JP2017184282A - ユーザ端末、無線基地局及び無線通信方法 - Google Patents
ユーザ端末、無線基地局及び無線通信方法 Download PDFInfo
- Publication number
- JP2017184282A JP2017184282A JP2017115794A JP2017115794A JP2017184282A JP 2017184282 A JP2017184282 A JP 2017184282A JP 2017115794 A JP2017115794 A JP 2017115794A JP 2017115794 A JP2017115794 A JP 2017115794A JP 2017184282 A JP2017184282 A JP 2017184282A
- Authority
- JP
- Japan
- Prior art keywords
- cell
- pucch
- ccs
- control information
- user terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
【課題】クロスキャリアスケジューリング(CCS)とセカンダリセルでの上り制御信号送信が同時に適用される場合に、システム全体の性能低下を抑制するユーザ端末、無線基地局および方法を提供する。【解決手段】1つ以上のセルからそれぞれ構成される複数のセルグループで通信を行うユーザ端末であって、下り制御情報を受信する受信部と、各セルグループにそれぞれ設定される上り制御情報を割り当て可能なセルのうち、少なくとも1つのセルを、上り制御情報を送信するセルとして制御する制御部を有する。制御部は、下り制御情報にCCSを示す情報が含まれ、かつ、下り制御情報を受信したセルとCCSを示す情報により指定されるセルが異なるセルグループに属する場合に、所定のチャネルを受信するセルが属するセルグループに含まれる上り制御情報を割り当て可能なセルを、上り制御情報を送信するセルとして制御する。【選択図】図7
Description
本発明は、次世代の通信システムに適用可能なユーザ端末、無線基地局及び無線通信方法に関する。
UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。LTEではマルチアクセス方式として、下り回線(下りリンク)にOFDMA(Orthogonal Frequency Division Multiple Access)をベースとした方式を用い、上り回線(上りリンク)にSC−FDMA(Single Carrier Frequency Division Multiple Access)をベースとした方式を用いている。また、LTEからのさらなる広帯域化及び高速化を目的として、LTEの後継システム(例えば、LTEアドバンスト又はLTEエンハンスメントと呼ぶこともある(以下、「LTE−A」という))も検討され、LTE Rel.10/11として仕様化されている。
LTE−Aシステム(LTE Rel.10/11)のシステム帯域は、LTEシステムのシステム帯域を一単位とする少なくとも1つのコンポーネントキャリア(CC:Component Carrier)を含んでいる。このように、複数のCCを集めて広帯域化することをキャリアアグリゲーション(CA:Carrier Aggregation)という。なお、本明細書では、CCのことを、単にセルと呼ぶ。
また、LTE Rel.10/11では、制御信号の安定的な送受信を実現するために、クロスキャリアスケジューリング(CCS:Cross-Carrier Scheduling)が導入されている。CCSによって、共有データチャネル(PDSCH(Physical Downlink Shared Channel)/PUSCH(Physical Uplink Shared Channel))で信号を送受信するセルに関する下りリンク制御情報(DCI)を、別のセルに割り当てた制御チャネル(PDCCH:Physical Downlink Control Channel)を介して通知することができる。
LTEのさらなる後継システム(LTE Rel.12)においては、複数のセルが異なる周波数帯(キャリア)で用いられる様々なシナリオが検討されている。複数のセルを形成する無線基地局が実質的に同一の場合には、上述のCA(Intra−eNB CAとも呼ぶ)が適用可能である。一方で、複数のセルを形成する無線基地局が完全に異なる場合には、デュアルコネクティビティ(DC:Dual Connectivity)(Inter−eNB CAとも呼ぶ)を適用することが考えられる。DCを利用する場合、ユーザ端末は、プライマリセル(PCell:Primary Cell)だけでなく、少なくとも1つのセカンダリセル(SCell:Secondary Cell)で上り制御チャネル(PUCCH:Physical Uplink Control Channel)に上りリンク制御情報(UCI:Uplink Control Information)を割り当てて、無線基地局にフィードバックできるように構成される必要がある。以下、少なくとも1つのSCellでPUCCHを介してUCIをフィードバックすることを、PUCCH on SCellとも呼ぶ。
CA及びDCのいずれにおいても、CCSとPUCCH on SCellを同時に適用したシステムが考えられる。しかしながら、CCSとPUCCH on SCellを同時に適用した場合の動作についてはこれまで想定されていないため、CCSに対してUCIフィードバックを行うセルの認識が無線基地局及びユーザ端末間で異なる場合には、システム全体の性能低下を引き起こす恐れがある。
本発明はかかる点に鑑みてなされたものであり、CA又はDCを用いて複数の無線基地局とユーザ端末が通信を行うシステムにおいて、CCSとPUCCH on SCellを同時に適用する場合であっても、システム全体の性能低下を抑制することができるユーザ端末、無線基地局及び無線通信方法を提供することを目的の1つとする。
本発明の一実施の形態に係るユーザ端末は、1つ以上のセルからそれぞれ構成される複数のセルグループで通信を行うユーザ端末であって、下り制御情報を受信する受信部と、各セルグループにそれぞれ設定される上り制御情報を割り当て可能なセルのうち、少なくとも1つのセルを、上り制御情報を送信するセルとして制御する制御部と、を有し、前記制御部は、前記下り制御情報にクロスキャリアスケジューリングを示す情報が含まれ、かつ、前記下り制御情報を受信したセルと、前記クロスキャリアスケジューリングを示す情報により指定されるセルと、が異なるセルグループに属する場合に、所定のチャネルを受信するセルが属するセルグループに含まれる前記上り制御情報を割り当て可能なセルを、前記上り制御情報を送信するセルとして制御することを特徴とする。
本発明によれば、CCSとPUCCH on SCellを同時に適用する場合であっても、システム全体の性能低下を抑制することができる。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、下記説明において、物理下りリンク制御チャネル(PDCCH:Physical Downlink Control Channel)と記載される場合には、拡張物理下りリンク制御チャネル(EPDCCH:Enhanced PDCCH)も含むものとする。また、「チャネル(PUCCH、PDCCHなど)を送信/受信する」との記載は、当該チャネルを介して信号を送信/受信することを意味する。また、単に「上り」及び「下り」と記載される場合には、それぞれ「上りリンク」及び「下りリンク」を意味する。
LTE−Aシステムでは、半径数キロメートル程度の広範囲のカバレッジエリアを有するマクロセル内に、半径数十メートル程度の局所的なカバレッジエリアを有するスモールセルが形成されるHetNet(Heterogeneous Network)が検討されている。キャリアアグリゲーション(CA)及びデュアルコネクティビティ(DC)は、HetNet構成に適用される。なお、他のネットワーク構成に適用されても良い。
HetNet構成では、トラフィックのさらなる増大をサポートするために、高密度にスモールセルを展開するシナリオが検討されている。このシナリオでは、マクロセルに相対的に低い周波数帯のキャリアを用いることでカバレッジを確保し、スモールセルには広い帯域を確保するために相対的に高い周波数帯のキャリアを用いることが望ましい。マクロセルレイヤでは、制御プレーン(C(Control)−plane)の接続を確立して、低い周波数帯で高い送信電力密度をサポートすることで広いカバレッジやモビリティが確保される。一方で、高密度スモールセルレイヤでは、データに特化したユーザプレーン(U(User)−plane)の接続を確立して、高い周波帯でキャパシティを確保することでスループットが増大される。なお、スモールセルは、ファントムセル、ピコセル、ナノセル、フェムトセル、マイクロセルなどと呼ばれても良い。
図1は、キャリアアグリゲーション(CA)及びデュアルコネクティビティ(DC)の模式図である。ユーザ端末UEは無線基地局eNB1及びeNB2と通信する。図1には、物理下り制御チャネル(PDCCH:Physical Downlink Control Channel)及び物理上り制御チャネル(PUCCH:Physical Uplink Control Channel)を介して送受信される制御信号がそれぞれ示されている。例えば、PDCCHを介して下り制御情報(DCI:Downlink Control Information)が送信される。また、PUCCHを介して上り制御情報(UCI:Uplink Control Information)が送信される。なお、PDCCHを介して送信されるDCIは、単に下り制御信号(PDCCH信号)と呼ばれても良く、PUCCHを介して送信されるUCIは、単に上り制御信号(PUCCH信号)と呼ばれても良い。
図1Aには、CAに係るeNB1、eNB2及びUEの通信が示されている。図1Aにおいては、例えば、eNB1はマクロセルを形成する無線基地局(以下、マクロ基地局という)であり、eNB2はスモールセルを形成する無線基地局(以下、スモール基地局という)であるが、当該構成に限られない。例えばスモール基地局は、マクロ基地局に接続するRRH(Remote Radio Head)のような構成であってもよい。CAが適用される場合、1つのスケジューラ(例えば、マクロ基地局eNB1の有するスケジューラ)が複数セルのスケジューリングを制御する。このことから、CA(Rel.10/11 CA)は基地局内CA(intra-eNB CA)と呼ばれても良いが、本明細書では、単にCAと呼ぶ。
かかる構成では、基地局間が光ファイバのような高速回線(理想的バックホール(ideal backhaul)とも呼ばれる)で接続されることが想定されている。そのため、UEは各セルに関するUCIを、1つのセル(例えば、PCell)のPUCCHを介して送信すれば足りる。例えば、PCell(マクロセル)及びSCell(スモールセル)で送信されるPDSCH信号に対するHARQ(Hybrid Automatic Repeat reQuest)用の確認応答信号(再送制御信号とも呼ばれる)は、PCellのPUCCHリソースに集約して割当てられる。この場合、複数の確認応答信号を同時に送信する必要がないため、上りリンクのカバレッジ確保が容易になる。
一方、図1Bには、DCに係るeNB1、eNB2及びUEの通信が示されている。図1Bにおいては、例えば、eNB1及びeNB2はマクロ基地局であるが、当該構成に限られない。DCが適用される場合、複数のスケジューラが独立して設けられ、当該複数のスケジューラ(例えば、マクロ基地局eNB1の有するスケジューラ及びマクロ基地局eNB2の有するスケジューラ)がそれぞれの管轄する1つ以上のセルのスケジューリングを制御する。このことから、DCは基地局間CA(inter-eNB CA)と呼ばれても良い。
かかる構成では、各基地局間は遅延が無視できない非理想的バックホール(non-ideal backhaul)で接続されることが想定されている。例えば、X2インタフェースによって接続される。そのため、UEは基地局毎に、基地局の形成するセルに関するUCIをフィードバックする必要がある。つまり、UEは、PCellに加えて、少なくとも1つのSCellの無線リソースにPUCCHを割り当てて、UCIフィードバックを行う必要がある(PUCCH on SCell)。このように、DCでは、UEが少なくとも2つのセルでPUCCHを送信する必要があるが、セル間を理想的バックホールで接続しなくともCAと同様のスループット改善効果が得られるという特徴がある。
CAでも、DCのようにSCellに対するPUCCHの割り当てを行うことが検討されている。図2を参照してこれを説明する。図2は、CAの配置シナリオ4の模式図である。図2では、マクロセルをPCell、スモールセルをSCellとしている。CAの配置シナリオ4(deployment scenario #4)は、周波数F1でマクロセルのカバレッジを確保し、マクロセルのトラフィックを周波数F2(F1<F2)でRRH(Remote Radio Head)が形成するスモールセルにオフロードする構成である。当該構成によれば、マクロセルによるモビリティ確保と、スモールセルによるキャパシティ増大との両方の効果を享受することが可能である。
しかしながら、上述したように、CAでは、PUCCHによるUCIフィードバックはPCellを介してのみ可能であるため、配置シナリオ4でスモールセル数が増加するに従って、マクロセルの上りリンクにおけるUCIフィードバックに係るトラフィックが増大する。これにより、マクロセルの上りリンクリソースがPUCCHによって逼迫され、スモールセルによる容量増大効果が限定されてしまう恐れがある。
そこで、DCのようにSCellに対するPUCCHの割り当てを行うことにより、CAの配置シナリオ4において、ユーザ端末はUCIフィードバックをスモールセルにオフロードすることが可能となる。ただし、これを可能とするためには、ユーザ端末は上りリンクのCA(UL−CA)を利用できることが必要となる。
機器のコストや実装の容易性を考えると、SCellに対するPUCCHの割り当ては、CAとDCとで共通の方針に従って決定されることが好ましい。図3を参照して、SCellに対するPUCCHの割り当てを説明する。図3は、DC又はCAにおけるSCellに対するPUCCHの割り当ての一例を示す図である。図3において、横軸は周波数を表しており、所定の周波数帯の無線リソースを使用する5つのセルとユーザ端末UEとの接続が示されている。
なお、以下では、PUCCHを割り当て可能であると設定されたセルを、「PUCCH設定セル」と呼ぶ。また、PUCCHを割り当て可能であると設定されたSCellを、「PUCCH設定SCell」と呼ぶ。PUCCH設定セルは、PCell及びPUCCH設定SCellを含む。
図3Aは、DCにおけるSCellに対するPUCCHの割り当ての一例を示す図である。DCにおいては、各無線基地局が、1つ又は複数のセルから構成されるセルグループ(CG:Cell Group)を設定する。各CGは、同一無線基地局が形成する1つ以上のセル又は同一送信ポイント(送信アンテナ装置、送信局など)が形成する1つ以上のセルから構成される可能性が高いが、実際の運用はこれに限られない。PCellを含むCGはマスタセルグループ(MCG:Master CG)と呼ばれ、MCG以外のCGはセカンダリセルグループ(SCG:Secondary CG)と呼ばれる。また、各CGでは、2セル以上のCAを行うことができるが、MCG及びSCGを構成するセルの合計が所定値(例えば、5セル)以下となるように設定される。当該所定値は、予め定められていても良いし、eNB及びUE間で動的に設定されても良い。また、UEの実装に応じて、設定可能なMCG及びSCGを構成するセルの合計数、セルの組み合わせなどが、eNBにcapabilityシグナリングとして通知されても良い。また、MCGが設定される無線基地局をマスタ基地局(MeNB:Master eNB)と呼び、SCGが設定される無線基地局をセカンダリ基地局(SeNB:Secondary eNB)と呼ぶ。
図3Aにおいて、UEは、5つのセル(C1−C5)に接続している。C1はPCellであり、C2−C5はSCellである。また、C1及びC2はMCGを構成し、C3−C5はSCGを構成する。また、各セルの利用する周波数は、昇順でC1、C2、C3、C4、C5である。
各CGでは、少なくとも1つのセルがPUCCHをフィードバックできるように設定される。図3Aにおいては、PCellであるC1がMCGのPUCCH設定セルとして設定されるとともに、C3がSCGのPUCCH設定セルとして設定される。すなわち、MCGのPUCCHによるUCIフィードバックはPCell(C1)で、SCGのPUCCHによるUCIフィードバックはPUCCH設定SCell(C3)で行われる。なお、上りリンクのPUSCH送信が指示された場合、UEはPUSCHにUCIを多重して送信することもできる。すなわち、PUSCHによるUCIフィードバックはPUCCH設定セルに限られない。
一方、図3Bは、CAにおけるSCellに対するPUCCHの割り当ての一例を示す図である。上述のように、CAとDCとで共通の方針に従ってPUCCHを割り当てる観点から、CAにおいても、各無線基地局が、1つ又は複数のセルから構成されるCGを設定する。各CGは、同一無線基地局が形成する1つ以上のセル又は同一送信ポイント(送信アンテナ装置、送信局など)が形成する1つ以上のセルから構成される可能性が高いが、実際の運用はこれに限られない。以下、本明細書では、CAにおいてPCellを含むCGをXCGと呼び、XCG以外のCGをYCGと呼ぶ。ただし、特にこれらの呼称に限られない。また、各CGでは、2セル以上のCAを行うことができるが、XCG及びYCGを構成するセルの合計が所定値(例えば、5セル)以下となるように設定される。当該所定値は、予め定められていても良いし、eNB及びUE間で動的に設定されても良い。
図3Bにおいて、XCG及びYCGが図3AのMCG及びSCGに相当すること以外、セルの構成は図3Aと同様である。各CGでは、少なくとも1つのセルがPUCCHをフィードバックできるように設定される。図3Bにおいては、PCellであるC1が、XCGのPUCCHを割り当てることが可能なセルとして設定されるとともに、C3が、YCGのPUCCHを割り当てることが可能なセルとして設定される。つまり、C1及びC3はPUCCH設定セルであり、XCGのUCIフィードバックはPCell(C1)で、YCGのUCIフィードバックはPUCCH設定SCell(C3)で行われる。なお、上りリンクのPUSCH送信が指示された場合、UEはPUSCHにUCIを多重して送信することもできる。すなわち、PUSCHによるUCIフィードバックはPUCCH設定セルに限られない。
なお、PUCCH設定セルに関する情報は、上位レイヤシグナリング(例えば、RRCシグナリング、報知信号)によって無線基地局からユーザ端末に通知される。また、CGに関する情報も、上位レイヤシグナリングで通知されても良い。具体的には、PCellのPUCCHでUCIをフィードバックするセル又はCGに関する情報や、SCellのPUCCHでUCIをフィードバックするセル又はCGに関する情報がユーザ端末に通知されても良い。例えば、図3Bは、CAにおいて、PCellに加えて1つのSCellでPUCCHを送信するよう設定され、それぞれにおいてPCellのPUCCHで2セル(すなわちXCG)分のUCI及びSCellのPUCCHで3セル(すなわちYCG)分のUCIをフィードバックするよう設定された場合の例である。
ところで、LTE Rel.10以降の無線通信システムでは、CAにおいて、共有データチャネル(PDSCH/PUSCH)で信号を送受信するセルに関するDCIを、別のセルに割り当てた制御チャネル(PDCCH)で通知するクロスキャリアスケジューリング(CCS:Cross-Carrier Scheduling)が導入されている。例えば、セルC1のPDCCHでセルC2のPDSCH/PUSCH送受信の指示を行うことができる。CCSを利用することで、複数のセルのうち、信頼性の高いPCell又はSCellを用いて制御信号の送受信が可能となる。なお、CCS自体は上位レイヤから設定し、CCSによりスケジューリングされるセルの決定は動的に実施する。
CCSの一例について図4を参照して説明する。図4では、PDSCH−1がセルC1に割り当てられ、PDSCH−2が異なるセルC2に割り当てられている。PDSCH−1を復号するための制御情報であるPDCCH−1はPDSCH−1と同じC1で送られる(図4A)。一方、PDSCH−2を復号するための制御情報であるPDCCH−2は、PDSCH−2とは異なるC1で送られる(図4B)。また、PDCCH−1とPDCCH−2には、CIF(Carrier Indicator Field)がそれぞれ含まれている。CIFは、CCSでスケジューリングされるセル(CC)を特定するキャリア識別子(CI:Carrier Indicator)をDCIに設定するためのビットフィールドである。
DCでも、CAのようにCCSの適用が検討されている。CAでは理想的バックホールで無線基地局間(すなわち、CG間)が接続されるため、CG間をまたぐCCSが設定可能である。一方、DCではCG間が非理想的バックホールで接続されるため、遅延によりCG間をまたぐCCSが有効に働かないおそれがある。ここで、CG間をまたぐCCSとは、PDCCHを受信したセルが属するCGと異なるCGに属するセルに対するスケジューリングを示す場合のCCSを意味する。言い換えると、PDCCHを送受信するセルと、当該PDCCHを用いてPDSCHの復調が行われるセル(PDCCHに含まれるCIFで指定されるセル)と、が異なるCGに属する場合のCCSを意味する。
以上述べたように、DC及びCAのいずれにおいても、CCSとPUCCH on SCellを同時に適用したシステムが考えられる。具体的には、DCでは、PUCCH on SCellが必須であり、加えてPDCCHのロードバランスを行うためにCCSが適用される可能性がある。また、CAではPUCCH on SCellは必須ではないが、PUCCHのロードバランスを目的としてPUCCH on SCellが設定される可能性があり、さらにPDCCHのロードバランスを行うためにCCSが適用される可能性がある。
しかしながら、CA及びDCのいずれにおいても、CCSとPUCCH on SCellを同時に適用した場合の動作についてはこれまで規定されていない。具体的には、ユーザ端末は、CCSを指示するPDCCHを検出した場合に、少なくとも1つのPUCCH設定セルからPUCCHを送信する必要があるが、どのPUCCH設定セルを用いてPUCCHを送信するかは規定されていない。したがって、CCSに対してUCIフィードバックを行うセルについて、無線基地局及びユーザ端末が異なる認識をする場合には、システム全体の性能低下を引き起こす恐れがある。
そこで、本発明者らは、CA又はDCを用いて複数の無線基地局とユーザ端末が通信を行うシステムにおいて、CCSとPUCCH on SCellが設定された場合の動作に関して適切に規定することを着想した。
具体的には、CCSを示すPDCCHを検出した場合、当該CCSが同じCGに属するセル間で行われるか否かを判定し、その結果に基づいてPUCCHを送信するセルを少なくとも1つ選択し、当該選択したセルを介してPUCCHを送信するように制御することを着想した。この構成によれば、システム全体の性能低下を抑制することができる。
以下、本発明の一実施の形態(以下、本実施の形態と呼ぶ)に係る無線通信方法を詳細に説明する。本実施の形態において、ユーザ端末は、CCSを通知するPDCCHを検出した場合、このPDCCH受信セル(ユーザ端末がPDCCHを受信するセル)と、CCSにより指定されるセルと、が同一のCGに属するか否かの判定を行う。上記判定結果が真の場合には当該CCSはCGをまたがない(以下、CGをまたがないとは、PDCCH受信セルとCCSにより指定されるセルが同一CGに属することを意味するものとする)と判断することができ、偽の場合には当該CCSはCGをまたぐ(以下、CGをまたぐとは、PDCCH受信セルとCCSにより指定されるセルが同一CGに属さないことを意味するものとする)と判断することができる。
ここで、PDCCH受信セルと、CCSにより指定されるセルと、が同一のCGに属するか否かの判定は、例えばCIFを用いて判定することができる。例えば、上記判定の結果は、CIFが設定されたPDCCHを受信したセルと、当該CIFに含まれる番号が指定するセルとが、同じCGに属する場合には真であり、異なるCGに属する場合には偽である。
本実施の形態に係る無線通信方法は、ユーザ端末にDCが適用される場合(態様1と呼ぶ)と、ユーザ端末にCAが適用される場合(態様2と呼ぶ)と、に大別される。以下では、各態様についてそれぞれ具体的に説明する。なお、以下において、CCSを示すPDCCHを検出した場合にPUCCHを送信するセルを、「PUCCH送信セル」と呼ぶ。
(態様1)
本実施の形態に係る無線通信方法の態様1は、DCにおいて、CCS及びSCellにおけるPUCCHが設定される場合のPUCCHの割り当てを規定するものである。
本実施の形態に係る無線通信方法の態様1は、DCにおいて、CCS及びSCellにおけるPUCCHが設定される場合のPUCCHの割り当てを規定するものである。
態様1において、CGをまたがないCCSを通知するPDCCHを検出した場合、PDCCH受信セルが属するCGのPUCCH設定セルをPUCCH送信セルとして選択し、当該PUCCH送信セルを介してUCIを送信する。具体的には、ユーザ端末は、検出したCCSがMCG内でのCCSであれば、PCellをPUCCH送信セルとして選択する。また、ユーザ端末は、検出したCCSがSCG内でのCCSならば、当該SCG内のPUCCH設定SCellをPUCCH送信セルとして選択する。フィードバックするUCIは、例えば肯定応答(ACK:Acknowledgement)、否定応答(NACK:Negative ACK)などの確認応答信号であるが、これ以外(例えば、チャネル品質情報(CQI:Channel Quality Information)など)をフィードバックしても良い。
一方、ユーザ端末は、CGをまたぐCCSを通知するPDCCHを検出した場合、そのPDCCHを無効とみなす。この際、ユーザ端末は、当該PDCCH受信セルが属するCGのPUCCH設定セルをPUCCH送信セルとして選択し、NACKをフィードバックするか、不連続送信(DTX:Discontinuous Transmission)を行う。ここで、DTXとは、ACKもNACKも送信せず、フィードバックする送信タイミングで無送信とすることを意味する。また、ACK/NACK/DTXいずれにも該当しない、PDCCHの無効判定を意味するフィードバック情報を送信しても良い。
なお、ユーザ端末は、下り制御信号に複数のクロスキャリアスケジューリングを示す情報が含まれる場合には、当該下り制御信号を受信したセルと、前記クロスキャリアスケジューリングを示す情報により指定される各セルと、が同一のセルグループに属するか否かをそれぞれ判定し、当該判定結果に基づいてPUCCH設定セルからPUCCH送信セルを選択する。これは、後述の態様2においても同様である。
図5は、DCにおいて、CCS及びSCellにおけるPUCCHが設定される場合のPUCCHの割り当ての一例を示す図である。図5には、PDCCHでCCSを示す情報(CIF)を検出したセルから、当該情報を用いてスケジューリングされるセルへの矢印が示されている。図5Aにおいては、UEがC1のPDCCHで検出した情報が、C1からC2及びC4へのCCSを示す情報であった場合を示す。また、図5Bにおいては、UEがC3のPDCCHで検出した情報が、C3からC2、C4及びC5へのCCSを示す情報であった場合を示す。
また、図5に示されるスケジューリングされるセルには、当該スケジューリングが有効である場合は“○”、無効である場合には“×”の記号が付されている(ユーザ端末が有効とみなすスケジューリングを“○”、無効とみなすスケジューリングを“×”で示している)。また、図5においては、選択されたPUCCH送信セルが点線の矢印により示されている。これらの矢印と記号は、後述の図6−16でも同様の意味を示す。
態様1では、図5AにおけるC1からC2へのCCSは、PDCCH受信セル(C1)と、CCSにより指定されるセル(C2)とが、同一のCG(MCG)に属するため、当該PDCCHは有効であり、C1がPUCCH送信セルとして選択される。また、図5BにおけるC3からC4及びC5へのCCSは、PDCCH受信セル(C3)と、CCSにより指定されるセル(C4、C5)とが、同一のCG(SCG)に属するため、当該PDCCHは有効であり、C3がPUCCH送信セルとして選択される。
一方、図5AにおけるC1からC4へのCCSは、PDCCH受信セル(C1)と、CCSにより指定されるセル(C4)とが、異なるCGに属するため、UEは当該PDCCHを無効とみなしてPDSCHの復号を行わない。また、UEは、C1でNACKを送信するか、DTXを行う。また、図5BにおけるC3からC2へのCCSは、PDCCH受信セル(C3)と、CCSにより指定されるセル(C2)とが、異なるCGに属するため、UEは、当該PDCCHを無効とみなして、C3でNACKを送信するか、DTXを行う。
なお、CIFのビット数は、通常3ビットであるが、上述したようにDCで最大のセル数が5セルに設定される場合、態様1においては2ビットに減らしても良い。かかる場合には、CG内でCAできる最大数は4セルとなるため、CIFは2ビットで足りるからである。CIFのビットを低減することにより、DCIメッセージの符号化率を下げることができ、その結果、伝送品質を向上することができる。言い換えると、DCI結合レベル(DCI aggregation level)を下げることができ、PDCCHのオーバーヘッドを減らすことができる。
また、CG内で3セル以上がCAされる場合、PUCCH設定セル以外のセルからのCCSを利用しても良い。つまり、PDCCH受信セルとPUCCH設定セルが異なっていても良い。具体的には、MCGではPCell以外、SCGではPUCCH設定SCell以外のセルからのCCSを設定しても良い。この場合、UEは、PDCCH送信セルがMCG内のセルならばPCellを、SCG内のセルならばPUCCH設定SCellをPUCCH送信セルとして選択する。これにより、PUCCHセルとPDCCHを受信するセルとを分離することができ、制御信号のより柔軟なロードバランスが可能となる。
また、SCGでは、PUCCH設定セル以外のセルからPUCCH設定セルに対するCCSはサポートしない(無効とみなす)としても良い。これは、CAにおいてSCellからPCellへのCCSをサポートしないことと同様である。これにより、SCG内だけ見ると、CAにおけるCCSと同じルールが適用されているため、CAのCCSアルゴリズムを流用することができ、実装負担やコストの増大を抑えることができる。
図6は、DCにおいて、CCS及びSCellにおけるPUCCHが設定される場合のPUCCHの割り当ての一例を示す図である。図6においては、SCG内で3セルがCAされており、PUCCH設定セルでないC4のPDCCHに、C4からC2、C3及びC5へのCCSを示す情報(CIF)が含まれる場合を示す。なお、図6の説明では、CG内で3セル以上がCAされる場合に、PUCCH設定セル以外のセル(C4、C5)からのCCSが許可されるとともに、SCGでは、PUCCH設定セル以外のセル(C4、C5)からのPUCCH設定セル(C3)に対するCCSをサポートしないと仮定する。
この場合、C4からC5へのCCSは有効であり、C3でPUCCHを送信する。また、C4からC2へのCCSは、PDCCH受信セル(C4)が属するCG(SCG)に含まれるセルに対するCCSではないため、当該PDCCHを無効とみなして、C3でNACKを送信するか、DTXを行う。また、C4からC3へのCCSは、SCGにおけるPUCCH設定セル以外のセルからPUCCH設定セルに対するCCSであるため、当該PDCCHを無効とみなして、C3でNACKを送信するか、DTXを行う。
以上、本実施の形態に係る無線通信方法の態様1によれば、DCが適用される無線通信システムにおいてCCSとPUCCH on SCellが設定された場合に、CCSを含むPDCCHを受信したセルと、CCSにより指定されるセルと、が同一のCGに属するか否かを判定し、その結果に基づいてPUCCH送信セルを選択する。また、CGをまたぐと判定されたCCSは無効とみなす。これらの構成により、DCではあり得ないスケジューリングセル/スケジュールドセルの組み合わせのCCSを無効とみなして、ユーザ端末において不要な復号動作を省略し、電力消費を低減することができる。また、DCも同じセルグループ内(MCG内又はSCG内)ではCCSを有効としておくことで、PDCCHのセル間干渉制御や品質確保を実現することができる。
なお、CCSが無効と判断した場合にDTXを行う場合、又はPDCCHの無効判定を意味するフィードバックが行われる場合、HARQの性能を高めることができる。上述の態様1によれば、CCSが無効と判断されたとき、ユーザ端末はPDSCHの復号を行わない。したがって、基地局はユーザ端末がPDSCHを受信できていないものと判断し、再送を行う。NACKがフィードバックされた場合、基地局はHARQによる符号化利得を高めるため、符号化後ビット系列のうち初回送信とは異なるビット列を送信する。しかしユーザ端末がPDSCHを復号しない場合、初回送信と異なるビット列を送信しても符号化利得は得られない。代わりに、より符号化前の情報ビット列を多く含む初回送信ビット列を送信する方が、再送利得が得られやすい。このようにNACKではなくDTXや無効判定を意味するフィードバックを行うことにより、基地局は初回送信ビット列を再送できるので、HARQの効果を高めることができる。
(態様2)
本実施の形態に係る無線通信方法の態様2は、CAにおいて、CCS及びSCellにおけるPUCCHが設定される場合のPUCCHの割り当てを規定するものである。なお、態様2においては、各無線基地局が、1つ又は複数のセルから構成されるCGを設定し、各CGでは、少なくとも1つのセルがPUCCHをフィードバックできるように設定されるものとする。ここで、PCellを含むCGをXCGと呼び、XCG以外のCGをYCGと呼ぶが、呼称はこれに限られない。
本実施の形態に係る無線通信方法の態様2は、CAにおいて、CCS及びSCellにおけるPUCCHが設定される場合のPUCCHの割り当てを規定するものである。なお、態様2においては、各無線基地局が、1つ又は複数のセルから構成されるCGを設定し、各CGでは、少なくとも1つのセルがPUCCHをフィードバックできるように設定されるものとする。ここで、PCellを含むCGをXCGと呼び、XCG以外のCGをYCGと呼ぶが、呼称はこれに限られない。
態様2において、ユーザ端末は、CGをまたがないCCSを通知するPDCCHを検出した場合、態様1と同様にPDCCH受信セルが属するCGからPUCCH送信セルを選択する。具体的には、ユーザ端末は、検出したCCSがXCG内でのCCSを示すものであれば、PCellをPUCCH送信セルとする。また、ユーザ端末は、検出したCCSがYCG内でのCCSならば、PUCCH設定SCellをPUCCH送信セルとする。
また、ユーザ端末は、CGをまたぐCCSを通知するPDCCHを検出した場合でも、態様1とは異なり、CCSを有効とみなすことができる。図7は、CAでSCellにPUCCHが割り当てられた場合に、CCSが有効となるか否かの一例を示す図である。図7Aにおいては、UEがC1のPDCCHで検出した情報が、C1からC2、C3、C4及びC5へのCCSを示す情報であった場合を示す。また、図7Bにおいては、UEがC3のPDCCHで検出した情報が、C3からC2、C4及びC5へのCCSを示す情報であった場合を示す。態様2においては、CCSはCGをまたぐか否かによらず、有効となっている。
態様2において、ユーザ端末がCGをまたぐCCSを通知するPDCCHを検出した場合、PUCCH送信セルは、以下の2つの方針のいずれかに従って選択される(態様2.1、態様2.2)。なお、以下で態様2と記載する場合は、態様2.1及び態様2.2の両方を含む。
態様2.1においては、CGをまたぐCCSを通知するPDCCHを検出した場合、CGをまたがないCCSの場合と同じく、PDCCHを受信したセルが属するCGに含まれるPUCCH設定セルをPUCCH送信セルとして選択する。具体的には、PDCCHをXCGに属するセルで受信した場合はPCellを、YCGに属するセルで受信した場合は、PUCCH設定SCellをPUCCH送信セルとする。これにより、PDCCHとPUCCHを同じセルに設定できるため、PDCCH/PUCCHが設定されるセルでは通信品質やカバレッジを確保するようセル設計を行い(例えばマクロセルにする)、そうでないセルではセル半径を小さくして1つのセルに同時収容されるユーザ端末数を減らす(例えばスモールセルにする)などの構成とすることで、データのオフロードと制御信号の品質保持を両立できる。
一方、態様2.2においては、CGをまたぐCCSを通知するPDCCHを検出した場合、PDSCHを受信するセル(当該CCSに基づいて、PDSCHを復号するように指定されるセル)が属するCGに含まれるPUCCH設定セルをPUCCH送信セルとして選択する。具体的には、PDSCHをXCGに属するセルで受信した場合はPCellを、YCGに属するセルで受信した場合はPUCCH設定SCellをPUCCH送信セルとする。これにより、上下リンクのオフロード効果を高めることができる。例えばPDCCHは通信品質やカバレッジを確保するよう設計されたセル(例えばマクロセル)に設定したまま、下りリンクのPDSCHと上りリンクのPUCCHが送受信されるセルを併せてトラフィックの小さなセル(例えばスモールセル)を切り替え指定する運用が可能となる。
以下、態様2におけるPUCCH送信セルの選択について、図8−16を参照して具体的に説明する。なお、図に示されるように、図8−16におけるCCSが示すスケジューリングは、全て有効とみなされる。
図8は、ユーザ端末が、CGをまたがないCCSを通知するPDCCHを検出した場合におけるPUCCH送信セルの一例を示す図である。図8Aにおいては、UEがC1のPDCCHで検出した情報が、C1からC2へのCCSを示す情報であった場合を示す。また、図8Bにおいては、UEがC3のPDCCHで検出した情報が、C3からC4及びC5へのCCSを示す情報であった場合を示す。
図8AにおけるC1からC2へのCCSは、PDCCH受信セル(C1)が属するCG(XCG)に含まれるセルに対するCCSであるため、C1をPUCCH送信セルとして選択する。また、図8BにおけるC3からC4及びC5へのCCSは、PDCCH受信セル(C3)が属するCG(YCG)に含まれるセルに対するCCSであるため、C3をPUCCH送信セルとして選択する。
次に、態様2.1及び態様2.2に係るPUCCH送信セルの選択について説明する。図9は、ユーザ端末が、CGをまたぐCCSを通知するPDCCHを検出した場合において、態様2.1により選択したPUCCH送信セルの一例を示す図である。図9Aにおいては、UEがC1のPDCCHで検出した情報が、C1からC3、C4及びC5へのCCSを示す情報であった場合を示す。また、図9Bにおいては、UEがC3のPDCCHで検出した情報が、C3からC2へのCCSを示す情報であった場合を示す。
図9Aにおいては、CCSを検出したPDCCH受信セル(C1)をPUCCH送信セルとして選択する。また、図9Bにおいては、CCSを検出したPDCCH受信セル(C3)をPUCCH送信セルとして選択する。
図10は、ユーザ端末が、CGをまたぐCCSを通知するPDCCHを検出した場合において、態様2.2により選択したPUCCH送信セルの一例を示す図である。図10A及び図10BにおけるCCSを示す情報は、それぞれ図9A及び図9Bの場合と同じである。
図10Aにおいては、CCSによりスケジュールされるC3、C4及びC5がPDSCHを受信することになる。また、C3−C5は全てYCGに属する。したがって、YCGのPUCCH設定セルであるC3をPUCCH送信セルとして選択する。一方、図10Bにおいては、CCSによりスケジュールされるC2がPDSCHを受信することになる。また、C2はXCGに属する。したがって、XCGのPUCCH設定セルであるC1をPUCCH送信セルとして選択する。
ここで、態様2.1及び態様2.2の最も単純な例として、XCG及びYCGがそれぞれ1セルから成る場合(つまり、2セルのCAの場合)を説明する。PCell及びSCellの両方がPUCCH設定セルであり、かつCCSが設定(configure)されるものとする。この場合、他のセルに対するCCSは、必ずCGをまたいで行われることになる。
図11は、2セルのCAの場合に、ユーザ端末が、CCSを通知するPDCCHを検出した場合において、態様2.1により選択したPUCCH送信セルの一例を示す図である。C1はPCellであり、C2はSCellである。また、C1はXCGを構成し、C2はYCGを構成する。また、各セルの利用する周波数は、昇順でC1、C2である。図11Aにおいては、UEがC1のPDCCHで検出した情報が、C1からC2へのCCSを示す情報であった場合を示す。また、図11Bにおいては、UEがC2のPDCCHで検出した情報が、C2からC1へのCCSを示す情報であった場合を示す。
態様2.1では、ユーザ端末は、PDCCHを受信したセル(CIFによるスケジューリングを行うセル)でPUCCHを送信する。つまり、図11Aにおいては、CCSを検出したPDCCH受信セル(C1)をPUCCH送信セルとして選択する。また、図11Bにおいては、CCSを検出したPDCCH受信セル(C2)をPUCCH送信セルとして選択する。このように、態様2.1によれば、上下L1/L2制御信号を信頼性の高いセルに固めることができる。
図12は、2セルのCAの場合に、ユーザ端末が、CCSを通知するPDCCHを検出した場合において、態様2.2により選択したPUCCH送信セルの一例を示す図である。図12A及び図12BにおけるCCSを示す情報及びセル構成は、それぞれ図11A及び図11Bの場合と同じである。
態様2.2では、ユーザ端末は、PDSCHを受信するセル(CIFによりスケジューリングされるセル)でPUCCHを送信する。つまり、図12Aにおいては、PDSCHを受信するセル(C2)をPUCCH送信セルとして選択する。また、図12Bにおいては、PDSCHを受信するセル(C1)をPUCCH送信セルとして選択する。このように、態様2.2によれば、PDSCHのオフロードに合わせてPUCCHもオフロードすることができる。
(CAでCGをまたぐCCSとCGをまたがないCCSとが同時に発生する場合)
次に、CGをまたぐCCSとCGをまたがないCCSとが同時に発生する場合における、態様2.1及び態様2.2に係るPUCCH送信セルの選択について説明する。図13は、ユーザ端末が、CGをまたぐCCSとCGをまたがないCCSとを同時に通知するPDCCHを検出した場合において、態様2.1により選択したPUCCH送信セルの一例を示す図である。図13Aにおいては、UEがC1のPDCCHで検出した情報が、C1からC2、C3、C4及びC5へのCCSを示す情報であった場合を示す。また、図13Bにおいては、UEがC3のPDCCHで検出した情報が、C3からC2、C4及びC5へのCCSを示す情報であった場合を示す。
次に、CGをまたぐCCSとCGをまたがないCCSとが同時に発生する場合における、態様2.1及び態様2.2に係るPUCCH送信セルの選択について説明する。図13は、ユーザ端末が、CGをまたぐCCSとCGをまたがないCCSとを同時に通知するPDCCHを検出した場合において、態様2.1により選択したPUCCH送信セルの一例を示す図である。図13Aにおいては、UEがC1のPDCCHで検出した情報が、C1からC2、C3、C4及びC5へのCCSを示す情報であった場合を示す。また、図13Bにおいては、UEがC3のPDCCHで検出した情報が、C3からC2、C4及びC5へのCCSを示す情報であった場合を示す。
図13Aにおいては、CCSを検出したPDCCH受信セル(C1)をPUCCH送信セルとして選択する。また、図13Bにおいては、CCSを検出したPDCCH受信セル(C3)をPUCCH送信セルとして選択する。以上からわかるように、態様2.1の場合は、CGをまたぐCCSとCGをまたがないCCSが同時に発生しても、1つのセルがPUCCH送信セルとして選択される。
図14は、ユーザ端末が、CGをまたぐCCSとCGをまたがないCCSとを同時に通知するPDCCHを検出した場合において、態様2.2により選択したPUCCH送信セルの一例を示す図である。図14A及び図14BにおけるCCSを示す情報及びセル構成は、それぞれ図13A及び図13Bの場合と同じである。
図14Aにおいては、CCSによりスケジュールされるC2、C3、C4及びC5がPUSCHを受信することになる。また、C2はXCGに属し、C3−C5はYCGに属する。したがって、XCGのPUCCH設定セルであるC1及びYCGのPUCCH設定セルであるC3の2つがPUCCH送信セルとして選択される。
図14Bにおいては、CCSによりスケジュールされるC2、C4及びC5がPUSCHを受信することになる。また、C2はXCGに属し、C4及びC5はYCGに属する。したがって、XCGのPUCCH設定セルであるC1及びYCGのPUCCH設定セルであるC3の2つがPUCCH送信セルとして選択される。
以上からわかるように、態様2.2の場合は、CGをまたぐCCSとCGをまたがないCCSが同時に発生すると、2つのセルからPUCCHを送信することができる。なお、この場合、2つのセルの一方からのみPUCCHを送信する構成としても良い。
(CAでCGが3以上の場合)
CAの場合、PUCCH設定セルが3つ以上あっても良い。言い換えると、CGが3以上存在しても良い。また、各CGが1セルで構成されていても良い。図15は、各CGが1セルで構成され、5CGからなるCAの場合に、ユーザ端末が、CCSを通知するPDCCHを検出した場合において、態様2.1により選択したPUCCH送信セルの一例を示す図である。C1はPCellであり、C2−C5はSCellである。また、C1はXCGを構成し、C2−C5はそれぞれ別のCGを構成する。また、各セルの利用する周波数は、昇順でC1、C2、C3、C4、C5である。図15Aにおいては、UEがC1のPDCCHで検出した情報が、C1からC2へのCCSを示す情報であった場合を示す。また、図15Bにおいては、UEがC3のPDCCHで検出した情報が、C3からC4及びC5へのCCSを示す情報であった場合を示す。
CAの場合、PUCCH設定セルが3つ以上あっても良い。言い換えると、CGが3以上存在しても良い。また、各CGが1セルで構成されていても良い。図15は、各CGが1セルで構成され、5CGからなるCAの場合に、ユーザ端末が、CCSを通知するPDCCHを検出した場合において、態様2.1により選択したPUCCH送信セルの一例を示す図である。C1はPCellであり、C2−C5はSCellである。また、C1はXCGを構成し、C2−C5はそれぞれ別のCGを構成する。また、各セルの利用する周波数は、昇順でC1、C2、C3、C4、C5である。図15Aにおいては、UEがC1のPDCCHで検出した情報が、C1からC2へのCCSを示す情報であった場合を示す。また、図15Bにおいては、UEがC3のPDCCHで検出した情報が、C3からC4及びC5へのCCSを示す情報であった場合を示す。
態様2.1では、UEは、CIFが設定されたPDCCHを受信したセルを介してPUCCHを送信する。つまり、UEは、図15AではC1を、図15BではC3をPUCCH送信セルとして選択する。
図16は、各CGが1セルで構成され、5CGからなるCAの場合に、ユーザ端末が、CCSを通知するPDCCHを検出した場合において、態様2.2により選択したPUCCH送信セルの一例を示す図である。図16A及び図16BにおけるCCSを示す情報やセル構成は、それぞれ図15A及び図15Bの場合と同じである。
態様2.2では、UEは、CIFに基づいてスケジュールされるセルを介してPUCCHを送信する。つまり、UEは、図16AではC2を、図16BではC4及びC5をPUCCH送信セルとして選択する。なお、図16Bで、UEはC4及びC5のいずれかを介してPUCCHを送信する構成としても良い。
以上、本実施の形態に係る無線通信方法の態様2によれば、CAが適用される無線通信システムにおいてCCSとPUCCH on SCellが設定された場合に、CCSを含むPDCCH信号を受信したセルと、CCSにより指定されるセルと、が同一のCGに属するか否かを判定し、その結果に基づいてPUCCH送信セルを選択する。当該判定結果が真である場合には、CCSを検出したセルと同じCGのPUCCH設定セルをPUCCH送信セルとして選択する。また、偽である場合には、真の場合と同様とするか、CCSによってスケジュールされるセルが属するCGのPUCCH設定セルをPUCCH送信セルとして選択するかのいずれかが実施される。この構成により、CAの場合であっても、データのオフロードと制御信号の品質保持を両立することができる。
(ユーザ端末におけるDC及びCAの認識)
なお、ユーザ端末は、ネットワーク(例えば、無線基地局、上位制御局など)から通知されるDCの適用に関する情報により、自端末にDC又はCAが適用されているかを認識するように構成されていても良い。当該情報は、MCG及びSCGが設定されることを示す情報であっても良い。この場合、ユーザ端末は、設定されたMCG及びSCG間でDCが適用されると認識することができる。また、SCGが設定されることを示す情報には、SCellにおけるPUCCH設定セルに関する情報を含んでいても良い。
なお、ユーザ端末は、ネットワーク(例えば、無線基地局、上位制御局など)から通知されるDCの適用に関する情報により、自端末にDC又はCAが適用されているかを認識するように構成されていても良い。当該情報は、MCG及びSCGが設定されることを示す情報であっても良い。この場合、ユーザ端末は、設定されたMCG及びSCG間でDCが適用されると認識することができる。また、SCGが設定されることを示す情報には、SCellにおけるPUCCH設定セルに関する情報を含んでいても良い。
また、DCの適用に関する情報は、CAのアーキテクチャを用いるか、DCのアーキテクチャを用いるかを示す情報であっても良い。CAのアーキテクチャはMACレイヤでU−planeを分離するものである一方、DCのアーキテクチャはMACレイヤより上位のレイヤでU−planeを分離するものであるため、自端末にDCが適用されるか否かは、用いるアーキテクチャを示す情報により認識することができる。
また、DCの適用に関する情報は、所定のセル間又はCG間が遅延の小さい光ファイバなどの理想的バックホール(ideal backhaul)か否かの情報であっても良い。上述したように、DCでは非理想的バックホールで接続されることが想定されているため、ユーザ端末は自端末にDCが適用されるか否かを、バックホールに関する情報により認識することができる。
また、DCの適用に関する情報は、所定のセル間又はCG間にDCが用いられるかCAが用いられるかといった直接的な情報であっても良い。これによれば、他の情報に比べて、認識を容易に行うことができる。
また、ユーザ端末は、ネットワーク(例えば、無線基地局、上位制御局など)から通知されるCAの適用に関する情報により、自端末にCA又はDCが適用されているかを認識するように構成されていても良い。CAの適用に関する情報は、例えば上記DCの適用に関する情報と同様であっても良い。
(CIFのバリエーション)
なお、態様1及び態様2において、CCSに用いるCIFに、PUCCH送信セルを関連付けるように構成しても良い。具体的には、CIFにより指定されるセルの上り制御信号を送信するセルと、PUCCH送信セルとを関連付けるように構成しても良い。図17は、CAが適用される場合に、PUCCH送信セルを関連付けるように構成したCIFの一例を示す図である。図17においては、1つのプライマリセル(PCell)と4つのセカンダリセル(SCell(1)、SCell(2)、SCell(3)、SCell(4))をCAする場合のCIFを示している。また、図17において、「PUCCH送信セル」やCIF値5−7の要素は、従来のCIFに比べて新しく関連付けられる情報であり、例えばRRCシグナリング、報知信号などの上位レイヤからの指示によって予め設定される。
なお、態様1及び態様2において、CCSに用いるCIFに、PUCCH送信セルを関連付けるように構成しても良い。具体的には、CIFにより指定されるセルの上り制御信号を送信するセルと、PUCCH送信セルとを関連付けるように構成しても良い。図17は、CAが適用される場合に、PUCCH送信セルを関連付けるように構成したCIFの一例を示す図である。図17においては、1つのプライマリセル(PCell)と4つのセカンダリセル(SCell(1)、SCell(2)、SCell(3)、SCell(4))をCAする場合のCIFを示している。また、図17において、「PUCCH送信セル」やCIF値5−7の要素は、従来のCIFに比べて新しく関連付けられる情報であり、例えばRRCシグナリング、報知信号などの上位レイヤからの指示によって予め設定される。
図17Aは、CIFの各値でPDSCH受信セル(CCSによりスケジューリングされるセル)とPUCCH送信セルを指定するものである。従来のCIFは、最大5セルに対応し、図17に示すCIF値0−4のPDSCH受信セルだけを指定するものであった。また、従来、CAにおいてはSCellでPUCCHを送信することは想定されておらず、暗黙にPUCCH送信セルはPCellとされていたことになる。これに対して、図17AではCIF値2−4の場合にPUCCH送信セルがSCell(2)と設定されている。
また、図17Bは、CIFの未使用値でのみPDSCH受信セルとPUCCH送信セルを指定するものである。従来、CAにおいては最大5セルであったため未使用であったCIF値5−7の場合に、PDSCH受信セルとPUCCH送信セルを指定している。
図17A及び図17Bのように、下り制御情報のCIFにPDSCH受信セルとPUCCH送信セルに関する情報を組み合わせて設定(ジョイントコーディング)する構成を採用することにより、既存のCIFを流用し、柔軟かつ動的にPUCCH送信セルを指定することができる。なお、CIFに対するPDSCH受信セル及びPUCCH送信セルに関する情報の関連付けは、図17に示した構成に限られず、例えば別のビット構成を用いても良い。
(capabilityシグナリング)
さらに、本実施の形態において、ユーザ端末は、事前に無線基地局に対し、自端末の通信能力に関して、以下のようなcapabilityシグナリングを通知することができる。例えば、下りリンクのCA(DL−CA)が可能なセルの組み合わせ(CC combination)や、上りリンクのCA(UL−CA)が可能なセルの組み合わせを通知する。基地局は、ユーザ端末から通知されたcapabilityシグナリングを元にCAやDC、またそのセルの組み合わせを決定し、ユーザ端末に設定する。
さらに、本実施の形態において、ユーザ端末は、事前に無線基地局に対し、自端末の通信能力に関して、以下のようなcapabilityシグナリングを通知することができる。例えば、下りリンクのCA(DL−CA)が可能なセルの組み合わせ(CC combination)や、上りリンクのCA(UL−CA)が可能なセルの組み合わせを通知する。基地局は、ユーザ端末から通知されたcapabilityシグナリングを元にCAやDC、またそのセルの組み合わせを決定し、ユーザ端末に設定する。
また、ユーザ端末は、capabilityシグナリングとして、下りリンクでCCSが可能なセルの組み合わせを通知しても良い。また、SCellのうちPUCCH設定セルとなる上りリンクのセル(UL−CC)を通知しても良い。また、CCSを行う場合においてSCellのうちPUCCH設定セルとなるUL−CCを、つまりSCellのうちPUCCH設定セルとなるUL−CCのサブセットを通知しても良い。また、SCellにPUCCH設定セルを指定した場合において下りリンクでCCSが可能なセルの組み合わせを、つまり下りリンクでCCSが可能なセルの組み合わせのサブセットを通知しても良い。以上のようなcapabilityシグナリングを利用することにより、無線基地局はユーザ端末に対してCCS及びPUCCH on SCellを適切に設定することができる。
(無線通信システムの構成)
以下、本実施の形態に係る無線通信システムの一例について、詳細に説明する。なお、同一の構成要素には同一の符号を付し、重複する説明は省略する。
以下、本実施の形態に係る無線通信システムの一例について、詳細に説明する。なお、同一の構成要素には同一の符号を付し、重複する説明は省略する。
図18は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。図18に示す無線通信システムは、例えば、LTEシステム或いは、SUPER 3Gが包含されるシステムである。この無線通信システムでは、LTEシステムのシステム帯域幅を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。また、この無線通信システムは、IMT−Advanced、4G、FRA(Future Radio Access)などと呼ばれても良い。
図18に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a及び12bとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。また、無線基地局11と無線基地局12との間、無線基地局11と他の無線基地局11との間又は無線基地局12と他の無線基地局12との間で、CA及び/又はDCが適用される。なお、CAは基地局内CA(Intra−eNB CA)と呼ばれても良く、DCは基地局間CA(Inter−eNB CA)と呼ばれても良い。
ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどと呼ばれる)を用いて通信が行なわれる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。ユーザ端末20と無線基地局12間のキャリアタイプとしてニューキャリアタイプ(NCT)を利用してもよい。無線基地局11と無線基地局12(又は無線基地局12間)は、有線接続(光ファイバ、X2インタフェースなど)又は無線接続されている。
無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置に接続されてもよい。
なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、eNodeB、マクロ基地局、送受信ポイントなどと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、ピコ基地局、フェムト基地局、Home eNodeB、マイクロ基地局、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。各ユーザ端末20は、LTE、LTE−Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでよい。
無線通信システムにおいては、無線アクセス方式として、下りリンクについてはOFDMA(直交周波数分割多元接続)が適用され、上りリンクについてはSC−FDMA(シングルキャリア−周波数分割多元接続)が適用される。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC−FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。
ここで、図18に示す無線通信システムで用いられる通信チャネルについて説明する。下りリンクの通信チャネルは、各ユーザ端末20で共有されるPDSCH(Physical Downlink Shared Channel)と、下りL1/L2制御チャネル(PDCCH、PCFICH、PHICH、拡張PDCCH)とを有する。PDSCHにより、ユーザデータ及び上位制御情報が伝送される。PDCCH(Physical Downlink Control Channel)により、PDSCHおよびPUSCHのスケジューリング情報などの下りリンク制御情報(DCI:Downlink Control Information)が伝送される。PCFICH(Physical Control Format Indicator Channel)により、PDCCHに用いるOFDMシンボル数が伝送される。PHICH(Physical Hybrid-ARQ Indicator Channel)により、PUSCHに対するHARQのACK/NACKが伝送される。また、拡張PDCCH(EPDCCH)により、PDSCH及びPUSCHのスケジューリング情報が伝送されてもよい。このEPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重される。
上りリンクの通信チャネルは、各ユーザ端末20で共有される上りリンクデータチャネルであるPUSCH(Physical Uplink Shared Channel)と、上りリンク制御チャネルであるPUCCH(Physical Uplink Control Channel)とを有する。このPUSCHにより、ユーザデータや上位制御情報が伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、ACK/NACKなどの上りリンク制御情報(UCI:Uplink Control Information)が伝送される。
図19は、本実施の形態に係る無線基地局10(無線基地局11及び12を含む)の全体構成の一例を示す図である。無線基地局10は、MIMO(Multi Input Multi Output)伝送のための複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インタフェース106と、を備えている。
下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インタフェース106を介してベースバンド信号処理部104に入力される。
ベースバンド信号処理部104では、PDCPレイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御の送信処理を含むRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid ARQ)の送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理が行われて各送受信部103に転送される。また、下りリンクの制御チャネルの信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、各送受信部103に転送される。
また、ベースバンド信号処理部104は、上位レイヤシグナリング(RRCシグナリング、報知信号など)により、ユーザ端末20に対して、当該セルにおける通信のための制御情報を通知する。当該セルにおける通信のための情報には、例えば、上りリンク又は下りリンクにおけるシステム帯域幅、フィードバック用のリソース情報が含まれる。各送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換する。アンプ部102は、周波数変換された無線周波数信号を増幅して送受信アンテナ101により送信する。
一方、上りリンクによりユーザ端末20から無線基地局10に送信されるデータについては、各送受信アンテナ101で受信された無線周波数信号がそれぞれアンプ部102で増幅され、各送受信部103で周波数変換されてベースバンド信号に変換され、ベースバンド信号処理部104に入力される。
ベースバンド信号処理部104では、入力されたベースバンド信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理がなされ、伝送路インタフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
図20は、本実施の形態に係る無線基地局10が有するベースバンド信号処理部104の主な機能構成の一例を示す図である。図20に示すように、無線基地局10が有するベースバンド信号処理部104は、制御部301と、下りリンク制御信号生成部302と、下りリンクデータ信号生成部303と、マッピング部304と、デマッピング部305と、チャネル推定部306と、上りリンク制御信号復号部307と、上りリンクデータ信号復号部308と、を少なくとも含んで構成されている。ここでは、ベースバンド信号処理部104の一部の構成のみを示しているが、必要な構成を不足なく備えているものとする。
制御部301は、PDSCHで送信される下りユーザデータ、PDCCH及び/又は拡張PDCCH(EPDCCH)で伝送される下りリンク制御情報(DCI)、下りリンク参照信号などのスケジューリングを制御する。また、制御部301は、PUSCHで伝送される上りデータ、PUCCH又はPUSCHで伝送される上りリンク制御情報(UCI)、上りリンク参照信号のスケジューリングの制御(割当て制御)も行う。上りリンク信号(上り制御信号、上りユーザデータ)の割当て制御に関する情報は、下りリンク制御情報を用いてユーザ端末に通知される。
具体的に、制御部301は、上位局装置30からの指示情報や各ユーザ端末20からのフィードバック情報に基づいて、下りリンク信号及び上りリンク信号に対する無線リソースの割り当てを制御する。つまり、制御部301は、スケジューラとしての機能を有している。なお、ユーザ端末20にDCを適用する場合には、制御部301は無線基地局10毎に1つ以上のセルのスケジューリングを独立して制御する構成としても良い。また、ユーザ端末20にCAを適用する場合には、制御部301が他の無線基地局10のセルを含めた複数セルのスケジューリングをまとめて制御する構成とし、他の無線基地局10の制御部301がスケジューラとしての機能を有しない構成としても良い。
また、制御部301は、PDCCH/EPDCCHのリソースや信号構成に応じて、ユーザ端末におけるPUCCHリソースの決定を行う場合、PDCCH/EPDCCHの信号構成を制御し、下りリンク制御信号生成部302に通知する。
下りリンク制御信号生成部302は、制御部301により割当てが決定された下りリンク制御信号(PDCCH信号及び/又はEPDCCH信号)を生成する。具体的に、下りリンク制御信号生成部302は、制御部301からの指示に基づいて、下りリンク信号の割当て情報を通知するDL割り当て(DL assignment)や、上りリンク信号の割当て情報を通知するULグラント(UL grant)を生成する。
なお、下りリンク制御信号生成部302は、下りリンク制御信号のCIFを、当該CIFに基づいてCCSを指定されるセルに関するPUCCH送信セルと関連付けて生成するように構成されていることが好ましい。
下りリンクデータ信号生成部303は、伝送路インタフェース106から入力されたユーザデータから、下りリンクデータ信号(PDSCH信号)を生成する。下りリンクデータ信号生成部303により生成されるデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI)などの情報に基づいて決定された符号化率、変調方式に従って符号化処理、変調処理が行われる。
マッピング部304は、制御部301からの指示に基づいて、下りリンク制御信号生成部302で生成された下りリンク制御信号と、下りリンクデータ信号生成部303で生成された下りリンクデータ信号の無線リソースへの割当てを制御する。
デマッピング部305は、ユーザ端末から送信された上りリンク信号をデマッピングして、上りリンク信号を分離する。チャネル推定部306は、デマッピング部305で分離された受信信号に含まれる参照信号からチャネル状態を推定し、推定したチャネル状態を上りリンク制御信号復号部307及び上りリンクデータ信号復号部308に出力する。
上りリンク制御信号復号部307は、上りリンク制御チャネル(PUCCH)でユーザ端末から送信されたフィードバック信号(例えば、確認応答信号)を復号し、制御部301へ出力する。上りリンクデータ信号復号部308は、上りリンク共有チャネル(PUSCH)でユーザ端末から送信された上りリンクデータ信号を復号し、伝送路インタフェース106へ出力する。
図21は、本実施の形態に係るユーザ端末20の全体構成の一例を示す図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部(受信部)203と、ベースバンド信号処理部204と、アプリケーション部205とを備えている。
下りリンクのデータについては、複数の送受信アンテナ201で受信された無線周波数信号がそれぞれアンプ部202で増幅され、送受信部203で周波数変換されてベースバンド信号に変換される。このベースバンド信号は、ベースバンド信号処理部204でFFT処理や、誤り訂正復号、再送制御の受信処理などがなされる。この下りリンクのデータの内、下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理を行う。また、下りリンクのデータの内、報知情報もアプリケーション部205に転送される。
一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、MAC再送制御(例えば、HARQの送信処理)や、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて各送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換する。その後、アンプ部202は、周波数変換された無線周波数信号を増幅して送受信アンテナ201により送信する。
図22は、ユーザ端末20が有するベースバンド信号処理部204の主な機能構成の一例を示す図である。図22に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、上りリンク制御信号生成部402と、上りリンクデータ信号生成部403と、マッピング部404と、デマッピング部405と、チャネル推定部406と、下りリンク制御信号復号部407と、下りリンクデータ信号復号部408と、を少なくとも含んで構成されている。ここでは、ベースバンド信号処理部204の一部の構成のみを示しているが、必要な構成を不足なく備えているものとする。
制御部401は、無線基地局から送信された下りリンク制御信号(PDCCH信号)や、受信したPDSCH信号に基づいて、上りリンク制御信号(フィードバック信号)や上りリンクデータ信号の生成を制御する。下りリンク制御信号は下りリンク制御信号復号部407から出力される。また、制御部401は、ユーザ端末20がDCを適用されているか否か、CAを適用されているか否かなどの、無線基地局10との通信に要する情報を管理しても良い。
また、制御部401は、PDSCH信号に対する確認応答信号(ACK/NACK)のフィードバックを制御するフィードバック制御部としても機能する。具体的に、制御部401は、確認応答信号をフィードバックするセル(CC)や、確認応答信号を割当てるPUCCHリソースの選択を制御する。制御部401は、無線基地局から送信された下りリンク制御信号に基づいて、確認応答信号のフィードバック先のセルや、利用するPUCCHリソースを決定して、上りリンク制御信号生成部402及びマッピング部404に指示を行う。
具体的には、制御部401は、PDCCH信号がCCSを示す情報を含んでいる場合は、PDCCH信号を受信したセルと、CCSにより指定されるセルと、が同一のCGに属するか否かを判定する。
そして、ユーザ端末20がDCを適用されている場合(本実施の形態の態様1)、上記判定結果が真であれば、PDCCH信号を受信したセルが属するCGのPUCCH設定セルをPUCCH送信セルとして選択し、当該PUCCH送信セルにPUCCHリソースを割り当ててUCIフィードバックするように、上りリンク制御信号生成部402及びマッピング部404に指示を行う。また、上記判定結果が偽であれば、当該PDCCH受信セルが属するCGのPUCCH設定セルをPUCCH送信セルとして選択し、当該PUCCH送信セルにPUCCHリソースを割り当ててNACKをフィードバックするか、DTXを行うように、上りリンク制御信号生成部402及びマッピング部404に指示を行う。
一方、ユーザ端末20がCAを適用されている場合(本実施の形態の態様2)、上記判定結果が真であれば、PDCCH信号を受信したセルが属するCGのPUCCH設定セルをPUCCH送信セルとして選択し、当該PUCCH送信セルにPUCCHリソースを割り当ててUCIフィードバックするように、上りリンク制御信号生成部402及びマッピング部404に指示を行う。また、上記判定結果が偽であれば、また、偽である場合には、真の場合と同様とするか(本実施の形態の態様2.1)、CCSによってスケジュールされるセルが属するCGのPUCCH設定セルをPUCCH送信セルとして選択し(本実施の形態の態様2.2)、当該PUCCH送信セルにPUCCHリソースを割り当ててUCIフィードバックするように、上りリンク制御信号生成部402及びマッピング部404に指示を行う。
制御部401は、例えばCIFを用いて上記判定を行うことができる。例えば、CIFが設定されたPDCCHを受信したセルと当該CIFに含まれる番号が指定するセルとが、同じCGに属する場合には真であり、異なるCGに属する場合には偽である。また、CIFが、CCSにより指定されるセル(PDSCHの復調が行われるセル)に関するPUCCH送信セルと関連付けて生成するように構成されている場合には、CIFの値とPUCCH送信セルの関係を参照して、PUCCH送信セルの選択を行うことができる。この場合、制御部401は上記判定を省略する構成としても良い。なお、CIFの値と対応付けられる情報(PDSCHの復調が行われるセル、PUCCH送信セルなど)は、上位レイヤシグナリング(RRCシグナリング、報知信号など)により設定されても良い。また、CIFの値に他の情報を関連付けても良い。
なお、制御部401は、ネットワーク(例えば、無線基地局10、上位局装置30など)から通知される情報により、DCが適用されているか、CAが適用されているか、を判断しても良い。この構成によれば、適応的に態様1と2を切り替えることが可能となる。当該情報は、DC又はCAが適用されているという直接的な情報であっても良いし、間接的な情報(例えば、MCG及びSCGが設定されることを示す情報、通信に用いるアーキテクチャに関する情報、バックホールに関する情報など)であっても良い。また、当該情報は、上位レイヤシグナリング(RRCシグナリング、報知信号など)により設定されても良いし、下りリンク信号に含まれていても良い。
上りリンク制御信号生成部402は、制御部401からの指示に基づいて上りリンク制御信号(確認応答信号やCSIなどのフィードバック信号)を生成する。また、上りリンクデータ信号生成部403は、制御部401からの指示に基づいて上りリンクデータ信号を生成する。なお、制御部401は、無線基地局から通知される下りリンク制御信号にULグラントが含まれる場合に、上りリンクデータ信号生成部403に上りリンクデータ信号の生成を指示する。
マッピング部404(割当て部)は、制御部401からの指示に基づいて、上りリンク制御信号(UCI)と上りリンクデータ信号の無線リソースへの割当てを制御する。例えば、マッピング部404は、PUCCHを介してフィードバックを行うセル(CC)に応じて、当該セルのPUCCHにフィードバック信号の割当てを行う。
デマッピング部405は、無線基地局10から送信された下りリンク信号をデマッピングして、下りリンク信号を分離する。チャネル推定部406は、デマッピング部405で分離された受信信号に含まれる参照信号からチャネル状態を推定し、推定したチャネル状態を下りリンク制御信号復号部407及び、下りリンクデータ信号復号部408に出力する。
下りリンク制御信号復号部407は、下りリンク制御チャネル(PDCCH)で送信された下りリンク制御信号(PDCCH信号)を復号し、スケジューリング情報(上りリソースへの割当て情報)を制御部401へ出力する。
下りリンクデータ信号復号部408は、下りリンク共有チャネル(PDSCH)で送信された下りリンクデータ信号を復号し、アプリケーション部205へ出力する。
以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。例えば、上述した複数の態様を適宜組み合わせて適用することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
1…無線通信システム
10…無線基地局
11…無線基地局(マクロ基地局)
12、12a、12b…無線基地局(スモール基地局)
20…ユーザ端末
30…上位局装置
40…コアネットワーク
101…送受信アンテナ
102…アンプ部
103…送受信部
104…ベースバンド信号処理部
105…呼処理部
106…伝送路インタフェース
201…送受信アンテナ
202…アンプ部
203…送受信部
204…ベースバンド信号処理部
205…アプリケーション部
301…制御部
302…下りリンク制御信号生成部
303…下りリンクデータ信号生成部
304…マッピング部
305…デマッピング部
306…チャネル推定部
307…上りリンク制御信号復号部
308…上りリンクデータ信号復号部
401…制御部
402…上りリンク制御信号生成部
403…上りリンクデータ信号生成部
404…マッピング部
405…デマッピング部
406…チャネル推定部
407…下りリンク制御信号復号部
408…下りリンクデータ信号復号部
10…無線基地局
11…無線基地局(マクロ基地局)
12、12a、12b…無線基地局(スモール基地局)
20…ユーザ端末
30…上位局装置
40…コアネットワーク
101…送受信アンテナ
102…アンプ部
103…送受信部
104…ベースバンド信号処理部
105…呼処理部
106…伝送路インタフェース
201…送受信アンテナ
202…アンプ部
203…送受信部
204…ベースバンド信号処理部
205…アプリケーション部
301…制御部
302…下りリンク制御信号生成部
303…下りリンクデータ信号生成部
304…マッピング部
305…デマッピング部
306…チャネル推定部
307…上りリンク制御信号復号部
308…上りリンクデータ信号復号部
401…制御部
402…上りリンク制御信号生成部
403…上りリンクデータ信号生成部
404…マッピング部
405…デマッピング部
406…チャネル推定部
407…下りリンク制御信号復号部
408…下りリンクデータ信号復号部
Claims (5)
- 1つ以上のセルからそれぞれ構成される複数のセルグループで通信を行うユーザ端末であって、
下り制御情報を受信する受信部と、
各セルグループにそれぞれ設定される上り制御情報を割り当て可能なセルのうち、少なくとも1つのセルを、上り制御情報を送信するセルとして制御する制御部と、を有し、
前記制御部は、前記下り制御情報にクロスキャリアスケジューリングを示す情報が含まれ、かつ、前記下り制御情報を受信したセルと、前記クロスキャリアスケジューリングを示す情報により指定されるセルと、が異なるセルグループに属する場合に、所定のチャネルを受信するセルが属するセルグループに含まれる前記上り制御情報を割り当て可能なセルを、前記上り制御情報を送信するセルとして制御することを特徴とするユーザ端末。 - 前記所定のチャネルを受信するセルは、前記下り制御情報を受信したセルであることを特徴とする請求項1に記載のユーザ端末。
- 前記所定のチャネルを受信するセルは、前記クロスキャリアスケジューリングを示す情報により指定されるセルであることを特徴とする請求項1に記載のユーザ端末。
- 1つ以上のセルからそれぞれ構成される複数のセルグループで通信を行うユーザ端末と通信する無線基地局であって、
下り制御情報を送信する送信部と、
各セルグループにそれぞれ設定される上り制御情報を割り当て可能なセルのうち、少なくとも1つのセルにおいて上り制御情報を受信する受信部と、を有し、
前記受信部は、前記下り制御情報にクロスキャリアスケジューリングを示す情報が含まれ、かつ、前記下り制御情報を送信したセルと、前記クロスキャリアスケジューリングを示す情報により指定されるセルと、が異なるセルグループに属する場合に、所定のチャネルを送信するセルが属するセルグループに含まれる前記上り制御情報を割り当て可能なセルにおいて、前記上り制御情報を受信することを特徴とする無線基地局。 - 1つ以上のセルからそれぞれ構成される複数のセルグループで通信を行うユーザ端末の無線通信方法であって、
下り制御情報を受信する受信工程と、
各セルグループにそれぞれ設定される上り制御情報を割り当て可能なセルのうち、少なくとも1つのセルを、上り制御情報を送信するセルとして制御する制御工程と、を有し、
前記制御工程は、前記下り制御情報にクロスキャリアスケジューリングを示す情報が含まれ、かつ、前記下り制御情報を受信したセルと、前記クロスキャリアスケジューリングを示す情報により指定されるセルと、が異なるセルグループに属する場合に、所定のチャネルを受信するセルが属するセルグループに含まれる前記上り制御情報を割り当て可能なセルを、前記上り制御情報を送信するセルとして制御することを特徴とする無線通信方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017115794A JP2017184282A (ja) | 2017-06-13 | 2017-06-13 | ユーザ端末、無線基地局及び無線通信方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017115794A JP2017184282A (ja) | 2017-06-13 | 2017-06-13 | ユーザ端末、無線基地局及び無線通信方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013268332A Division JP2015126308A (ja) | 2013-12-26 | 2013-12-26 | ユーザ端末、無線基地局、無線通信方法及び無線通信システム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017184282A true JP2017184282A (ja) | 2017-10-05 |
Family
ID=60006599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017115794A Pending JP2017184282A (ja) | 2017-06-13 | 2017-06-13 | ユーザ端末、無線基地局及び無線通信方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017184282A (ja) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012137984A1 (en) * | 2011-04-08 | 2012-10-11 | Sharp Kabushiki Kaisha | Devices for multi-group communications |
-
2017
- 2017-06-13 JP JP2017115794A patent/JP2017184282A/ja active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012137984A1 (en) * | 2011-04-08 | 2012-10-11 | Sharp Kabushiki Kaisha | Devices for multi-group communications |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6012588B2 (ja) | ユーザ端末、無線基地局及び無線通信方法 | |
JP5931828B2 (ja) | ユーザ端末、基地局及び無線通信方法 | |
US10462781B2 (en) | User terminal, base station and radio communication method | |
CN105850215B (zh) | 用户终端、无线基站、无线通信方法以及无线通信系统 | |
JP6216592B2 (ja) | ユーザ端末、基地局及び送信制御方法 | |
JP6031017B2 (ja) | ユーザ端末、基地局及び無線通信方法 | |
JP6224417B2 (ja) | ユーザ端末、基地局及び無線通信方法 | |
JP2018019416A (ja) | ユーザ端末、基地局及び送信制御方法 | |
JP6410779B2 (ja) | ユーザ端末及び無線通信方法 | |
JP2017184282A (ja) | ユーザ端末、無線基地局及び無線通信方法 | |
JP6243191B2 (ja) | ユーザ端末、基地局及び無線通信方法 | |
JP2018023159A (ja) | ユーザ端末 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170711 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180925 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20181121 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190402 |