[go: up one dir, main page]

JP2016082402A - ベースバンド処理装置、無線装置、及び無線通信システム - Google Patents

ベースバンド処理装置、無線装置、及び無線通信システム Download PDF

Info

Publication number
JP2016082402A
JP2016082402A JP2014212086A JP2014212086A JP2016082402A JP 2016082402 A JP2016082402 A JP 2016082402A JP 2014212086 A JP2014212086 A JP 2014212086A JP 2014212086 A JP2014212086 A JP 2014212086A JP 2016082402 A JP2016082402 A JP 2016082402A
Authority
JP
Japan
Prior art keywords
unit
signal
baseband processing
wireless device
distortion compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014212086A
Other languages
English (en)
Inventor
大輔 桝永
Daisuke Masunaga
大輔 桝永
明 豊間根
Akira Toyomane
明 豊間根
勝利 宇佐美
Katsutoshi Usami
勝利 宇佐美
正章 岡田
Masaaki Okada
正章 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2014212086A priority Critical patent/JP2016082402A/ja
Priority to US14/827,040 priority patent/US20160112134A1/en
Publication of JP2016082402A publication Critical patent/JP2016082402A/ja
Priority to US15/418,267 priority patent/US10020887B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0799Monitoring line transmitter or line receiver equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25753Distribution optical network, e.g. between a base station and a plurality of remote units
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5057Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/697Arrangements for reducing noise and distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/25Distortion or dispersion compensation
    • H04B2210/254Distortion or dispersion compensation before the transmission line, i.e. pre-compensation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Transmitters (AREA)
  • Amplifiers (AREA)

Abstract

【課題】無線装置を小型化する。
【解決手段】ベースバンド処理装置10は、光伝送路を介して受信した信号を増幅部で増幅した後に無線送信する無線装置50に対して、送信対象のデータ信号を、光伝送路を介して送信する。また、ベースバンド処理装置10において歪補償部12は、無線装置50の増幅部の出力信号に応じたフィードバック信号を取得し、取得したフィードバック信号に基づいて、無線装置50の増幅部における歪の逆特性に対応する歪補償係数を送信対象のデータ信号に掛け合わせる。
【選択図】図2

Description

本発明は、ベースバンド処理装置、無線装置、及び無線通信システムに関する。
従来、無線基地局装置(以下では、単に「基地局」と呼ぶことがある)には、送信信号の電力を増幅する増幅部が備えられている。基地局では、一般的に、増幅部の電力効率を高めるために、増幅部の飽和領域付近で増幅部を動作させる。しかし、増幅部を飽和領域付近で動作させると非線形歪が増大する。そこで、この非線形歪を抑えて隣接チャネル漏洩電力(ACLR:Adjacent Channel Leakage Ratio)を低減するために、基地局には、非線形歪を補償する歪補償部が備えられる。
歪補償部で用いられる歪補償方式の一つに「プリディストーション(以下では「PD」と呼ぶことがある)方式」がある。PD方式の歪補償部は、増幅部の非線形歪の逆特性を有する歪補償係数を増幅部への入力前の送信ベースバンド信号に予め乗算することで、増幅部の出力の線形性を高めて増幅部の出力の歪を抑圧する。送信ベースバンド信号に歪補償係数を乗算した後の信号は「プリディストーション信号(PD信号)」と呼ばれることがある。よって、PD信号は、増幅部への入力前に、増幅部の非線形歪の逆特性に従って予め歪んだ信号となる。
例えば、PD方式の歪補償部として、複数の歪補償係数が格納されたルックアップテーブル(以下では「LUT」と呼ぶことがある)を有し、送信ベースバンド信号の電力に応じたアドレスをLUTに指定してLUTから歪補償係数を読み出すものがある。LUTに格納された歪補償係数は、参照信号としての送信ベースバンド信号と、増幅部から出力されてフィードバックされた信号(以下では「フィードバック信号」と呼ぶことがある)とを比較して得られる両信号の誤差が最小になるように逐次更新される。
特開2007−96775号公報
ところで、通信システムにおける伝送容量(以下では、「システム容量」と呼ばれることがある)を増大させるために、様々な工夫がなされている。例えば、3GPP LTE(3rd Generation Partnership Project Long Term Evolution)では、「マクロセル」の他に「小セル」を活用してシステム容量を増大させる技術に関する議論が行われている。ここで、「セル」は、1つの基地局装置(以下では、単に「基地局」と呼ばれることがある)の「カバーエリア」と「チャネル周波数」とに基づいて規定される。「カバーエリア」とは、基地局から送信された電波が到達するエリアの全体でもよいし、射程エリアが分割された分割エリア(所謂、セクタ)であってもよい。また、「チャネル周波数」とは、基地局が通信に使用する周波数の一単位であり、中心周波数と帯域幅とに基づいて規定される。また、チャネル周波数は、システム全体に割り当てられている「オペレーティング帯域」の一部である。そして、「マクロセル」は、高い送信電力で送信可能な基地局、つまりカバーエリアの大きい基地局のセルである。また、「小セル」は、低い送信電力で送信する基地局、つまりカバーエリアの小さい基地局のセルである。
そして、小セル化を実現するためには、小セル基地局を多数配置することになる。そこで、基地局をベースバンド処理装置(BBU:Base Band Unit)と無線装置(RRH:Remote Radio Head)とに分け、1つのベースバンド処理装置に複数の無線装置を従属させることが検討されている。そして、基地局の設置自由度を向上させるため、無線装置を小型化することが望まれている。
開示の技術は、上記に鑑みてなされたものであって、無線装置を小型化することができる、ベースバンド処理装置、無線装置、及び無線通信システムを提供することを目的とする。
開示の態様では、ベースバンド処理装置は、光伝送路を介して受信した信号を増幅部で増幅した後に無線送信する無線装置に対して、送信対象のデータ信号を、前記光伝送路を介して送信する。前記ベースバンド処理装置は、取得部と、歪補償部とを有する。前記取得部は、前記増幅部の出力信号に応じたフィードバック信号を取得する。前記歪補償部は、前記取得したフィードバック信号に基づいて、前記増幅部における歪の逆特性に対応する歪補償係数を前記送信対象のデータ信号に掛け合わせる。
開示の態様によれば、無線装置を小型化することができる。
図1は、実施例1の無線通信システムの一例を示すブロック図である。 図2は、実施例1のベースバンド処理装置の一例を示すブロック図である。 図3は、実施例1の歪補償部の一例を示すブロック図である。 図4は、実施例1の無線装置の一例を示すブロック図である。 図5は、実施例2のベースバンド処理装置の一例を示すブロック図である。 図6は、実施例2の無線装置の一例を示すブロック図である。 図7は、実施例2のベースバンド処理装置の処理動作の一例を示すフローチャートである。 図8は、実施例2の無線装置の処理動作の一例を示すフローチャートである。 図9は、実施例3のベースバンド処理装置の一例を示すブロック図である。 図10は、実施例3の無線装置の一例を示すブロック図である。 図11は、実施例3のベースバンド処理装置の処理動作の一例を示すフローチャートである。 図12は、実施例4のベースバンド処理装置の一例を示すブロック図である。 図13は、実施例4の無線装置の一例を示すブロック図である。 図14は、実施例4のベースバンド処理装置の処理動作の一例を示すフローチャートである。 図15は、ベースバンド処理装置のハードウェア構成例を示す図である。 図16は、無線装置のハードウェア構成例を示す図である。
以下に、本願の開示するベースバンド処理装置、無線装置、及び無線通信システムの実施形態を図面に基づいて詳細に説明する。なお、この実施形態により本願の開示するベースバンド処理装置、無線装置、及び無線通信システムが限定されるものではない。また、実施形態において同一の機能を有する構成には同一の符号を付し、重複する説明は省略される。
[実施例1]
[無線通信システムの概要]
図1は、実施例1の無線通信システムの一例を示すブロック図である。図1において、無線通信システム1は、ベースバンド処理装置10と、無線装置50と、端末90とを有する。ベースバンド処理装置10と無線装置50とは、光伝送路L1によって接続されている。ベースバンド処理装置10と無線装置50とは、基地局に含まれる。また、無線装置50と端末90とは、無線によって接続されている。なお、図1では、ベースバンド処理装置10と無線装置50と端末90との数をそれぞれ1つとしているが、これらの数はこれに限定されるものではない。
無線装置50は、ベースバンド処理装置10が送信した端末90宛ての送信対象のデータ信号を、光伝送路L1を介して受信し、受信したデータ信号を後述する増幅部で増幅した後に、端末90へ無線送信する。
また、無線装置50は、増幅部の出力信号に応じた「フィードバック信号」を形成し、形成したフィードバック信号を、光伝送路L1を介してベースバンド処理装置10へ送信する。
ベースバンド処理装置10は、無線装置50から送信されたフィードバック信号を取得し、取得したフィードバック信号に基づいて、「歪補償処理」を実行する。「歪補償処理」とは、後述する無線部における歪の逆特性に対応する歪補償係数を、送信対象のデータ信号に掛け合わせる処理である。
以上のように、無線装置50の増幅部における歪を行う歪補償部が、無線装置50内でなく、ベースバンド処理装置10に設けられている。これにより、無線装置50の小型化及び省電力化を実現することができる。
[ベースバンド処理装置の構成例]
図2は、実施例1のベースバンド処理装置の一例を示すブロック図である。図2において、ベースバンド処理装置10は、ベースバンド部11と、歪補償部12と、高速シリアルインタフェース部13と、光インタフェース部14と、抽出部15とを有する。高速シリアルインタフェース部13は、多重部21と、分離部22とを有する。また、光インタフェース部14は、電気/光変換部23と、光/電気変換部24とを有する。
ベースバンド部11は、入力される送信データに対して符号化処理及び変調処理等のベースバンド処理を行って送信ベースバンド信号を生成し、生成した送信ベースバンド信号In(t)を歪補償部12へ出力する。
歪補償部12は、PD方式の歪補償部であり、複数の電力範囲に対応する複数のアドレスにそれぞれ対応する複数の歪補償係数が記憶されたルックアップテーブル(LUT)を有する。歪補償部12は、送信ベースバンド信号の電力に応じて生成したアドレスに従ってLUTを参照してLUTから読み出した歪補償係数を送信ベースバンド信号に乗算してPD信号Out(t)を生成し、生成したPD信号Out(t)を高速シリアルインタフェース部13へ出力する。また、歪補償部12は、LUTに記憶されている歪補償係数を、参照信号としての送信ベースバンド信号In(t)と、フィードバック信号FB(t)との誤差に基づいて更新する。
図3は、実施例1の歪補償部の一例を示すブロック図である。図3において、歪補償部12は、アドレス算出部31と、LUT32と、乗算部33と、遅延部34,35,36と、比較部37と、補償係数算出部38とを有する。
アドレス算出部31は、送信ベースバンド信号In(t)の電力値及び位相に基づいて、アドレスを算出する。
LUT32は、アドレス算出部31で算出されたアドレスAdr(t)に対応する歪補償係数を歪補償係数テーブルから読み出し、読み出した歪補償係数を乗算部33及び遅延部35へ出力する。また、LUT32は、補償係数算出部38で算出された歪補償係数の更新値及び遅延部34から受け取った更新アドレスを用いて、歪補償係数テーブルを更新する。
例えば、LUT32は、図3に示すように、更新部41と、テーブル記憶部42と、読出部43とを有する。
更新部41は、補償係数算出部38で算出された歪補償係数の更新値及び遅延部34から受け取った更新アドレスを用いて、歪補償係数テーブルを更新する更新処理を実行する。
テーブル記憶部42は、複数のアドレス値にそれぞれ対応する複数の歪補償係数を記憶する「歪補償係数テーブル」を記憶する。
読出部43は、アドレス算出部31で算出されたアドレスAdr(t)に対応する歪補償係数を歪補償係数テーブルから読み出し、読み出した歪補償係数を乗算部33及び遅延部35へ出力する。
乗算部33は、送信ベースバンド信号In(t)とLUT32からの歪補償係数とを乗算し、歪補償処理後の送信ベースバンド信号In(t)(つまり、PD信号Out(t))を高速シリアルインタフェース部13へ出力する。
遅延部34は、アドレスAdr(t)を遅延量d1だけ遅延させ、遅延後のアドレスAdr(t)を更新アドレスとして更新部41へ出力する。遅延量d1は、送信ベースバンド信号In(t)が無線装置50へ送信され、無線装置50から送信ベースバンド信号In(t)に対して送信されたフィードバック信号FB(t)に基づいて歪補償係数の更新値が算出されるまでに掛かるトータルの遅延時間に対応する。
遅延部35は、LUT32から出力された歪補償係数を遅延量d2だけ遅延させ、遅延後の歪補償係数を補償係数算出部38へ出力する。遅延量d2は、送信ベースバンド信号In(t)が無線装置50へ送信され、無線装置50から送信ベースバンド信号In(t)に対して送信されたフィードバック信号FB(t)と送信ベースバンド信号In(t)との差分が算出されるまでに掛かるトータルの遅延時間に対応する。
遅延部36は、参照信号としての送信ベースバンド信号In(t)を遅延量d3だけ遅延させ、遅延後の参照信号を比較部37へ出力する。遅延量d3は、送信ベースバンド信号In(t)が無線装置50へ送信され、無線装置50から送信ベースバンド信号In(t)に対して送信されたフィードバック信号FB(t)が比較部37に入力されるまでに掛かるトータルの遅延時間に対応する。
比較部37は、参照信号としての送信ベースバンド信号In(t)とフィードバック信号FB(t)とを比較して両信号の誤差信号e(t)を算出し、算出した誤差信号e(t)を補償係数算出部38へ出力する。
補償係数算出部38は、比較部37から受け取った誤差信号e(t)と、遅延部35を介して受け取った歪補償係数とに基づいて、歪補償係数の更新値を算出し、算出した歪補償係数の更新値を更新部41へ出力する。
図2の説明に戻り、高速シリアルインタフェース部13は、例えば、シリアルインタフェース規格であるJESD規格に準拠している。高速シリアルインタフェース部13は、歪補償処理後の送信ベースバンド信号In(t)に対してクロック(つまり、タイミング情報)を多重(重畳)し、多重信号を光インタフェース部14へ出力する。また、高速シリアルインタフェース部13は、光インタフェース部14から受け取った多重信号を、クロックとクロック以外の信号とに分離する。図2に示すように、高速シリアルインタフェース部13は、多重部21と、分離部22とを有する。上記の多重処理は、多重部21で行われ、上記の分離処理は、分離部22で行われる。
光インタフェース部14は、電気/光変換部23と、光/電気変換部24とを有する。電気/光変換部23は、高速シリアルインタフェース部13から受け取る多重信号を電気信号から光信号に変換し、得られた光信号を光伝送路L1へ送出する。送出された光信号は、無線装置50へ送信される。光/電気変換部24は、無線装置50から送信された光信号を受信し、受信した光信号を電気信号に変換し、得られた電気信号(つまり、受信電気信号)を分離部22へ出力する。
抽出部15は、分離部22で得られた、クロック以外の信号からフィードバック信号FB(t)を抽出し、抽出したフィードバック信号FB(t)を歪補償部12へ出力する。
[無線装置の構成例]
図4は、実施例1の無線装置の一例を示すブロック図である。図4において、無線装置50は、光インタフェース部51と、高速シリアルインタフェース部52と、抽出部53と、無線送信部54と、カプラ55と、ダウンコンバータ56と、アナログデジタル(A/D)変換部57と、サーキュレータ58と、無線受信部59とを有する。
光インタフェース部51は、光/電気変換部61と、電気/光変換部62とを有する。光/電気変換部61は、ベースバンド処理装置10から送信された光信号を受信し、受信した光信号を電気信号に変換し、得られた電気信号(つまり、受信電気信号)を高速シリアルインタフェース部52へ出力する。電気/光変換部62は、高速シリアルインタフェース部52から受け取る多重信号を電気信号から光信号に変換し、得られた光信号を光伝送路L1へ送出する。送出された光信号は、ベースバンド処理装置10へ送信される。
高速シリアルインタフェース部52は、例えば、シリアルインタフェース規格であるJESD規格に準拠している。高速シリアルインタフェース部52は、光/電気変換部61から受け取った受信電気信号を、クロックとクロック以外の信号とに分離する。高速シリアルインタフェース部52は、A/D変換部57から受け取ったフィードバック信号及び無線受信部59から受け取った受信信号に対してクロック(つまり、タイミング情報)を多重(重畳)し、多重信号を光インタフェース部51へ出力する。図4に示すように、高速シリアルインタフェース部52は、分離部63と、多重部64とを有する。上記の多重処理は、多重部64で行われ、上記の分離処理は、分離部63で行われる。
抽出部53は、分離部63で得られた、クロック以外の信号からデータ信号を抽出し、抽出したデータ信号を無線送信部54へ出力する。
無線送信部54は、抽出部53で抽出されたデータ信号に対して所定の無線処理(デジタルアナログ変換、アップコンバート、増幅等)を施し、得られた無線信号をカプラ55へ出力する。無線送信部54は、図4に示すように、デジタルアナログ(D/A)変換部65と、アップコンバータ66と、増幅部67とを有する。上記のデジタルアナログ変換処理は、デジタルアナログ変換部65で行われ、上記のアップコンバート処理は、アップコンバータ66で行われ、上記の増幅処理は、増幅部67で行われる。
カプラ55は、無線送信部54から出力された無線信号を、サーキュレータ58とダウンコンバータ56とに分配する。これにより、増幅部67の出力信号がダウンコンバータ56及びアナログデジタル変換部57を介してベースバンド処理装置10へフィードバックされる。
ダウンコンバータ56は、カプラ55から入力される信号をダウンコンバートし、ダウンコンバート後の信号をアナログデジタル変換部57へ出力する。
アナログデジタル変換部57は、ダウンコンバート後の信号をアナログ信号からデジタル信号に変換し、変換後のデジタルの信号をフィードバック信号FB(t)として多重部64へ出力する。
サーキュレータ58は、カプラ55から出力された無線信号をアンテナを介して送信する。また、サーキュレータ58は、アンテナを介して受信した信号を無線受信部59へ出力する。
無線受信部59は、サーキュレータ58から受け取った無線信号に対して所定の無線受信処理(ダウンコンバート、アナログデジタル変換等)を施し、得られた受信信号を多重部64へ出力する。
以上のように本実施例によれば、ベースバンド処理装置10は、無線装置50の増幅部67における歪を補償する歪補償部12を有する。
このベースバンド処理装置10の構成により、無線装置50から歪補償部を取り除くことができるので、無線装置50の小型化を実現することができる。
また、無線装置50において、フィードバック信号の形成部としてのダウンコンバータ56及びアナログデジタル変換部57は、増幅部67の出力信号に応じたフィードバック信号を形成し、送信部としての高速シリアルインタフェース部52及び光インタフェース部51は、フィードバック信号を光伝送路を介してベースバンド処理装置10へ送信する。
この無線装置50の構成により、歪補償処理をベースバンド処理装置10で行うことができ、結果として、無線装置50の小型化を実現することができる。
[実施例2]
実施例2は、ベースバンド処理装置と無線装置との間のフレーム同期処理に関する。
[ベースバンド処理装置の構成例]
図5は、実施例2のベースバンド処理装置の一例を示すブロック図である。図5では、図2に示したベースバンド処理装置10の構成に加えて、フレーム同期処理に関わる構成が示されている。
図5において、ベースバンド処理装置10は、リンクアップ制御部111と、基準クロック生成部112,115と、フレーム補正制御部113と、フレームパルス生成部114,116と、フレーム補正部117とを有する。なお、ここでは、基準クロック生成部112,115を異なる機能部として説明しているが、これに限定されるものではなく、1つの機能部によって実現してもよい。同様に、フレームパルス生成部114,116も1つの機能部によって実現してもよい。
リンクアップ制御部111は、下り回線、つまり、ベースバンド処理装置10から無線装置50の方向の回線のリンクアップを制御する。例えば、リンクアップ制御部111は、リンクアップ手順において、Kコードを多重部21へ出力する。このKコードは、クロックが多重されて、無線装置50へ送信される。
また、リンクアップ制御部111は、リンクアップ手順の開始から所定時間経過後に、「開始トリガーパルス」の出力命令を基準クロック生成部112へ出力する。この出力命令によって基準クロック生成部112から「開始トリガーパルス」がフレームパルス生成部114へ出力され、フレームパルス生成部114は、多重部21に対してフレーム毎にフレームパルスを出力する。「開始トリガーパルス」は、例えば、1パルス信号である。
また、リンクアップ制御部111は、フレームパルスの出力が開始されると、フレームパルス生成部114から「リンクアップ要求信号」を受け取り、この「リンクアップ要求信号」に応じてILASパターンを多重部21へ出力する。このILASパターンは、クロックが多重されて、無線装置50へ送信される。
また、リンクアップ制御部111は、ILASパターンの出力後に、フレーム補正制御部113に対して、「補正制御開始命令」を出力する。これにより、フレーム補正制御部113は、フレームパルス生成部114のカウント値を多重部21へ出力する。このカウント値は、無線装置50へ送信される。
基準クロック生成部112は、リンクアップ制御部111から開始トリガーパルスの出力命令を受け取ると、開始トリガーパルスをフレームパルス生成部114へ出力する。
フレームパルス生成部114は、基準クロック生成部112から開始トリガーパルスを受け取ると、フレームパルスの出力を開始する。例えば、フレームパルス生成部114は、カウンタを有し、カウンタのカウント値が1フレーム分の値になる毎に、フレームパルスを多重部21へ出力する。また、フレームパルス生成部114は、フレームパルスの出力を開始すると、上記のリンクアップ要求信号をリンクアップ制御部111へ出力する。
フレーム補正制御部113は、リンクアップ制御部111から補正制御開始命令を受け取ると、フレームパルス生成部114からその時点でのカウント値を取得し、取得したカウント値を含む制御データ信号を多重部21へ出力する。この制御データ信号は、無線装置50へ送信される。
基準クロック生成部115は、分離部22で多重信号から分離されて得られたクロックを受け取ると、「開始トリガーパルス」をフレームパルス生成部116へ出力する。
フレームパルス生成部116は、基準クロック生成部115から開始トリガーパルスを受け取ると、フレームパルスの出力を開始する。例えば、フレームパルス生成部116は、カウンタを有し、カウンタのカウント値が1フレーム分の値になる毎に、フレームパルスを分離部22へ出力する。
フレーム補正部117は、無線装置50から送信され且つ抽出部15で抽出された、制御データ信号を受け取ると、フレームパルス生成部116からその時点のカウント値を取得する。そして、フレーム補正部117は、制御データ信号に含まれている無線装置50のカウント値を基準として、フレームパルス生成部116のカウント値を補正する補正値を算出する。そして、フレーム補正部117は、算出した補正値によってフレームパルス生成部116のカウント値を補正する。例えば、フレーム補正部117は、フレームパルス生成部116のカウント値から制御データ信号に含まれている無線装置50のカウント値を減算することにより、補正値を算出する。
[無線装置の構成例]
図6は、実施例2の無線装置の一例を示すブロック図である。図6では、図4に示した無線装置50の構成に加えて、フレーム同期処理に関わる構成が示されている。また、実施例2の無線装置50のフレーム同期処理に関わる機能部の処理動作は、基本的に、上記の実施例2のベースバンド処理装置10のフレーム同期処理に関わる機能部の処理動作と同じである。
図6において、無線装置50は、リンクアップ制御部151と、基準クロック生成部152,155と、フレーム補正制御部153と、フレームパルス生成部154,156と、フレーム補正部157とを有する。なお、ここでは、基準クロック生成部152,155を異なる機能部として説明しているが、これに限定されるものではなく、1つの機能部によって実現してもよい。同様に、フレームパルス生成部154,156も1つの機能部によって実現してもよい。
リンクアップ制御部151は、上り回線、つまり、無線装置50からベースバンド処理装置10の方向の回線のリンクアップを制御する。例えば、リンクアップ制御部151は、リンクアップ手順において、Kコードを多重部64へ出力する。このKコードは、クロックが多重されて、ベースバンド処理装置10へ送信される。
また、リンクアップ制御部151は、リンクアップ手順の開始から所定時間経過後に、「開始トリガーパルス」の出力命令を基準クロック生成部152へ出力する。この出力命令によって基準クロック生成部152から「開始トリガーパルス」がフレームパルス生成部154へ出力され、フレームパルス生成部154は、多重部64に対してフレーム毎にフレームパルスを出力する。「開始トリガーパルス」は、例えば、1パルス信号である。
また、リンクアップ制御部151は、フレームパルスの出力が開始されると、フレームパルス生成部154から「リンクアップ要求信号」を受け取り、この「リンクアップ要求信号」に応じてILASパターンを多重部64へ出力する。このILASパターンは、クロックが多重されて、ベースバンド処理装置10へ送信される。
また、リンクアップ制御部151は、ILASパターンの出力後に、フレーム補正制御部153に対して、「補正制御開始命令」を出力する。これにより、フレーム補正制御部153は、フレームパルス生成部154のカウント値を多重部64へ出力する。このカウント値は、ベースバンド処理装置10へ送信される。
基準クロック生成部152は、リンクアップ制御部151から開始トリガーパルスの出力命令を受け取ると、開始トリガーパルスをフレームパルス生成部154へ出力する。
フレームパルス生成部154は、基準クロック生成部152から開始トリガーパルスを受け取ると、フレームパルスの出力を開始する。例えば、フレームパルス生成部154は、カウンタを有し、カウンタのカウント値が1フレーム分の値になる毎に、フレームパルスを多重部64へ出力する。また、フレームパルス生成部154は、フレームパルスの出力を開始すると、上記のリンクアップ要求信号をリンクアップ制御部151へ出力する。
フレーム補正制御部153は、リンクアップ制御部151から補正制御開始命令を受け取ると、フレームパルス生成部154からその時点でのカウント値を取得し、取得したカウント値を含む制御データ信号を多重部64へ出力する。この制御データ信号は、ベースバンド処理装置10へ送信される。
基準クロック生成部155は、分離部63で多重信号から分離されて得られたクロックを受け取ると、「開始トリガーパルス」をフレームパルス生成部156へ出力する。
フレームパルス生成部156は、基準クロック生成部155から開始トリガーパルスを受け取ると、フレームパルスの出力を開始する。例えば、フレームパルス生成部156は、カウンタを有し、カウンタのカウント値が1フレーム分の値になる毎に、フレームパルスを分離部63へ出力する。
フレーム補正部157は、ベースバンド処理装置10から送信され且つ抽出部53で抽出された、制御データ信号を受け取ると、フレームパルス生成部156からその時点のカウント値を取得する。そして、フレーム補正部157は、制御データ信号に含まれているベースバンド処理装置10のカウント値を基準として、フレームパルス生成部156のカウント値を補正する補正値を算出する。そして、フレーム補正部157は、算出した補正値によってフレームパルス生成部156のカウント値を補正する。例えば、フレーム補正部157は、フレームパルス生成部156のカウント値から制御データ信号に含まれているベースバンド処理装置10のカウント値を減算することにより、補正値を算出する。
[無線通信システムの動作例]
以上の構成を有する実施例2の無線通信システム1の処理動作の一例について説明する。ここでは、特に、下り回線のフレーム同期処理に関する処理動作について説明する。図7は、実施例2のベースバンド処理装置の処理動作の一例を示すフローチャートである。
ベースバンド処理装置10において、リンクアップ制御部111は、Kコードを多重部21へ出力する(ステップS101)。
基準クロック生成部112は、開始トリガーパルスをフレームパルス生成部114へ出力する(ステップS102)。ここで、基準クロック生成部112は、リンクアップ制御部111から開始トリガーパルスの出力命令を受け取ると、開始トリガーパルスを出力する。リンクアップ制御部111は、リンクアップ手順の開始から所定時間経過後に、「開始トリガーパルス」の出力命令を基準クロック生成部112へ出力する。
フレームパルス生成部114は、基準クロック生成部112から開始トリガーパルスを受け取ると、フレームパルスの出力を開始する(ステップS103)。
フレームパルス生成部114は、フレームパルスの出力を開始すると、リンクアップ要求信号をリンクアップ制御部111へ出力する(ステップS104)。
リンクアップ制御部111は、フレームパルス生成部114からリンクアップ要求信号を受け取ると、ILASパターンを無線装置50へ送信する(ステップS105)。
リンクアップ制御部111は、ILASパターンの出力後に、フレーム補正制御部113に対して、補正制御開始命令を出力する(ステップS106)。
フレーム補正制御部113は、リンクアップ制御部111から補正制御開始命令を受け取ると、フレームパルス生成部114からその時点でのカウント値を取得する(ステップS107)。
フレーム補正制御部113は、取得したカウント値を含む制御データ信号を無線装置50へ送信する(ステップS108)。
図8は、実施例2の無線装置の処理動作の一例を示すフローチャートである。
無線装置50において、基準クロック生成部155は、分離部63で多重信号から分離されて得られたクロックを取得する(ステップS201)。
基準クロック生成部155は、分離部63で多重信号から分離されて得られたクロックを受け取ると、開始トリガーパルスをフレームパルス生成部156へ出力する(ステップS202)。
フレームパルス生成部156は、基準クロック生成部155から開始トリガーパルスを受け取ると、フレームパルスの出力を開始する(ステップS203)。
フレーム補正部157は、ベースバンド処理装置10から送信され且つ抽出部53で抽出された制御データ信号(カウント値を含む)を取得する(ステップS204)。
フレーム補正部157は、制御データ信号を受け取ると、フレームパルス生成部156からその時点のカウント値を取得する(ステップS205)。
フレーム補正部157は、制御データ信号に含まれているベースバンド処理装置10のカウント値と、フレームパルス生成部156のカウント値とに基づいて、補正処理を実行する(ステップS206)。すなわち、フレーム補正部157は、制御データ信号に含まれているベースバンド処理装置10のカウント値を基準として、フレームパルス生成部156のカウント値を補正する補正値を算出する。そして、フレーム補正部157は、算出した補正値によってフレームパルス生成部156のカウント値を補正する。
以上のように本実施例によれば、ベースバンド処理装置10において、フレーム補正部117は、無線装置50のカウンタにおけるカウント値を取得し、取得したカウント値に基づいて、フレームパルス生成部116のカウンタにおけるカウント値を補正する。
このベースバンド処理装置10の構成により、ベースバンド処理装置10の上り回線のフレームタイミングを無線装置50のフレームタイミングに同期させることができる。
また、無線装置50において、フレーム補正制御部153は、フレームパルス生成部154からカウント値を取得し、取得したカウント値を含む制御データ信号を光伝送路を介してベースバンド処理装置10へ送信する。
この無線装置50の構成により、ベースバンド処理装置10の上り回線のフレームタイミングを無線装置50のフレームタイミングに同期させることができる。
また、無線装置50において、フレーム補正部157は、ベースバンド処理装置10のカウンタにおけるカウント値を取得し、取得したカウント値に基づいて、フレームパルス生成部156のカウンタにおけるカウント値を補正する。
この無線装置50の構成により、無線装置50の下り回線のフレームタイミングをベースバンド処理装置10のフレームタイミングに同期させることができる。
また、ベースバンド処理装置10において、フレーム補正制御部113は、フレームパルス生成部114からその時点でのカウント値を取得し、取得したカウント値を含む制御データ信号を光伝送路を介して無線装置50へ送信する。
このベースバンド処理装置10の構成により、無線装置50の下り回線のフレームタイミングをベースバンド処理装置10のフレームタイミングに同期させることができる。
[実施例3]
実施例3は、歪補償処理における遅延補正制御に関する。
[ベースバンド処理装置の構成例]
図9は、実施例3のベースバンド処理装置の一例を示すブロック図である。図9では、図2に示したベースバンド処理装置10の構成に加えて、遅延補正制御に関わる構成が示されている。
図9において、ベースバンド処理装置10は、既知信号生成部211と、ラウンドトリップタイム算出部212と、遅延量補正部213とを有する。
既知信号生成部211は、ランドトリップタイムの測定に用いる既知信号(以下では、「テストデータ信号」と呼ぶことがある)を生成し、生成した既知信号を多重部21へ出力する。また、既知信号生成部211は、既知信号を多重部21へ出力すると同時に、送信タイミングを知らせる「送信タイミング通知信号」をラウンドトリップタイム算出部212へ出力する。
ラウンドトリップタイム算出部212は、既知信号生成部211から送信タイミング通知信号を受け取り、そのタイミング(つまり、送信タイミング)を取得する。そして、ラウンドトリップタイム算出部212は、無線装置50から送信され且つ抽出部15で抽出された「返信信号」を受け取ると、そのタイミング(つまり、受信タイミング)を取得する。そして、ラウンドトリップタイム算出部212は、送信タイミングと受信タイミングとに基づいて、ラウンドトリップタイムを算出する。なお、ラウンドトリップタイム算出部212は、既知信号生成部211から送信タイミング通知信号を受け取ると経過時間の計測を開始し、「返信信号」を受け取ると経過時間の計測を終了し、計測した経過時間をラウンドトリップタイムとしてもよい。
遅延量補正部213は、ラウンドトリップタイム算出部212で取得されたラウンドトリップタイムに基づいて、歪補償部12の遅延部34,35,36における「設定遅延量」を補正する。例えば、遅延量補正部213は、メモリ(図示せず)に「対応テーブル」を保持しており、ラウンドトリップタイム算出部212で取得されたラウンドトリップタイムと「対応テーブル」とに基づいて、補正後の設定遅延量を特定する。「対応テーブル」は、ラウンドトリップタイムの複数の候補値と、各候補値に応じた遅延量とを対応付けて保持している。
[無線装置の構成例]
図10は、実施例3の無線装置の一例を示すブロック図である。
図10において、無線装置50の抽出部53は、分離部63で多重信号から分離されたクロック以外の信号から「テストデータ信号」を抽出し、抽出した「テストデータ信号」を「返信信号」として多重部64へ出力する。この「返信信号」は、ベースバンド処理装置10へ送信される。
[無線通信システムの動作例]
以上の構成を有する実施例3の無線通信システム1の処理動作の一例について説明する。ここでは、特に、ベースバンド処理装置10の処理動作について説明する。図11は、実施例3のベースバンド処理装置の処理動作の一例を示すフローチャートである。
既知信号生成部211は、テストデータ信号を多重部21へ出力することにより、テストデータ信号を無線装置50へ送信する(ステップS301)。
ラウンドトリップタイム算出部212は、送信されたテストデータ信号に対する返信信号を受信する(ステップS302)。
ラウンドトリップタイム算出部212は、送信タイミングと受信タイミングとに基づいて、ラウンドトリップタイムを算出する(ステップS303)。
遅延量補正部213は、ラウンドトリップタイム算出部212で取得されたラウンドトリップタイムに基づいて、歪補償部12の遅延部34,35,36における「設定遅延量」を補正する(ステップS304)。
以上のように本実施例によれば、ベースバンド処理装置10において、既知信号生成部211は、テストデータ信号を、光伝送路L1を介して無線装置50へ送信する。そして、ラウンドトリップタイム算出部212は、テストデータ信号の送信タイミングと、テストデータ信号に応じて無線装置50から送信された返信信号の受信タイミングとに基づいて、ラウンドトリップタイムを算出する。そして、遅延量補正部213は、算出されたラウンドトリップタイムに基づいて、歪補償部12の遅延部34,35,36における設定遅延量を補正する。
このベースバンド処理装置10の構成により、例えば光伝送路L1の長さが変更された場合でも、歪補償処理におけるタイミングを調整することができる。
[実施例4]
実施例4は、光伝送路の状況に応じて、歪補償係数の算出処理及び更新処理の実行非実行を制御する。
[ベースバンド処理装置の構成例]
図12は、実施例4のベースバンド処理装置の一例を示すブロック図である。図12では、図2に示したベースバンド処理装置10の構成に加えて、歪補償処理の実行非実行の制御に関わる構成が示されている。
図12において、ベースバンド処理装置10は、モニタ部311と、歪補償制御部312とを有する。
モニタ部311は、無線装置50から送信され且つ抽出部15で抽出された、既知信号(以下では、「フレーム同期用ビット」と呼ぶことがある)にエラーがあるか否かを判定する。
歪補償制御部312は、モニタ部311でエラーがあると判定された場合、歪補償部12における歪補償係数の算出処理及び更新処理を停止させる。一方、歪補償制御部312は、歪補償係数の算出処理及び更新処理が停止されている状況において、モニタ部311でエラーがないと判定された場合、歪補償部12による歪補償係数の算出処理及び更新処理を開始させる。
[無線装置の構成例]
図13は、実施例4の無線装置の一例を示すブロック図である。図13では、図4に示した無線装置50の構成に加えて、歪補償処理の実行非実行の制御に関わる構成が示されている。
図13において、無線装置50は、既知信号生成部351を有する。
既知信号生成部351は、上記のフレーム同期用ビットを生成し、生成したフレーム同期用ビットを多重部64へ出力する。このフレーム同期用ビットは、例えば、フレームの先頭部にマッピングされて送信される。
[無線通信システムの動作例]
以上の構成を有する実施例4の無線通信システム1の処理動作の一例について説明する。ここでは、特に、ベースバンド処理装置10の処理動作について説明する。図14は、実施例4のベースバンド処理装置の処理動作の一例を示すフローチャートである。
ベースバンド処理装置10において、モニタ部311は、無線装置50から送信され且つ抽出部15で抽出された、フレーム同期用ビットを取得する(ステップS401)。
モニタ部311は、取得したフレーム同期用ビットにエラーがないか判定する(ステップS402)。
取得したフレーム同期用ビットにエラーがない場合(ステップS402肯定)、歪補償制御部312は、歪補償係数の算出処理及び更新処理が停止している状態ではその算出処理及び更新処理を開始させ、歪補償係数の算出処理及び更新処理が動いている状態ではその算出処理及び更新処理を継続させる(ステップS403)。なお、歪補償制御部312は、例えば、複数フレームのフレーム同期用ビットにエラーがない場合に、歪補償係数の算出処理及び更新処理を開始させてもよい。
取得したフレーム同期用ビットにエラーがある場合(ステップS402否定)、歪補償制御部312は、歪補償係数の算出処理及び更新処理が動いている状態ではその算出処理及び更新処理を停止させ、歪補償係数の算出処理及び更新処理が停止している状態ではその算出処理及び更新処理の停止を継続させる(ステップS404)。
ステップS401〜ステップS404の処理は、終了条件が満たされない場合(ステップS405否定)、繰り返し実行される。終了条件が満たされた場合(ステップS405肯定)、図14の処理フローは終了する。終了条件は、例えば、ベースバンド処理装置10の電源がOFFになることである。
以上のように本実施例によれば、ベースバンド処理装置10において、モニタ部311は、無線装置50から送信されたフレーム同期用ビットをモニタする。そして、歪補償制御部312は、モニタ部311によってフレーム同期用ビットにエラーが検出された場合、歪補償部12における歪補償係数の更新処理を停止させる。
このベースバンド処理装置10の構成により、歪補償係数の算出精度が低下する状況において更新処理を停止することができるので、歪補償処理の精度低下を防止することができる。
[他の実施例]
[1]実施例1から実施例4の歪補償部12は、無線装置50の温度に応じて歪補償係数を調整してもよい。
[2]実施例1から実施例4のそれぞれで説明したベースバンド処理装置10の構成は、1つのベースバンド処理装置10に全て設けられてもよい。また、実施例1から実施例4のそれぞれで説明した無線装置50の構成は、1つの無線装置50に全て設けられてもよい。
[3]実施例2及び実施例3で説明したフレーム同期処理及び遅延補正制御処理は、一連のフローで実行されてもよい。すなわち、フレーム同期処理、遅延補正制御処理の順番で実行されてもよい。
[4]実施例1から実施例4で図示した各部の各構成要素は、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各部の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。
さらに、各装置で行われる各種処理機能は、CPU(Central Processing Unit)(又はMPU(Micro Processing Unit)、MCU(Micro Controller Unit)等のマイクロ・コンピュータ)上で、その全部又は任意の一部を実行するようにしてもよい。また、各種処理機能は、CPU(又はMPU、MCU等のマイクロ・コンピュータ)で解析実行するプログラム上、又はワイヤードロジックによるハードウェア上で、その全部又は任意の一部を実行するようにしてもよい。
実施例1から実施例4のベースバンド処理装置及び無線装置は、例えば、次のようなハードウェア構成により実現することができる。
図15は、ベースバンド処理装置のハードウェア構成例を示す図である。図15に示すように、ベースバンド処理装置400は、プロセッサ401と、メモリ402と、光モジュール403とを有する。プロセッサ401の一例としては、CPU、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)等が挙げられる。また、メモリ402の一例としては、SDRAM(Synchronous Dynamic Random Access Memory)等のRAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ等が挙げられる。
そして、実施例1から実施例4のベースバンド処理装置で行われる各種処理機能は、不揮発性記憶媒体などの各種メモリに格納されたプログラムをプロセッサで実行することによって実現してもよい。すなわち、ベースバンド部11と、歪補償部12と、高速シリアルインタフェース部13と、抽出部15と、リンクアップ制御部111と、基準クロック生成部112,115と、フレーム補正制御部113と、フレームパルス生成部114,116と、フレーム補正部117と、既知信号生成部211と、ラウンドトリップタイム算出部212と、遅延量補正部213と、モニタ部311と、歪補償制御部312とによって実行される各処理に対応するプログラムがメモリ402に記録され、各プログラムがプロセッサ401で実行されてもよい。光インタフェース部14は、光モジュール403によって実現される。
なお、ここでは、実施例1から実施例4のベースバンド処理装置で行われる各種処理機能が1つのプロセッサ401によって実行されるものとしたが、これに限定されるものではなく、複数のプロセッサによって実行されてもよい。
図16は、無線装置のハードウェア構成例を示す図である。図16に示すように、無線装置500は、光モジュール501と、プロセッサ502と、メモリ503と、RF回路504とを有する。プロセッサ502の一例としては、CPU、DSP、FPGA等が挙げられる。また、メモリ503の一例としては、SDRAM等のRAM、ROM、フラッシュメモリ等が挙げられる。
そして、実施例1から実施例4の無線装置で行われる各種処理機能は、不揮発性記憶媒体などの各種メモリに格納されたプログラムをプロセッサで実行することによって実現してもよい。すなわち、高速シリアルインタフェース部52と、抽出部53と、リンクアップ制御部151と、基準クロック生成部152,155と、フレーム補正制御部153と、フレームパルス生成部154,156と、フレーム補正部157と、既知信号生成部351とによって実行される各処理に対応するプログラムがメモリ503に記録され、各プログラムがプロセッサ502で実行されてもよい。また、無線送信部54と、カプラ55と、ダウンコンバータ56と、A/D変換部57と、サーキュレータ58と、無線受信部59とは、RF回路504によって実現される。また、光インタフェース部51は、光モジュール501によって実現される。
なお、ここでは、実施例1から実施例4の無線装置で行われる各種処理機能が1つのプロセッサ502によって実行されるものとしたが、これに限定されるものではなく、複数のプロセッサによって実行されてもよい。
1 無線通信システム
10 ベースバンド処理装置
11 ベースバンド部
12 歪補償部
13,52 高速シリアルインタフェース部
14,51 光インタフェース部
15,53 抽出部
21,64 多重部
22,63 分離部
23,62 電気/光変換部
24,61 光/電気変換部
31 アドレス算出部
33 乗算部
34,35,36 遅延部
37 比較部
38 補償係数算出部
41 更新部
42 テーブル記憶部
43 読出部
50 無線装置
54 無線送信部
55 カプラ
56 ダウンコンバータ
57 アナログデジタル変換部
58 サーキュレータ
59 無線受信部
65 デジタルアナログ変換部
66 アップコンバータ
67 増幅部
90 端末
111,151 リンクアップ制御部
112,115,152,155 基準クロック生成部
113,153 フレーム補正制御部
114,116,154,156 フレームパルス生成部
117,157 フレーム補正部
211,351 既知信号生成部
212 ラウンドトリップタイム算出部
213 遅延量補正部
311 モニタ部
312 歪補償制御部

Claims (9)

  1. 光伝送路を介して受信した信号を増幅部で増幅した後に無線送信する無線装置に対して、送信対象のデータ信号を、前記光伝送路を介して送信するベースバンド処理装置であって、
    前記増幅部の出力信号に応じたフィードバック信号を取得する取得部と、
    前記取得したフィードバック信号に基づいて、前記増幅部における歪の逆特性に対応する歪補償係数を前記送信対象のデータ信号に掛け合わせる歪補償部と、
    を具備することを特徴とするベースバンド処理装置。
  2. 前記光伝送路を介して前記無線装置から送信された第1の既知信号をモニタするモニタ部と、
    前記モニタ部によって前記第1の既知信号にエラーが検出された場合、前記歪補償部における歪補償係数の更新処理を停止させる歪補償制御部、
    をさらに具備することを特徴とする請求項1に記載のベースバンド処理装置。
  3. 第2の既知信号を、前記光伝送路を介して前記無線装置へ送信する送信部と、
    前記第2の既知信号の送信タイミングと、前記第2の既知信号に対応し且つ前記無線装置から前記光伝送路を介して送信された返信信号の受信タイミングとに基づいて、ラウンドトリップタイムを算出する算出部と、
    前記算出したラウンドトリップタイムに基づいて、前記歪補償部に含まれる遅延部の遅延時間を補正する遅延補正部と、
    をさらに具備することを特徴とする請求項1又2に記載のベースバンド処理装置。
  4. 自装置内のフレームタイミング信号を、カウンタが所定値をカウントする毎に出力する出力部と、
    前記無線装置のカウンタにおけるカウント値を取得し、前記取得したカウント値に基づいて、前記出力部のカウンタにおけるカウント値を補正するフレーム補正部と、
    を具備することを特徴とする請求項1から3のいずれか一項に記載のベースバンド処理装置。
  5. 自装置内のフレームタイミング信号を、カウンタが所定値をカウントする毎に出力する出力部と、
    前記カウンタにおけるカウント値を前記光伝送路を介して前記無線装置へ送信するフレーム補正制御部と、
    を具備することを特徴とする請求項1から3のいずれか一項に記載のベースバンド処理装置。
  6. ベースバンド処理装置から送信され且つ光伝送路を介して受信した信号を増幅した後に無線送信する無線装置であって、
    前記受信した信号を増幅する増幅部と、
    前記増幅部の出力信号に応じたフィードバック信号を形成する形成部と、
    前記形成したフィードバック信号を、前記光伝送路を介して前記ベースバンド処理装置へ送信する送信部と、
    を具備することを特徴とする無線装置。
  7. 自装置内のフレームタイミング信号を、カウンタが所定値をカウントする毎に出力する出力部と、
    前記ベースバンド処理装置のカウンタにおけるカウント値を取得し、前記取得したカウント値に基づいて、前記出力部のカウンタにおけるカウント値を補正するフレーム補正部と、
    を具備することを特徴とする請求項6に記載の無線装置。
  8. 自装置内のフレームタイミング信号を、カウンタが所定値をカウントする毎に出力する出力部と、
    前記カウンタにおけるカウント値を、前記光伝送路を介して前記ベースバンド処理装置へ送信するフレーム補正制御部と、
    を具備することを特徴とする請求項6に記載の無線装置。
  9. 送信対象のデータ信号を、光伝送路を介して送信するベースバンド処理装置と、前記光伝送路を介して受信したデータ信号を増幅部で増幅した後に無線送信する無線装置とを有する無線通信システムであって、
    前記ベースバンド処理装置は、
    前記増幅部の出力信号に応じたフィードバック信号を取得する取得部と、
    前記取得したフィードバック信号に基づいて、前記増幅部における歪みの逆特性に対応する歪補償係数を前記送信対象のデータ信号に掛け合わせる歪補償部と、
    を具備し、
    前記無線装置は、
    前記受信したデータ信号を増幅する増幅部と、
    前記増幅部の出力信号に応じたフィードバック信号を形成する形成部と、
    前記形成したフィードバック信号を、前記光伝送路を介して前記ベースバンド処理装置へ送信する送信部と、
    を具備する、
    ことを特徴とする無線通信システム。
JP2014212086A 2014-10-16 2014-10-16 ベースバンド処理装置、無線装置、及び無線通信システム Pending JP2016082402A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014212086A JP2016082402A (ja) 2014-10-16 2014-10-16 ベースバンド処理装置、無線装置、及び無線通信システム
US14/827,040 US20160112134A1 (en) 2014-10-16 2015-08-14 Wireless communication system, baseband processing device, and wireless device
US15/418,267 US10020887B2 (en) 2014-10-16 2017-01-27 Wireless communication system, baseband processing device, and wireless device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014212086A JP2016082402A (ja) 2014-10-16 2014-10-16 ベースバンド処理装置、無線装置、及び無線通信システム

Publications (1)

Publication Number Publication Date
JP2016082402A true JP2016082402A (ja) 2016-05-16

Family

ID=55749899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014212086A Pending JP2016082402A (ja) 2014-10-16 2014-10-16 ベースバンド処理装置、無線装置、及び無線通信システム

Country Status (2)

Country Link
US (2) US20160112134A1 (ja)
JP (1) JP2016082402A (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016092491A (ja) * 2014-10-30 2016-05-23 富士通株式会社 無線送信システム及び歪み補償方法
KR102388504B1 (ko) * 2015-12-18 2022-04-21 주식회사 쏠리드 광 전송 지연 보상 방법 및 장치
US10404499B2 (en) * 2016-12-22 2019-09-03 Intel Corporation Dispersion compensation for waveguide communication channels
US11310869B2 (en) * 2017-09-27 2022-04-19 Apple Inc. RF radiohead with optical interconnection to baseband processor
US10505633B2 (en) * 2018-04-30 2019-12-10 Huawei Technologies Co., Ltd. Method and system for frequency shifted feedback path
JP7196749B2 (ja) * 2019-04-12 2022-12-27 日本電信電話株式会社 多重伝送システム及び多重伝送方法
CN110661573B (zh) * 2019-09-27 2020-12-08 京信通信系统(中国)有限公司 一种rof通信远端机及rof系统
CN113395115B (zh) * 2020-03-11 2022-12-27 华为技术有限公司 一种光载无线通信系统和非线性补偿方法
CN113595642B (zh) * 2020-04-30 2022-10-18 华为技术有限公司 通信设备和通信系统
EP4037207A1 (en) * 2021-01-28 2022-08-03 Nokia Solutions and Networks Oy Radio apparatus and system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964780A (ja) * 1995-08-18 1997-03-07 Fujitsu Ltd 無線通信用基地局
JP2002232305A (ja) * 2001-01-31 2002-08-16 Fujitsu Ltd 故障判定機能を備えた非線形歪補償送信装置
JP2003503942A (ja) * 1999-01-15 2003-01-28 エアバイクイティー インコーポレイテッド 音声通信ネットワークにおける同期のためのインバンド信号処理
JP2004336291A (ja) * 2003-05-06 2004-11-25 Nippon Telegr & Teleph Corp <Ntt> 非線形歪補償装置
JP2010016644A (ja) * 2008-07-03 2010-01-21 Ntt Docomo Inc 無線基地局装置、無線通信システム及び遅延補正方法
JP2010226460A (ja) * 2009-03-24 2010-10-07 Fujitsu Ltd 無線基地局装置及びその同期方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100376298B1 (ko) * 1999-09-13 2003-03-17 가부시끼가이샤 도시바 무선통신시스템
JP2001267990A (ja) * 2000-03-21 2001-09-28 Matsushita Electric Ind Co Ltd アレイアンテナ基地局装置
US7228077B2 (en) * 2000-05-12 2007-06-05 Forster Energy Llc Channel gain control for an optical communications system utilizing frequency division multiplexing
JP2002164846A (ja) * 2000-11-28 2002-06-07 Nec Corp 光伝送システム
US7058311B1 (en) * 2002-03-15 2006-06-06 Xtera Communications, Inc. System and method for dispersion compensation in an optical communication system
US7756421B2 (en) * 2002-10-03 2010-07-13 Ciena Corporation Electrical domain compensation of non-linear effects in an optical communications system
EP1664824B1 (en) 2003-09-02 2015-01-14 SiRF Technology, Inc. Satellite positioning receiver and method of communicating between the signal processing and FFT subsystems of said satellite positioning receiver
JP4528236B2 (ja) * 2005-09-29 2010-08-18 株式会社日立製作所 無線基地局装置および通信方法
JP5131026B2 (ja) 2008-05-20 2013-01-30 富士通株式会社 無線基地局システム並びに制御装置及び無線装置
JP5148422B2 (ja) 2008-09-09 2013-02-20 株式会社日立国際電気 無線装置
JP5482561B2 (ja) * 2010-08-13 2014-05-07 富士通株式会社 歪補償増幅装置及び歪補償方法
JP5516378B2 (ja) * 2010-12-13 2014-06-11 富士通株式会社 歪補償装置、歪補償方法、及び無線装置
JP5861521B2 (ja) * 2012-03-19 2016-02-16 富士通株式会社 送信装置及びルックアップテーブルの更新方法
JP6015387B2 (ja) * 2012-11-29 2016-10-26 富士通株式会社 遅延量推定装置、及び、遅延量推定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964780A (ja) * 1995-08-18 1997-03-07 Fujitsu Ltd 無線通信用基地局
JP2003503942A (ja) * 1999-01-15 2003-01-28 エアバイクイティー インコーポレイテッド 音声通信ネットワークにおける同期のためのインバンド信号処理
JP2002232305A (ja) * 2001-01-31 2002-08-16 Fujitsu Ltd 故障判定機能を備えた非線形歪補償送信装置
JP2004336291A (ja) * 2003-05-06 2004-11-25 Nippon Telegr & Teleph Corp <Ntt> 非線形歪補償装置
JP2010016644A (ja) * 2008-07-03 2010-01-21 Ntt Docomo Inc 無線基地局装置、無線通信システム及び遅延補正方法
JP2010226460A (ja) * 2009-03-24 2010-10-07 Fujitsu Ltd 無線基地局装置及びその同期方法

Also Published As

Publication number Publication date
US10020887B2 (en) 2018-07-10
US20170141850A1 (en) 2017-05-18
US20160112134A1 (en) 2016-04-21

Similar Documents

Publication Publication Date Title
JP2016082402A (ja) ベースバンド処理装置、無線装置、及び無線通信システム
EP3631979B1 (en) Digital predistortion for advanced antenna system
US11777457B2 (en) Circuit and a method for generating a radio frequency signal
KR20150129731A (ko) 내부 전력 증폭기 특성화를 이용하는 포락선 추적 시스템
CA2956847A1 (en) Power amplifier, radio remote unit, and base station
US20160028421A1 (en) Wireless communication system, distortion compensation device, and distortion compensation method
US20160353394A1 (en) Radio communication device
JP2017028373A (ja) 無線通信装置
US20180115288A1 (en) Arithmetic method, base station device, and arithmetic circuit
WO2016090947A1 (zh) 一种实现功率控制的方法及装置
US20170310285A1 (en) Signal Amplification Processing Method and Apparatus
WO2015154574A1 (zh) 功放处理方法及装置
WO2016058375A1 (zh) 一种调整增益的方法和装置
US9966906B2 (en) Radio apparatus and abnormality detecting method
US9813028B2 (en) Wireless device
WO2023160783A1 (en) Concurrent digital post-distortion of multiple signals
US11909695B2 (en) Repeater and method of operation thereof
JP6264149B2 (ja) 無線装置及び無線アクセスシステム
US9838988B2 (en) Device and method for time delay fine-tuning UTP femto distribution and relay
JP2013247501A (ja) 電力増幅装置
JP2017098685A (ja) 歪補償装置及び歪補償方法
JP5613454B2 (ja) 無線通信装置
JP5016435B2 (ja) 歪補償装置
US9515614B2 (en) Amplifier device and wireless communication device
JP5925729B2 (ja) 無線通信装置および干渉軽減制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181218