducting wire (Bi-2223-based silver sheath wire, Re-based thin film wire).
The cooling of the high-temperature superconducting coil may be a refrigerator-cooled system that does not use a refrigerant (refrigerant-free), a liquid nitrogen cooling that uses liquid nitrogen, or a liquid nitrogen supercooling system.

前記のように、超電導コイルを用いて磁気分離を行うと、超電導コイルが発生する強い磁界中に配置するステンレス鋼等の磁性体からなる磁気フィルタの細線の回りに強い磁場を形成できる。この強い磁場を利用して、処理液中に分散する前記磁性粒子が付着して磁性が付与された非磁性物質を細線回りに磁着して分離できる。
また、超電導線材として酸化物超電導線材を用いると、金属系超電導線材と比較して、臨界温度が高いため、温度上昇による臨界電流密度の低下が小さく、クエンチしにくい高い安定性を有し、電磁石の動作が安定する。
また、冷媒として液体窒素を用いることも可能なことから、特にバラスト水の処理装置として用いる場合、船舶に搭載されて用いられても船舶のゆれに対して極めて安定である。かつ、酸化物超電導線材を用いた電磁石は、金属系の超電導線材を用いた電磁石よりも軽量かつコンパクトな構成とすることができ、船舶等の設置面積や重量に制約が大きい場所に設置される場合に有利である。
As described above, when magnetic separation is performed using a superconducting coil, a strong magnetic field can be formed around a fine wire of a magnetic filter made of a magnetic material such as stainless steel disposed in a strong magnetic field generated by the superconducting coil. By using this strong magnetic field, the non-magnetic substance to which the magnetic particles dispersed in the treatment liquid are attached and magnetized can be separated by being magnetized around a thin line.
In addition, when an oxide superconducting wire is used as a superconducting wire, the critical temperature is higher than that of a metal superconducting wire. Is stable.
Further, since liquid nitrogen can be used as the refrigerant, particularly when used as a ballast water treatment apparatus, even if it is mounted on a ship and used, it is extremely stable against fluctuations of the ship. In addition, an electromagnet using an oxide superconducting wire can be configured to be lighter and more compact than an electromagnet using a metal-based superconducting wire, and is installed in a place where the installation area and weight of a ship are large. Is advantageous in some cases.

また、前記磁気フィルタはステンレス鋼、鉄、ニッケル、コバルト、等を主成分とした磁性体からなる細線をメッシュ状に編成して空孔を形成し、該空孔の平均面積は0.5mm〜100mmとしていることが好ましい。
磁気フィルタをステンレス線材で形成すると、錆が発生しにくく、耐久性を有する磁気フィルタとすることができる。
また、ステンレス線等の線材のメッシュで磁気フィルタを形成し、該メッシュにより形成される空孔の平均面積は1mm〜25mmとすると、特に5μm以上の磁性が付与された被除去物の90%以上を分離することができる。
In addition, the magnetic filter forms holes by knitting fine wires made of a magnetic material mainly composed of stainless steel, iron, nickel, cobalt, etc. into a mesh shape, and the average area of the holes is 0.5 mm 2. It is preferable to be set to ˜100 mm 2 .
When the magnetic filter is formed of a stainless steel wire, rust is less likely to occur and a durable magnetic filter can be obtained.
Further, a magnetic filter formed by the mesh of the wire of stainless steel wire or the like, 90 of the average area of the holes formed by the mesh and 1 mm 2 25 mm 2, especially-be-removed substance more magnetic 5μm was granted % Or more can be separated.

本発明の磁気分離装置は、大量の処理液を効率良く処理できる点から、オイルタンカー等の船舶に貯留されるバラスト水の水処理に好適に用いられる。
バラスト水の処理装置に用いる場合、前記処理液は船舶のバラストタンクに貯留されるバラスト水であり、前記非磁性物質はバラスト水中に浮遊及び沈殿する藻類を含む植物微生物もしくは動物微生物からなり、かつ、前記磁性物質をバラスト水に投下して撹拌する磁性粒子供給手段を備え、該磁性粒子供給手段から、前記磁性粒子が付着された非磁性物質および浮遊している前記磁性粒子が含まれるバラスト水を前記配管へ送給している。
The magnetic separation device of the present invention is suitably used for water treatment of ballast water stored in a ship such as an oil tanker because a large amount of processing liquid can be efficiently processed.
When used in a ballast water treatment apparatus, the treatment liquid is ballast water stored in a ballast tank of a ship, and the non-magnetic substance is composed of plant microorganisms or animal microorganisms containing algae floating and precipitated in the ballast water, and And a magnetic particle supply unit that drops and stirs the magnetic substance into ballast water, and the magnetic particle supply unit includes the non-magnetic substance to which the magnetic particles are adhered and the ballast water containing the floating magnetic particles. Is fed to the pipe.

前述したように、第1の本発明の非磁性物質への磁性粒子の付着方法によれば、前記磁石によって担磁流路内に発生する磁場により、前記磁性粒子が処理液の流速より高速化あるいは低速化するため、処理液の流速で流れる前記非磁性物質との間に速度差が生じる。これにより、磁性粒子が非磁性物質と接触する確率が高くなって、磁性粒子が非磁性物質に付着する捕獲確率を高めることができる。   As described above, according to the method for adhering magnetic particles to the non-magnetic substance of the first aspect of the present invention, the magnetic particles are made faster than the flow velocity of the processing liquid by the magnetic field generated in the magnetic bearing flow path by the magnet. Alternatively, since the speed is reduced, a speed difference is generated between the non-magnetic substance flowing at the flow rate of the processing liquid. Thereby, the probability that the magnetic particles come into contact with the nonmagnetic substance is increased, and the capture probability that the magnetic particles adhere to the nonmagnetic substance can be increased.

第2の本発明の非磁性物質の磁気分離装置によれば、磁性粒子が付着して磁性を帯びた非磁性物質および非磁性物質に付着していない磁性粒子を磁気フィルタに磁着させて捕獲した後、該磁気フィルタを上流の磁性粒子再混合区間に挿入し、磁気フィルタに磁着させた磁性粒子を処理液内に再び遊離させることにより、磁性粒子を再利用できるようにしている。これにより、非磁性物質に付着しない状態で磁気フィルタに磁着した磁性粒子を即座に廃棄するのではなく、上流側で再び処理液に混合して再利用することにより、磁性粒子の使用量を低減することができ、コストを低減することができる。   According to the magnetic separation apparatus for a non-magnetic substance of the second aspect of the present invention, magnetic particles attached and magnetized non-magnetic substance and magnetic particles not attached to the non-magnetic substance are magnetically attached to the magnetic filter and captured. After that, the magnetic filter is inserted into the upstream magnetic particle remixing section, and the magnetic particles magnetically attached to the magnetic filter are released again into the treatment liquid, so that the magnetic particles can be reused. As a result, the magnetic particles magnetically attached to the magnetic filter without adhering to the non-magnetic substance are not immediately discarded, but are mixed with the treatment liquid again on the upstream side and reused, thereby reducing the amount of magnetic particles used. The cost can be reduced.

本発明の実施形態を図面を参照して説明する。
図1乃至図6に、実施形態の非磁性物質の磁気分離装置10(以下、磁気分離装置と略称する)を示す。
本実施形態の磁気分離装置10は、工場廃水、生活廃水等の非磁性物質を含む処理液Lから非磁性物質を分離して浄化処理するものである。
Embodiments of the present invention will be described with reference to the drawings.
1 to 6 show a magnetic separation apparatus 10 for nonmagnetic substances according to an embodiment (hereinafter abbreviated as a magnetic separation apparatus).
The magnetic separation apparatus 10 of this embodiment separates and purifies nonmagnetic substances from the treatment liquid L containing nonmagnetic substances such as factory wastewater and domestic wastewater.

磁気分離装置10は、処理液Lを貯留する処理液貯留槽(図示せず)と、該処理液貯留槽と接続され、処理液Lの流路となる配管11を備え、該配管11に磁気分離処理部20を設けている。前記配管11の上流端で投入された処理液Lは、磁気分離処理部20を通過することにより非磁性物質30が分離されて浄化処理され、配管11の下流端から浄化処理液L’として排水される。   The magnetic separation device 10 includes a processing liquid storage tank (not shown) that stores the processing liquid L, and a pipe 11 that is connected to the processing liquid storage tank and serves as a flow path for the processing liquid L. A separation processing unit 20 is provided. The processing liquid L introduced at the upstream end of the pipe 11 passes through the magnetic separation processing unit 20 to separate and purify the non-magnetic substance 30, and drains from the downstream end of the pipe 11 as the purification processing liquid L ′. Is done.

前記処理液貯留槽には、貯留する処理液Lに粉末状の磁性粒子31を添加すると共に、処理液Lと磁性粒子31とを撹拌混合する磁性粒子供給手段(図示せず)を設けている。磁性粒子31として表面に水酸基を有するマグネタイトからなる鉄酸化物粒子を用いており、処理液Lと磁性粒子31とを撹拌することにより処理液Lに含まれる一部の非磁性物質30に磁性粒子31を付着させて磁性を付与している。
前記磁性粒子31の平均粒径は0.1μm〜50μm、前記非磁性物質30は0.1μm〜100μmの生物からなり、処理液量を100質量%とすると磁性粒子31は0.05〜5質量%添加している。
The processing liquid storage tank is provided with magnetic particle supply means (not shown) for adding the powdered magnetic particles 31 to the stored processing liquid L and stirring and mixing the processing liquid L and the magnetic particles 31. . Iron oxide particles made of magnetite having a hydroxyl group on the surface are used as the magnetic particles 31, and magnetic particles are added to some nonmagnetic substances 30 contained in the treatment liquid L by stirring the treatment liquid L and the magnetic particles 31. 31 is attached to impart magnetism.
The magnetic particles 31 have an average particle size of 0.1 μm to 50 μm, the nonmagnetic substance 30 is made of a living organism having a size of 0.1 μm to 100 μm. % Is added.

前記配管11は非磁性ステンレス、またはFRPやプラスチック等からなる透磁性材で形成している。該配管11に設けた磁気分離処理部20は、上流側から順に磁性粒子再混合区間21、担磁流路区間22、磁気フィルタ取出区間23、磁気フィルタ装着区間24、磁気フィルタ取付区間25からなる。   The pipe 11 is made of nonmagnetic stainless steel, or a magnetically permeable material made of FRP, plastic, or the like. The magnetic separation processing unit 20 provided in the pipe 11 includes a magnetic particle remixing section 21, a magnetic bearing passage section 22, a magnetic filter extraction section 23, a magnetic filter mounting section 24, and a magnetic filter mounting section 25 in order from the upstream side. .

前記磁気分離処理部20の構成を上流側から順に説明する。
前記磁性粒子再混合区間21は、磁気分離処理部20の上流端より所要間隔離れた下流部までの区間であり、下流側で非磁性物質30および磁性粒子31が磁着した磁気フィルタ12を再挿入するための開口11aを配管11の上部に設けている。非磁性物質30および磁性粒子31が磁着した磁気フィルタ12を該開口11aから配管11内に再挿入することにより、磁気フィルタ12に磁着した非磁性物質30および磁性粒子31を遊離させ、処理液L内に再混合している。
The configuration of the magnetic separation processing unit 20 will be described in order from the upstream side.
The magnetic particle remixing section 21 is a section from the upstream end of the magnetic separation processing section 20 to a downstream section that is a predetermined distance away from the magnetic separation reprocessing section 20. An opening 11 a for insertion is provided in the upper part of the pipe 11. By reinserting the magnetic filter 12 magnetized with the nonmagnetic substance 30 and the magnetic particles 31 into the pipe 11 from the opening 11a, the nonmagnetic substance 30 and the magnetic particles 31 magnetized on the magnetic filter 12 are released and processed. Remixed in liquid L.

前記磁性粒子再混合区間21の下流側の所定区間に設けた担磁流路区間22は、図2に示すように、配管11を超電導磁石13で囲んで、配管11内に所要の磁場を形成している。該超電導磁石13は酸化物超電導線材が巻回されたコイル13aで形成し、該コイル13aを超電導温度に保持する冷却容器13b内に収容している。本実施形態では、ビスマス2223系の酸化物超電導線材のダブルパンケーキコイルを軸線方向に積層した積層コイルから構成している。   As shown in FIG. 2, the magnetized flow passage section 22 provided in a predetermined section downstream of the magnetic particle remixing section 21 surrounds the pipe 11 with the superconducting magnet 13 to form a required magnetic field in the pipe 11. is doing. The superconducting magnet 13 is formed of a coil 13a around which an oxide superconducting wire is wound, and is accommodated in a cooling vessel 13b that maintains the coil 13a at a superconducting temperature. In the present embodiment, a double pancake coil of a bismuth 2223-based oxide superconducting wire is composed of a laminated coil laminated in the axial direction.

前記磁性粒子31は、超電導磁石13(担磁流路区間22)の磁場が強い軸線方向の中央に近付こうとするため、担磁流路区間22の上流端から中央までは磁性粒子31が加速されて処理液Lの流速よりも高速となる一方、中央から下流端までは磁性粒子31が減速されて処理液Lの流速よりも低速となる。一方、磁性粒子31が付着していない非磁性物質30は磁場に関係なく処理液Lの流速と同速度で流れている。
よって、担磁流路区間22では、図2に示すように、磁性粒子31が付着していない非磁性物質30と磁性粒子31の泳動速度に差が生じる。処理液Lの流速と担磁流路区間22における磁性粒子31の泳動速度との速度差を0.1〜50mm/secとしている。なお、図2では矢印の長さが泳動速度を示し、矢印が長いほど速度が速いことを示している。
Since the magnetic particles 31 tend to approach the center in the axial direction where the magnetic field of the superconducting magnet 13 (magnetic-magnetic channel section 22) is strong, the magnetic particles 31 extend from the upstream end to the center of the magnetic-magnetic channel section 22. While being accelerated, the flow rate becomes higher than the flow rate of the processing liquid L, and from the center to the downstream end, the magnetic particles 31 are decelerated and become lower than the flow rate of the processing liquid L. On the other hand, the nonmagnetic substance 30 to which the magnetic particles 31 are not attached flows at the same speed as the flow rate of the processing liquid L regardless of the magnetic field.
Therefore, as shown in FIG. 2, a difference occurs in the migration speed between the nonmagnetic substance 30 to which the magnetic particles 31 are not attached and the magnetic particles 31 in the magnetism flow passage section 22. The speed difference between the flow rate of the processing liquid L and the migration speed of the magnetic particles 31 in the magnetism flow path section 22 is set to 0.1 to 50 mm / sec. In FIG. 2, the length of the arrow indicates the migration speed, and the longer the arrow, the faster the speed.

具体的には、担磁流路区間22の上流側(図2の左側)では、磁性粒子31の方が非磁性物質30よりも高速となり、磁性粒子31が下流を流れる非磁性物質30に追いついて付着する一方、下流側(図2の右側)では、磁性粒子31の方が非磁性物質30よりも低速となり、磁性粒子31が上流を流れる非磁性物質30に追いつかれて付着させることができる。
このように、担磁流路区間22では、非磁性物質30と磁性粒子31とに速度差を持たせることにより、効率良く非磁性物質30に磁性粒子31を付着させている。
前記処理液貯留槽における撹拌と、担磁流路区間22における非磁性物質30への磁性粒子31の付着方法により、大部分の非磁性物質30に磁性粒子31が付着される。
Specifically, on the upstream side (the left side in FIG. 2) of the magnetism flow passage section 22, the magnetic particles 31 are faster than the nonmagnetic material 30, and the magnetic particles 31 catch up with the nonmagnetic material 30 flowing downstream. On the other hand, on the downstream side (the right side in FIG. 2), the magnetic particles 31 are slower than the nonmagnetic substance 30, and the magnetic particles 31 can be caught up and attached to the nonmagnetic substance 30 flowing upstream. .
As described above, in the magnetic-bearing flow path section 22, the magnetic particles 31 are efficiently attached to the nonmagnetic material 30 by giving a speed difference between the nonmagnetic material 30 and the magnetic particles 31.
The magnetic particles 31 adhere to most of the non-magnetic substances 30 by the stirring in the treatment liquid storage tank and the method of attaching the magnetic particles 31 to the non-magnetic substances 30 in the magnetism-passage section 22.

処理液Lの流速、即ち非磁性物質30の速度と担磁流路区間22における磁性粒子31の泳動速度との速度差をv(μm/sec)、磁性粒子31の半径をr(μm)、磁性粒子31の泳動時間をt(sec)とすると、磁性粒子31の非磁性物質30に対する相対的な泳動体積は、図3(A)に示すように、πrvt(μm)となる。よって、磁性粒子31の濃度をCm(ppm)とすると、磁性粒子31全体の泳動体積は、πrvt・Cm(μm)となる。
そして、非磁性物質30の濃度をC(ppm)とすると、前記磁性粒子31全体の泳動体積πrvt・Cm(μm)の中にπrvt・Cm・C(個)の非磁性物質30が存在することとなる。πrvt・Cm・Cの値が大きい程、磁性粒子31の非磁性物質30への付着率が高くなる。
The flow velocity of the processing liquid L, that is, the velocity difference between the velocity of the non-magnetic substance 30 and the migration velocity of the magnetic particles 31 in the magnetized flow passage section 22 is v (μm / sec), the radius of the magnetic particles 31 is r (μm), If the migration time of the magnetic particles 31 is t (sec), the migration volume of the magnetic particles 31 relative to the nonmagnetic material 30 is πr 2 vt (μm 3 ) as shown in FIG. Therefore, when the concentration of the magnetic particles 31 is Cm (ppm), the migration volume of the entire magnetic particles 31 is πr 2 vt · Cm (μm 3 ).
When the concentration of the non-magnetic substance 30 is C (ppm), πr 2 vt · Cm · C (number) of non-magnetic substances in the migration volume πr 2 vt · Cm (μm 3 ) of the entire magnetic particle 31. 30 will be present. The larger the value of πr 2 vt · Cm · C, the higher the adhesion rate of the magnetic particles 31 to the nonmagnetic material 30.

また、非磁性物質30の半径によっても、磁性粒子31の非磁性物質30への付着率が左右される。非磁性物質30の半径をrc(μm)とすると、磁性粒子31の中心と非磁性物質30の中心の距離がr+rc(μm)以下となると、磁性粒子31が非磁性物質30に付着する。よって、図3(B)に示すように、π(r+rc)vt(μm)が大きい程、磁性粒子31の非磁性物質30への付着率が高くなる。 Further, the adhesion rate of the magnetic particles 31 to the nonmagnetic substance 30 also depends on the radius of the nonmagnetic substance 30. When the radius of the nonmagnetic material 30 is rc (μm), the magnetic particles 31 adhere to the nonmagnetic material 30 when the distance between the center of the magnetic particles 31 and the center of the nonmagnetic material 30 is equal to or less than r + rc (μm). Therefore, as shown in FIG. 3B, the larger the π (r + rc) 2 vt (μm 3 ), the higher the adhesion rate of the magnetic particles 31 to the nonmagnetic material 30.

また、磁性粒子31が付着していない非磁性物質30の濃度をC1、磁性粒子31が非磁性物質30に接触したときに付着する確率をαとすると、磁性粒子31が非磁性物質30に付着することによるC1の変化は、
dC1/dt=−απ(r+rc)・v・Cm・C1
磁性粒子31の個数が磁性粒子31の付着していない非磁性物質30の個数より多いと仮定し、Cmが一定とすると、
C1=C1(t=0)・exp(−[απ(r+rc)・v・Cm]・t)
半減期Thは、Th=απ(r+rc)・v・Cmとなる。この式に基づいて、磁性粒子31の泳動速度との速度差vや磁性粒子31の濃度Cmの最適値を設定している。
Further, if the concentration of the nonmagnetic substance 30 to which the magnetic particles 31 are not attached is C1, and the probability that the magnetic particles 31 adhere to the nonmagnetic substance 30 is α, the magnetic particles 31 adhere to the nonmagnetic substance 30. The change of C1 by doing
dC1 / dt = −απ (r + rc) 2 · v · Cm · C1
Assuming that the number of magnetic particles 31 is larger than the number of nonmagnetic substances 30 to which magnetic particles 31 are not attached, and assuming that Cm is constant,
C1 = C1 (t = 0) · exp (− [απ (r + rc) 2 · v · Cm] · t)
The half-life Th is Th = απ (r + rc) 2 · v · Cm. Based on this equation, the optimum value of the speed difference v from the migration speed of the magnetic particles 31 and the concentration Cm of the magnetic particles 31 are set.

前記担磁流路区間22の下流側の所定区間に設けた磁気フィルタ取出区間23は、下流側の磁気フィルタ装着区間24に並設した磁気フィルタ12のうちの最上流端側の磁気フィルタ12Aを取り出すための開口11bを配管11の上部に設けている。   A magnetic filter extraction section 23 provided in a predetermined section on the downstream side of the magnetism passage section 22 includes a magnetic filter 12A on the most upstream end of the magnetic filters 12 arranged in parallel with the magnetic filter mounting section 24 on the downstream side. An opening 11 b for taking out is provided in the upper part of the pipe 11.

前記磁気フィルタ取出区間23の下流側の所定区間に設けた磁気フィルタ装着区間24は、配管11を超電導磁石14で囲むと共に、内部に軸線方向に間隔をあけて複数の磁気フィルタ12を並設し、これら並設した磁気フィルタ12を下流側から上流側へ間欠または連続移動させる移動手段15を設けている。
前記超電導磁石14で発生する磁場によりこれら磁気フィルタ12を磁化させており、処理液Lが磁化された磁気フィルタ12を通過すると、処理液Lに含まれた磁性粒子31が付着して磁性を帯びた非磁性物質30および非磁性物質に付着していない磁性粒子31が磁気フィルタ12に磁着する。これにより、磁気フィルタ12を通過した処理液Lは非磁性物質30および磁性粒子31を含まない浄化処理液L’となる。
なお、並設された磁気フィルタ12の最上流側の磁気フィルタ12Aは、超電導磁石14の上流端よりも上流側の磁気フィルタ取出区間23内に配置されているが、磁気フィルタ取出区間23も超電導磁石14の磁場の影響を受ける範囲内に設定することにより最上流端側の磁気フィルタ12Aは磁化されたままの状態となっている。
A magnetic filter mounting section 24 provided in a predetermined section on the downstream side of the magnetic filter take-out section 23 surrounds the pipe 11 with the superconducting magnet 14 and has a plurality of magnetic filters 12 arranged in parallel at intervals in the axial direction. A moving means 15 is provided for intermittently or continuously moving the magnetic filters 12 arranged side by side from the downstream side to the upstream side.
These magnetic filters 12 are magnetized by the magnetic field generated by the superconducting magnet 14, and when the processing liquid L passes through the magnetized magnetic filter 12, the magnetic particles 31 contained in the processing liquid L adhere and become magnetized. The nonmagnetic substance 30 and the magnetic particles 31 not attached to the nonmagnetic substance are magnetically attached to the magnetic filter 12. As a result, the treatment liquid L that has passed through the magnetic filter 12 becomes a purification treatment liquid L ′ that does not contain the nonmagnetic substance 30 and the magnetic particles 31.
The uppermost magnetic filter 12A of the magnetic filters 12 arranged in parallel is arranged in the magnetic filter extraction section 23 upstream of the upstream end of the superconducting magnet 14, but the magnetic filter extraction section 23 is also superconductive. By setting within the range affected by the magnetic field of the magnet 14, the magnetic filter 12A on the most upstream side remains magnetized.

前記超電導磁石14は酸化物超電導線材が巻回されたコイル14aで形成し、該コイル14aを超電導温度に保持する冷却容器14b内に収容している。本実施形態では、ビスマス2223系の酸化物超電導線材のダブルパンケーキコイルを軸線方向に積層した積層コイルから構成している。
前記各磁気フィルタ12は磁性体からなる金属線材のメッシュからなる。本実施形態では、線径2mmのステンレス網から形成し、直径30mm、メッシュで囲まれる空孔21aの1辺の長さを約4mmとして16mmの空孔とし、5μm以上の固形物を磁着して捕捉できるようにしている。また、該ステンレス網からなる磁気フィルタ12を前記配管11内に20枚程度を一定ピッチで並設している。
The superconducting magnet 14 is formed of a coil 14a around which an oxide superconducting wire is wound, and is accommodated in a cooling container 14b that maintains the coil 14a at a superconducting temperature. In this embodiment, a double pancake coil of a bismuth 2223-based oxide superconducting wire is constituted by a laminated coil laminated in the axial direction.
Each of the magnetic filters 12 is made of a metal wire mesh made of a magnetic material. In this embodiment, it is formed from a stainless steel net having a wire diameter of 2 mm, the diameter of the hole 21a surrounded by the mesh is 30 mm, the length of one side is about 4 mm, and the hole is 16 mm 2. So that it can be captured. Further, about 20 magnetic filters 12 made of stainless steel are arranged in parallel in the pipe 11 at a constant pitch.

前記移動手段15は、磁気フィルタ12の中心を貫通するボールネジと、該ボールネジを回転させるモータ(図示せず)からなり、該モータによりボールネジを回転させると配管11内で回転不可とした磁気フィルタ12が下流側から上流側へ移動する構成としている。
前記のように、並設した磁気フィルタ12のうちの最上流端側の磁気フィルタ12Aは磁気フィルタ取出区間23内に配置されており、該磁気フィルタ12Aが配管11の開口11bより取り出されると、今度はあらたに最上流端側となった磁気フィルタ12Bが磁気フィルタ取出区間23内に配置されるように移動手段15により磁気フィルタ12全体を上流側へ移動させる構成としている。
The moving means 15 includes a ball screw that passes through the center of the magnetic filter 12 and a motor (not shown) that rotates the ball screw. When the ball screw is rotated by the motor, the magnetic filter 12 that cannot rotate in the pipe 11 is used. Is configured to move from the downstream side to the upstream side.
As described above, the magnetic filter 12A on the most upstream side of the magnetic filters 12 arranged in parallel is disposed in the magnetic filter extraction section 23. When the magnetic filter 12A is taken out from the opening 11b of the pipe 11, In this case, the entire magnetic filter 12 is moved to the upstream side by the moving means 15 so that the magnetic filter 12 </ b> B that is now at the most upstream end is disposed in the magnetic filter extraction section 23.

前記磁気フィルタ装着区間24の下流側の所定区間に設けた磁気フィルタ取付区間25は、上流側の磁性粒子再混合区間21から再び取り出した磁気フィルタ12を配管11内に挿入するための開口11cを配管11の上部に設けている。   A magnetic filter mounting section 25 provided in a predetermined section downstream of the magnetic filter mounting section 24 has an opening 11 c for inserting the magnetic filter 12 taken out from the upstream magnetic particle remixing section 21 into the pipe 11. It is provided in the upper part of the pipe 11.

また、前記磁気分離装置10は、磁気フィルタ取出区間23で最上流端側の磁気フィルタ12Aを取り出して、磁性粒子再混合部区間21に再挿入し、所定時間後に該磁気フィルタ12Aを取り出して磁気フィルタ取付区間25の最下流位置に再挿入する搬送手段16を備えている。該搬送手段16は、図4に示すように、配管11の開口11a、11b、11cと連通する搬送管16aを備え、該搬送管16aを通して磁気フィルタ12を搬送している。該搬送は空気圧またはモータで磁気フィルタ12を搬送している。   Further, the magnetic separation device 10 takes out the magnetic filter 12A on the most upstream side in the magnetic filter take-out section 23, reinserts it into the magnetic particle remixing section section 21, and takes out the magnetic filter 12A after a predetermined time and magnetically Conveying means 16 for reinsertion is provided at the most downstream position of the filter mounting section 25. As shown in FIG. 4, the transport means 16 includes a transport pipe 16a communicating with the openings 11a, 11b, 11c of the pipe 11, and transports the magnetic filter 12 through the transport pipe 16a. In this conveyance, the magnetic filter 12 is conveyed by air pressure or a motor.

次に、分離処理装置10で行う処理液の浄化処理工程を説明する。
まず、処理液貯留槽に貯留された処理液Lに、磁性粒子供給手段により粉末状の磁性粒子31を添加すると共に、処理液Lと磁性粒子31とを撹拌混合し、処理液Lに含まれる一部の非磁性物質30に磁性粒子31を付着させて磁性を付与している。
次いで、磁性粒子31が添加された処理液Lを配管11に投入し、配管11に設けた磁気分離処理部20の担磁流路区間22で、磁性粒子31を処理液Lの流速よりも高速あるいは低速として、前記処理液貯留槽で磁性粒子31が付着しなかった残りの非磁性物質30に磁性粒子31を効率良く付着する。
Next, a treatment liquid purification process performed in the separation apparatus 10 will be described.
First, the powdery magnetic particles 31 are added to the processing liquid L stored in the processing liquid storage tank by the magnetic particle supply means, and the processing liquid L and the magnetic particles 31 are mixed by stirring and included in the processing liquid L. Magnetic particles 31 are attached to some nonmagnetic materials 30 to impart magnetism.
Next, the processing liquid L to which the magnetic particles 31 have been added is introduced into the pipe 11, and the magnetic particles 31 are faster than the flow velocity of the processing liquid L in the magnetic-bearing flow path section 22 of the magnetic separation processing unit 20 provided in the pipe 11. Alternatively, at low speed, the magnetic particles 31 are efficiently attached to the remaining non-magnetic substance 30 to which the magnetic particles 31 have not been attached in the treatment liquid storage tank.

次いで、磁性粒子31が付着することにより磁性を帯びた非磁性物質30および非磁性物質30に付着しなかった磁性粒子31を、磁気フィルタ装着区間24の超電導磁石14により磁化された磁気フィルタ12に磁着させ捕捉する。
このようにして磁気フィルタ12を通過した処理液Lは、非磁性物質30および磁性粒子31が除去された浄化処理液L’として、配管11の下流端より排水される。
Next, the magnetic particles 31 that are magnetized by the magnetic particles 31 and the magnetic particles 31 that are not attached to the nonmagnetic materials 30 are magnetized by the superconducting magnet 14 in the magnetic filter mounting section 24. Magnetized and captured.
The treatment liquid L that has passed through the magnetic filter 12 in this manner is drained from the downstream end of the pipe 11 as a purification treatment liquid L ′ from which the nonmagnetic substance 30 and the magnetic particles 31 have been removed.

前記処理液Lの浄化処理を続けると、磁性粒子31により磁性を帯びた非磁性物質30および磁性粒子31が上流端側の磁気フィルタ12から順に磁着していくため、最上流端の磁気フィルタ12Aに最も多くの非磁性物質30および磁性粒子31が磁着した状態となる。このとき、磁気フィルタ12Aに磁着した磁性粒子31の中には非磁性物質30に付着していない磁性粒子31が多数含まれている。   If the purification treatment of the treatment liquid L is continued, the nonmagnetic substance 30 and the magnetic particles 31 magnetized by the magnetic particles 31 are sequentially magnetized from the magnetic filter 12 on the upstream end side. The most non-magnetic substance 30 and magnetic particles 31 are magnetically attached to 12A. At this time, the magnetic particles 31 magnetically attached to the magnetic filter 12 </ b> A contain a large number of magnetic particles 31 that are not attached to the nonmagnetic substance 30.

そこで、以下の工程で非磁性物質30に付着していない磁性粒子31を再利用して処理液Lの浄化処理を行なう。
まず、非磁性物質30および磁性粒子31が多数磁着した最上流端側の磁気フィルタ12Aを、図5に示すように、搬送手段16により磁気フィルタ取出区間23の開口11bから取り出し、上流側の磁性粒子再混合区間21まで搬送して開口11aを通して配管11内に再挿入する。
再挿入された磁気フィルタ12Aは磁気フィルタ装着区間24の超電導磁石14から遠くへ離されたことにより磁化されていないため、磁気フィルタ12Aに磁着していた非磁性物質30および磁性粒子31が磁気フィルタ12Aから遊離し、磁性粒子31を再び処理液L内に混合して再利用している。このとき磁気フィルタ装着区間24に並設された残りの磁気フィルタ12は移動手段15により上流側へ移動させており、これら残りの磁気フィルタ12により遊離された非磁性物質30および磁性粒子31を再度磁着させて捕獲する。
Therefore, the purification process of the treatment liquid L is performed by reusing the magnetic particles 31 that are not attached to the nonmagnetic substance 30 in the following steps.
First, as shown in FIG. 5, the magnetic filter 12A on the most upstream end side where a large number of nonmagnetic substances 30 and magnetic particles 31 are magnetized is taken out from the opening 11b of the magnetic filter extraction section 23 by the conveying means 16, It is conveyed to the magnetic particle remixing section 21 and reinserted into the pipe 11 through the opening 11a.
Since the re-inserted magnetic filter 12A is not magnetized by being moved away from the superconducting magnet 14 in the magnetic filter mounting section 24, the nonmagnetic substance 30 and the magnetic particles 31 that are magnetically attached to the magnetic filter 12A are magnetized. Free from the filter 12A, the magnetic particles 31 are mixed again in the processing liquid L and reused. At this time, the remaining magnetic filters 12 juxtaposed in the magnetic filter mounting section 24 are moved upstream by the moving means 15, and the nonmagnetic substance 30 and the magnetic particles 31 released by these remaining magnetic filters 12 are again removed. Capture by magnetizing.

前記のように非磁性物質30および磁性粒子31が遊離された磁気フィルタ12Aは、図6に示すように、搬送手段16により磁性粒子再混合区間21の開口11aから再び取出し、下流側の磁気フィルタ取付区間25に搬送して、開口11cを通して配管11内に再挿入する。磁気フィルタ取付区間25に挿入された磁気フィルタ12Aは、磁気フィルタ装着区間24に並設された磁気フィルタ12の最下流端側に並設され、移動手段15により磁気フィルタ装着区間24に移動させて、上流側に移動した後に再び非磁性物質30および磁性粒子31の磁着捕捉に用いられる。
前記の操作を繰り返し、大半の磁性粒子31が非磁性物質30に付着した後に、これら非磁性物質30および磁性粒子31が磁着した磁気フィルタ12を磁気分離装置10外で洗浄して、磁気フィルタ12に磁着した磁性粒子31を再利用せずに廃棄している。
As described above, the magnetic filter 12A from which the nonmagnetic substance 30 and the magnetic particles 31 are released is taken out again from the opening 11a of the magnetic particle remixing section 21 by the conveying means 16 as shown in FIG. It is conveyed to the attachment section 25 and reinserted into the pipe 11 through the opening 11c. The magnetic filter 12A inserted in the magnetic filter mounting section 25 is juxtaposed on the most downstream end side of the magnetic filter 12 juxtaposed in the magnetic filter mounting section 24, and is moved to the magnetic filter mounting section 24 by the moving means 15. After moving to the upstream side, the nonmagnetic substance 30 and the magnetic particles 31 are again used for trapping the magnetic adhesion.
After the above operation is repeated and most of the magnetic particles 31 adhere to the non-magnetic substance 30, the magnetic filter 12 on which the non-magnetic substance 30 and the magnetic particles 31 are magnetized is washed outside the magnetic separation device 10 to obtain a magnetic filter. The magnetic particles 31 magnetically attached to 12 are discarded without being reused.

前記構成によれば、磁性粒子31が付着して磁性を帯びた非磁性物質30および非磁性物質30に付着していない磁性粒子31を磁気フィルタ装着区間24の超電導磁石14で磁化させた磁気フィルタ12に磁着させて捕獲した後、該磁気フィルタ12を上流側の磁気フィルタ取出区間23より取り出して、さらに上流の磁性粒子再混合区間21に挿入し、磁気フィルタ12に磁着させた磁性粒子31を処理液L内に再び遊離させることにより、磁性粒子31を再利用できるようにしている。
これにより、非磁性物質30に付着しない状態で磁気フィルタ12に磁着した磁性粒子31を即座に廃棄するのではなく、上流側で再び処理液に混合して再利用することにより、磁性粒子31の使用量を低減することができ、コストを低減することができる。
According to the above-described configuration, the magnetic filter in which the magnetic particles 31 are attached and magnetized, and the magnetic particles 31 not attached to the nonmagnetic material 30 are magnetized by the superconducting magnet 14 in the magnetic filter mounting section 24. After the magnetic filter 12 is magnetized and captured, the magnetic filter 12 is taken out from the upstream magnetic filter extraction section 23, inserted into the upstream magnetic particle remixing section 21, and magnetically magnetized on the magnetic filter 12. By releasing 31 again into the treatment liquid L, the magnetic particles 31 can be reused.
As a result, the magnetic particles 31 magnetically attached to the magnetic filter 12 without adhering to the non-magnetic substance 30 are not immediately discarded, but are mixed with the treatment liquid again on the upstream side and reused, whereby the magnetic particles 31 are reused. Can be used and the cost can be reduced.

また、磁気分離処理部20の担磁流路区間22において、超電導磁石13によって担磁流路内に発生する磁場により、磁性粒子31が処理液Lの流速より高速化あるいは低速化するため、処理液Lの流速で流れる非磁性物質30との間に速度差が生じる。これにより、磁性粒子31が非磁性物質30と接触する確率が高くなり、磁性粒子31が非磁性物質30に付着する捕獲確率を高めることができ、効率良く磁性粒子31を非磁性物質30に付着させることができる。   Further, in the magnetism-bearing channel section 22 of the magnetic separation processing unit 20, the magnetic particles 31 are made faster or slower than the flow velocity of the treatment liquid L by the magnetic field generated in the magnetism-bearing channel by the superconducting magnet 13. A speed difference is generated between the liquid L and the nonmagnetic substance 30 flowing at the flow rate. As a result, the probability that the magnetic particles 31 come into contact with the nonmagnetic substance 30 is increased, the probability of capturing the magnetic particles 31 attached to the nonmagnetic substance 30 can be increased, and the magnetic particles 31 are efficiently attached to the nonmagnetic substance 30. Can be made.

本実施形態の磁気分離装置10では、工場廃水や生活廃水である処理液Lを浄化処理しているが、船舶のバラストタンクに貯留されるバラスト水からなる処理液を浄化処理するものとして用いてもよい。
この場合、図7に示すように、磁気分離装置10をオイルタンカー等の大型船舶100に搭載し、積載したバラスト水からなる処理液Lに浮遊及び沈殿する藻類を含む植物微生物もしくは動物微生物からなる非磁性物質の除去処理を航行中に行なう。
詳細には、バラストタンク101に貯留された処理液Lを配管102を介して磁気分離装置10の処理液貯留槽に供給し、磁気分離処理部20で浄化処理された浄化処理液L’を配管103を介して空きのバラストタンク101に送給している。
In the magnetic separation device 10 of the present embodiment, the treatment liquid L, which is factory wastewater or domestic wastewater, is purified, but the treatment liquid composed of ballast water stored in a ship's ballast tank is used for purification treatment. Also good.
In this case, as shown in FIG. 7, the magnetic separation device 10 is mounted on a large vessel 100 such as an oil tanker, and is composed of plant microorganisms or animal microorganisms containing algae that float and settle in the treatment liquid L made of loaded ballast water. Remove non-magnetic substances during navigation.
Specifically, the processing liquid L stored in the ballast tank 101 is supplied to the processing liquid storage tank of the magnetic separation device 10 via the pipe 102, and the purification processing liquid L ′ purified by the magnetic separation processing unit 20 is piped. It is fed to an empty ballast tank 101 via 103.

半径10μm以上の非磁性物質が8×10個/m含まれた海水1000mを前記実施形態の磁気分離装置10を用いて浄化処理した。処理液貯留槽を2tの担磁槽とし、磁性粒子の濃度が常に100ppmとなるように海水に連続的に磁性粒子を加えた。浄化処理の処理速度は1時間あたり100tとし、磁気フィルタ装着区間24における超電導磁場を2Tとした。
前記条件で1000mの海水を浄化処理すると、浄化処理後の非磁性物質は3×10個/mであった。使用した磁性粒子は124kgであった。
Seawater 1000 m 3 of radius 10μm or more non-magnetic material is included 8 × 10 7 cells / m 3 and purification treatment by using a magnetic separation apparatus 10 of the embodiment. The treatment liquid storage tank was a 2t magnetism holding tank, and the magnetic particles were continuously added to the seawater so that the concentration of the magnetic particles was always 100 ppm. The treatment speed of the purification treatment was 100 t per hour, and the superconducting magnetic field in the magnetic filter mounting section 24 was 2T.
When 1000 m 3 of seawater was purified under the above conditions, the number of non-magnetic substances after purification was 3 × 10 5 / m 3 . The magnetic particles used were 124 kg.

(比較例1)
前記実施形態のような担磁流路区間22を設けておらず、かつ磁気フィルタに付着した磁性粒子を再利用しない磁気分離装置を用いて海水の浄化処理を行なった。
その他の条件は前記実施例と同様とした。
前記条件で1000mの海水を浄化処理すると、浄化処理後の非磁性物質は3×10個/mであった。使用した磁性粒子は103kgであった。
比較例1では、実施例と略同量の磁性粒子を用いたにもかかわらず、浄化処理能力ははるかに劣っていた。
(Comparative Example 1)
The seawater purification process was performed using a magnetic separation device that does not have the magnetically conducting flow path section 22 as in the above embodiment and does not reuse the magnetic particles attached to the magnetic filter.
Other conditions were the same as in the previous example.
When 1000 m 3 of seawater was purified under the above conditions, the number of nonmagnetic substances after the purification was 3 × 10 7 / m 3 . The used magnetic particles were 103 kg.
In Comparative Example 1, the purification treatment ability was much inferior despite using approximately the same amount of magnetic particles as in the example.

(比較例2)
前記実施形態のような担磁流路区間22を設けておらず、かつ磁気フィルタに付着した磁性粒子を再利用しない磁気分離装置を用いて海水の浄化処理を行なった。
磁性粒子の濃度が常に1000ppmとなるように海水に連続的に磁性粒子を加えた。
その他の条件は前記実施例と同様とした。
前記条件で1000mの海水を浄化処理すると、浄化処理後の非磁性物質は6×10個/mであった。使用した磁性粒子は950kgであった。
比較例2では、実施例よりも大量の磁性粒子を用いたにもかかわらず、浄化処理能力が劣っており、実施例の2倍程度の非磁性物質が浄化処理液に残っていた。
(Comparative Example 2)
The seawater purification process was performed using a magnetic separation device that does not have the magnetically conducting flow path section 22 as in the above embodiment and does not reuse the magnetic particles attached to the magnetic filter.
Magnetic particles were continuously added to seawater so that the concentration of magnetic particles was always 1000 ppm.
Other conditions were the same as in the previous example.
When 1000 m 3 of seawater was purified under the above conditions, the number of nonmagnetic substances after the purification was 6 × 10 5 / m 3 . The magnetic particles used were 950 kg.
In Comparative Example 2, despite the use of a larger amount of magnetic particles than in the Example, the purification treatment ability was inferior, and about twice as much nonmagnetic material as in the Example remained in the purification treatment liquid.

前記実施の形態はすべての点で例示であって、これら実施形態に限定されず、本発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の範囲内でのすべての変更が含まれる。   The above-described embodiments are exemplifications in all points, and are not limited to these embodiments. The scope of the present invention is indicated by the scope of claims, and all modifications within the scope equivalent to the scope of claims are made. Is included.

本発明の非磁性物質への磁性粒子の付着方法および非磁性物質の磁気分離装置は、バラスト水等の処理や、製紙排水の処理、工場排水(半導体、鉄鋼、食品処理等)の処理、病院の排水処理、等の固形物を多く含む工業排水の浄化装置として広く用いることができる。さらには、海水淡水化装置の脱塩工程の前処理装置としても有効である。   The method of attaching magnetic particles to a non-magnetic substance and the magnetic separation apparatus for non-magnetic substance of the present invention are for ballast water, paper wastewater treatment, factory wastewater treatment (semiconductor, steel, food treatment, etc.), hospital It can be widely used as a purification device for industrial wastewater containing a large amount of solid matter such as wastewater treatment. Furthermore, it is also effective as a pretreatment device for a desalination process of a seawater desalination apparatus.

本発明の実施形態の磁気分離装置を示す概略図である。It is the schematic which shows the magnetic separation apparatus of embodiment of this invention. 担磁流路区間における非磁性物質への磁性粒子の付着方法を示す図面である。It is drawing which shows the adhesion method of the magnetic particle to the nonmagnetic substance in a magnetic-bearing flow path area. 磁性粒子の泳動体積に関する図面である。It is drawing regarding the migration volume of a magnetic particle. 磁気分離装置の断面図である。It is sectional drawing of a magnetic separation apparatus. 磁気フィルタを磁気フィルタ取出区間から磁性粒子再混合区間へ搬送する工程を示す図面である。It is drawing which shows the process of conveying a magnetic filter from a magnetic filter extraction area to a magnetic particle remixing area. 磁気フィルタを磁性粒子再混合区間から磁気フィルタ取付区間へ搬送する工程を示す図面である。It is drawing which shows the process of conveying a magnetic filter from a magnetic particle remixing area to a magnetic filter attachment area. 実施形態の磁気分離装置をバラスト水の処理に適用した変形例を示す図面である。It is drawing which shows the modification which applied the magnetic separation apparatus of embodiment to the process of ballast water.

符号の説明Explanation of symbols

10 非磁性物質の磁気分離装置
11 配管
12 磁気フィルタ
13、14 超電導磁石
13a、14a 超電導コイル
13b、14b 冷却容器
15 移動手段
16 搬送手段
20 磁気分離処理部
21 磁性粒子再混合区間
22 担磁流路区間
23 磁気フィルタ取出区間
24 磁気フィルタ装着区間
25 磁気フィルタ取付区間
30 非磁性物質
31 磁性粒子
100 船舶
101 バラストタンク
L 処理液
L’ 浄化処理液
DESCRIPTION OF SYMBOLS 10 Magnetic separator 11 of nonmagnetic substance Pipe 12 Magnetic filter 13, 14 Superconducting magnet 13a, 14a Superconducting coil 13b, 14b Cooling vessel 15 Moving means 16 Conveying means 20 Magnetic separation processing part 21 Magnetic particle remixing section 22 Section 23 Magnetic filter extraction section 24 Magnetic filter mounting section 25 Magnetic filter mounting section 30 Non-magnetic substance 31 Magnetic particle 100 Ship 101 Ballast tank L Processing liquid L ′ Purification processing liquid

Claims (5)

非磁性物質を含む処理液中に磁性粒子を添加し、該磁性粒子を非磁性物質に付着させる方法であって、
前記磁性粒子を添加した前記処理液の流路に、磁石で包囲した担磁流路を設け、該担磁流路内での前記磁性粒子の泳動速度を前記処理液の流速より高速あるいは低速として速度差を持たせ、磁性粒子が非磁性物質に付着する捕獲確率を高めることを特徴とする非磁性物質への磁性粒子の付着方法。
A method of adding magnetic particles to a treatment solution containing a non-magnetic substance, and attaching the magnetic particles to the non-magnetic substance,
A magnetic-bearing flow path surrounded by a magnet is provided in the flow path of the treatment liquid to which the magnetic particles have been added, and the migration speed of the magnetic particles in the magnetic support flow path is set to be higher or lower than the flow speed of the treatment liquid. A method for attaching magnetic particles to a non-magnetic material, characterized by increasing a probability of capturing the magnetic particles to the non-magnetic material by providing a difference in speed.
前記磁性粒子は処理液中に投入時に撹拌して、撹拌した状態で前記担磁流路に流通させており、かつ、
前記磁性粒子の平均粒径は0.1μm〜50μm、前記非磁性物質は0.1μm〜100μmの生物からなり、前記処理液量を100質量%とすると磁性粒子は0.05〜5質量%添加し、前記処理液の流速と担磁流路における磁性粒子の泳動速度との速度差を0.1〜50mm/secとしている請求項1に記載の非磁性物質への磁性粒子の付着方法。
The magnetic particles are stirred at the time of charging into the treatment liquid, and are circulated in the magnetized flow path in a stirred state, and
The average particle size of the magnetic particles is 0.1 μm to 50 μm, the non-magnetic substance is a living organism of 0.1 μm to 100 μm, and when the amount of the treatment liquid is 100% by mass, the magnetic particles are added in an amount of 0.05 to 5% by mass. The method for adhering magnetic particles to a non-magnetic substance according to claim 1, wherein a speed difference between the flow rate of the treatment liquid and the migration speed of the magnetic particles in the magnetic flow path is 0.1 to 50 mm / sec.
非磁性物質を含む処理液中に磁性粒子を添加し、該磁性粒子を非磁性物質に付着させて磁性を帯びた前記非磁性物質を磁気フィルタで磁着して分離する非磁性物質の磁気分離装置であって、
前記磁性粒子を添加した前記処理液の配管に磁気分離処理部を設け、該磁気分離処理部の配管は透磁性材から形成し、上流端より所要間隔離れた下流部までを磁性粒子再混合区間、該磁性粒子再混合区間から下流側へ所定区間を磁石で囲んだ担磁流路区間、該担磁流路区間から下流側へ所定区間を前記配管の上部を開口した磁気フィルタ取出区間、該磁気フィルタ取出区間から下流側への所定区間を磁石で囲むと共に配管内に複数の磁気フィルタを並設した磁気フィルタ装着区間、該磁気フィルタ装着区間から下流端までを前記配管の上部を開口した磁気フィルタ取付区間とし、かつ、
前記磁気フィルタ取付区間から磁気フィルタ取出区間で並設する複数の前記磁気フィルタを下流側から上流側に向けて間欠または連続移動させる移動手段と、
前記磁気フィルタ取出区間で最上流端側の磁気フィルタを取り出して、前記磁性粒子再混合部区間に再挿入し、所定時間後に該磁気フィルタを取り出して前記磁気フィルタ取付区間の最下流位置に再挿入する搬送手段と、
を備えていることを特徴とする非磁性物質の磁気分離装置。
Magnetic separation of a non-magnetic substance by adding magnetic particles to a treatment liquid containing a non-magnetic substance, attaching the magnetic particles to the non-magnetic substance, and magnetizing and separating the magnetic non-magnetic substance with a magnetic filter A device,
A magnetic separation processing section is provided in the pipe of the processing liquid to which the magnetic particles are added, the pipe of the magnetic separation processing section is formed from a magnetically permeable material, and the magnetic particle remixing section extends from the upstream end to a downstream section that is spaced apart from the upstream end. A magnetic passage section in which a predetermined section is surrounded by a magnet downstream from the magnetic particle remixing section, a magnetic filter extraction section in which an upper portion of the pipe is opened from the magnetic bearing section to the downstream side, A magnetic filter mounting section in which a predetermined section from the magnetic filter take-out section to the downstream side is surrounded by a magnet and a plurality of magnetic filters are arranged in parallel in the pipe, and the upper part of the pipe is opened from the magnetic filter mounting section to the downstream end. A filter mounting section, and
Moving means for intermittently or continuously moving the plurality of magnetic filters arranged in parallel in the magnetic filter extraction section from the magnetic filter mounting section, from the downstream side toward the upstream side;
The magnetic filter on the most upstream end side is taken out in the magnetic filter take-out section, re-inserted into the magnetic particle remixing section section, and after a predetermined time, the magnetic filter is taken out and re-inserted into the most downstream position in the magnetic filter mounting section. Conveying means for
A magnetic separation apparatus for non-magnetic substances, comprising:
前記担磁流路区間および前記磁気フィルタ装着区間の配管の外周に配置する前記磁石として超電導コイルを用いている請求項3に記載の非磁性物質の磁気分離装置。   The nonmagnetic substance magnetic separation device according to claim 3, wherein a superconducting coil is used as the magnet disposed on the outer periphery of the piping of the magnetism flow passage section and the magnetic filter mounting section. 前記処理液は船舶のバラストタンクに貯留されるバラスト水であり、前記非磁性物質はバラスト水中に浮遊及び沈殿する藻類を含む植物微生物もしくは動物微生物からなり、かつ、前記磁性物質をバラスト水に投下して撹拌する磁性粒子供給手段を備え、該磁性粒子供給手段から、前記磁性粒子が付着された非磁性物質および浮遊している前記磁性粒子が含まれるバラスト水を前記配管へ送給している請求項3または請求項4に記載の非磁性物質の磁気分離装置。   The treatment liquid is ballast water stored in a ballast tank of a ship, and the non-magnetic substance is composed of plant microorganisms or animal microorganisms including algae that float and settle in the ballast water, and the magnetic substance is dropped into the ballast water. A magnetic particle supply means for stirring, and from the magnetic particle supply means, the non-magnetic substance to which the magnetic particles are adhered and the ballast water containing the floating magnetic particles are supplied to the pipe. The magnetic separation apparatus of the nonmagnetic substance according to claim 3 or 4.
JP2008024507A 2008-02-04 2008-02-04 Method for attaching magnetic particles to non-magnetic substance and magnetic separation apparatus for non-magnetic substance Withdrawn JP2009183823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008024507A JP2009183823A (en) 2008-02-04 2008-02-04 Method for attaching magnetic particles to non-magnetic substance and magnetic separation apparatus for non-magnetic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008024507A JP2009183823A (en) 2008-02-04 2008-02-04 Method for attaching magnetic particles to non-magnetic substance and magnetic separation apparatus for non-magnetic substance

Publications (1)

Publication Number Publication Date
JP2009183823A true JP2009183823A (en) 2009-08-20

Family

ID=41067657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008024507A Withdrawn JP2009183823A (en) 2008-02-04 2008-02-04 Method for attaching magnetic particles to non-magnetic substance and magnetic separation apparatus for non-magnetic substance

Country Status (1)

Country Link
JP (1) JP2009183823A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015192936A (en) * 2014-03-31 2015-11-05 国立大学法人秋田大学 Magnetic granulator, filter device using the same and high gradient magnetic separation method
CN106216334A (en) * 2016-08-10 2016-12-14 新奥科技发展有限公司 Descaling method and scaler system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015192936A (en) * 2014-03-31 2015-11-05 国立大学法人秋田大学 Magnetic granulator, filter device using the same and high gradient magnetic separation method
CN106216334A (en) * 2016-08-10 2016-12-14 新奥科技发展有限公司 Descaling method and scaler system

Similar Documents

Publication Publication Date Title
JP2010269200A (en) Water treatment apparatus and water treatment method
RU2529018C2 (en) Method of deactivating liquid effluent, containing one or more radioactive chemical elements, by processing in fluidised bed
JP4317668B2 (en) Membrane magnetic separator
US20140151295A1 (en) Plants for advanced treatment of wastewater and method for treating wastewater using thereof
US20150060360A1 (en) Systems and methods of membrane separation
EP1683764A1 (en) Waste water treatment system by superconductive magentic separation
KR101647676B1 (en) Vessel for remedying heavy metal polluted soil in marine or river
JP2009214053A (en) Magnetic separator
JP4466216B2 (en) Magnetic separation and purification method and apparatus
JP2010172827A (en) Water treatment apparatus
JP2009183823A (en) Method for attaching magnetic particles to non-magnetic substance and magnetic separation apparatus for non-magnetic substance
CN101500949A (en) Method and device for eliminating foreign matters present in dissolved form from waste water
JP2012232253A (en) Multistage seawater purification system
AU2014342153B2 (en) Apparatus and methods for a moving bed activated iron process
JP2010119999A (en) Apparatus for treating water
JP4313647B2 (en) Wastewater treatment equipment
AU2014342153A1 (en) Apparatus and methods for a moving bed activated iron process
JPH09117618A (en) Purification device
JP3513597B2 (en) Magnetic separation method and magnetic separation device
EP1620195A2 (en) Magnetic molecules: process utilizing functionalized magnetic ferritins for the selective removal of contaminants from solution by magnetic filtration
EP1870149A1 (en) Apparatus for water filtration/purification and method thereof
JPH01266897A (en) Continuous moving bed type iron removing method for utilizing iron bacteria
JP4992665B2 (en) Ballast water treatment system
JP2010149103A (en) Water treatment apparatus
KR100852312B1 (en) Magnetic separating purification apparatus and magnetic separating purification method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110405