[go: up one dir, main page]

JP2015201388A - 非水系二次電池用正極活物質及びその製造方法 - Google Patents

非水系二次電池用正極活物質及びその製造方法 Download PDF

Info

Publication number
JP2015201388A
JP2015201388A JP2014080382A JP2014080382A JP2015201388A JP 2015201388 A JP2015201388 A JP 2015201388A JP 2014080382 A JP2014080382 A JP 2014080382A JP 2014080382 A JP2014080382 A JP 2014080382A JP 2015201388 A JP2015201388 A JP 2015201388A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
coating layer
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014080382A
Other languages
English (en)
Other versions
JP6524610B2 (ja
Inventor
吉田 秀樹
Hideki Yoshida
秀樹 吉田
将人 園尾
Masahito Sonoo
将人 園尾
晃輔 下北
Kosuke Shimokita
晃輔 下北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2014080382A priority Critical patent/JP6524610B2/ja
Publication of JP2015201388A publication Critical patent/JP2015201388A/ja
Application granted granted Critical
Publication of JP6524610B2 publication Critical patent/JP6524610B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】より大規模、長期使用を想定した分野での使用に耐え得る非水系二次電池を実現可能な正極活物質を提供する。【解決手段】リチウム遷移金属複合酸化物からなるコア粒子と、前記コア粒子の表面に存在する被覆層とを含み、前記被覆層は、ホウ素及びタングステンからなる群より選択される少なくとも一種の元素Mと、ニオブとを含む被覆層である正極活物質を用いる。好ましい製造方法の形態は、前記コア粒子の表面に元素Mを含む化合物からなる第一の被覆原料を付着させて第一の被覆粒子を得る第一の被覆工程と、前記第一の被覆粒子の表面にニオブを含む化合物からなる第二の被覆原料を付着させて第二の被覆粒子を得る第二の被覆工程とを含む製造方法である。【選択図】図1

Description

本発明は非水系二次電池用正極活物質及びその製造方法に関する。
リチウムイオン二次電池に代表される非水系二次電池は、正極活物質にアルカリ金属イオンを脱離・挿入可能な物質を、負極活物質に金属リチウム等のアルカリ金属単体あるいはアルカリ金属イオンを脱離・挿入可能な物質を、アルカリ金属イオン伝導媒体に非水電解液等を用い、アルカリ金属イオン伝導媒体を通じて正負極間でアルカリ金属イオンをやり取りし、外部と電力をやり取りする電池である。リチウムイオン二次電池においては、コバルト酸リチウム等のリチウム遷移金属複合酸化物が正極活物質として代表的に用いられている。
ところで、正極活物質の界面を改質する技術に、正極活物質の表面を特定の物質で被覆する技術がある。
特許文献1では、高温保存等によるインピーダンス上昇を抑制する目的で、LiNi0.82Co0.15Al0.03等のリチウムニッケル複合酸化物の表面に酸化ニオブ等を存在させた後に焼成する技術が提案されている。
特許文献2では、高容量化と充放電効率の向上を目的として、Li1.03Ni0.77Co0.20Al0.03等の複合酸化物粒子に五ホウ酸アンモニウム等のホウ酸化合物等を被着させ、次いで酸化性雰囲気下で焼成する技術が提案されている。
特許文献3では、初期充放電容量を大きく劣化させることなく熱安定性を向上する目的で、Li1.03(Ni0.8Co0.20.9Al0.1等のリチウム複合酸化物粉末の表面にW等とLiとを含む表面層を形成する技術が提案されている。具体例としてはLi1.03(Ni0.8Co0.20.9Al0.1とLiWOとを混合し、752℃で熱処理したものが開示されている。
特開2004−253305号公報 特開2009−146739号公報 特開2002−75367号公報
これまでの非水系二次電池の改良の積み重ねに伴い、その適用分野として電気自動車の様な大型機器の動力源や、電力平準化用蓄電池等、より大規模、長期使用を想定した分野が検討されている。このような適用分野の拡大に伴い、非水系二次電池にはより充放電容量、出力特性、熱的安定性、寿命特性(保存特性、サイクル特性等)等についてより高い性能が求められている。
アルカリ金属イオン伝導媒体に固体電解質を採用した全固体二次電池の場合、非水電解液を採用した非水電解液二次電池の場合に比べて熱的、化学的安定性が極めて向上する。しかし、固体電解質におけるアルカリ金属イオン伝導性は非水電解液のそれに比べて低いため、取り出し電流が同じである場合、全固体二次電池の放電容量は非水電解液二次電池のそれに比べて低くなる。
非水電解液二次電池の場合も、近年の急速充電に対する要求を踏まえれば依然改良の余地がある。これは、充放電時の電流が高くなるとリチウム遷移金属複合酸化物の結晶構造が破壊され易く、非水電解液中の電解質との反応が促進されることが関係する。
このように、全固体二次電池にせよ、非水電解液二次電池にせよ近年検討されてる分野への適用には克服すべき点が存在していた。本発明の目的は、より大規模、長期使用を想定した分野での使用に耐え得る非水系二次電池を実現可能な正極活物質を提供することである。
上記目的を達成するために本発明者らは鋭意検討を重ね、本発明を完成するに至った。本発明者は、リチウム遷移金属複合酸化物からなるコア粒子の表面に、複数の特定元素を含む被覆層を形成することで全固体二次電池における放電容量を高められること、及び高電流で充放電を繰り返しても非水電解液中の電解質と正極活物質との反応が抑制されることを見出した。
本発明の正極活物質は、リチウム遷移金属複合酸化物からなるコア粒子と、前記コア粒子の表面に存在する被覆層とを含み、前記被覆層は、ホウ素及びタングステンからなる群より選択される少なくとも一種の元素Mと、ニオブとを含む被覆層であることを特徴とする。
本発明の正極活物質は上記の特徴を備えているため、全固体二次電池における放電容量が増加する。また、本発明の正極活物質は上記の特徴を備えているため、高電流で充放電を繰り返しても非水電解液中の電解質との反応が抑制される。このため、非水電解液二次電池において高電流サイクル特性が向上する。
図1は本発明の正極活物質を製造するため好ましい形態の一例に関する概念図である。
以下、本発明の正極活物質及びその製造方法について、実施の形態及び実施例を用いて詳細に説明する。
本発明の正極活物質は、リチウム遷移金属複合酸化物からなるコア粒子と、前記コア粒子の表面に存在する被覆層とを含む。以下、主にこれらについて説明する。
[コア粒子]
コア粒子は公知のリチウム遷移金属複合酸化物を用いれば良い。例えばコバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、スピネル構造のマンガン酸リチウム(LiMn)、ニッケルコバルトマンガン酸リチウム(Li(Ni,Co,Mn)O)、オリビン構造のリン酸鉄リチウム(LiFePO)等がある。
コバルト酸リチウム等の層状構造のリチウム遷移金属複合酸化物は、充放電容量、エネルギー密度等のバランスが良い非水系二次電池を得やすいので好ましい。特に遷移金属としてニッケル、コバルト及びマンガンを含有するリチウム遷移金属複合酸化物が好ましい。前記三元素中のニッケル含有量は充放電容量と合成のし易さとの兼ね合いで30mol%程度から70mol%程度、コバルト含有量はコストと出力特性との兼ね合いで10mol%から35mol%程度、マンガン含有量は熱的安定性と充放電容量との兼ね合いで20mol%程度から35mol%程度が好ましい。ニッケル、コバルト及びマンガン以外の遷移金属としてはタングステン、ジルコニウム、モリブデン、ニオブ等を目的に応じて全遷移金属の2mol%程度まで含有させても良い。組成として表すと、一般式LiNi1−x−yCoMn(0.95≦a≦1.2、0.10≦x≦0.35、0.20≦y≦0.35、0≦z≦0.02、LはW、Zr、Mo及びNbからなる群より選択される少なくとも一種の元素)で表されるリチウム遷移金属複合酸化物が特に好ましい。
[被覆層]
被覆層は、ホウ素及びタングステンからなる群より選択される少なくとも一種の元素Mと、ニオブとを含む。正極活物質がこれら特定の少なくとも二種の元素を含有する被覆層を有することで、固体電解質と正極活物質との界面抵抗が劇的に低下し、結果として全固体二次電池の放電容量が増加する。また、正極活物質全体の結晶構造が安定化し、高電流で充放電しても非水電解液中の電解質と正極活物質との反応が抑制される。
被覆層中の元素Mは主に正極活物質全体の結晶構造の安定化に寄与する。元素Mが少なすぎると前述の効果が不十分になり、多すぎると容量が低下するので注意する。元素Mのコア粒子に対する物質量比が0.1以上5.0以下ならニオブと共存することで前述の効果を十分に発揮することが出来、好ましい。
被覆層中のニオブは主に固体電解質と正極活物質との界面抵抗低減に寄与すると考えられ、結果として全固体二次電池における放電容量が増加する。少なすぎると前述の効果が不十分になり、多すぎると容量が低下するので注意する。ニオブのコア粒子に対する物質量比が0.1以上7.0以下なら元素Mと共存することで前述の効果を十分に発揮することが出来、好ましい。
被覆層における元素Mとニオブとの比率を適切に調節すると、元素M及びニオブの夫々の効果が増幅されるので好ましい。好ましい比率の範囲は、元素Mのニオブに対する物質量比として0.01以上50.0以下となる範囲である。
次に本発明の正極活物質の製造方法を説明する。本発明の正極活物質は、公知の手法で得られるコア粒子に公知の手法で被覆層を形成すれば良い。
被覆層の好ましい形成方法について、図1を用いて説明する。なお、図1は概念を説明するためのものであり、図内の各要素は誇張、省略等されている。
[第一の被覆工程]
まず、コア粒子1の表面に、元素Mを含む化合物からなる第一の被覆原料2を付着させ(図1の(a))、第一の被覆粒子3を得る(図1の(b))。図1の(b)において、第一の被覆原料2はコア粒子1の表面全体を均一に被覆しているが、このような形態は一例にすぎず、必ずしもこのような形態である必要はない。
第一の被覆原料は、元素Mを含んでいればどのような化合物でもよい。酸化物、ハロゲン化物、オキソ酸塩、水酸化物等が取り得る。また、本明細書において、「元素Mを含む化合物」は元素Mの単体をも含むものとする。また、元素Mが複数選択される場合は、複数の元素Mの合金も含むものとする。
第一の被覆原料をコア粒子の表面に付着させる手法は特に限定されない。例えばコア粒子と第一の被覆原料とを高速で撹拌してメカノケミカルに付着させる、コア粒子と第一の被覆原料を分散媒に分散し、混合した後乾燥させて物理的に付着させる、第一の被覆原料の前駆体となる水溶液とコア粒子とを混合し、コア粒子の表面に第一の被覆原料を析出させる、等の手法がとり得る。
[第一の熱処理工程]
得られる第一の被覆粒子は、さらに熱処理を施してもよい。熱処理によって、第一の被覆原料とコア粒子の一部が反応し、コア粒子の表面のより多くの領域が第一の被覆原料等で被覆される。この結果、全固体二次電池においては放電容量がより増加する。そのため、第一の熱処理工程は全固体二次電池用正極活物質を得る場合に特に好ましい。
第一の熱処理工程における熱処理温度は、高過ぎると第一の被覆原料とコア粒子との反応が進み、コア粒子本来の特性を損ねかねないので注意する。熱処理温度が800℃以下なら通常問題ない。熱処理温度として効果が発現するのは150℃程度からである。このため、熱処理温度は150℃以上500℃以下が好ましい。
[第二の被覆工程]
得られる第一の被覆粒子3の表面に、ニオブを含む化合物からなる第二の被覆原料4を付着させ(図1の(c))、第二の被覆粒子5を得、(図1の(d))正極活物質とする。図1の(d)において、第二の被覆原料2は第一の被覆粒子3の表面全体を均一に被覆しているが、このような形態は一例にすぎず、必ずしもこのような形態である必要はない。また、図1の(d)において、第二の被覆粒子5は二層からなる被覆層を有しているが、このような形態は一例にすぎず、必ずしもこのような形態である必要はない。また、被覆層は第一の被覆原料に由来する領域と第二の被覆原料に由来する領域とが明確に区別される必要はない。
第二の被覆原料として取り得る化合物及び第二の被覆原料を第一の被覆粒子の表面に付着させる手法については、第一の被覆工程のそれらに準ずる。
[第二の熱処理工程]
得られる第二の被覆粒子は、さらに熱処理を施してもよい。熱処理によって被覆が強固になるので好ましい。
第二の熱処理工程における熱処理温度は、高過ぎると第二の被覆原料と第一の被覆粒子との反応が進み、被覆層本来の特性を損ねかねないので注意する。熱処理温度が500℃以下なら通常問題ない。熱処理温度として効果が発現するのは250℃程度からである。このため、熱処理温度は250℃以上800℃以下が好ましい。
以下、実施例等を用いてより具体的に説明する。
一般式Li1.12Ni0.33Co0.33Mn0.330.005で表されるリチウム遷移金属複合酸化物をコア粒子とし、コア粒子に対してタングステンとして0.5mol%の酸化タングステン(VI)とコア粒子とを高速せん断型ミキサーで混合し、第一の混合物を得た。混合後、第一の混合物を大気中400℃で10時間熱処理し、第一の被覆粒子を得た。
第一の被覆粒子を高速せん断型ミキサーで撹拌しながら市販の酸化ニオブゾル(ニオブとして5%含有)を、コア粒子に対してニオブとして2.0mol%となる量だけ滴下し、第二の混合物を得た。滴下後、第二の混合物を大気中350℃で5時間熱処理し、目的の正極組成物を得た。
酸化タングステン(VI)の代わりに、コア粒子に対してホウ素として0.5mol%のホウ酸とコア粒子とを高速せん断型ミキサーで混合し、第一の混合物を得た。混合後、第一の混合物を大気中250℃で10時間熱処理し、第一の被覆粒子を得た。以降実施例1と同様に行い、目的の正極組成物を得た。
実施例1におけるリチウム遷移金属複合酸化物をコア粒子とし、コア粒子に対してタングステンとして0.5mol%の酸化タングステン(VI)及びコア粒子に対して0.5mol%のホウ酸とコア粒子とを高速せん断型ミキサーで混合し、第一の混合物を得た。以降実施例1と同様に行い、目的の正極組成物を得た。
ホウ酸の混合量をコア粒子に対してホウ素として4.0mol%とした以外は実施例2と同様にし、目的の正極組成物を得た。
[比較例1]
実施例1におけるコア粒子を比較用に用いた。
一般式Li1.05Ni0.6Co0.2Mn0.2Zr0.005で表されるリチウム遷移金属複合酸化物をコア粒子とし、コア粒子に対してホウ素として0.5mol%のホウ酸を高速せん断型ミキサーで混合し、第一の混合物を得た。
第一の被覆粒子を高速せん断型ミキサーで撹拌しながら市販の酸化ニオブゾル(ニオブとして5%含有)を、コア粒子に対してニオブとして0.5mol%となる量だけ滴下し、第二の混合物を得た。滴下後、第二の混合物を大気中450℃で10時間熱処理し、目的の正極組成物を得た。
[比較例2]
実施例5におけるコア粒子を比較用に用いた。
[比較例3]
実施例5と同様のリチウム遷移金属複合酸化物をコア粒子とし、高速せん断型ミキサーで撹拌しながら市販の酸化ニオブゾル(ニオブとして5%含有)を、コア粒子に対してニオブとして0.5mol%となる量だけ滴下し、第二の混合物を得た。滴下後、第二の混合物を大気中450℃で10時間熱処理し、目的の正極組成物を得た。
<3.全固体二次電池の評価>
実施例1〜4及び比較例1の正極活物質を用いて全固体二次電池を作製し、電池特性を評価した。
[3−1.固体電解質の作製]
アルゴン雰囲気下で硫化リチウム及び五硫化リンを、その物質量比が7:3となるように秤量した。秤量物をメノウ乳鉢で粉砕混合し、硫化物ガラスを得た。これを固体電解質として用いた。
[3−2.正極の作製]
正極活物質60重量部、固体電解質36重量部及びVGCF(気相法炭素繊維)4重量部を混合し、正極合材を得た。
[3−3.負極の作製]
厚さ0.05mmのインジウム箔を直径11.00mmの円形にくり抜き、負極とした。
[3−4.評価用電池の組み立て]
内径11.00mmの円筒状外型に外径11.00mmの円柱状下型を、外型下部から挿入した。下型の上端は外型の中間に位置に固定した。この状態で外型の上部から下型の上端に固体電解質80mgを投入した。投入後、外形11.00mmの円柱状上型を外型の上部から挿入した。挿入後、上型の上方から90MPaの圧力をかけて、固体電解質を成形し、固体電解質層とした。成形後上型を外型の上部から引き抜き、外型の上部から固体電解質層の上部に正極合材20mgを投入した。投入後、再度上型を挿入し、今度は360MPaの圧力をかけて正極合材を成形し、正極層とした。成形後上型を固定し、下型の固定を解除して外型の下部から引き抜き、下型の下部から固体電解質層の下部に負極を投入した。投入後、再度下型を挿入し、下型の下方から150MPaの圧力をかけて負極を成形し、負極層とした。圧力をかけた状態で下型を固定し、上型に正極端子、下型に負極端子を取り付け、全固体二次電池を得た。
[3−5.初期放電容量]
電流密度0.195μA/cm、充電電圧4.0Vで定電流定電圧充電を行った。充電後、電流密度0.195μA/cm、放電電圧1.9Vで定電流放電を行い、放電容量Qを測定した。
<4.非水電解液二次電池の評価>
実施例5及び比較例2、3の正極活物質を用いて非水電解液二次電池を作製し、電池特性を評価した。
[4−1.正極の作製]
正極組成物85重量部、アセチレンブラック10重量部、及びPVDF(ポリフッ化ビニリデン)5.0重量部を、NMP(ノルマルメチル−2−ピロリドン)に分散させて正極スラリーを調製した。得られる正極スラリーをアルミニウム箔に塗布し、乾燥後ロールプレス機で圧縮成形し、所定サイズに裁断して正極を得た。
[4−2.負極の作製]
人造黒鉛97.5重量部、CMC(カルボキシメチルセルロース)1.5重量部、及びSBR(スチレンブタジエンゴム)1.0重量部を水に分散させて負極スラリーを調製した。得られた負極スラリーを銅箔に塗布し、乾燥後ロールプレス機で圧縮成形し、所定サイズに裁断して負極を得た。
[4−3.非水電解液の作製]
EC(エチレンカーボネイト)とMEC(メチルエチルカーボネイト)を体積比率3:7で混合し、溶媒とした。得られる混合溶媒に六フッ化リン酸リチウム(LiPF)をその濃度が、1mol/lになるように溶解させて、非水電解液を得た。
[4−4.評価用電池の組み立て]
上記正極と負極の集電体に、それぞれリード電極を取り付けたのち120℃で真空乾燥を行った。次いで、正極と負極との間に多孔性ポリエチレンからなるセパレータを配し、袋状のラミネートパックにそれらを収納した。収納後60℃で真空乾燥して各部材に吸着した水分を除去した。真空乾燥後、ラミネートパック内に、先述の非水電解液を注入、封止し、ラミネートタイプの非水電解液二次電池を得た。
[4−5.高電流サイクル特性]
非水電解液二次電池に微弱電流でエージングを行い、正極及び負極に電解質を十分なじませた。エージング後、電池を45℃に設定した恒温槽内に入れ、充電電圧4.4V、充電電流2.0C(1C:1時間で放電が終了する電流)での充電と、放電電圧2.75V、放電電流2.0Cでの放電を1サイクルとし、充放電を繰り返した。nサイクル目の放電容量を1サイクル目の放電容量で除した値を、nサイクル目の放電容量維持率Qs(n)とした。Qs(n)が高いことは、サイクル特性が良いことを意味する。
[4−6.出力特性]
非水電解液二次電池に微弱電流を流してエージングを行い、正極及び負極に電解質を十分なじませた。その後、高電流での放電と、微弱電流での充電を繰り返した。10回目の充電における充電容量を電池の全充電容量とした。11回目の放電後、全充電容量の4割まで充電した。11回目の充電後、電池を−25℃に設定した恒温槽内に入れ、6時間置いた後、放電電流0.02A、0.04A、0.06Aで放電し、各放電時の電圧を測定した。横軸に電流を、縦軸に電圧をとって交点をプロットし、交点を結んだ直線の傾きの絶対値を直流内部抵抗Rとした。Rが低いことは、出力特性が良いことを意味する。
実施例1〜4及び比較例1についてそれらの製造条件を表1に、正極活物質の特性及び該正極活物質を用いた全固体二次電池の特性を表2に示す。
Figure 2015201388
Figure 2015201388
表1、2から分かるように、被覆層に元素M及びニオブの両方が含まれる実施例1〜4の正極活物質を用いた全固体二次電池の放電容量が極めて高くなっている。これは、被覆層の元素M及びニオブが共に存在することで正極活物質と固体電解質との界面抵抗を劇的に低減した結果と考えられる。
実施例5及び比較例2、3についてそれらの製造条件を表3に、正極活物質の特性及び該正極活物質を用いた非水電解液二次電池の特性を表4に示す。
Figure 2015201388
Figure 2015201388
表3、4から分かるように、被覆層に元素M及びニオブの両方が含まれる実施例5の正極活物質を用いた非水電解液二次電池の高電流サイクル特性及び出力特性が共によい。特に高電流サイクル特性の向上は、被覆層に元素M及びニオブが存在することで急速な充放電にも耐えられる安定した結晶構造が得られた結果と考えられる。
本発明の非水系二次電池用正極活物質を用いると、大電流を取り出しても放電容量の高い全固体二次電池を得ることが出来る。あるいは、大電流で充放電を繰り返しても長期間使用可能な非水電解液二次電池を得ることが出来る。このようにして得られる非水系二次電池は、電気自動車等の大型機器の動力源として特に好適に利用可能である。
1 コア粒子
2 第一の被覆原料
3 第一の被覆粒子
4 第二の被覆原料
5 第二の被覆粒子

Claims (10)

  1. リチウム遷移金属複合酸化物からなるコア粒子と、前記コア粒子の表面に存在する被覆層とを含み、
    前記被覆層は、ホウ素及びタングステンからなる群より選択される少なくとも一種の元素Mと、ニオブとを含む被覆層である、
    非水系二次電池用正極活物質。
  2. 前記被覆層における前記元素Mの、前記コア粒子に対する物質量比が0.1以上5.0以下である、請求項1に記載の正極活物質。
  3. 前記被覆層における前記ニオブの、前記コア粒子に対する物質量比が0.1以上5.0以下である、請求項1又は2に記載の正極活物質。
  4. 前記被覆層における前記元素Mの前記ニオブに対する物質量比が0.01以上50.0以下である請求項1乃至3のいずれか一項に記載の正極活物質。
  5. 前記リチウム遷移金属複合酸化物が、一般式LiNi1−x−yCoMn(0.95≦a≦1.2、0.10≦x≦0.35、0.20≦y≦0.35、0≦z≦0.02、LはW、Zr、Mo及びNbからなる群より選択される少なくとも一種の元素)で表される、請求項1乃至4のいずれか一項に記載の正極活物質。
  6. リチウム遷移金属複合酸化物からなるコア粒子と、前記コア粒子の表面に存在し、ホウ素及びタングステンからなる群より選択される少なくとも一種の元素Mとニオブとを含む被覆層と、を含む非水系二次電池用正極活物質の製造方法であって、
    前記コア粒子の表面に元素Mを含む化合物からなる第一の被覆原料を付着させて第一の被覆粒子を得る第一の被覆工程と、
    前記第一の被覆粒子の表面にニオブを含む化合物からなる第二の被覆原料を付着させて第二の被覆粒子を得る第二の被覆工程と、
    を含む、製造方法。
  7. 前記第一の被覆粒子を熱処理する第一の熱処理工程をさらに含む、請求項6に記載の製造方法。
  8. 前記第二の被覆粒子を熱処理する第二の熱処理工程をさらに含む、請求項6又は7に記載の製造方法。
  9. 前記第一の熱処理工程における熱処理温度が150℃以上800℃以下である、請求項7に記載の製造方法。
  10. 前記第二の熱処理工程における熱処理温度が250℃以上500℃以下である、請求項8に記載の製造方法。
JP2014080382A 2014-04-09 2014-04-09 非水系二次電池用正極活物質及びその製造方法 Active JP6524610B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014080382A JP6524610B2 (ja) 2014-04-09 2014-04-09 非水系二次電池用正極活物質及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014080382A JP6524610B2 (ja) 2014-04-09 2014-04-09 非水系二次電池用正極活物質及びその製造方法

Publications (2)

Publication Number Publication Date
JP2015201388A true JP2015201388A (ja) 2015-11-12
JP6524610B2 JP6524610B2 (ja) 2019-06-05

Family

ID=54552457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014080382A Active JP6524610B2 (ja) 2014-04-09 2014-04-09 非水系二次電池用正極活物質及びその製造方法

Country Status (1)

Country Link
JP (1) JP6524610B2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054830A (ja) * 2016-12-19 2017-03-16 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、および該正極活物質を用いた非水系電解質二次電池
WO2019066403A3 (ko) * 2017-09-28 2019-05-16 주식회사 엘지화학 리튬 이차 전지용 전극 활물질 복합체 및 상기 전극 활물질 복합체의 제조방법
WO2020022305A1 (ja) 2018-07-25 2020-01-30 三井金属鉱業株式会社 正極活物質
WO2020174937A1 (ja) * 2019-02-27 2020-09-03 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質の製造方法
WO2020202745A1 (ja) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2021025370A1 (ko) * 2019-08-06 2021-02-11 주식회사 엘 앤 에프 리튬 이차전지용 양극 활물질
WO2021049416A1 (ja) 2019-09-11 2021-03-18 三井金属鉱業株式会社 硫化物固体電解質、電極合剤、固体電池及び硫化物固体電解質の製造方法
CN114072934A (zh) * 2019-03-22 2022-02-18 株式会社Lg新能源 硫化物类全固态电池用正极活性材料颗粒
US11575116B2 (en) 2019-03-22 2023-02-07 Lg Energy Solution, Ltd. Positive electrode active material particle for sulfide-based all-solid-state batteries
WO2023106562A1 (ko) * 2021-12-07 2023-06-15 주식회사 엘지에너지솔루션 황화물계 전고체 전지용 양극활물질
WO2023157830A1 (ja) 2022-02-18 2023-08-24 三井金属鉱業株式会社 電極合剤、及びそれを用いた電極スラリー並びに電池
WO2024190991A1 (ko) * 2023-03-13 2024-09-19 에스케이온 주식회사 이차 전지용 양극 활물질 및 이를 포함하는 이차 전지
WO2025080013A1 (ko) * 2023-10-11 2025-04-17 주식회사 엘지화학 양극 활물질 및 이의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228653A (ja) * 2004-02-13 2005-08-25 Nichia Chem Ind Ltd 非水電解質二次電池、非水電解質二次電池用正極活物質および非水電解質二次電池用正極合剤
WO2012144021A1 (ja) * 2011-04-19 2012-10-26 トヨタ自動車株式会社 リチウム二次電池
WO2014049964A1 (ja) * 2012-09-25 2014-04-03 三洋電機株式会社 非水電解質二次電池及び非水電解質二次電池用正極活物質

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228653A (ja) * 2004-02-13 2005-08-25 Nichia Chem Ind Ltd 非水電解質二次電池、非水電解質二次電池用正極活物質および非水電解質二次電池用正極合剤
WO2012144021A1 (ja) * 2011-04-19 2012-10-26 トヨタ自動車株式会社 リチウム二次電池
WO2014049964A1 (ja) * 2012-09-25 2014-04-03 三洋電機株式会社 非水電解質二次電池及び非水電解質二次電池用正極活物質

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054830A (ja) * 2016-12-19 2017-03-16 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、および該正極活物質を用いた非水系電解質二次電池
WO2019066403A3 (ko) * 2017-09-28 2019-05-16 주식회사 엘지화학 리튬 이차 전지용 전극 활물질 복합체 및 상기 전극 활물질 복합체의 제조방법
KR20210016026A (ko) 2018-07-25 2021-02-10 미쓰이금속광업주식회사 정극 활물질
WO2020022305A1 (ja) 2018-07-25 2020-01-30 三井金属鉱業株式会社 正極活物質
CN113382965A (zh) * 2019-02-27 2021-09-10 松下知识产权经营株式会社 非水电解质二次电池用正极活性物质的制造方法
JP7580035B2 (ja) 2019-02-27 2024-11-11 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質の製造方法
WO2020174937A1 (ja) * 2019-02-27 2020-09-03 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質の製造方法
CN113382965B (zh) * 2019-02-27 2023-10-10 松下知识产权经营株式会社 非水电解质二次电池用正极活性物质的制造方法
JPWO2020174937A1 (ja) * 2019-02-27 2021-12-23 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質の製造方法
CN114072934B (zh) * 2019-03-22 2024-08-13 株式会社Lg新能源 硫化物类全固态电池用正极活性材料颗粒
JP7297191B2 (ja) 2019-03-22 2023-06-26 エルジー エナジー ソリューション リミテッド 硫化物系全固体電池用正極活物質粒子
CN114072934A (zh) * 2019-03-22 2022-02-18 株式会社Lg新能源 硫化物类全固态电池用正极活性材料颗粒
JP2022518416A (ja) * 2019-03-22 2022-03-15 エルジー エナジー ソリューション リミテッド 硫化物系全固体電池用正極活物質粒子
US11575116B2 (en) 2019-03-22 2023-02-07 Lg Energy Solution, Ltd. Positive electrode active material particle for sulfide-based all-solid-state batteries
JP7523038B2 (ja) 2019-03-29 2024-07-26 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2020202745A1 (ja) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2021025370A1 (ko) * 2019-08-06 2021-02-11 주식회사 엘 앤 에프 리튬 이차전지용 양극 활물질
KR20210107793A (ko) 2019-09-11 2021-09-01 미쓰이금속광업주식회사 황화물 고체 전해질, 전극 합제, 고체 전지 및 황화물 고체 전해질의 제조 방법
WO2021049416A1 (ja) 2019-09-11 2021-03-18 三井金属鉱業株式会社 硫化物固体電解質、電極合剤、固体電池及び硫化物固体電解質の製造方法
WO2023106562A1 (ko) * 2021-12-07 2023-06-15 주식회사 엘지에너지솔루션 황화물계 전고체 전지용 양극활물질
JP7612246B2 (ja) 2021-12-07 2025-01-14 エルジー エナジー ソリューション リミテッド 硫化物系全固体電池用正極活物質
WO2023157830A1 (ja) 2022-02-18 2023-08-24 三井金属鉱業株式会社 電極合剤、及びそれを用いた電極スラリー並びに電池
KR20240152828A (ko) 2022-02-18 2024-10-22 미쓰이금속광업주식회사 전극 합제 및 그것을 사용한 전극 슬러리 그리고 전지
WO2024190991A1 (ko) * 2023-03-13 2024-09-19 에스케이온 주식회사 이차 전지용 양극 활물질 및 이를 포함하는 이차 전지
WO2025080013A1 (ko) * 2023-10-11 2025-04-17 주식회사 엘지화학 양극 활물질 및 이의 제조 방법

Also Published As

Publication number Publication date
JP6524610B2 (ja) 2019-06-05

Similar Documents

Publication Publication Date Title
JP6524610B2 (ja) 非水系二次電池用正極活物質及びその製造方法
CN105552344B (zh) 一种锂离子电池正极片、锂离子电池及其制备方法
CN109449446A (zh) 二次电池
CN111095626B (zh) 锂二次电池用负极活性材料及其制备方法
CN108807860B (zh) 阴极添加剂及其制备方法、阴极片及锂电池
CN110890525B (zh) 用于锂二次电池的正极活性材料及包括其的锂二次电池
CN109449447A (zh) 二次电池
CN102449811A (zh) 具有高能量密度的锂二次电池
KR20210007483A (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
KR20170071408A (ko) 전고체 전지 및 전고체 전지의 제조 방법
KR20160091172A (ko) 잔류 리튬이 감소된 양극활물질의 제조 방법 및 이에 의하여 제조된 잔류 리튬이 감소된 양극활물질
JP2009245917A (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極及び非水電解質二次電池
KR20150074744A (ko) 붕소 화합물이 코팅된 리튬 이차 전지용 양극 활물질 및 이의 제조 방법
KR20240017067A (ko) 전지 양극재, 그의 제조 방법 및 그의 적용
JP2012146590A (ja) 非水電解質二次電池用正極、その正極の製造方法、及び非水電解質二次電池
CN106803579A (zh) 一种含正极材料的硅或硅合金复合锂离子电池负极材料及其制备方法和应用
CN108878770A (zh) 电芯及包括该电芯的二次电池
KR20140058928A (ko) 비수계 고용량 리튬 이차전지
EP2672553B1 (en) Nonaqueous electrolyte secondary battery
KR101666796B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
JP7523591B2 (ja) 負極活物質としてシリコン(Si)を含む全固体電池
KR102534215B1 (ko) Si계 음극을 포함하는 리튬 이차전지
EP3033795B1 (en) Lithium sulfur cell and preparation method
JP2013084399A (ja) リチウムイオン二次電池用負極の製造方法およびリチウムイオン二次電池の製造方法
JP2013069567A (ja) 電極活物質及びその製造方法並びにリチウムイオン電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190305

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190422

R150 Certificate of patent or registration of utility model

Ref document number: 6524610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250