[go: up one dir, main page]

JP2014204489A - 回転機制御装置 - Google Patents

回転機制御装置 Download PDF

Info

Publication number
JP2014204489A
JP2014204489A JP2013076625A JP2013076625A JP2014204489A JP 2014204489 A JP2014204489 A JP 2014204489A JP 2013076625 A JP2013076625 A JP 2013076625A JP 2013076625 A JP2013076625 A JP 2013076625A JP 2014204489 A JP2014204489 A JP 2014204489A
Authority
JP
Japan
Prior art keywords
torque
rotating machine
command
command value
torque constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013076625A
Other languages
English (en)
Inventor
孝志 保月
Takashi Hozuki
孝志 保月
山崎 尚徳
Hisanori Yamazaki
尚徳 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013076625A priority Critical patent/JP2014204489A/ja
Publication of JP2014204489A publication Critical patent/JP2014204489A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

【課題】所定の機械特性を得るための、特殊な設備を要する事前の計測作業や解析作業を行うこと無しに、基本的な電気特性を把握しておくだけで、実際の運転動作の中で補正係数を取得することができ、トルクリプルを簡便に抑制可能な回転機制御装置を提供することを目的としている。
【解決手段】補正部100は、モータ10の電気定数と電流検出値iと電圧指令値v*と電気角θreとに基づき電気回路解析でトルク定数補正指令Kt1を演算し、電流指令生成部1は、トルク指令値τ*とモータ10のトルク定数とトルク定数補正指令Kt1とに基づきq軸電流指令値iq*を生成する。
【選択図】図1

Description

本発明は、交流回転機の回転中に生じるトルクリプルを抑制する回転機制御装置に関する。
交流回転機として、例えば、PMモータ(永久磁石埋め込み型モータ)は、小型・高効率という特徴を持ち、近年では、産業機器用などに広く利用されている。しかし、PMモータは、その構造上、回転磁界に空間高調波を持つことから、その誘起電圧に高調波成分を含むため発生トルクにトルクリプルが現れる。これは、振動や騒音、機械的共振等の問題を引き起こす原因となりうるためその低減技術が必要となる。
この低減技術として、トルク指令に対し補正係数を乗じてトルクリプルを抑制可能とする電流指令値を生成し、その電流指令値を用いることでトルクリプルを抑制するようにしたものが知られている(例えば、特許文献1参照)。
特許第4742658号公報
上述の特許文献1に記載の方法では、高精度にトルクリプルを抑制することが可能であるが、必要となる機械的振動のデータを得るため、事前の電磁界解析(同文献1段落0019参照)や振動計測(同段落0032参照)により補正係数を取得し、記憶しておく必要がある。このように補正係数を取得する場合、モータのトルクや振動などの機械的状態量を計測するための特殊な設備の設置や、複雑な電磁界解析を実施するための特別のソフトウェアを必要とし、煩雑なパラメータ取得作業を実施しなければならないという課題がある。
また、計測作業あるいは解析作業において考慮することが困難なトルクリプル要因(例えば、回転機個別の製造バラツキに伴う回転子の軸ずれや負荷側からの共振など機械的なバラツキ、磁石温度上昇に伴うトルク特性の変化など)があった場合に、それらは補正係数には反映されないため、トルクリプル抑制が不十分となるという課題もあった。
本発明は、所定の機械特性を得るための、特殊な設備を要する事前の計測作業や解析作業を行うこと無しに、基本的な電気特性を把握しておくだけで、実際の運転動作の中で補正係数を取得することができ、トルクリプルを簡便に抑制可能な回転機制御装置を提供することを目的としている。
本発明に係る回転機制御装置は、電流指令値を生成する電流指令生成部、回転機の電流検出値が電流指令値に追従するよう電圧指令値を生成する電流制御部、および電圧指令値に基づき回転機に電力を供給する電力変換器を備えた回転機制御装置において、
回転機の電気定数と回転機に流れる電流と回転機に印加される電圧とに基づき電気回路解析により回転機のトルクリプルに同期した周波数のトルク定数成分を演算しトルク定数補正指令として出力する補正部を備え、
電流指令生成部は、トルクリプルを抑制するように、トルク指令値と回転機のトルク定数とトルク定数補正指令とに基づき電流指令値を生成するものである。
以上のように、本発明に係る回転機制御装置は、回転機の電気定数と回転機に流れる電流と回転機に印加される電圧とに基づき電気回路解析により回転機のトルクリプルに同期した周波数のトルク定数成分を演算しトルク定数補正指令として出力する補正部を備えたので、トルクリプル抑制の目的で電流指令値を補正するためのトルク定数補正指令を、事前の煩雑な計測・解析作業を行うことなく取得することができ、簡便な装置によるトルクリプル抑制が可能になる。加えて、回転機個別の製造バラツキや磁石温度上昇に伴うトルク特性の変動などの、計測・解析が困難である要因から生じるトルクリプルに対しても、その抑制が可能となる。
この発明の実施の形態1である回転機制御装置の構成を示すブロック図である。 この発明の実施の形態2である回転機制御装置の第一動作モードにおける回路構成を示すブロック図である。 この発明の実施の形態2である回転機制御装置の第二動作モードにおける回路構成を示すブロック図である。 この発明の実施の形態2である回転機制御装置の第一動作モードにおける第一記憶部201への書き込み動作を説明する図である。 この発明の実施の形態2である回転機制御装置の第二動作モードにおける第一記憶部201からの読み出し動作を説明する図である。 この発明の実施の形態3である回転機制御装置の構成を示すブロック図である。 この発明の実施の形態4である回転機制御装置の第一動作モードにおける回路構成を示すブロック図である。 この発明の実施の形態4である回転機制御装置の第二動作モードにおける回路構成を示すブロック図である。
実施の形態1.
図1は、この発明の実施の形態1である回転機制御装置の構成を示すブロック図である。図1において、回転機制御装置は、電流指令生成部1、電流制御部2、dq/三相変換器3、電流検出部5、三相/dq変換器6、減算器7,8、回転位置検出器9、および補正部100を有する。そして、電力変換器4を介して回転機としてのPMモータ(以下、単にモータと称する)10を制御する。
次に、これら各構成要素の機能動作について説明する。
先ず、電流指令生成部1は、上位制御系からのトルク指令値τ*と後述するトルク定数補正指令Kt1と、更に、モータ10のモータ定数としてのトルク定数とに基づいてq軸電流指令値iq*を演算し、減算器7へ入力する。一方で、電流検出部5では、モータ10の実電流(電流検出値)ベクトルiが検出され、三相/dq変換器6へ入力される。
そして、三相/dq変換器6は、エンコーダ等の回転位置検出器9からのモータ10の回転位置情報である電気角θreを参照して、実電流ベクトルiをq軸実電流iqおよびd軸実電流idに変換し、q軸実電流iqは、減算器7へ、d軸実電流idは、減算器8へ入力される。
減算器7では、電流指令生成部1からのq軸電流指令値iq*とq軸実電流iqとの差が演算され電流制御部2へ入力される。また、減算器8では、d軸電流指令値id*とd軸実電流idとの差が演算され、同じく電流制御部2へ入力される。
なお、d軸電流指令値id*は、公知の技術に従えば、通例、id*=0に設定されるが、弱め界磁制御等を行う場合はそれに応じた値に設定される。いずれにしろ、本願発明では、要部の対象外であるので具体的な内容は省略する。
電流制御部2では、減算器7、8の出力が零、即ち、q軸実電流iqがq軸電流指令値iq*に、d軸実電流idがd軸電流指令値id*にそれぞれ追従するように、PI制御等により電圧指令値vq*,vd*が演算され、dq/三相変換器3へ入力される。dq/三相変換器3は、電気角θreを参照して電圧指令値vd*,vq*を、三相電圧指令値ベクトルv*に変換し、電力変換器4へ入力する。
電力変換器4は、三相電圧指令値ベクトルv*に従って三相電圧を出力し、q軸電流指令値iq*およびd軸電流指令値id*と等しい電流iqおよびidを流し、トルク指令値τ*と等しいトルクを発生させるよう、モータ10を駆動する。
次に、本発明におけるトルクリプル抑制制御の動作、即ち、補正部100を中心とする動作について説明する。
補正部100は、誘起電圧推定部101およびトルク定数補正指令生成部102を備え、誘起電圧推定部101は、電気定数(モータ定数)と、実電流ベクトルiと、モータ10への三相電圧指令値ベクトルvと、回転位置検出器9によって検出されたモータ10の電気角θreに基づき、以下の電気回路解析によって、モータ10の推定誘起電圧としての誘起電圧推定値ベクトルeを演算する。
Figure 2014204489
ここで、RおよびLは、モータ10の電気定数である巻線抵抗および自己インダクタンス、Pmは、極対数、sは、微分演算子、Iは、単位行列、Jは、交代行列、F(s)は、ローパスフィルタのゲイン、ωrmは、機械角速度、ωreは、電気角速度を表している。
なお、このローパスフィルタは、演算に基づく不要な歪みを除去するためのもので、そのゲインF(s)は、図示は省略するが、誘起電圧推定部101内において、マイクロプロセッサによるソフトウェア処理により実現しているローパスフィルタの伝達関数である。そして、誘起電圧推定値ベクトルeを、トルク定数補正指令生成部102へ入力する。
なお、図1の誘起電圧推定部101では、モータ10に印加される電圧として三相電圧指令値v*を、また、モータ10に流れる電流として三相実電流i*を取り込んでいる。しかし、式(2)の方程式を、d軸上とq軸上とで形成する場合は、電圧としては、dq/三相変換器3で変換する前のd軸電圧指令値vd*およびq軸電圧指令値vq*を、また、電流としては、三相/dq変換器6で変換した後のd軸実電流idおよびq軸実電流iqを取り込むようにすればよい。
三相の電圧と電流を取り込んで式(2)を演算したときは、後述の式(3)では、得られた三相の誘起電圧をdq軸に変換して誘起電圧q軸成分を求めるようにすればよい。
また、図1では、モータ10に印加される電圧として電圧指令値を使用したが、別途、電圧検出器を設けて得られる電圧検出値を使ってもよく、モータ10に流れる電流として電流検出値を使用したが、電流指令値を使用するようにしてもよい。
次に、トルク定数補正指令生成部102の動作について説明する。先ず、誘起電圧推定値ベクトルe中のq軸誘起電圧推定値eqに基づき、以下の式(3)の演算を行うことにより、モータ10の磁石磁束推定値φmを求める。
Figure 2014204489
ここで扱う磁石磁束は、モータ10に発生するトルクと比例関係にあるもので、従って、式(3)で得られた磁石磁束推定値φmには、モータ10のトルクリプルに同期した周波数成分のトルクが含まれることになる。
そこで、磁石磁束推定値φmをフーリエ級数展開し、抑制対象とするトルクリプルの周波数に相当する次数nについてのフーリエ係数φmCnおよびφmSnを、式(4)および式(5)に示す演算により抽出する。
Figure 2014204489
ここで、FLPF(s)は、図示は省略するが、マイクロプロセッサによるソフトウェア処理により実現しているローパスフィルタの伝達関数である。また、Δθestは、先の式(2)のゲインF(s)のローパスフィルタによる位相遅れや、演算過程におけるA/D変換に伴う遅れ等を補償するものである。
もっとも、フーリエ係数の正確な値は、数学の教科書にあるとおり、周期関数φmの周期をTとすると、式(6)、(7)で表される。
Figure 2014204489
従って、これらの式を適用してフーリエ係数を求める場合は、信号1周期分の平均値を求める処理が繰り返し必要となり、演算負荷が大きくなる。そこで、この実施の形態1では、式(6)、(7)の積分演算を、ローパスフィルタ演算に置き換えた式(4)(5)を採用しており、この場合も実用上支障ないことを確認している。
なお、次数n、即ち、トルクリプルの周波数の高調波次数としては、よく知られるように、モータをインバータにより三相交流駆動する場合、通例、6次およびその倍の12次が主な成分となる。
式(4)、(5)で得られたフーリエ係数から、トルクリプルに同期したn次の周波数の周期信号φmnが式(8)により求まる。
Figure 2014204489
本願では、後述する式(10)に示すように、トルクリプルを抑制するためトルク定数を補正するものとしている。そして、トルクとトルク定数とは、逆数の関係にあること、更に、トルク定数はモータ10全体としてのトルク、電流で決まるため、式(8)の周期信号φmnの極性を反転するとともに、極対数Pmを乗算したものが、トルクリプルに同期した周波数のトルク定数成分となり、これをトルク定数補正指令Kt1として、式(9)により求まる。
Figure 2014204489
そして、このトルク定数補正指令Kt1は、電流指令生成部1に入力され、この電流指令生成部1では、トルクリプルを抑制するように、モータ10の本来のトルク定数Ktからトルク定数補正指令Kt1を減算した値を分母とする、式(10)に示す演算により求まるq軸電流指令値iq*を生成し、減算器7へ入力する。
Figure 2014204489
式(10)により演算されたq軸電流指令値iq*を用いた電流(トルク)制御を行うことによって、トルク指令値τ*と等しいトルクを発生させるとともに、トルク定数補正指令Kt1に基づきトルクリプルに同期した高調波のトルクを発生させることができ、その高調波トルクによって本来のトルクリプルが打ち消され、モータ10をトルクリプルが抑制された状態で駆動することが可能となる。
以上のように、この発明の実施の形態1である回転機制御装置においては、補正部100により、モータ10の電気定数(R、L)、電流検出値i、および電圧指令値v*に基づく電気回路解析により誘起電圧推定値eを求め、この誘起電圧推定値eから、トルクリプル抑制の目的で電流指令値を補正するためのトルク定数補正指令Kt1を得ることが出来る。従って、このトルク定数補正指令Kt1は、事前の煩雑な計測・解析作業を行うことなく、実際の運転動作の中で取得することができ、簡便な装置によるトルクリプル抑制が可能になる。加えて、回転機個別の製造バラツキや磁石温度上昇に伴うトルク特性の変動などの、計測・解析が困難である要因から生じるトルクリプルに対しても、その抑制が可能となる。これにより、モータ10の耐久性も向上する。
なお、先の図1の補正部100では、誘起電圧推定部101を備え、ここで得られた誘起電圧推定値ベクトルeからトルク定数補正指令Kt1を演算するようにしたが、この誘起電圧推定部101に代わり、トルク推定部を備えるようにしてもよい。
そして、このトルク推定部において、式(2)に式(11)を代入した演算式に基づく電気回路解析により推定トルクτを求め、更に、トルク定数補正指令生成部102において、この推定トルクτから式(12)により推定トルク定数Kを求め、この推定トルク定数Kからフーリエ係数を求める手法で最終的なトルク定数補正指令Kt1を求めるようにしてもよい。
Figure 2014204489
また、以上では、式(4)、(5)または式(6)、(7)によりフーリエ係数を求め、これらフーリエ係数を用いて式(8)によりトルクリプルに同期した周波数信号を抽出し、更にこの周波数信号から最終的なトルク定数補正指令Kt1を演算するようにしたが、フーリエ級数展開を用いず、例えば、バンドパスフィルタによりトルクリプルに同期した周波数成分を抽出するようにしてもよい。
但し、例えば、速度が変動する場合、フーリエ係数を求める式(4)、(5)では、ωreを変動させることで対応できるが、バンドパスフィルタ方式の場合は、係数をリアルタイムに演算し直す可変バンドパスフィルタを用いる必要があり、構成が複雑になるという不利な点等がある。
また、以上の式(4)、(5)では、トルクリプルの高調波次数nとして1種類の次数を設定したが、既述したように、例えば、6次と12次の2種類の次数のトルクリプルを抑制対象とする場合は、n=6とした場合とn=12とした場合について、それぞれフーリエ係数を求め、両者の結果から2種類のトルク定数補正指令Kt1、Kt112を求め、電流指令生成部1では、式(13)に基づき、q軸電流指令値iq*を生成するようにする。
Figure 2014204489
これにより、トルクリプルの複数(ここでは、6次と12次)の周波数成分を同時に抑制することも可能となる。
実施の形態2.
この発明の実施の形態2である回転機制御装置は、トルクリプルを抑制する動作原理としては先の実施の形態1の場合と同様であるが、運転時の演算処理容量の軽減を図ったものである。ここでは、2つの動作モードで動作し、図2は、トルク定数補正指令に関するデータを記憶する第一動作モードにおける回路構成を示すブロック図、図3は、第一動作モードで記憶されたデータを利用してトルクリプルを抑制しつつモータ10を駆動運転する第二動作モードにおける回路構成を示すブロック図である。
先ず、第一動作モードの動作について説明する。本動作モードでは、予め、トルク定数補正指令記憶用の運転パターンとして所定の範囲でパターントルク指令値τ**が設定されている。また、図2に示すように、第一記憶部201を備えている。
そして、電流指令生成部1は、このパターントルク指令値τ**とモータ10のモータ定数としてのトルク定数Ktとに基づき、式(14)により、q軸電流指令値iq**を生成する。
Figure 2014204489
即ち、第一動作モードにおいては、このq軸電流指令値iq**に基づき、トルクリプルを抑制することなくモータ10を駆動する。
従って、モータ10に要請される本来の運転動作でないという点で、第一動作モードは、オフラインでの動作と言える。
このとき、先の実施の形態1と同様に、トルク定数補正指令生成部102において、その演算過程である式(3)〜式(5)の演算によって得られ、トルク定数補正指令に関するデータである、パターントルク指令値τ**に対するフーリエ係数φmCn、φmSnを抽出する。
これを運転パターンに設定されたパターントルク指令値τ**ごとに繰り返し、図4に示すように、電気角θre(または電気角速度ωre等のモータ10の回転位置情報)およびパターントルク指令値τ**(または、q軸電流指令値iq**)に関係づけてフーリエ係数φmCn、φmSnを第一記憶部201で記憶する。
また、この第一動作モードにおいては、あくまでもトルク定数補正指令に関するデータを取得するのが演算の目的であるので、その運転パターンは、定速・定トルクの駆動パターンでよく、実際の運転では起こり得る複雑な可変速駆動は必要ない。
従って、電力変換器4が、電圧指令値とキャリア信号とに基づきスイッチング素子をパルス幅変調によりオンオフ制御する方式の場合、後述する第二動作モードの場合と比較して、電力変換器4におけるキャリア信号の周波数を低く設定することが可能である。
周知のように、この種の電力変換器4にあっては、発生する外乱がキャリア周波数に比例して増加する性質を持つことから、キャリア周波数を低く設定することによってその外乱を減少させ、より精度良くトルク定数補正指令に関するデータを得ることが出来る。
次に、トルクリプル抑制を行う、図3に示す第二動作モードの動作について説明する。本第二動作モードは、図1で示す第一動作モードにおいて、第一記憶部201に、フーリエ係数φmCn、φmSnのデータが格納済となった状態で動作するものである。
第一記憶部201には、モータ10のトルク指令値τ*、電気角θreとが入力され、第一記憶部201では、入力されたトルク指令値τ*と電気角θreとに関係づけて、フーリエ係数φmCn、φmSnのデータを読み出す。そして、これらのデータに基づき、式(8)、式(9)の演算を行って、例えば、図5に示すような、トルク指令値τ*(あるいは、図5に示すように、実質的にトルク指令値と同等の負荷%)と電気角θreとに対応したトルク定数補正指令Kt1を出力し、電流指令生成部1に入力する。
電流指令生成部1では、トルク定数補正指令Kt1を用いて、先の実施の形態1と同様に、式(10)の演算を行うことによって、トルクリプルを抑制可能なq軸電流指令値iq*を出力し、トルクリプル抑制を行う。
以上の通り、本第二動作モードにおいては、補正部100は停止状態にあり、第一動作モードによりオフラインで第一記憶部201に記憶されたデータに基づき、トルクリプルを抑制しつつモータ10の駆動制御が行われる。
即ち、モータ10に要請される本来の運転動作であるという点で、第二動作モードは、オンラインでの動作と言える。
以上のように、この発明の実施の形態2である回転機制御装置においては、先ず、第一動作モードにより、オフラインで、トルクリプル抑制の目的で電流指令値を補正するためのトルク定数補正指令に関するデータを確保し、次に、第二動作モードにより、オンラインで、上記データに基づきトルク定数補正指令を生成し、トルクリプルを抑制しつつモータ10の駆動制御が可能となる。
第一動作モードは、オフラインとはいえ、トルク定数補正指令に関するデータを、モータ10を含め現実の装置を使った運転特性から得ることが出来、従来のような事前の煩雑な計測・解析作業を行うことなく、簡便な装置によるトルクリプル抑制が可能になる。加えて、回転機個別の製造バラツキや磁石温度上昇に伴うトルク特性の変動などの、計測・解析が困難である要因から生じるトルクリプルに対しても、その抑制が可能となる。
特に、第一動作モードでは、既述したように、複雑な可変速駆動は必要ないので、電力変換器4におけるキャリア信号の周波数を低く設定することでその外乱を減少させ、より精度良くトルク定数補正指令に関するデータを得ることが可能となる。
また、第二動作モードでは、第一記憶部201から読み出すことで、トルクリプル抑制に必要なトルク定数補正指令のデータを簡便に得ることが出来るので、制御装置の演算能力、例えば、演算処理速度に制約がある場合においても、本発明による簡易なトルクリプル抑制が可能になる効果が得られる。
なお、本実施の形態2では、ある一つ(第n次)のトルクリプルに同期したフーリエ係数φmCn、φmSnを抽出して記憶する例を示したが、第一動作モードにおいて、先の実施の形態1で説明したと同様の要領で、複数次のトルクリプルに同期した複数回の抽出演算を並列に行って、複数次成分に対するフーリエ係数をそれぞれ記憶し、第二動作モードにおいて、それら複数次のフーリエ係数に基づいて得られる複数のトルク定数補正指令を用い、式(13)によりq軸電流指令値iq*を生成することで、トルクリプルの複数の周波数成分を同時に抑制することも可能である。
また、本実施の形態2では、第一動作モードにおいて、式(3)〜式(5)の計算に基づき、トルク定数補正指令に関するデータとして、フーリエ係数φmCn、φmSnを抽出し、これらフーリエ係数を、第一記憶部201に記憶する動作例を示したが、更に、式(8)、式(9)の演算を行い、図5に示すように、トルク指令値τ**(または、負荷%)と電気角θreとに関係づけてトルク定数補正指令Kt1を第一記憶部201に記憶することも可能である。
あるいは、第一動作モードにおいて、フーリエ係数φmCn、φmSnから更に以下の式(15)、式(16)の演算を行うことにより、トルク定数補正指令に関するデータとして、フーリエ係数φmCn、φmSnに替わり、振幅An、位相θnを第一記憶部201に記憶しておき、第二動作モードにおいて、式(17)のように演算することによって、図5に示すようなトルク定数補正指令Kt1を出力することも可能である。
Figure 2014204489
実施の形態3.
図6は、この発明の実施の形態3である回転機制御装置の構成を示すブロック図である。本実施の形態3は、先の実施の形態1と同様に補正部100を備える。
本実施の形態3と実施の形態1との違いは、補正部100に加えて、第二記憶部301を備える点である。
モータ10で発生するトルクリプルのうち、誘起電圧の高調波成分に由来するもの以外の特定種別のトルクリプル、例えば、コギングトルクなどに関して、予め計測あるいは解析を行った結果がある場合には、その結果を用いて追加のトルク定数補正指令に関するデータとして、追加フーリエ係数φamCn、φamSnを演算し、先の実施の形態2における図4と同様に、トルク指令値(または、q軸電流指令値)と電気角θreとに関係づけて、予め第二記憶部301に格納しておくことが可能である。
このように、第二記憶部301に追加フーリエ係数φamCn、φamSnが格納されている場合の動作について説明する。
先ず、先の実施の形態1と同様に、補正部100において、式(3)〜式(5)、式(8)〜式(10)の演算により、トルク定数補正指令Kt1を生成し、電流指令生成部1に、このトルク定数補正指令Kt1が入力される。
同時に、第二記憶部301には、モータ10のトルク指令値τ*、電気角θreが入力され、第二記憶部301内に記憶されたデータに基づいて、式(8)、式(9)に対応した、以下の式(18)、式(19)の演算を行って、図5と同様の形で、トルク指令値τ*(または、負荷%)と電気角θreとに関係づけて追加のトルク定数補正指令Katを出力し、電流指令生成部1に入力する。
Figure 2014204489
そして、電流指令生成部1において、以下の式(20)の演算を行うことによって、特定種別のトルクリプルを含むトルクリプルを抑制可能なq軸電流指令値iq*を出力する。
Figure 2014204489
以上のように、この発明の実施の形態3である回転機制御装置においては、誘起電圧の高調波成分に由来するもの以外の特定種別のトルクリプル、例えば、コギングトルクなどに関して、予め計測あるいは解析を行った結果がある場合、これら計測・解析結果を有効に活用して、この特定種別のトルクリプルを抑制するための追加トルク定数補正指令Katに関するデータを予め記憶格納した第二記憶部301を設け、電流指令生成部1では、誘起電圧の高調波成分に由来するトルクリプルを抑制するためのトルク定数補正指令Kt1に加え、上記データから求めた追加トルク定数補正指令Katをも加味してq軸電流指令値iq*を生成するので、簡便な装置により、特定種別のトルクリプルを含むトルクリプルを抑制しつつモータ10の駆動制御が可能となる。
このとき必要となる特定種別のトルクリプルに関するデータは、トルクリプルのうちの一部成分のみであるため、事前計測作業が簡易なものとなる効果も得られる。
また、誘起電圧の高調波成分に由来するトルクリプルおよびそれ以外の特定種別のトルクリプルのそれぞれにつき、複数の次数のトルクリプルを抑制対象とする場合も、先の形態例と同様の要領で、これら複数の周波数成分のトルクリプルを同時に抑制することも出来る。
また、本実施の形態3では、第二記憶部301で追加補正フーリエ係数φamCn、φamSnを記憶させる例を示したが、更に、式(18)、式(19)の演算を行い、図5に示すように、トルク指令値τ**(または、負荷%)と電気角θreとに関係づけて追加トルク定数補正指令Katを第二記憶部301に記憶することも可能である。
あるいは、追加補正フーリエ係数φamCn、φamSnから更に以下の式(21)、式(22)の演算を行うことにより、追加トルク定数補正指令に関するデータとして、追加補正フーリエ係数φamCn、φamSnに替わり、振幅An、位相θnを第二記憶部301に予め記憶しておくことも可能である。
Figure 2014204489
そして、運転動作時は、追加補正フーリエ係数φamCn、φamSnを読み出し。これらデータに基づき、以下の式(23)のように演算することによって、追加トルク定数補正指令Katを出力することなる。
Figure 2014204489
実施の形態4.
本実施の形態4は、先の実施の形態2と形態3とを適宜組み合わせたものである。即ち、図7は、トルク定数補正指令に関するデータを記憶する第一動作モードにおける回路構成を示すブロック図で、実施の形態2の図2の第一記憶部201に相当する第一記憶部401に加えて、実施の形態3の図6の第二記憶部301に相当する第二記憶部402を備えている。
図8は、第一動作モードで第一記憶部401に記憶された、トルクリプル抑制の目的で電流指令値を補正するためのトルク定数補正指令に関するデータ、および誘起電圧の高調波成分に由来するもの以外の特定種別のトルクリプル、例えば、コギングトルクなどに関して予め計測あるいは解析を行った結果から求められ第二記憶部402に記憶された上記特定種別のトルクリプル抑制の目的で電流指令値を補正するためのトルク定数補正指令に関するデータを利用して特定種別のトルクリプルを含むトルクリプルを抑制しつつモータ10を駆動運転する第二動作モードにおける回路構成を示すブロック図である。
個々の動作は、先の実施の形態2および形態3で説明済みであるので、ここでの再録は省略するが、この実施の形態4の回転機制御装置においては、上述した2つの形態例での効果が共に得られる。
即ち、第一動作モードは、オフラインとはいえ、トルク定数補正指令に関するデータを、モータ10を含め現実の装置を使った運転特性から得ることが出来、従来のような事前の煩雑な計測・解析作業を行うことなく、簡便な装置によるトルクリプル抑制が可能になる。加えて、回転機個別の製造バラツキや磁石温度上昇に伴うトルク特性の変動などの、計測・解析が困難である要因から生じるトルクリプルに対しても、その抑制が可能となる。
特に、第一動作モードでは、既述したように、複雑な可変速駆動は必要ないので、電力変換器4におけるキャリア信号の周波数を低く設定することでその外乱を減少させ、より精度良くトルク定数補正指令に関するデータを得ることが可能となる。
また、第二動作モードでは、第一記憶部401および第二記憶部402から読み出すことで、特定種別のトルクリプルを含むトルクリプルの抑制に必要なトルク定数補正指令のデータを簡便に得ることが出来るので、制御装置の演算能力、例えば、演算処理速度に制約がある場合においても、本発明による簡易なトルクリプル抑制が可能になる効果が得られる。
なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
1 電流指令生成部、2 電流制御部、3 dq/三相変換器、4 電力変換器、
5 電流検出部、6 三相/dq変換器、7,8 減算器、9 回転位置検出器、
10 PMモータ、100 補正部、101 誘起電圧推定部、
102 トルク定数補正指令生成部、201,401 第一記憶部、
301,402 第二記憶部。

Claims (9)

  1. 電流指令値を生成する電流指令生成部、回転機の電流検出値が前記電流指令値に追従するよう電圧指令値を生成する電流制御部、および前記電圧指令値に基づき前記回転機に電力を供給する電力変換器を備えた回転機制御装置において、
    前記回転機の電気定数と前記回転機に流れる電流と前記回転機に印加される電圧とに基づき電気回路解析により前記回転機のトルクリプルに同期した周波数のトルク定数成分を演算しトルク定数補正指令として出力する補正部を備え、
    前記電流指令生成部は、前記トルクリプルを抑制するように、トルク指令値と前記回転機のトルク定数と前記トルク定数補正指令とに基づき前記電流指令値を生成することを特徴とする回転機制御装置。
  2. 前記補正部は、前記回転機の電気定数と前記電流検出値と前記電圧指令値と前記回転機の回転位置情報とに基づき前記回転機の誘起電圧を演算し推定誘起電圧として出力する誘起電圧推定部、および前記推定誘起電圧に基づき前記トルク定数補正指令を生成するトルク定数補正指令生成部を備えたことを特徴とする請求項1記載の回転機制御装置。
  3. 前記補正部は、前記回転機の電気定数と前記電流検出値と前記電圧指令値と前記回転機の回転位置情報とに基づき前記回転機のトルクを演算し推定トルクとして出力するトルク推定部、および前記推定トルクに基づき前記トルク定数補正指令を生成するトルク定数補正指令生成部を備えたことを特徴とする請求項1記載の回転機制御装置。
  4. 前記トルク定数補正指令生成部は、請求項2の推定誘起電圧または請求項3の推定トルクをフーリエ級数展開したときの前記回転機のトルクリプルに同期した周波数成分のフーリエ係数を演算する手段を備え、この演算した前記周波数成分のフーリエ係数に基づき前記トルク定数補正指令を生成することを特徴とする回転機制御装置。
  5. 前記トルク定数補正指令生成部は、請求項2の推定誘起電圧または請求項3の推定トルクから前記回転機のトルクリプルに同期した周波数成分を抽出するバンドパスフィルタを備え、この抽出した前記周波数成分に基づき前記トルク定数補正指令を生成することを特徴とする回転機制御装置。
  6. 第一記憶部を備えるとともに、第一動作モードと第二動作モードとで動作し、
    前記第一動作モードでは、前記電流指令生成部は、トルク定数補正指令記憶用の運転パターンとして所定の範囲で設定されるパターントルク指令値と前記回転機のトルク定数とに基づき前記電流指令値を生成し、この状態で運転したときの、前記補正部の演算過程で得られるトルク定数補正指令に関するデータを前記パターントルク指令値と前記回転機の回転位置情報とに関係づけて前記第一記憶部に記憶するようにし、
    前記第二動作モードでは、前記第一記憶部は、前記トルク指令値と前記回転機の回転位置情報とに関係づけて、前記第一動作モードで記憶された前記データを読み出し、当該データに基づき前記トルク定数補正指令を演算し、前記電流指令生成部は、前記第一記憶部で演算されたトルク定数補正指令と前記トルク指令値と前記回転機のトルク定数とに基づき前記電流指令値を生成するようにしたことを特徴とする請求項1ないし請求項5のいずれか1項に記載の回転機制御装置。
  7. 特定種別のトルクリプルであって、当該トルクリプルについてのトルク定数補正指令が予め計測または解析により得られている場合、当該トルク定数補正指令に関するデータを前記トルク指令値と前記回転機の回転位置情報とに関係づけて記憶する第二記憶部を備え、
    前記第二記憶部は、前記トルク指令値と前記回転機の回転位置情報とに関係づけて、記憶された前記データを読み出し、当該データに基づき前記特定種別のトルクリプルについてのトルク定数補正指令を演算し、前記電流指令生成部は、前記特定種別のトルクリプルを含む前記トルクリプルを抑制するように、前記第二記憶部で演算された前記特定種別のトルクリプルについてのトルク定数補正指令と前記トルク指令値と前記回転機のトルク定数と前記補正部からのトルク定数補正指令とに基づき前記電流指令値を生成することを特徴とする請求項1ないし請求項5のいずれか1項に記載の回転機制御装置。
  8. 第一記憶部および特定種別のトルクリプルであって、当該トルクリプルについてのトルク定数補正指令が予め計測または解析により得られている場合、当該トルク定数補正指令に関するデータを前記トルク指令値と前記回転機の回転位置情報とに関係づけて記憶する第二記憶部を備えるとともに、第一動作モードと第二動作モードとで動作し、
    前記第一動作モードでは、前記電流指令生成部は、トルク定数補正指令記憶用の運転パターンとして所定の範囲で設定されるパターントルク指令値と前記回転機のトルク定数とに基づき前記電流指令値を生成し、この状態で運転したときの、前記補正部の演算過程で得られるトルク定数補正指令に関するデータを前記パターントルク指令値と前記回転機の回転位置情報とに関係づけて前記第一記憶部に記憶するようにし、
    前記第二動作モードでは、前記第一記憶部は、前記トルク指令値と前記回転機の回転位置情報とに関係づけて、前記第一動作モードで記憶された前記トルク定数補正指令に関するデータを読み出し、当該データに基づき前記トルク定数補正指令を演算し、前記第二記憶部は、前記トルク指令値と前記回転機の回転位置情報とに関係づけて、記憶された前記特定種別のトルクリプルに関してのトルク定数補正指令に関するデータを読み出し、当該データに基づき前記特定種別のトルクリプルについてのトルク定数補正指令を演算し、前記電流指令生成部は、前記特定種別のトルクリプルを含む前記トルクリプルを抑制するように、前記第一記憶部で演算されたトルク定数補正指令と前記第二記憶部で演算された前記特定種別のトルクリプルについてのトルク定数補正指令と前記トルク指令値と前記回転機のトルク定数とに基づき前記電流指令値を生成するようにしたことを特徴とする請求項1ないし請求項5のいずれか1項に記載の回転機制御装置。
  9. 前記電力変換器が、前記電圧指令値とキャリア信号とに基づきスイッチング素子をパルス幅変調によりオンオフ制御する方式の場合、
    前記第一動作モードにおける前記キャリア信号の周波数を、前記第二動作モードにおける前記キャリア信号の周波数より低く設定したことを特徴とする請求項6または請求項8に記載の回転機制御装置。
JP2013076625A 2013-04-02 2013-04-02 回転機制御装置 Pending JP2014204489A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013076625A JP2014204489A (ja) 2013-04-02 2013-04-02 回転機制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013076625A JP2014204489A (ja) 2013-04-02 2013-04-02 回転機制御装置

Publications (1)

Publication Number Publication Date
JP2014204489A true JP2014204489A (ja) 2014-10-27

Family

ID=52354502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013076625A Pending JP2014204489A (ja) 2013-04-02 2013-04-02 回転機制御装置

Country Status (1)

Country Link
JP (1) JP2014204489A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106537760A (zh) * 2015-01-28 2017-03-22 松下知识产权经营株式会社 电动机控制装置以及该电动机控制装置中的转矩常数的校正方法
WO2017081977A1 (ja) * 2015-11-12 2017-05-18 三菱電機株式会社 モータ制御装置およびこれを用いたエレベータ

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106537760A (zh) * 2015-01-28 2017-03-22 松下知识产权经营株式会社 电动机控制装置以及该电动机控制装置中的转矩常数的校正方法
CN106537760B (zh) * 2015-01-28 2020-03-31 松下知识产权经营株式会社 电动机控制装置以及该装置中的转矩常数的校正方法
WO2017081977A1 (ja) * 2015-11-12 2017-05-18 三菱電機株式会社 モータ制御装置およびこれを用いたエレベータ
JP6157773B1 (ja) * 2015-11-12 2017-07-05 三菱電機株式会社 モータ制御装置およびこれを用いたエレベータ
KR20180040672A (ko) * 2015-11-12 2018-04-20 미쓰비시덴키 가부시키가이샤 모터 제어 장치 및 이것을 이용한 엘리베이터
CN108352798A (zh) * 2015-11-12 2018-07-31 三菱电机株式会社 电机控制装置及使用了该电机控制装置的电梯
KR102088183B1 (ko) 2015-11-12 2020-03-12 미쓰비시덴키 가부시키가이샤 모터 제어 장치 및 이것을 이용한 엘리베이터
CN108352798B (zh) * 2015-11-12 2021-05-11 三菱电机株式会社 电机控制装置及使用了该电机控制装置的电梯

Similar Documents

Publication Publication Date Title
JP5492192B2 (ja) 交流モータの制御装置
JP5446988B2 (ja) 回転電気機械のトルクリプル抑制制御装置および制御方法
JP5116785B2 (ja) 交流電動機の駆動装置及び電動機車両
JP5952332B2 (ja) 誘導電動機のセンサレスベクトル制御装置
JP4685509B2 (ja) 交流電動機の駆動制御装置および駆動制御方法
CN113866480B (zh) 用于马达控制系统的相电流测量中的偏移误差的检测
RU2664782C1 (ru) Устройство управления для вращающейся машины переменного тока
JP7072728B2 (ja) 電力変換装置の制御装置、及び電動機駆動システム
JP5733404B2 (ja) Pmモータの位置センサレス制御装置
KR102515704B1 (ko) 전력 변환 디바이스를 위한 제어 디바이스, 제어 방법, 및 모터 구동 시스템
KR101485989B1 (ko) 모터 제어 장치
Chatterjee A simple leakage inductance identification technique for three-phase induction machines under variable flux condition
US11757390B2 (en) Motor inductance measurement device, motor drive system, and motor inductance measurement method
JP6183554B2 (ja) 周期外乱自動抑制装置
JP6737999B2 (ja) 電圧指令値を出力する制御装置
JP2010035352A (ja) 同期電動機のロータ位置推定装置
JP2008286779A (ja) Ipmモータのためのトルク推定器
Tiwari et al. ANN based RF-MRAS speed estimation of induction motor drive at low speed
JP2014204489A (ja) 回転機制御装置
JP6664288B2 (ja) 電動機の制御装置
JP6108114B2 (ja) 永久磁石形同期電動機の制御装置
JP5106295B2 (ja) 同期電動機のロータ位置推定装置
JP7163640B2 (ja) 同期電動機の制御装置
Moujahed et al. Sensor-less direct torque control of permanent magnet synchronous motor drive using Extended Kalman filter
Slavov Adaptive observer of resistance in sensorless estimation of speed and position in brushless DC electric motor