[go: up one dir, main page]

JP2016079903A - 内燃機関の排気浄化装置の故障判定装置 - Google Patents

内燃機関の排気浄化装置の故障判定装置 Download PDF

Info

Publication number
JP2016079903A
JP2016079903A JP2014212539A JP2014212539A JP2016079903A JP 2016079903 A JP2016079903 A JP 2016079903A JP 2014212539 A JP2014212539 A JP 2014212539A JP 2014212539 A JP2014212539 A JP 2014212539A JP 2016079903 A JP2016079903 A JP 2016079903A
Authority
JP
Japan
Prior art keywords
nox
reducing agent
nox catalyst
catalyst
addition valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014212539A
Other languages
English (en)
Inventor
憲治 古井
Kenji Furui
憲治 古井
徹 木所
Toru Kidokoro
徹 木所
大河 萩本
Taiga Hagimoto
大河 萩本
有史 松本
Yuji Matsumoto
有史 松本
昭文 魚住
Akifumi Uozumi
昭文 魚住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014212539A priority Critical patent/JP2016079903A/ja
Publication of JP2016079903A publication Critical patent/JP2016079903A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

【課題】複数の添加弁を個別に制御できない場合において、コストアップを抑制しつつどの選択還元型NOx触媒に異常があるのかを精度よく判定する。
【解決手段】第一添加弁と、第一選択還元型NOx触媒と、第二添加弁と、第二選択還元型NOx触媒と、NOxセンサと、を排気通路に順に備え、触媒の異常判定を行うときには、第一選択還元型NOx触媒に流入するNOxの量に基づいて決定した還元剤の供給量よりも、第一添加弁及び第二添加弁からの還元剤の供給量を増加させ、第一添加弁及び第二添加弁からの還元剤の供給量を増加させた時点から所定時間の経過時にNOxセンサにより検出されるNOx濃度に基づいて算出されるNOx浄化率が、判定閾値以上であれば第一選択還元型NOx触媒が異常であり、判定閾値未満であれば第二選択還元型NOx触媒が異常であると判定する。
【選択図】図7

Description

本発明は、内燃機関の排気浄化装置の故障判定装置に関する。
内燃機関からの排気中に含まれるNOxを、アンモニアを還元剤として使用することで浄化する選択還元型NOx触媒(以下、単に「NOx触媒」という。)が知られている。このNOx触媒よりも上流側には、排気中にアンモニア又はアンモニアの前駆体を供給する添加弁等が設置される。アンモニアの前駆体としては、尿素を例示できる。以下、アンモニアの前駆体またはアンモニアをまとめて「還元剤」ともいう。
ここで、内燃機関の排気通路にNOx触媒を直列に2つ設け、且つ、夫々のNOx触媒の上流に還元剤を添加する添加弁等を備えることが知られている(例えば、特許文献1参照。)。
特開2011−202620号公報
ここで、NOx触媒及び添加弁を複数備える場合に、夫々の添加弁を個別に制御しようとすると制御が複雑になる虞がある。一方、同じ制御で夫々の添加弁を操作することにより制御を簡素化することができる。しかし、添加弁を個別に制御することができない場合には、一方のNOx触媒に異常があっても、どちらのNOx触媒に異常があるのか判定することが困難となる。すなわち、どちらのNOx触媒に異常があったとしても、システム全体としてのNOx浄化率が同じように低下するため、NOx浄化率に基づいてどちらのNOx触媒に異常があるのか判定することは困難である。また、夫々のNOx触媒の下流側にNOxセンサを設けることにより、夫々のNOx触媒におけるNOx浄化率を算出することができるため、この場合にはどちらのNOx触媒が異常であるか判定することができる。しかし、この場合にはNOxセンサを複数取り付ける必要があるため、コストアップとなる。
本発明は、上記したような問題点に鑑みてなされたものであり、その目的は、複数の添加弁を個別に制御できない場合において、コストアップを抑制しつつどの選択還元型NOx触媒に異常があるのかを精度よく判定することにある。
上記課題を解決するために本発明は、内燃機関の排気通路に設けられ該排気通路内に還元剤を供給する第一添加弁と、前記第一添加弁よりも下流の排気通路に設けられ吸着している還元剤によりNOxを選択還元する第一選択還元型NOx触媒と、前記第一選択還元型NOx触媒よりも下流の排気通路に設けられ該排気通路内に還元剤を供給する第二添加弁と、前記第二添加弁よりも下流の排気通路に設けられ吸着している還元剤によりNOxを選択還元する第二選択還元型NOx触媒と、前記第二選択還元型NOx触媒から流れ出る排気中のNOx濃度を検出するNOxセンサと、還元剤の供給に異常が生じているかを判定する供給異常判定手段と、前記第一選択還元型NOx触媒に流入するNOxの量に基づいて還元剤の供給量を決定し、前記第一添加弁及び前記第二添加弁を同じ指示により操作する制御装置と、を備え、前記供給異常判定手段により還元剤の供給に異常が生じてい
ないと判定された場合に、前記第一選択還元型NOx触媒の異常か、前記第二選択還元型NOx触媒の異常か、を判定する内燃機関の排気浄化装置の故障判定装置であって、前記制御装置は、前記第一選択還元型NOx触媒及び前記第二選択還元型NOx触媒が正常であるか否の判定を行うときには、前記第一選択還元型NOx触媒に流入するNOxの量に基づいて決定した還元剤の供給量よりも、前記第一添加弁及び前記第二添加弁からの還元剤の供給量を増加させ、前記第一添加弁及び前記第二添加弁からの還元剤の供給量を増加させた時点から所定時間の経過時に前記NOxセンサにより検出されるNOx濃度に基づいて算出されるNOx浄化率が、判定閾値以上であれば前記第一選択還元型NOx触媒が異常であり、前記判定閾値未満であれば第二選択還元型NOx触媒が異常であると判定する。
本発明に係る第一選択還元型NOx触媒(以下、第一NOx触媒ともいう。)または第二選択還元型NOx触媒(以下、第二NOx触媒ともいう。)の異常とは、該第一NOx触媒または第二NOx触媒の一方の触媒の何れか一方の触媒のNOx浄化率が許容値未満となること、または、第一NOx触媒または第二NOx触媒の何れか一方の触媒が取り外されたことをいう。第一添加弁及び第二添加弁は、排気中に例えば尿素水またはアンモニアを還元剤として供給する。
第一添加弁及び第二添加弁は制御装置により同じ指示により操作されるため、両添加弁で同じ制御が行われる。このため、夫々の添加弁を個別に制御することはできない。内燃機関から排出されるNOx量に応じた還元剤を第一添加弁及び第二添加弁から供給するような通常の制御(以下、通常制御という。)を行うように第一添加弁及び第二添加弁を操作した場合には、どちらのNOx触媒が異常であっても、システム全体のNOx浄化率が低下する。なお、通常制御を行うときの還元剤供給量は、システムが正常である場合において、第一NOx触媒及び第二NOx触媒が吸着している還元剤量に基づいて、NOx浄化率が目標範囲内となるように決定される。この通常制御が行われている場合には、一方のNOx触媒が異常であっても他方のNOx触媒でNOxを浄化することができるため、システム全体としてのNOx浄化率は0にはならない。さらに、第一NOx触媒が異常であっても、または、第二NOx触媒が異常であっても、同じようなNOx浄化率になり得る。したがって、通常制御を行っているときには、第一NOx触媒または第二NOx触媒のどちらの触媒が異常であるのかNOx浄化率に基づいて判定することが困難となる。
本発明では、第一NOx触媒または第二NOx触媒のどちらの触媒が異常であるのかを判定するために、還元剤供給量を通常制御よりも増加させたときのNOx浄化率に着目した。なお、増加後の還元剤供給量を以下では「判定供給量」という。このときのNOx浄化率は、NOxセンサにより検出されるNOx濃度に基づいて算出されるNOx浄化率であり、システム全体としてのNOx浄化率をいう。NOx浄化率は、第一NOx触媒に流入する排気中のNOx濃度と、NOxセンサにより検出されるNOx濃度と、に基づいて算出することができる。
ここで、第一NOx触媒または第二NOx触媒が異常の場合には、異常の触媒に判定供給量の還元剤を供給することにより、該異常の触媒においては早期に還元剤に関する平衡状態となる。なお、還元剤に関する平衡状態とは、触媒において還元剤の吸着量と脱離量とが等しくなった状態をいい、触媒に還元剤を供給しても還元剤吸着量が増加しない状態をいう。異常の触媒において還元剤に関する平衡状態となった後には、還元剤を供給しても異常の触媒においては還元剤の吸着量が増加せず、触媒から還元剤が流出する。一方、正常の触媒においては、異常の触媒よりも吸着し得る還元剤量が多いため、還元剤供給量を増加しても、その増加の影響が表れるまでの時間が異常の触媒よりも長くなる。
すなわち、第一NOx触媒が異常の場合には、判定供給量の還元剤を供給することによ
り、第一NOx触媒から早期に還元剤が流出する。しかし、第二NOx触媒は正常であるため、第一NOx触媒から流出する還元剤及び第二添加弁から供給される還元剤が第二NOx触媒に吸着される。このため、第二NOx触媒から還元剤が流出するまでには、ある程度の時間がかかる。ここで、NOxセンサは、NOxのほかにアンモニアも検出するため、排気中にアンモニアが存在していると、NOxセンサの検出値が大きくなる。このNOxセンサの検出値に基づいてNOx浄化率を算出すると、NOx浄化率が、見かけ上、低くなってしまう。したがって、第二NOx触媒から還元剤が流出すると、NOxセンサの検出値に基づいて算出されるNOx浄化率は低下する。第二NOx触媒から還元剤が流出するまでの時間が比較的長ければ、NOx浄化率が低下するまでの時間も比較的長くなる。
一方、第二NOx触媒が異常の場合には、判定供給量の還元剤を供給することにより、第二NOx触媒から早期に還元剤が流出する。そして、この第二NOx触媒から流出する還元剤は、NOxセンサに検出される。このため、第一NOx触媒が異常の場合よりも第二NOx触媒が異常の場合のほうが、NOxセンサにより還元剤が検出されるまので時間が短い。したがって、第一NOx触媒が異常の場合よりも、第二NOx触媒が異常の場合のほうが、NOx浄化率が低下するまでの時間が短い。
このように、第一添加弁及び第二添加弁からの還元剤の供給量を増加させた時点(以下、指示時点ともいう。)から所定時間の経過時には、第一NOx触媒が異常の場合と、第二NOx触媒が異常の場合とで、NOx浄化率に差が生じる。したがって、このときのNOx浄化率に基づいて、第一NOx触媒または第二NOx触媒のどちらの触媒が異常であるのか判定することができる。
なお、所定時間は、指示時点から、第一NOx触媒が異常である場合と、第二NOx触媒が異常である場合と、でNOx浄化率に差が生じるまでの時間とすることができる。例えば、所定時間は、指示時点から、異常の触媒において還元剤に関する平衡状態になるまでの時間としてもよい。この所定時間は、判定供給量によって変えてもよい。例えば判定供給量が多いほど、異常触媒において還元剤に関する平衡状態に達するまでの時間が短くなるため、所定時間を短くしてもよい。
ここで、第一NOx触媒に異常がある場合において、還元剤供給量を判定供給量としてから所定時間経過後には、第一NOx触媒から流出した還元剤が第二NOx触媒に吸着されるため、第二NOx触媒から還元剤が流出することによるNOx浄化率の低下はほとんどない。また、第一NOx触媒に異常があったとしても、第一NOx触媒及び第二NOx触媒には過剰の還元剤が供給されるため、各触媒におけるNOx浄化率が上昇し得る。
一方、第二NOx触媒に異常がある場合にはおいて、還元剤供給量を判定供給量としてから所定時間経過後には、第二NOx触媒から流出した還元剤がNOxセンサに検出されるため、NOx浄化率が低下する。なお、還元剤の過剰供給によるNOx浄化率の上昇分よりも、第二NOx触媒から還元剤が流出することによるNOx浄化率の低下分のほうが大きい。
このように、還元剤供給量を判定供給量としてから所定時間経過後のNOx浄化率は、第一NOx触媒が異常の場合には比較的高くなり、第二NOx触媒が異常の場合には比較的低くなるため、第一NOx触媒が異常の場合と、第二NOx触媒が異常の場合と、のNOx浄化率の境界として判定閾値を設定しておけば、NOx浄化率と判定閾値とを比較することにより、どちらの触媒が異常であるのか判定することができる。例えば、第一NOx触媒が異常の場合には、指示時点から所定時間経過後のNOx浄化率が判定閾値以上となる。一方、第二NOx触媒が異常の場合には、指示時点から所定時間経過後のNOx浄
化率が判定閾値未満となる。
判定閾値は、システム全体が正常である場合のNOx浄化率よりも小さな値であって、例えば還元剤供給量を判定供給量とする直前のNOx浄化率とすることができる。すなわち、還元剤供給量を判定供給量とした場合に、第二NOx触媒が異常であれば、第二NOx触媒から還元剤が流出して、NOx浄化率が低下するため、低下する前のNOx浄化率を判定閾値とすることができる。
このようにして、第一NOx触媒または第二NOx触媒のどちらの触媒が異常であるのか判定することができる。
本発明によれば、複数の添加弁を個別に制御できない場合において、コストアップを抑制しつつどの選択還元型NOx触媒に異常があるのかを精度よく判定することができる。
実施例に係る内燃機関と、その吸気系及び排気系と、の概略構成を示す図である。 通常制御時における、システムが正常の場合、第一NOx触媒が異常の場合、及び、第二NOx触媒が異常の場合のNOx浄化率を示した図である。 選択還元型NOx触媒の劣化の度合いと、該選択還元型NOx触媒から流出する還元剤量との関係を示した図である。 第一NOx触媒または第二NOx触媒が異常の場合に、増量制御時において、指示時点から、異常の触媒において還元剤に関する平衡状態になるまでの時間(所定時間)が経過したときの、第一NOx触媒の異常、及び、第二NOx触媒の異常の夫々の場合におけるNOx浄化率を示した図である。 増量制御時における第一NOx触媒が異常である場合の各触媒からの還元剤流出量、及び、NOx浄化率の推移の一例を示したタイムチャートである。 増量制御時における第二NOx触媒が異常である場合の各触媒からの還元剤流出量、及び、NOx浄化率の推移の一例を示したタイムチャートである。 実施例に係る異常判定のフローを示したフローチャートである。
以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
(実施例)
図1は、本実施例に係る内燃機関と、その吸気系及び排気系と、の概略構成を示す図である。内燃機関1は車両駆動用のディーゼルエンジンである。内燃機関1には排気通路2が接続されている。排気通路2には、排気の流れ方向で上流側から順に、第一添加弁41、第一NOx触媒31、第二添加弁42、第二NOx触媒32が設けられている。第一NOx触媒31及び第二NOx触媒32は、アンモニアを還元剤として排気中のNOxを選択還元する選択還元型NOx触媒である。なお、本実施例においては第一NOx触媒31が、本発明における第一選択還元型NOx触媒に相当する。また、本実施例においては第二NOx触媒32が、本発明における第二選択還元型NOx触媒に相当する。
第一添加弁41及び第二添加弁42は、還元剤供給装置4の一部である。還元剤供給装置4は、第一添加弁41及び第二添加弁42の他にも、尿素タンク43、還元剤供給通路
44、ポンプ45、還元剤量センサ46、還元剤濃度センサ47、還元剤流量センサ48を備えている。
尿素タンク43は、尿素水を貯留している。尿素水は、排気の熱または第一NOx触媒31、第二NOx触媒32からの熱により加水分解されてアンモニアとなり、第一NOx触媒31または第二NOx触媒32に吸着する。このアンモニアは、第一NOx触媒31または第二NOx触媒32において還元剤として利用される。還元剤供給通路44は、一端が尿素タンク43に接続され、他端が二つに分かれて第一添加弁41と第二添加弁42とに接続されている。還元剤供給通路44は、第一添加弁41及び第二添加弁42に尿素水を供給している。還元剤供給通路44が2つに分かれる箇所よりも尿素タンク43側の該還元剤供給通路44の途中に、尿素水を第一添加弁41及び第二添加弁42に向けて吐出するポンプ45が設けられる。還元剤量センサ46は、尿素タンク43に貯留されている尿素水の量を検出する。還元剤濃度センサ47は、尿素タンク43に貯留されている尿素水の濃度を検出する。還元剤流量センサ48は、ポンプ45よりも下流で且つ還元剤供給通路44が分岐する箇所よりも上流において、還元剤の流量を検出する。なお、本実施例では、アンモニア及び尿素水を還元剤という。
さらに、第一添加弁41よりも上流には、第一NOx触媒31に流れ込む排気中のNOxを検知する第一NOxセンサ11が設けられている。また、第二NOx触媒32よりも下流には、第二NOx触媒32から流れ出る排気中のNOxを検知する第二NOxセンサ12が設けられている。なお、第一NOxセンサ11及び第二NOxセンサ12は、NOxと同じようにアンモニアも検知してしまう。また、内燃機関1には、吸気通路6が接続されている。吸気通路6の途中には、内燃機関1の吸入空気量を検知するエアフローメータ16が取り付けられている。
そして、内燃機関1には電子制御ユニットであるECU10が併設されている。ECU10は、内燃機関1の運転状態や排気浄化装置等を制御する。ECU10には、上述した第一NOxセンサ11、第二NOxセンサ12、エアフローメータ16の他、クランクポジションセンサ14及びアクセル開度センサ15が電気的に接続され、各センサの出力値がECU10に渡される。なお、本実施例においてはECU10が、本発明における制御装置に相当する。
ECU10は、クランクポジションセンサ14の検知に基づく機関回転速度や、アクセル開度センサ15の検知に基づく機関負荷等の内燃機関1の運転状態を把握可能である。なお、本実施例では、第一NOx触媒31に流れ込む排気中のNOx濃度は第一NOxセンサ11によって検知可能であるが、内燃機関1から排出される排気中(第一NOx触媒31に浄化される前の排気中であり、すなわち第一NOx触媒31に流れ込む排気中)のNOx濃度は、内燃機関1の運転状態と関連性を有することから、上記内燃機関1の運転状態に基づいて、推定することも可能である。
また、ECU10は、第一添加弁41及び第二添加弁42に対して、同じ信号を送って、第一添加弁41及び第二添加弁42を制御する。すなわち、ECU10は、第一添加弁41及び第二添加弁42に対して、弁の開閉に関する同じ指示をする。したがって、第一添加弁41と第二添加弁42とは同時期に還元剤を供給する。ECU10は、第一NOx触媒31に流入するNOxの量に対し、システム全体としてのNOx浄化率が目標範囲内となるように、第一添加弁41及び第二添加弁42から還元剤を供給する通常制御を実施する。すなわち、第一添加弁41及び第二添加弁42からは、内燃機関1から排出されるNOxの量に応じて還元剤が供給される。なお、通常制御では、第一NOx触媒31及び第二NOx触媒32の夫々の触媒において、還元剤吸着量を推定している。通常制御時には、各触媒の還元剤吸着量が一定となるように、第一添加弁41及び第二添加弁42から
還元剤を供給してもよい。第一NOx触媒31の還元剤吸着量は、第一添加弁41からの還元剤供給量、第一NOx触媒31のNOx浄化率、第一NOx触媒31から流出する還元剤量に基づいて、モデルを用いて算出される。また、第二NOx触媒31の還元剤吸着量は、第二添加弁42からの還元剤供給量、第二NOx触媒32のNOx浄化率、第二NOx触媒32から流出する還元剤量、第一NOx触媒32から流出する還元剤量に基づいて、モデルを用いて算出される。第一NOx触媒31のNOx浄化率、第二NOx触媒32のNOx浄化率、第一NOx触媒31から流出する還元剤量、第二NOx触媒32から流出する還元剤量は、温度等に基づいて推定される。このときには、システムが正常であると仮定した推定が行われる。
ECU10は、第一NOx触媒31の異常、または、第二NOx触媒32の異常、のどちらが生じているのか判定する。本実施例では、その他の装置等には異常がないことを周知の手段により確認しておいてもよい。例えば、第一添加弁41、第二添加弁42、及び、還元剤に異常がないことを予め確認しておいてもよい。例えば、還元剤量センサ46により検出される還元剤の貯留量が規定量以上であれば、還元剤に不足がないと判定することができる。また、還元剤濃度センサ47により検出される還元剤の濃度が規定範囲内であれば、還元剤の濃度が正常であると判定することができる。さらに、還元剤流量センサ48により検出される還元剤の流量が規定流量以上であれば第一添加弁41及び第二添加弁42が正常であると判定することができる。すなわち、第一添加弁41及び第二添加弁42が正常であれば、ECU10が第一添加弁41及び第二添加弁42に対して開弁の指示を出力しているときに、還元剤供給通路44を還元剤が流通する。したがって、第一添加弁41及び第二添加弁42が正常である場合の還元剤の流量の閾値を予め設定しておけば、還元剤流量センサ48の検出値が閾値以上のときに第一添加弁41及び第二添加弁42が正常であると判定することができる。なお、本実施例においては、第一添加弁41、第二添加弁42、及び、還元剤に異常が生じているか否か判定するECU10が、本発明における供給異常判定手段に相当する。
ECU10は、第一NOxセンサ11により検出されるNOx濃度(または、内燃機関1の運転状態から推定されるNOx濃度)と、第二NOxセンサ12により検出されるNOx濃度と、に基づいて、第一NOx触媒31及び第二NOx触媒32を合わせたシステム全体としてのNOx浄化率を算出する。第一NOxセンサ11により検出されるNOx濃度は、第一NOx触媒31に流入する排気中のNOx濃度(上流側NOx濃度)であり、第二NOxセンサ12により検出されるNOx濃度は、第二NOx触媒32から流出する排気中のNOx濃度(下流側NOx濃度)である。なお、以下で特に断らない限りは、NOx浄化率といった場合には、システム全体としてのNOx浄化率を示す。NOx浄化率は、第一NOx触媒31に流入する排気中のNOx濃度に対する、第一NOx触媒31及び第二NOx触媒32でNOxが浄化されることにより減少するNOx濃度の比であり、以下の式により算出することができる。
NOx浄化率=(上流側NOx濃度−下流側NOx濃度)/上流側NOx濃度
ただし、上流側NOx濃度は、第一NOx触媒31に流入する排気中のNOx濃度であり、下流側NOx濃度は、第二NOx触媒31から流出する排気中のNOx濃度である。
ここで、第一NOx触媒31または第二NOx触媒32以外の装置や還元剤が正常の場合で、且つ、NOx浄化率が正常範囲の下限値(正常閾値ともいう。)よりも低下した場合には、第一NOx触媒31または第二NOx触媒32の何れか一方の触媒に異常があると考えらえる。しかし、通常制御時におけるNOx浄化率だけを見ても、どちらの触媒が異常であるのか判定することは困難である。すなわち、内燃機関1から排出されるNOx量に応じた還元剤を第一添加弁41及び第二添加弁42から供給するような通常制御を行っている場合のNOx浄化率は、第一NOx触媒31が異常の場合と、第二NOx触媒32が異常の場合と、で同程度になり得る。このため、本実施例では、どちらの触媒が異常
であるのか区別する。なお、本実施例では、第一NOx触媒31及び第二NOx触媒32が同時に異常となることがないものとする。
ここで、図2は、通常制御時における、システムが正常の場合、第一NOx触媒31が異常の場合、及び、第二NOx触媒32が異常の場合のNOx浄化率を示した図である。図2における正常閾値は、システムが正常である場合のNOx浄化率の下限値である。図2は、還元剤の供給から十分な時間が経過しているが、システムが正常であればNOx浄化率が正常閾値以上となっているときのNOx浄化率である。このように、第一NOx触媒31の異常、及び、第二NOx触媒32の異常の夫々のNOx浄化率は、同程度となる場合もあり、このときのNOx浄化率を用いても、どちらの触媒が異常であるのか判定することは困難である。
これに対して本実施例では、還元剤供給量を判定供給量まで増加させた後のNOx浄化率の推移に着目した。なお、判定供給量は、通常制御時よりも多い還元剤供給量である。すなわち、判定供給量は、NOxの浄化に必要となる還元剤量よりも多い還元剤供給量である。なお、判定供給量は、少なくとも異常の触媒から還元剤が流出する還元剤供給量としてもよい。すなわち、判定供給量は、異常の触媒から還元剤が流出する還元剤供給量としてもよい。また、判定供給量は、第一NOx触媒31及び第二NOx触媒32が正常である場合に、第一NOx触媒31及び第二NOx触媒32から還元剤が流出する還元剤供給量としてもよい。なお、還元剤供給量が判定供給量となるように第一添加弁41及び第二添加弁42にECU10が指示した時点を、以下では「指示時点」と称する。また、還元剤供給量が判定供給量となるようにECU10が第一添加弁41及び第二添加弁42に指示する制御を、以下では「増量制御」と称する。
なお、第二NOxセンサ12は、NOxのほかにアンモニアも検出するため、排気中にアンモニアが存在していると、NOxセンサの検出値が大きくなる。この第二NOxセンサ12の検出値に基づいてNOx浄化率を算出すると、NOx浄化率が低くなってしまう。したがって、第二NOx触媒32から還元剤が流出すると、第二NOxセンサ12の検出値に基づいて算出されるNOx浄化率は低下する。なお、選択還元型NOx触媒の劣化の度合いと、該選択還元型NOx触媒から流出する還元剤量との関係は、図3に示したようになる。図3は、選択還元型NOx触媒の劣化の度合いと、該選択還元型NOx触媒から流出する還元剤量との関係を示した図である。このように、触媒の劣化の度合いが大きくなるほど、触媒からの還元剤流出量が多くなる。なお、本実施例では劣化の度合いが許容範囲を超えた場合に、触媒が異常であるとしている。
<第一NOx触媒31及び第二NOx触媒32の異常の判定>
ここで図4は、第一NOx触媒31または第二NOx触媒32が異常の場合に、増量制御時において、指示時点から、異常の触媒において還元剤に関する平衡状態になるまでの時間(所定時間)が経過したときの、第一NOx触媒31の異常、及び、第二NOx触媒32の異常の夫々の場合におけるNOx浄化率を示した図である。
第一NOx触媒31が異常の場合には、判定供給量の還元剤を供給することにより、所定時間経過後には、第一NOx触媒31から還元剤が流出する。しかし、第二NOx触媒32は正常であるため、第一NOx触媒31から流出する還元剤が第二NOx触媒32に吸着される。このため、第二NOx触媒32から還元剤が流出するまでには、所定時間よりも長い時間がかかる。また、第一NOx触媒31が異常であったとしても、増量制御により第一NOx触媒31へ多くの還元剤が供給されることにより、第一NOx触媒31におけるNOx浄化率が上昇し得る。したがって、第一NOx触媒31が異常の場合には、増量制御開始から所定時間経過後のNOx浄化率が、増量制御開始前のNOx浄化率以上となる。
一方、第二NOx触媒32が異常の場合には、判定供給量の還元剤を供給することにより、所定時間経過後には、第二NOx触媒32から還元剤が流出する。そして、この第二NOx触媒32から流出する還元剤は、第二NOxセンサ12で検出される。このため、第一NOx触媒31が異常の場合よりも第二NOx触媒32が異常の場合のほうが、第二NOxセンサ12により還元剤が検出されるまので時間が短い。したがって、第一NOx触媒31が異常の場合よりも、第二NOx触媒32が異常の場合のほうが、NOx浄化率が低下するまでの時間が短い。増量制御開始から所定時間が経過する前であっても、第二NOx触媒32からは、徐々に還元剤が流出する。このため、第二NOx触媒32が異常の場合には、増量制御開始から所定時間経過後のNOx浄化率が、増量制御開始前のNOx浄化率未満となる。
したがって、増量制御時において、指示時点から、第一NOx触媒31が異常の場合のNOx浄化率と、第二NOx触媒32が異常の場合のNOx浄化率と、で区別できるほどの差が生じるまでの時間が経過すれば、このときのNOx浄化率に基づいて、第一NOx触媒31が異常なのか、または、第二NOx触媒32が異常なのか、を区別することができる。この、第一NOx触媒31が異常の場合のNOx浄化率と、第二NOx触媒32が異常の場合のNOx浄化率と、で区別できるほどの差が生じるまでの時間は、異常の触媒において還元剤に関する平衡状態になるまでの時間とすることができる。この時間を本実施例では「所定時間」としている。
このように、増量制御における指示時点から、所定時間が経過した時点でのNOx浄化率が、判定閾値以上であれば、第一NOx触媒31が異常であり、第二NOx触媒32は正常であると判定する。一方、増量制御における指示時点から、所定時間が経過した時点でのNOx浄化率が、判定閾値未満であれば、第一NOx触媒31は正常であり、第二NOx触媒32が異常であると判定する。所定時間は、増量制御時において、指示時点から、第一NOx触媒31が異常の場合のNOx浄化率と、第二NOx触媒32が異常の場合のNOx浄化率と、で区別できるほどの差が生じるまでの時間として予め実験またはシミュレーション等により求めておく。なお、還元剤に関する平衡状態となるまでの時間は、通常制御時のNOx浄化率(触媒の劣化の度合いとしてもよい。)、判定供給量、第一NOx触媒31及び第二NOx触媒32の温度、第二NOx触媒31が吸着可能な還元剤量等と関連することから、これらの値によって所定時間を変化させてもよい。また、これらの関係を予め実験またはシミュレーション等により求めておいてもよい。また、増量制御開始時における異常の触媒の還元剤吸着量を触媒の温度、還元剤供給量、NOx浄化率等から推定し、さらに、増量制御開始時におけるNOx浄化率から異常の触媒において還元剤に関する平衡状態となったときの還元剤吸着量を推定し、こられの推定値と、判定還元剤量とに基づいて、異常の触媒において還元剤に関する平衡状態となるまでの時間を推定して所定時間としてもよい。
なお、厳密には、第二NOx触媒32から第二NOxセンサ12までの距離によって、第二NOx触媒32から還元剤が流出する時期と、第二NOxセンサ12によって還元剤が検出される時期と、にずれが生じる。したがって、この時期のずれを考慮して所定時間を決定してもよい。
判定閾値は、指示時点から所定時間経過後において第一NOx触媒31が異常の場合のNOx浄化率の下限値として設定することができる。なお、本実施例では、判定閾値を、増量制御前のNOx浄化率としている。すなわち、第一NOx触媒31が異常であれば、所定時間経過後のNOx浄化率は、増量制御前のNOx浄化率以上となるが、第二NOx触媒32が異常であれば、所定時間経過後のNOx浄化率は、増量制御前のNOx浄化率未満となる。このため、増量制御前のNOx浄化率を判定閾値とすることができる。「増
量制御前」は、増量制御開始時点としてもよく、増量制御開始直前としてもよい。
<異常の判定時のタイムチャート>
図5は、増量制御時における第一NOx触媒31が異常である場合の各触媒からの還元剤流出量、及び、NOx浄化率の推移の一例を示したタイムチャートである。T1は増量制御における指示時点を示し、T2はT1から所定時間が経過した時点を示し、T3はT1から第二NOx触媒32が還元剤に関する平衡状態となった時点を示している。T2は、第一NOx触媒31において還元剤に関する平衡状態となった時点ともいえる。還元剤流出量における実線は第一NOx触媒31からの還元剤流出量を示し、一点鎖線は第二NOx触媒32からの還元剤流出量を示している。
図5においては、増量制御開始前のNOx浄化率を判定閾値としている。増量制御開始前において、異常である第一NOx触媒31から還元剤が流出している。また、第一NOx触媒31から流出する還元剤の影響を受けて、増量制御開始前に第二NOx触媒32からも還元剤が流出している。しかし、第二NOx触媒32では、還元剤に関する平衡状態に達しているのではなく、還元剤をさらに吸着することができる。そして、第一NOx触媒31が異常の場合、増量制御開始後に第一NOx触媒31からの還元剤流出量が増加する。しかし、第二NOx触媒32は正常であるため、第一NOx触媒31から流出する還元剤及び第二添加弁42から供給される還元剤は、第二NOx触媒32に吸着される。したがって、T1からT2までの期間では、第二NOx触媒32からは還元剤がほとんど流出しない。このため、第二NOxセンサ12では、還元剤がほとんど検出されない。さらに、T1からT2までの期間では、還元剤の過剰供給により、夫々の触媒におけるNOx浄化率が上昇する。したがって、T1からT2までの期間のNOx浄化率が、徐々に増加している。
第一NOx触媒31から流出する還元剤量がさらに増加すると、第二NOx触媒32からも還元剤の流出が始まる。この還元剤が第二NOxセンサ12により検出されるため、NOx浄化率が見かけ上低下していく。T3以降は、第二NOx触媒32においても還元剤に関する平衡状態となるため、第二NOx触媒32から流出する還元剤量が一定となり、NOx浄化率も一定となる。
このように、第一NOx触媒31が異常の場合には、増量制御開始から所定時間が経過した時点T2において、増量制御開始前よりもNOx浄化率が高くなるため、NOx浄化率が判定閾値以上となる。
図6は、増量制御時における第二NOx触媒32が異常である場合の各触媒からの還元剤流出量、及び、NOx浄化率の推移の一例を示したタイムチャートである。T1は増量制御における指示時点を示し、T2はT1から所定時間が経過した時点を示し、T3はT1から第一NOx触媒31が還元剤に関する平衡状態となった時点を示している。T2は、第二NOx触媒31において還元剤に関する平衡状態となった時点ともいえる。還元剤流出量における実線は第一NOx触媒31からの還元剤流出量を示し、一点鎖線は第二NOx触媒32からの還元剤流出量を示している。
図6においても、増量制御前のNOx浄化率を判定閾値としている。増量制御開始前は、正常である第一NOx触媒31からは還元剤がほとんど流出していないのに対し、異常である第二NOx触媒32からは還元剤が流出している。第二NOx触媒32が異常の場合、増量制御開始後すぐに第二NOx触媒32から還元剤が流出する。このため、T1からT2までの期間では、第二NOx触媒32から還元剤が流出する。このため、第二NOxセンサ12で、還元剤が検出される。T1からT2までの期間では、還元剤の過剰供給により、夫々の触媒におけるNOx浄化率が上昇するが、このNOx浄化率の上昇分より
も、還元剤が検出されることによるNOx浄化率の低下分のほうが大きいため、全体としてのNOx浄化率は低下する。したがって、T1からT2までの期間のNOx浄化率が、徐々に低下している。なお、第一NOx触媒32は正常であるため、増量制御を開始しても、第一NOx触媒31からは、すぐには還元剤が流出しない。T3以降は、第一NOx触媒31においても還元剤に関する平衡状態となるため、第一NOx触媒31から流出する還元剤量が一定となり、NOx浄化率も一定となる。
このように、第二NOx触媒32が異常の場合には、増量制御開始から所定時間が経過した時点T2において、増量制御開始前よりもNOx浄化率が低くなるため、NOx浄化率が判定閾値未満となる。
したがって、増量制御を開始後、T2の時点におけるNOx浄化率が、判定閾値以上であれば第一NOx触媒31が異常であると判定でき、判定閾値未満であれば第二NOx触媒32が異常であると判定できる。
<異常の判定のフローチャート>
図7は、本実施例に係る異常判定のフローを示したフローチャートである。本フローチャートは、ECU10により規定の時間毎に実行される。
ステップS101では、触媒に異常があるか否か判定される。本実施例では、ステップS101において、第一NOx触媒31または第二NOx触媒32が異常であるか否か判定される。第一NOx触媒31または第二NOx触媒32に異常がある場合には、システム全体としてのNOx浄化率が低下するため、NOx浄化率が正常閾値未満である場合に、触媒に異常があると判定される。正常閾値は、システムが正常である場合のNOx浄化率の下限値として、予め実験またはシミュレーション等により求めておく。このときの還元剤供給量は、増量制御における指示時点よりも前の通常制御における還元剤供給量である。
なお、第一添加弁41及び第二添加弁42を含む他の装置や還元剤等には異常がないことを予め確認しておいてもよい。この確認は、本ステップにおいて行ってもよく、本フローチャートの実行前に行っておいてもよい。ステップS101で肯定判定がなされた場合にはステップS102へ進み、一方、否定判定がなされた場合には本フローチャートを終了させる。
ステップS102では、増量制御を開始する。すなわち、還元剤供給量が判定供給量となるように指示がされる。本ステップでは、第一NOx触媒31または第二NOx触媒32が異常である場合に、異常の触媒において還元剤に関する平衡状態になり、さらに該第一NOx触媒31及び第二NOx触媒32から還元剤が流出するように、還元剤供給量を増加させる。還元剤供給量の増加は、還元剤の供給時間を長くすることにより行うことができる。なお、増量制御は、ECU10からの還元剤供給量の指示値を増加させることにより行なう。また、第一添加弁41及び第二添加弁42に対して同時に同じ指示がされる。ステップS102の処理が終了するとステップS103へ進む。
ステップS103では、ステップS102で増量制御が開始された時点(指示時点)から、所定時間が経過したか否か判定される。本ステップでは、第一NOx触媒31または第二NOx触媒32の何れが異常であるか判定することが可能となる時間が経過したか否か判定している。ステップS103で肯定判定がなされた場合にはステップS104へ進み、一方、否定判定がなされた場合にはステップS103が再度処理される。
ステップS104では、現時点のNOx浄化率が、判定閾値以上であるか否か判定され
る。すなわち、増量制御における指示時点から所定時間が経過した時点(図5または図6におけるT2)でのNOx浄化率が、判定閾値以上であるか否か判定される。所定時間が経過した時点では、第一NOx触媒31が異常であればNOx浄化率が判定閾値以上となり、第二NOx触媒32が異常であれば判定閾値未満となる。したがって、本ステップを処理することにより、第一NOx触媒31または第二NOx触媒32の何れが異常であるのかを判定することができる。ステップS104で肯定判定がなされた場合には、ステップS105へ進み、第一NOx触媒31が異常であると判定される。一方、ステップS104で否定判定がなされた場合には、ステップS106へ進み、第二NOx触媒32が異常であると判定される。ステップS105またはステップS106の処理が終了すると、ステップS107へ進む。
ステップS107では、増量制御を終了させる。すなわち、還元剤供給量が、判定供給量から通常制御時における還元剤供給量に戻る。したがって、内燃機関1から排出されるNOxの量に応じた還元剤の供給が開始される。ステップS107の処理が終了すると本フローチャートを終了させる。
以上説明したように本実施例によれば、触媒に異常がある場合に、第一NOx触媒31の異常、または、第二NOx触媒32の異常、の何れが発生しているのかを判定することができる。
なお、本実施例では、所定時間は、例えば、異常の触媒が還元剤に関する平衡状態となるまでの時間としている。しかし、第一NOx触媒31が異常の場合と、第二NOx触媒32が異常の場合と、でNOx浄化率に明確な差が生じる時間を所定時間とすることもできる。すなわち、図5及び図6に示されるように、T2の時点の前後においても、第一NOx触媒31が異常の場合と、第二NOx触媒32が異常の場合と、でNOx浄化率に差が生じているため、このNOx浄化率に差が生じている範囲で所定時間を設定してもよい。
1 内燃機関
2 排気通路
4 還元剤供給装置
6 吸気通路
10 ECU
11 第一NOxセンサ
12 第二NOxセンサ
14 クランクポジションセンサ
15 アクセル開度センサ
16 エアフローメータ
31 第一選択還元型NOx触媒(第一NOx触媒)
32 第二選択還元型NOx触媒(第二NOx触媒)
41 第一添加弁
42 第二添加弁
43 尿素タンク
44 還元剤供給通路
45 ポンプ
46 還元剤量センサ
47 還元剤濃度センサ
48 還元剤流量センサ

Claims (1)

  1. 内燃機関の排気通路に設けられ該排気通路内に還元剤を供給する第一添加弁と、
    前記第一添加弁よりも下流の排気通路に設けられ吸着している還元剤によりNOxを選択還元する第一選択還元型NOx触媒と、
    前記第一選択還元型NOx触媒よりも下流の排気通路に設けられ該排気通路内に還元剤を供給する第二添加弁と、
    前記第二添加弁よりも下流の排気通路に設けられ吸着している還元剤によりNOxを選択還元する第二選択還元型NOx触媒と、
    前記第二選択還元型NOx触媒から流れ出る排気中のNOx濃度を検出するNOxセンサと、
    還元剤の供給に異常が生じているかを判定する供給異常判定手段と、
    前記第一選択還元型NOx触媒に流入するNOxの量に基づいて還元剤の供給量を決定し、前記第一添加弁及び前記第二添加弁を同じ指示により操作する制御装置と、
    を備え、
    前記供給異常判定手段により還元剤の供給に異常が生じていないと判定された場合に、前記第一選択還元型NOx触媒の異常か、前記第二選択還元型NOx触媒の異常か、を判定する内燃機関の排気浄化装置の故障判定装置であって、
    前記制御装置は、前記第一選択還元型NOx触媒及び前記第二選択還元型NOx触媒が正常であるか否の判定を行うときには、前記第一選択還元型NOx触媒に流入するNOxの量に基づいて決定した還元剤の供給量よりも、前記第一添加弁及び前記第二添加弁からの還元剤の供給量を増加させ、前記第一添加弁及び前記第二添加弁からの還元剤の供給量を増加させた時点から所定時間の経過時に前記NOxセンサにより検出されるNOx濃度に基づいて算出されるNOx浄化率が、判定閾値以上であれば前記第一選択還元型NOx触媒が異常であり、前記判定閾値未満であれば第二選択還元型NOx触媒が異常であると判定する内燃機関の排気浄化装置の故障判定装置。
JP2014212539A 2014-10-17 2014-10-17 内燃機関の排気浄化装置の故障判定装置 Pending JP2016079903A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014212539A JP2016079903A (ja) 2014-10-17 2014-10-17 内燃機関の排気浄化装置の故障判定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014212539A JP2016079903A (ja) 2014-10-17 2014-10-17 内燃機関の排気浄化装置の故障判定装置

Publications (1)

Publication Number Publication Date
JP2016079903A true JP2016079903A (ja) 2016-05-16

Family

ID=55956008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014212539A Pending JP2016079903A (ja) 2014-10-17 2014-10-17 内燃機関の排気浄化装置の故障判定装置

Country Status (1)

Country Link
JP (1) JP2016079903A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11657946B2 (en) 2019-11-07 2023-05-23 Murata Manufacturing Co., Ltd. Common mode choke coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11657946B2 (en) 2019-11-07 2023-05-23 Murata Manufacturing Co., Ltd. Common mode choke coil

Similar Documents

Publication Publication Date Title
JP5120464B2 (ja) 排気浄化装置の異常検出装置及び排気浄化装置の異常検出方法
JP4985849B2 (ja) 触媒劣化判定装置及び触媒劣化判定方法
JP6330614B2 (ja) 内燃機関の排気浄化装置の故障判定装置
JP6090257B2 (ja) 内燃機関の排気浄化装置
US20160376972A1 (en) Exhaust control system for internal combustion engine
JP2009191756A (ja) 酸化触媒の故障診断装置及び酸化触媒の故障診断方法、並びに内燃機関の排気浄化装置
AU2013356013A1 (en) Deterioration determination system of exhaust emission control device
EP2873823B1 (en) Exhaust gas purification system for an internal combustion engine
JP2010031731A (ja) 内燃機関の排気浄化装置
JP5914180B2 (ja) 還元剤供給装置の異常検出装置及び還元剤供給装置
JP2011226293A (ja) 排気浄化装置の故障検出装置
JP5839118B2 (ja) 内燃機関の排気浄化装置の異常判定システム
JP5673803B2 (ja) 選択還元型NOx触媒の劣化検出装置
JP2016079852A (ja) 内燃機関の排気浄化装置の異常判定システム
US10364727B2 (en) Exhaust gas purification apparatus for an internal combustion engine
US9938876B2 (en) Abnormality diagnosis device for exhaust gas purification apparatus in internal combustion engine
JP2016079856A (ja) 内燃機関の排気浄化装置の異常判定システム
JP2016079903A (ja) 内燃機関の排気浄化装置の故障判定装置
JP6631479B2 (ja) 内燃機関の排気浄化装置の異常診断装置
JP5344096B2 (ja) 内燃機関の排気浄化装置
JP5900617B2 (ja) 内燃機関の排気浄化システム
JP6972878B2 (ja) 内燃機関の排気浄化装置の異常診断装置
JP5895882B2 (ja) 内燃機関の排気浄化システム
JP2013199913A (ja) 内燃機関の排気浄化装置
JP2013092056A (ja) 排気浄化システムの異常検出装置