JP2013504009A - 低排出発電および炭化水素回収のシステムおよび方法 - Google Patents
低排出発電および炭化水素回収のシステムおよび方法 Download PDFInfo
- Publication number
- JP2013504009A JP2013504009A JP2012527876A JP2012527876A JP2013504009A JP 2013504009 A JP2013504009 A JP 2013504009A JP 2012527876 A JP2012527876 A JP 2012527876A JP 2012527876 A JP2012527876 A JP 2012527876A JP 2013504009 A JP2013504009 A JP 2013504009A
- Authority
- JP
- Japan
- Prior art keywords
- stream
- gaseous combustion
- turbine
- carbon dioxide
- reformer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 67
- 238000011084 recovery Methods 0.000 title claims abstract description 53
- 239000004215 Carbon black (E152) Substances 0.000 title claims abstract description 34
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 34
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 34
- 238000010248 power generation Methods 0.000 title abstract description 19
- 238000002485 combustion reaction Methods 0.000 claims abstract description 129
- 239000000446 fuel Substances 0.000 claims abstract description 84
- 239000007789 gas Substances 0.000 claims abstract description 33
- 239000000203 mixture Substances 0.000 claims abstract description 17
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000001257 hydrogen Substances 0.000 claims abstract description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 16
- 239000000126 substance Substances 0.000 claims abstract description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 112
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 55
- 239000001569 carbon dioxide Substances 0.000 claims description 55
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical group [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 51
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 50
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 43
- 239000001301 oxygen Substances 0.000 claims description 43
- 229910052760 oxygen Inorganic materials 0.000 claims description 43
- 238000006243 chemical reaction Methods 0.000 claims description 22
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 16
- 239000000047 product Substances 0.000 claims description 14
- 238000004891 communication Methods 0.000 claims description 13
- 239000012530 fluid Substances 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 10
- 230000005611 electricity Effects 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000013067 intermediate product Substances 0.000 claims description 5
- 239000003129 oil well Substances 0.000 claims description 5
- 238000002407 reforming Methods 0.000 claims description 5
- 239000003054 catalyst Substances 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- 239000002737 fuel gas Substances 0.000 claims description 3
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims description 2
- 238000012546 transfer Methods 0.000 claims description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims 6
- 229910002090 carbon oxide Inorganic materials 0.000 claims 2
- 238000013461 design Methods 0.000 description 24
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000005431 greenhouse gas Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000001193 catalytic steam reforming Methods 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005262 decarbonization Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/384—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/20—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
- F02C3/22—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/34—Gas-turbine plants characterised by the use of combustion products as the working fluid with recycling of part of the working fluid, i.e. semi-closed cycles with combustion products in the closed part of the cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
- F02C6/18—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C9/00—Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J15/00—Arrangements of devices for treating smoke or fumes
- F23J15/06—Arrangements of devices for treating smoke or fumes of coolers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04527—Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
- F25J3/04533—Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the direct combustion of fuels in a power plant, so-called "oxyfuel combustion"
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04563—Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
- F25J3/04569—Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for enhanced or tertiary oil recovery
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0233—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0238—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0244—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0283—Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
- C01B2203/0822—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
- C01B2203/0827—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0833—Heating by indirect heat exchange with hot fluids, other than combustion gases, product gases or non-combustive exothermic reaction product gases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
- C01B2203/1241—Natural gas or methane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/60—Fluid transfer
- F05D2260/61—Removal of CO2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L2900/00—Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
- F23L2900/07001—Injecting synthetic air, i.e. a combustion supporting mixture made of pure oxygen and an inert gas, e.g. nitrogen or recycled fumes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/80—Hot exhaust gas turbine combustion engine
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/30—Technologies for a more efficient combustion or heat usage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/32—Direct CO2 mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/34—Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
【選択図】図1
Description
本出願は、その全体が参照によって本明細書に援用される、2009年9月1日に出願された「低排出発電および炭化水素回収のシステムおよび方法(LOW EMISSION POWER GENERATION AND HYDROCARBON RECOVERY SYSTEMS AND METHODS)」という名称の、米国仮特許出願第61/238,971号の利益を主張する。
本発明の実施形態は、炭化水素回収プロセス中の低排出発電に関する。より詳細には、本発明の実施形態は、酸素燃料の燃焼によって生成される、高タービン排出温度を使用し、(i)燃焼器後のガス成分の変換を促進して、所望の化学状態が達成されるようにし、および(ii)制御燃料ストリームを改質して、水素の増加によって特徴付けられる改質された制御燃料ストリーム生成する方法およびシステムに関する。
このセクションでは、例示的な本発明の実施形態に関連する技術のさまざまな態様を紹介する。この議論によって、本発明の特定の態様を、よりよく理解するための手助けとなる構成を、提供することができるものと信じる。したがって、このセクションは、この観点から読まれるべきであって、必ずしも従来技術を紹介するものではないことを理解すべきである。
多くの炭化水素の回収強化作業は、以下のタイプである圧力維持法とミシブル攻法とのいずれか一つに分類できる。圧力維持法の作業では、貯留層の少なくとも最低圧力を維持するために、窒素などの不活性ガスが、主にガス貯留層に注入され、逆行凝縮を防ぎ、および全体の回収率を上げる。ミシブル攻法の作業では、二酸化炭素などのミシブルガスが、液体と混合させるために主に液体貯留層に注入されて、それらの粘度を低下させ、および圧力を増加させて、回収率を改善する。
CO2の排出を低減するいくつかのアプローチには、燃料の脱炭素化、または、燃焼後の捕捉がある。しかしながら、これらの解決法の両方とも高価であり、および発電効率を低減させるので、結果として、電力生産が低下し、燃料需要が増加し、および、国内の電力需要を満たすための電力コストが増加する。別のアプローチは、複合サイクルの酸素燃料ガスタービン(たとえば、ガスタービンブレイトンサイクルからの排熱が、蒸気を生成するために使用され、ランキンサイクルで追加的なパワーを生成する)である。しかしながら、高純度酸素を生成するために要求されるパワーは、全体のプロセス効率を著しく低減させる。幾つかの研究によってこれらの工程が比較され、および、それぞれのアプローチのいくつかの利点が示された。例えば、BOLLAND、OLAV,およびUNDRUM、HENRIETTEらの「ガスタービン発電プラントからのCO2の除去(Removal of CO2 from Gas Turbine Power Plants)」、および、http://www.energy.sintef.nO/publ/xergi/98/3/3art−8−engelsk.htm(1998)で見つけられる、SINTEF Groupの「燃焼前および燃焼後の方法の評価(Evaluation of pre− and post−combustion methods)」を参照。
さらに詳しくは、本発明の一実施形態は、酸素ストリーム、二酸化炭素ストリーム、制御燃料ストリーム、燃焼ユニット、タービン、およびプレナムを含む。燃焼ユニットは、酸素ストリーム、二酸化炭素ストリーム、および制御燃料ストリームを受容し、燃焼するように構成されて、実質的に二酸化炭素と水を含むガス状燃焼ストリームを生成する。ガス状燃焼ストリームの温度は、少なくとも1800度(カ氏)である。タービンは、ガス状燃焼ストリームを受容し、ガス状燃焼ストリームを膨張させ、および、膨張したガス状燃焼ストリームを、タービン排出ストリームとして排出するように構成される。タービン排出ストリームの温度は、少なくとも1200度(カ氏)である。プレナムは、タービン排出ストリームを収容するタービンと流体連通する。プレナムは、タービン排出ストリームの少なくとも1つの成分が、平衡に向かうように化学反応し、実質的に中間生成物を平衡生成物に変換するための、滞留時間を供給するように構成される。
本発明のさらに別の実施形態は、酸素ストリーム、二酸化炭素ストリーム、および制御燃料ストリームを提供する工程と;酸素ストリーム、二酸化炭素ストリーム、および制御燃料ストリームを燃焼させて、ガス状燃焼ストリームを生成する工程と;タービンでガス状燃焼ストリームを膨張させて、膨張したガス状燃焼ストリームを形成する工程と;および、実質的な化学平衡に到達するように、膨張したガス状燃焼ストリームに滞留時間を与える工程と、を含み、該滞留時間は、膨張したガス状燃焼ストリームを滞留時間の間保持するように構成されるプレナムによって提供される。
本発明の前述した利点および他の利点は、以下の詳細な説明、および、実施形態による非限定的な例を示す図面を参照することによって、明らかになるであろう。
本明細書で使用する場合、「ひとつ(a)」または「ひとつ(an)」の要素とは、1つまたは複数の要素をいう。このように、用語「ひとつ(a)」(またはひとつ(an)」)、「1つまたは複数の(one or more」、および「少なくとも1つ(at least one」は、明細書において特に制限が記載されていない場合には、同義で使われ得る。
本明細書で使用する場合、用語「含む(comprising)」、「含む(comprises)」および「含む(comprise)」は、この用語の前に挙げられた対象と、この用語の後に挙げられた1つ又はそれ以上の要素とをつなぐために用いられる非制限的なつなぎ用語(transition term)であり、つなぎ用語の後に列挙された1つ又は複数の要素だけが必ずしもその対象を構成する要素ではない。
本明細書で使用する場合、用語「含む(having)」、「含む(has)」および「含む(have)」は、「含む(comprising)」、「含む(comprises)」、および「含む(comprise)」と同一の非制限的な意味である。
本明細書で使用する場合、用語「等量比」とは、燃焼器に入る酸素に対する燃料の質量比を、比が化学量論的である場合の、酸素に対する燃料の質量比で除したものをいう。
本明細書で使用する場合、「化学量論的」混合物とは、燃料および酸化剤から成る一体積の反応物と、反応物の全体積が生成物を形成するために使用される場合の、該反応物を燃焼することによって形成される一体積の生成物を含む混合物である。
以下の詳細な説明のセクションでは、好ましい実施形態に関連する、特定の本発明の実施形態が記載される。しかしながら、以下の記載は、本発明の特定の実施形態または特定の使用を特定するものであって、例示的な目的だけを意図し、単に例示的な実施形態の記載を提供するものである。したがって、本発明は以下に記載される特定の実施形態には限定されず、むしろ、添付の特許請求の範囲の真の精神および範囲に含まれる、すべての代替形態、修正形態、および均等形態を含む。
低排出、高効率炭化水素回収プロセスは、2008年3月28日に出願された米国特許仮出願第61/072,292号、および2009年2月18日に出願された米国特許仮出願第61/153,508号の利益を主張する、「低排出発電および炭化水素回収のシステムおよび方法(LOWEMISSIONPOWERGENERATIONANDHYDROCARBONRECOVERYSYSTEMSANDMETHODS)」という名称のPCT特許出願PCT/US2009/038247号に記載される。
多様な冷却技術(たとえば、140)および圧縮技術(たとえば、142)が、特定用途の設計基準に適合するように、ガス排出ストリーム132またはガス排出ストリーム132の成分に適用されてもよい。たとえば、燃焼排気ガス冷却140は、結果として生じるストリーム152中のCO2濃度がストリーム132中のCO2濃度よりも大きくなるように、ストリーム132から水(H2O)150を分離するように実装されてもよい。結果として得られるストリーム152のすべてまたは一部は、次に圧縮され(たとえば、コンプレッサー142によって)および/または他の方法で、石油増進回収(EOR)160などの、1つまたは複数の工程に使用されるように構成される。同様に、結果として得られるストリーム152のすべて、または一部(たとえば、70%〜100%)は(圧縮され、または他の方法で)、CO2ストリーム110として再循環させてもよい。
図3を参照すると、本発明の1つまたは複数の態様と関連して実施される、低排出発電および炭化水素回収としての酸素燃料ベースのシステム300が示される。システム300は、同様に、例示的な酸素供給源102、二酸化炭素供給源104および制御燃料供給源106とともに、図1に示されるシステム100に実装されてもよい。さらに詳しくは、図3示される実施形態では、空気分離装置(ASU)システム302は、酸素ストリーム108を生成するために使用される。窒素(N2)は、ASUを使用して生成されてもよく、および、貯留層圧力維持法の窒素注入などの、1つまたは複数の相補的なプロセスに使用されてもよい。
図4を参照すると、本発明の実施形態による、低排出発電および炭化水素回収のための酸素燃料ベースのシステム400の図が示されている。システム400は、システム100および/またはシステム300にプレナム402が実装されてもよい。プレナム402は、タービン124と流体連通し、少なくとも一つの実施形態では、タービン排出ストリーム128を受容するタービン124と、直接結合してもよい。同様にプレナム402は、熱回収蒸気発生器と流体連通してもい。プレナム402は、タービン排出ストリーム128のそれぞれの成分が化学反応を継続できる、滞留時間を供給するように構成される。
なお別の実施形態では、タービン124の出口で、タービン排出ストリーム128のそれぞれの成分(たとえば、酸素、一酸化炭素、炭化水素中間体、未燃炭化水素中間体、ホルムアルデヒド、および/または同種のもの)の少なくともあらかじめ定められたパーセンテージ(たとえば、50%、75%、90%等)が、プレナム402の出口で平衡生成物に変換されるように、滞留時間があらかじめ定められてもよい。
本発明の1つまたは複数の実施形態は、実質的に0.1秒から10秒の間である滞留時間を提供する、プレナム402を含んでもよい。別の実施形態では、プレナム402は、実質的に0.1秒から2秒の間である滞留時間を提供してもよい。なお別の実施形態では、プレナム402は、1秒を越える滞留時間を提供してもよい。しかしながら、プレナム402は、特定用途の設計基準に適合する、すべての適切な滞留時間を提供するように構成される。
したがって、図4は、特に、タービン排出ストリーム(たとえば、128)のぞれぞれの生成が、所望の化学組成物(すなわち、反応状態)に到達する(あるいは実質的に到達する)まで反応を継続する、適切な滞留時間を提供するように設計され、実装されるプレナム(たとえば、402)を含む、本発明の実施形態400を示す。
一般的に水蒸気改質装置502は、タービン124と流体連通し、および少なくとも一つの実施形態では改質装置502は、直接、タービン124と結合してもよい。さらに、本発明の1つまたは複数の実施形態では、熱回収蒸気発生器130と流体連通し、および熱回収蒸気発生器130の上流に位置する水蒸気改質装置502を含む。すなわち、熱回収蒸気発生器130は、改質装置排出ガス510を受容する。
このように、少なくとも一つの実施形態では、システム400と接続して記載されたプレナム402、および、システム500と接続して記載された水蒸気改質装置502は、特定用途の設計基準に適合するように、単一システム(たとえば、600)に好都合に実装されてもよい。
ブロック706は、二酸化炭素(CO2)を圧縮するオプション工程を示す。少なくとも1つの実施形態では、CO2は、12から18バール(ゲージ圧)の間で圧縮されてもよい。しかしながら、CO2は、特定用途の設計基準に適合する、いかなる適切な圧力に圧縮されてもよい。少なくとも1つの実施形態では、燃焼器(たとえば、120)でのCO2の圧力は、実質的に、供給源(たとえば、104)でのCO2圧力と同等であってもよい。該実施形態では、供給源を出た後の圧縮は不要である。
ブロック712は、タービン(すなわち、ブロック710)のガスストリームの膨張によって、発電するオプション工程を示す。
ブロック718は、膨張したガス状燃焼ストリームから除去された熱を使用して、制御燃料ストリーム(たとえば、メタン)から、たとえば、水素と一酸化炭素を生成するオプション工程を示す。
最後に、ブロック720およびブロック722は、それぞれ、オプション工程である、(たとえば、ガス状燃焼ストリームから)二酸化炭素を抽出する工程、および、石油増進回収プロセスに二酸化炭素を添加する工程を示す。
ブロック724は、方法700からの出口を示す。
ブロック806は、二酸化炭素(CO2)を圧縮するオプション工程を示す。少なくとも1つの実施形態では、CO2は、12から18バール(ゲージ圧)の間で圧縮されてもよい。しかしながら、CO2は、特定用途の設計基準に適合する、いかなる適切な圧力に圧縮されてもよい。少なくとも1つの実施形態では、燃焼器(たとえば、120)でのCO2の圧力は、実質的に、供給源(たとえば、104)でのCO2圧力と同等であってもよい。該実施形態では、供給源を出た後の圧縮は不要である。
ブロック812は、タービン(すなわち、ブロック810)でのガスストリームの膨張によって、発電するオプション工程を示す。
ブロック816は、改質工程(すなわち、ブロック814)後の、膨張したガス状燃焼ストリームから、熱回収蒸気発生器(たとえば、130)を使用して、発電をするオプション工程を示す。
ブロック818およびブロック820は、それぞれ、オプション工程であり、(たとえば、ガス状燃焼ストリームから)二酸化炭素を抽出する工程、および、石油増進回収プロセスに二酸化炭素を添加する工程プロセスを示す。
ブロック822は、方法800からの出口を示す。
図9、図10、図11および図12を参照すると、シミュレーション結果を示す多くの図が提供される。当然のことながら、これらの図、および、それに続く対応する記載によって具体化される情報は、これに限定されるわけではないが、本発明に追加的な見識として、提供されることを宣言する。
まとめると、図9と図10は、それぞれ、火炎温度、圧力(すなわち、実線によって示される1バール、破線によって示される12バール、および点線によって示される30バール)、および等量比(すなわち、O2に対するメタンの比が0.95、1、1.05および1.1)の範囲における、CO2ストリーム中のO2/メタン燃焼のための、O2とCOの平衡モル分率を示す。一般的には、平衡組成とは、長時間にわたってすべての種の濃度が一定である状態をいう。平衡での混合物の組成は、温度、圧力および組成物の組成に依存する。CO2ストリームがEORのために使用される、または、パイプラインで輸送される、酸素燃料燃焼器の場合には、O2およびCOの濃度は、できるだけ小さいことが望まれる。図9および図10のグラフは平衡を示し、したがって、反応が平衡状態に進んだ場合には、O2およびCO濃度は可能な限り小さい。
既に述べたように、ガスタービンなどの発電デバイスに使用される従来の高圧燃焼器に対して、複雑な要素は、ガス状燃焼ストリームが、タービンに入る前に、40ms程度の比較的短い時間だけ燃焼器の中に滞留するということである。その結果、ガスがタービンの膨張器を通ることで冷却されることによって、反応が抑えられるので、組成が「凍結」される。測定可能な速度で、反応が平衡方向に進行するために十分なエネルギーがない(すなわち低温度)。
酸素燃料ガスタービンの提案構成では、温度、圧力および反応組成物は、演算される滞留時間にわたって、平衡方向へ反応が継続するように進めるために、十分に高い温度のタービン排出ストリームを生成するように構成される。たとえば、可能性があるタービン吸気口の温度である、1750ケルビン(カ氏2690度)が、グラフ900、グラフ1000およびグラフ1100上で、「B」でラベルされた線によって示される。線「B」は、約300ppm〜500ppmのO2平衡レベルを示す。しかしながら、グラフ1100の線Bは、40ms後の現実のO2濃度が、グラフ900の対応する線Bによって示される、平衡レベルよりも大きい値の単位まで上昇することを示す。グラフ1100の線BでのO2レベルは、1000ppm(12バール、φ=1.0)よりも大きいことが示される。O2の該濃度は、通常、パイプライン(すなわち、ダウンホール)用途では、容認できないほど高い。タービンでの膨張後に、該タービン排出温度は、約1200ケルビンになることが見込まれる。化学反応が平衡に向かって進行することができる、システムにプレナムが組み込まれる場合には、グラフ1000中で線「A」で示される、O2モル分率は、0.00001(10ppm)未満である。
本発明は、さまざまな修正形態および代替形態が可能であり、並びに、上記で論じた例示的な実施形態は、実施例としてのみ示される。本発明は、明細書に開示された特定の実施形態に限定されるものではないことを理解するべきである。実際、本発明は、添付の特許請求の範囲の真の精神および範囲に含まれる、すべての代替形態、修正形態、および均等物を含む。
Claims (88)
- 酸素燃料ガスタービンシステムであって、
酸素ストリームと、
二酸化炭素ストリームと、
制御燃料ストリームと、
前記酸素ストリーム、前記二酸化炭素ストリーム、および前記制御燃料ストリームを受容し、および、前記制御燃料ストリーム、前記二酸化炭素ストリーム、および前記酸素ストリームを燃焼させ、実質的に二酸化炭素と水を含む、ガス状燃焼ストリームを生成するように構成される燃焼ユニットであって、前記ガス状燃焼ストリームの温度は、少なくとも1800度(カ氏)である燃焼ユニットと、
前記ガス状燃焼ストリームを受容し、前記ガス状燃焼ストリームを膨張させ、および、前記膨張したガス状燃焼ストリームをタービン排出ストリームとして排出するように構成されるタービンであって、前記タービン排出ストリームの温度は、少なくとも1200度(カ氏)であるタービンと、
前記タービン排出ストリームを受容する前記タービンと、流体連通するプレナムであって、前記タービン排出ストリームの少なくとも1つの成分が、平衡に向かうように化学反応し、および、実質的に中間生成物を平衡生成物に変換する滞留時間を、供給するように構成される前記プレナムとを含むシステム。 - 請求項1に記載のシステムにおいて、
前記ガス状燃焼ストリームが膨張した場合に、前記タービンは発電するように構成されるシステム。 - 請求項1に記載のシステムにおいて、
前記ガス状燃焼ストリームからの前記二酸化炭素の少なくとも一部が、石油増進回収のために使用されるシステム。 - 請求項1に記載のシステムにおいて、
前記タービン排出ストリームのそれぞれの成分の濃度が、前記それぞれの成分の平衡濃度よりも大きいが10%未満になるまで化学反応が進むように、前記滞留時間があらかじめ定められるシステム。 - 請求項4に記載のシステムにおいて、
前記それぞれの成分は、酸素であるシステム。 - 請求項4に記載のシステムにおいて、
前記それぞれの成分は、一酸化炭素であるシステム。 - 請求項4に記載のシステムにおいて、
前記それぞれの成分は、炭化水素中間体であるシステム。 - 請求項7に記載のシステムにおいて、
前記炭化水素中間体は、未燃炭化水素であるシステム。 - 請求項8に記載のシステムにおいて、
前記未燃炭化水素は、ホルムアルデヒドであるシステム。 - 請求項1に記載のシステムにおいて、
前記タービンの出口における、前記タービン排出ストリームのそれぞれの成分の少なくともあらかじめ定められたパーセンテージが、前記プレナムの出口で平衡生成物に変換されるように、前記滞留時間があらかじめ定められるシステム。 - 請求項10に記載のシステムにおいて、
前記あらかじめ定められたパーセンテージは、50%であるシステム。 - 請求項10に記載のシステムにおいて、
前記あらかじめ定められたパーセンテージは、75%であるシステム。 - 請求項10に記載のシステムにおいて、
前記あらかじめ定められたパーセンテージは、90%であるシステム。 - 請求項10に記載のシステムにおいて、
前記それぞれの成分は、酸素であるシステム。 - 請求項10に記載のシステムにおいて、
前記それぞれの成分は、一酸化炭素であるシステム。 - 請求項10に記載のシステムにおいて、
前記それぞれの成分は、炭化水素中間体であるシステム。 - 請求項16に記載のシステムにおいて、
前記炭化水素中間体は、未燃炭化水素であるシステム。 - 請求項17に記載のシステムにおいて、
前記未燃炭化水素は、ホルムアルデヒドであるシステム。 - 請求項1に記載のシステムにおいて、
前記タービン排出ストリームのそれぞれの成分が、石油増進回収プロセスに使用されることに適切になるまで、前記それぞれの成分が化学反応するように、前記滞留時間があらかじめ定められるシステム。 - 請求項19に記載のシステムにおいて、
前記それぞれの成分は、酸素であって、前記酸素の濃度が10ppm以下であるシステム。 - 請求項19に記載のシステムにおいて、
前記それぞれの成分は、一酸化炭素であって、前記一酸化炭素の濃度は1000ppm以下であるシステム。 - 請求項1に記載のシステムにおいて、
前記滞留時間は、実質的に0.1秒から10秒の間であるシステム。 - 請求項1に記載のシステムにおいて、
前記滞留時間は、実質的に0.1秒と2秒の間であるシステム。 - 請求項1に記載のシステムにおいて、
前記滞留時間は、1秒以上であるシステム。 - 請求項1に記載のシステムにおいて、
前記プレナムの中心線は、実質的に10メートルから30メートルの間であるシステム。 - 請求項1に記載のシステムにおいて、
前記プレナムの中心線の長さは、30メートル以上であるシステム。 - 請求項1に記載のシステムにおいて、
前記タービンが作用する前の前記ガス状燃焼ストリームの圧力は、実質的に12バールと18バールとの間であるシステム。 - 請求項1に記載のシステムにおいて、
前記ガス状燃焼ストリームの温度は、実質的に1900度(カ氏)と2700度(カ氏)との間であるシステム。 - 請求項1に記載のシステムにおいて、
前記ガス状燃焼ストリームの温度は、実質的に2200度(カ氏)と2500度(カ氏)との間であるシステム。 - 請求項1に記載のシステムにおいて、
前記ガス状燃焼ストリームの実質的に70パーセントから80パーセントは、二酸化炭素であるシステム。 - 請求項1に記載のシステムにおいて、
前記タービン排出ストリームの圧力は、実質的に1バールであるシステム。 - 請求項1に記載のシステムにおいて、
前記タービン排出ストリームの圧力は、実質的に1バールから2バールの間であるシステム。 - 請求項1に記載のシステムにおいて、
前記タービン排出ストリームの温度は、1200度(カ氏)から1800度(カ氏)の間であるシステム。 - 請求項1に記載のシステムにおいて、
前記タービン排出ストリームの温度は、1350度(カ氏)から1700度(カ氏)の間であるシステム。 - 請求項1に記載のシステムにおいて、
前記二酸化炭素ストリームは、前記燃焼ユニットに受容される前に、1つまたは複数のコンプレッサーで圧縮されるシステム。 - 請求項1に記載のシステムにおいて、
前記プレナムは、熱回収蒸気発生器と流体連通するシステム。 - 請求項36に記載のシステムにおいて、
前記熱回収蒸気発生器は、発電するように構成されるシステム。 - 請求項1に記載のシステムにおいて、
前記プレナムは、前記タービンと直接結合するシステム。 - 請求項1に記載のシステムにおいて、
前記酸素ストリームは、空気分離装置を使用して生成されるシステム。 - 請求項1に記載のシステムにおいて、
前記制御燃料ストリームは、二酸化炭素浸水貯留層および炭化水素燃料供給パイプラインの少なくとも1つから生成されるシステム。 - 請求項1に記載のシステムにおいて、
前記二酸化炭素ストリームは、前記ガス状燃焼ストリームの70パーセントから100パーセントの二酸化炭素を含むシステム。 - 請求項1に記載のシステムにおいて、
前記二酸化炭素ストリームは、油井から生成されるシステム。 - 請求項1に記載のシステムにおいて、
前記二酸化炭素ストリームは、前記酸素燃料ガスタービンシステムの起動時には、主に第1の供給源から生成され、および、前記二酸化炭素ストリームは、前記酸素燃料ガスタービンシステムが継続して運転される間は、主に第2の供給源から生成されるシステム。 - 請求項43に記載のシステムにおいて、
前記第1の供給源は油井であり、前記第2の供給源は前記ガス状燃焼ストリームであるシステム。 - 請求項1に記載のシステムにおいて、
前記二酸化炭素ストリームは、前記燃焼ユニットに受容される前に、実質的に12から18バール(ゲージ圧)の間に圧縮されるシステム。 - 請求項1に記載のシステムにおいて、
前記プレナムは、水蒸気改質装置と流体連通し、前記水蒸気改質装置は、前記プレナム排出ストリームからの熱を使用し、前記制御燃料ストリームの水とメタンを、水素と一酸化炭素に改質するように構成されるシステム。 - 請求項46に記載のシステムにおいて、
前記水蒸気改質装置は、熱回収蒸気発生器と流体連通し、および熱回収蒸気発生器の上流に位置するシステム。 - 請求項46に記載のシステムにおいて、
前記水蒸気改質装置は、熱交換器と触媒を含むシステム。 - ガス状燃焼ストリームを生成するように構成される燃焼ユニットと、
前記ガス状燃焼ストリームを受容し、前記ガス状燃焼ストリームを膨張させ、および、前記膨張したガス状燃焼ストリームをタービン排出ストリームとして排出するように構成されるタービンであって、前記タービン排出ストリームの温度は、少なくとも1200度(カ氏)であるタービンと、
前記タービン排出ストリームを受容し、前記タービン排出ストリームから熱を除去し、熱を改質装置供給ストリームに伝えて、改質装置生成ストリームを生成するように構成される水蒸気改質装置とを含む酸素燃料ガスタービンシステムシステム。 - 請求項49に記載のシステムにおいて、
前記改質装置供給ストリームは、少なくとも制御燃料ストリームの一部を含むシステム。 - 請求項50に記載のシステムにおいて、
前記改質装置供給ストリームは、蒸気を含むシステム。 - 請求項51に記載のシステムにおいて、
前記改質装置供給ストリームは、二酸化炭素を含むシステム。 - 請求項50に記載のシステムにおいて、
前記燃焼ユニットは、酸素ストリーム、二酸化炭素ストリーム、および複合された燃料ストリームを受容するように構成され、前記複合された燃料ストリームは、前記制御燃料ストリームおよび前記改質装置生成ストリームの混合物を含むシステム。 - 請求項53に記載のシステムにおいて、
前記燃焼ユニットは、前記酸素ストリーム、前記二酸化炭素ストリーム、および前記複合された燃料ストリームを燃焼させ、前記ガス状燃焼ストリームを生成するように構成されるシステム。 - 請求項50に記載のシステムにおいて、
前記改質装置生成ストリームの一部は、さらに変化して分離され、水素リッチストリームと酸化炭素リッチストリームとを生成するシステム。 - 請求項55に記載のシステムにおいて、
前記燃焼ユニットは、酸素ストリーム、二酸化炭素ストリーム、および複合された燃料ストリームを受容するように構成され、前記複合された燃料ストリームは、前記制御燃料ストリームと前記酸化炭素リッチストリームとの混合物を含むシステム。 - 請求項56に記載のシステムにおいて、
前記複合された燃料ストリームは、さらに、H2リッチストリームの一部を含むシステム。 - 請求項55に記載のシステムにおいて、
前記水素リッチストリームは、製品として販売することに適切であり、または、異なるプロセスに配管されるシステム。 - 請求項49に記載のシステムにおいて、
さらに、前記タービン排出ストリームを冷却するために、改質装置は、熱回収蒸気発生器に結合されるシステム。 - 請求項49に記載のシステムにおいて、
さらに、改質装置の上流に位置するプレナムを含み、前記プレナムは、前記タービン排出ストリームのそれぞれの成分が、平衡に向かうように化学反応し、実質的に中間生成物を平衡生成物に変換する、滞留時間を供給するように構成されるシステム。 - 請求項60に記載のシステムにおいて、
さらに、前記改質装置の下流に位置する熱回収蒸気発生器を含むシステム。 - 請求項49に記載のシステムにおいて、
さらに、改質装置の下流に結合するプレナムを含み、前記プレナムは、前記タービン排出ストリームのそれぞれの成分が、平衡に向かうように化学反応し、実質的に中間生成物を平衡生成物に変換する、滞留時間を供給するように構成されるシステム。 - 請求項62に記載のシステムにおいて、
さらに、前記プレナムの下流に位置する熱回収蒸気発生器を含むシステム。 - 請求項49に記載のシステムにおいて、
改質装置と前記タービンの排出ノズルとの間の距離は、5メーター未満であるシステム。 - 請求項49に記載のシステムにおいて、
改質装置と前記タービンの排出ノズルとの間の滞留時間は、0.1秒未満であるシステム。 - 請求項49に記載のシステムにおいて、
前記ガス状燃焼ストリームの温度は、実質的に1900度(カ氏)から2700度(カ氏)の間であるシステム。 - 請求項49に記載のシステムにおいて、
前記水蒸気改質装置は、熱回収蒸気発生器と流体連通し、熱回収蒸気発生器の上流に位置するシステム。 - 請求項49に記載のシステムにおいて、
前記水蒸気改質装置は、前記タービンと直接結合するシステム。 - 請求項49に記載のシステムにおいて、
前記水蒸気改質装置は、熱交換器と触媒を含むシステム。 - 酸素燃料ガスタービンシステムを使用するための方法であって、
酸素ストリーム、二酸化炭素ストリーム、および制御燃料ストリームを供給する工程と、
前記酸素ストリーム、前記二酸化炭素ストリーム、および前記制御燃料ストリームを燃焼させて、ガス状燃焼ストリームを生成する工程と、
タービンで前記ガス状燃焼ストリームを膨張させて、膨張したガス状燃焼ストリームを形成する工程と、
実質的な化学平衡に到達するように、前記膨張したガス状燃焼ストリームに滞留時間を与える工程と、を含み、滞留時間は、前記膨張したガス状燃焼ストリームを前記滞留時間の間、保持するように構成されるプレナムによって提供される方法。 - 請求項70に記載の方法において、
さらに、タービンで前記ガス状燃焼ストリームを膨張させる工程には、発電する工程が含まれる方法。 - 請求項70に記載の方法において、
さらに、前記ガス状燃焼ストリームから二酸化炭素を抽出し、前記二酸化炭素を石油増進回収プロセスに適用する方法。 - 請求項70に記載の方法において、
前記滞留時間は、実質的に0.1秒と10秒の間である方法。 - 請求項70に記載の方法において、
前記滞留時間は、実質的に0.1秒と2秒の間である方法。 - 請求項70に記載の方法において、
前記滞留時間は、1秒以上である方法。 - 請求項70に記載の方法において、
前記プレナムの中心線の長さは、実質的に10メートルから30メートルの間である方法。 - 請求項70に記載の方法において、
前記プレナムの中心線の長さは、30メートル以上である方法。 - 請求項70に記載の方法において、
前記燃焼工程は、実質的に、1900度(カ氏)から2700度(カ氏)の間の温度を有するガス状燃焼ストリームを生成する方法。 - 請求項70に記載の方法において、
前記燃焼工程では、実質的に、2200度(カ氏)から2500度(カ氏)の間の温度を有するガス状燃焼ストリームを生成する方法。 - 請求項70に記載の方法において、
前記燃焼工程では、実質的に70パーセントから80パーセントの二酸化炭素の組成物を含む、ガス状燃焼ストリームを生成する方法。 - 請求項70に記載の方法において、
さらに、前記燃焼工程前に、前記二酸化炭素ストリームを圧縮する工程を含む方法。 - 請求項70に記載の方法において、
さらに、滞留時間を提供する工程の後に、前記膨張したガス状燃焼から、熱回収蒸気発生器を使用して、発電する工程を含む方法。 - 請求項70に記載の方法において、
さらに、滞留時間を提供する工程の後に、前記膨張したガス状燃焼ストリームから除去された熱を使用して、メタンを改質する工程を含み、前記メタンは水素と一酸化炭素に改質される方法。 - 酸素燃料ガスタービンシステムを使用する方法であって、
酸素ストリーム、二酸化炭素ストリーム、制御燃料ストリーム、および改質された制御燃料ストリームを供給する工程と、
前記酸素ストリーム、前記二酸化炭素ストリーム、および前記改質された制御燃料ストリームを燃焼させ、温度が少なくとも1800度(カ氏)のガス状燃焼ストリームを生成する工程と、
タービンで前記ガス状燃焼ストリームを膨張させて、膨張したガス状燃焼ストリームを形成する工程と、
前記膨張したガス状燃焼ストリームから除去された熱を使用して、前記制御燃料ストリームを改質し、改質された制御燃料ストリームを形成する工程と、を含み、前記改質された制御燃料ストリームは、前記制御燃料ストリームと比較して水素の増加によって特徴付けられる方法。 - 請求項84に記載の方法において、
さらに、タービンで前記ガス状燃焼ストリームを膨張させる工程に、発電する工程を含む方法。 - 請求項84に記載の方法において、
前記燃焼工程では、実質的に、1900度(カ氏)から2700度(カ氏)の間の温度を有するガス状燃焼ストリームを生成する方法。 - 請求項84に記載の方法において、
前記燃焼工程では、実質的に、2200度(カ氏)から2500度(カ氏)の間の温度を有するガス状燃焼ストリームを生成する方法。 - 請求項49に記載のシステムにおいて、
改質装置は、水蒸気改質装置および自動熱改質装置からなる群から選択されるシステム。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US23897109P | 2009-09-01 | 2009-09-01 | |
US61/238,971 | 2009-09-01 | ||
PCT/US2010/041548 WO2011028322A1 (en) | 2009-09-01 | 2010-07-09 | Low emission power generation and hydrocarbon recovery systems and methods |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2013504009A true JP2013504009A (ja) | 2013-02-04 |
JP2013504009A5 JP2013504009A5 (ja) | 2013-08-29 |
JP6076088B2 JP6076088B2 (ja) | 2017-02-08 |
Family
ID=43649568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012527876A Expired - Fee Related JP6076088B2 (ja) | 2009-09-01 | 2010-07-09 | 低排出発電および炭化水素回収のシステムおよび方法 |
Country Status (13)
Country | Link |
---|---|
US (1) | US20120144837A1 (ja) |
EP (1) | EP2473706B1 (ja) |
JP (1) | JP6076088B2 (ja) |
CN (2) | CN102482940A (ja) |
AU (1) | AU2010290003B2 (ja) |
BR (1) | BR112012004591A2 (ja) |
CA (1) | CA2769955C (ja) |
EA (1) | EA023216B1 (ja) |
MX (1) | MX2012001375A (ja) |
MY (1) | MY163113A (ja) |
PL (1) | PL2473706T3 (ja) |
SG (2) | SG10201404506YA (ja) |
WO (1) | WO2011028322A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016517491A (ja) * | 2013-03-08 | 2016-06-16 | エクソンモービル アップストリーム リサーチ カンパニー | 原油二次回収に使用するための排気の処理 |
JP2017508093A (ja) * | 2013-12-04 | 2017-03-23 | エクソンモービル アップストリーム リサーチ カンパニー | ガスタービンエンジンのためのシステム及び方法 |
WO2017065038A1 (ja) * | 2015-10-16 | 2017-04-20 | 寛治 泉 | 水素と富化酸素空気を連続燃焼するエンジンシステム。 |
JPWO2017065038A1 (ja) * | 2016-07-31 | 2019-12-12 | 寛治 泉 | 水素と富化酸素空気を連続燃焼するエンジンシステム。 |
JP2020200812A (ja) * | 2019-06-13 | 2020-12-17 | 三菱パワー株式会社 | 複合プラント |
Families Citing this family (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8734545B2 (en) | 2008-03-28 | 2014-05-27 | Exxonmobil Upstream Research Company | Low emission power generation and hydrocarbon recovery systems and methods |
CA2934541C (en) | 2008-03-28 | 2018-11-06 | Exxonmobil Upstream Research Company | Low emission power generation and hydrocarbon recovery systems and methods |
AU2009303735B2 (en) | 2008-10-14 | 2014-06-26 | Exxonmobil Upstream Research Company | Methods and systems for controlling the products of combustion |
MY171001A (en) | 2009-06-05 | 2019-09-23 | Exxonmobil Upstream Res Co | Combustor systems and combustion burners for combusting a fuel |
MY158169A (en) | 2009-11-12 | 2016-09-15 | Exxonmobil Upstream Res Co | Low emission power generation and hydrocarbon recovery systems and methods |
CA2801494C (en) | 2010-07-02 | 2018-04-17 | Exxonmobil Upstream Research Company | Stoichiometric combustion of enriched air with exhaust gas recirculation |
JP5759543B2 (ja) | 2010-07-02 | 2015-08-05 | エクソンモービル アップストリーム リサーチ カンパニー | 排ガス再循環方式及び直接接触型冷却器による化学量論的燃焼 |
MY165945A (en) | 2010-07-02 | 2018-05-18 | Exxonmobil Upstream Res Co | Low emission power generation systems and methods |
EA029301B1 (ru) | 2010-07-02 | 2018-03-30 | Эксонмобил Апстрим Рисерч Компани | Интегрированные системы для получения со(варианты) и способ производства электроэнергии |
MY156099A (en) | 2010-07-02 | 2016-01-15 | Exxonmobil Upstream Res Co | Systems and methods for controlling combustion of a fuel |
CN105736150B (zh) | 2010-08-06 | 2018-03-06 | 埃克森美孚上游研究公司 | 优化化学计量燃烧的系统和方法 |
WO2012018458A1 (en) | 2010-08-06 | 2012-02-09 | Exxonmobil Upstream Research Company | System and method for exhaust gas extraction |
US9546814B2 (en) | 2011-03-16 | 2017-01-17 | 8 Rivers Capital, Llc | Cryogenic air separation method and system |
TWI593872B (zh) | 2011-03-22 | 2017-08-01 | 艾克頌美孚上游研究公司 | 整合系統及產生動力之方法 |
TWI563165B (en) | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Power generation system and method for generating power |
TWI563166B (en) | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Integrated generation systems and methods for generating power |
TWI564474B (zh) | 2011-03-22 | 2017-01-01 | 艾克頌美孚上游研究公司 | 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法 |
US20130000352A1 (en) * | 2011-06-30 | 2013-01-03 | General Electric Company | Air separation unit and systems incorporating the same |
US20130133337A1 (en) * | 2011-11-30 | 2013-05-30 | General Electric Company | Hydrogen assisted oxy-fuel combustion |
WO2013095829A2 (en) * | 2011-12-20 | 2013-06-27 | Exxonmobil Upstream Research Company | Enhanced coal-bed methane production |
US9353682B2 (en) | 2012-04-12 | 2016-05-31 | General Electric Company | Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation |
US10273880B2 (en) | 2012-04-26 | 2019-04-30 | General Electric Company | System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine |
US9784185B2 (en) | 2012-04-26 | 2017-10-10 | General Electric Company | System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine |
EP2674394B1 (en) * | 2012-06-12 | 2016-03-16 | Air Products And Chemicals, Inc. | Hydrogen production with co2 capture |
DE102012211862A1 (de) * | 2012-07-06 | 2014-01-09 | Siemens Aktiengesellschaft | Verfahren für die Erzeugung von Wasser aus dem Abgasstrom einer Gasturbinenanlage |
US20150233290A1 (en) * | 2012-10-04 | 2015-08-20 | Shell Oil Company | Process for producing hydrogen and generating power |
US10215412B2 (en) | 2012-11-02 | 2019-02-26 | General Electric Company | System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system |
US10107495B2 (en) | 2012-11-02 | 2018-10-23 | General Electric Company | Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent |
US10138815B2 (en) * | 2012-11-02 | 2018-11-27 | General Electric Company | System and method for diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system |
US9574496B2 (en) | 2012-12-28 | 2017-02-21 | General Electric Company | System and method for a turbine combustor |
US9869279B2 (en) | 2012-11-02 | 2018-01-16 | General Electric Company | System and method for a multi-wall turbine combustor |
US9611756B2 (en) | 2012-11-02 | 2017-04-04 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US9803865B2 (en) | 2012-12-28 | 2017-10-31 | General Electric Company | System and method for a turbine combustor |
US9708977B2 (en) | 2012-12-28 | 2017-07-18 | General Electric Company | System and method for reheat in gas turbine with exhaust gas recirculation |
US9631815B2 (en) | 2012-12-28 | 2017-04-25 | General Electric Company | System and method for a turbine combustor |
US9599070B2 (en) | 2012-11-02 | 2017-03-21 | General Electric Company | System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system |
JP5998043B2 (ja) * | 2012-12-26 | 2016-09-28 | 株式会社日立製作所 | エンジンコンバインドシステム |
US10208677B2 (en) | 2012-12-31 | 2019-02-19 | General Electric Company | Gas turbine load control system |
US9581081B2 (en) | 2013-01-13 | 2017-02-28 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US9512759B2 (en) | 2013-02-06 | 2016-12-06 | General Electric Company | System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation |
TW201502356A (zh) | 2013-02-21 | 2015-01-16 | Exxonmobil Upstream Res Co | 氣渦輪機排氣中氧之減少 |
US9938861B2 (en) | 2013-02-21 | 2018-04-10 | Exxonmobil Upstream Research Company | Fuel combusting method |
RU2637609C2 (ru) | 2013-02-28 | 2017-12-05 | Эксонмобил Апстрим Рисерч Компани | Система и способ для камеры сгорания турбины |
US9618261B2 (en) | 2013-03-08 | 2017-04-11 | Exxonmobil Upstream Research Company | Power generation and LNG production |
US20140250945A1 (en) | 2013-03-08 | 2014-09-11 | Richard A. Huntington | Carbon Dioxide Recovery |
CN105008499A (zh) | 2013-03-08 | 2015-10-28 | 埃克森美孚上游研究公司 | 发电和从甲烷水合物中回收甲烷 |
JP2016517501A (ja) * | 2013-03-15 | 2016-06-16 | サウジ アラビアン オイル カンパニー | 重油残留物を取り扱うためのシステム及び方法 |
US9617914B2 (en) | 2013-06-28 | 2017-04-11 | General Electric Company | Systems and methods for monitoring gas turbine systems having exhaust gas recirculation |
US9835089B2 (en) | 2013-06-28 | 2017-12-05 | General Electric Company | System and method for a fuel nozzle |
TWI654368B (zh) | 2013-06-28 | 2019-03-21 | 美商艾克頌美孚上游研究公司 | 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體 |
US9631542B2 (en) | 2013-06-28 | 2017-04-25 | General Electric Company | System and method for exhausting combustion gases from gas turbine engines |
US9587510B2 (en) | 2013-07-30 | 2017-03-07 | General Electric Company | System and method for a gas turbine engine sensor |
US9903588B2 (en) | 2013-07-30 | 2018-02-27 | General Electric Company | System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation |
US20150033751A1 (en) * | 2013-07-31 | 2015-02-05 | General Electric Company | System and method for a water injection system |
US9951658B2 (en) | 2013-07-31 | 2018-04-24 | General Electric Company | System and method for an oxidant heating system |
US10030588B2 (en) | 2013-12-04 | 2018-07-24 | General Electric Company | Gas turbine combustor diagnostic system and method |
WO2015088487A1 (en) * | 2013-12-10 | 2015-06-18 | Siemens Energy, Inc. | High efficiency heat exchange arrangement for an oxy-fuel combined cycle power plant |
US10227920B2 (en) | 2014-01-15 | 2019-03-12 | General Electric Company | Gas turbine oxidant separation system |
US9863267B2 (en) | 2014-01-21 | 2018-01-09 | General Electric Company | System and method of control for a gas turbine engine |
US9915200B2 (en) | 2014-01-21 | 2018-03-13 | General Electric Company | System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation |
US10079564B2 (en) | 2014-01-27 | 2018-09-18 | General Electric Company | System and method for a stoichiometric exhaust gas recirculation gas turbine system |
EP2915963A1 (en) | 2014-03-05 | 2015-09-09 | Siemens Aktiengesellschaft | Cogeneration plant and method to operate a cogeneration plant |
US10047633B2 (en) | 2014-05-16 | 2018-08-14 | General Electric Company | Bearing housing |
US9885290B2 (en) | 2014-06-30 | 2018-02-06 | General Electric Company | Erosion suppression system and method in an exhaust gas recirculation gas turbine system |
US10655542B2 (en) | 2014-06-30 | 2020-05-19 | General Electric Company | Method and system for startup of gas turbine system drive trains with exhaust gas recirculation |
US10060359B2 (en) | 2014-06-30 | 2018-08-28 | General Electric Company | Method and system for combustion control for gas turbine system with exhaust gas recirculation |
JP6384916B2 (ja) * | 2014-09-30 | 2018-09-05 | 東芝エネルギーシステムズ株式会社 | ガスタービン設備 |
MA40950A (fr) * | 2014-11-12 | 2017-09-19 | 8 Rivers Capital Llc | Systèmes et procédés de commande appropriés pour une utilisation avec des systèmes et des procédés de production d'énergie |
US9869247B2 (en) | 2014-12-31 | 2018-01-16 | General Electric Company | Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation |
US9819292B2 (en) | 2014-12-31 | 2017-11-14 | General Electric Company | Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine |
US10788212B2 (en) | 2015-01-12 | 2020-09-29 | General Electric Company | System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation |
US10253690B2 (en) | 2015-02-04 | 2019-04-09 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10316746B2 (en) | 2015-02-04 | 2019-06-11 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10094566B2 (en) | 2015-02-04 | 2018-10-09 | General Electric Company | Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation |
US10267270B2 (en) | 2015-02-06 | 2019-04-23 | General Electric Company | Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation |
US10145269B2 (en) | 2015-03-04 | 2018-12-04 | General Electric Company | System and method for cooling discharge flow |
US10480792B2 (en) | 2015-03-06 | 2019-11-19 | General Electric Company | Fuel staging in a gas turbine engine |
MX2018002550A (es) * | 2015-09-01 | 2018-08-15 | 8 Rivers Capital Llc | Sistemas y metodos para la produccion de energia usando ciclos de co2 anidados. |
US10288346B2 (en) | 2016-08-05 | 2019-05-14 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for liquefaction of industrial gas by integration of methanol plant and air separation unit |
US10281203B2 (en) | 2016-08-05 | 2019-05-07 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for liquefaction of industrial gas by integration of methanol plant and air separation unit |
US10393431B2 (en) | 2016-08-05 | 2019-08-27 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for the integration of liquefied natural gas and syngas production |
US10634425B2 (en) | 2016-08-05 | 2020-04-28 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Integration of industrial gas site with liquid hydrogen production |
BR112019003828A2 (pt) | 2016-08-30 | 2019-06-18 | 8 Rivers Capital Llc | método de separação de ar criogênica para produzir oxigênio em altas pressões |
CN106761659B (zh) * | 2016-12-15 | 2021-01-15 | 中国石油大学(华东) | 一种用于油田co2驱产出气回注的提纯液化工艺 |
CN107288600B (zh) * | 2017-08-07 | 2023-03-24 | 南充西南石油大学设计研究院有限责任公司 | 尾气回注和余热利用复合驱动油田增产的装置及工艺 |
AU2018377847A1 (en) * | 2017-11-28 | 2020-06-11 | Renam Properties Pty Ltd | Autonomous vehicle energy and service hub |
US11149636B2 (en) * | 2019-03-01 | 2021-10-19 | Richard Alan Callahan | Turbine powered electricity generation |
US11149634B2 (en) * | 2019-03-01 | 2021-10-19 | Richard Alan Callahan | Turbine powered electricity generation |
WO2021230917A2 (en) * | 2019-12-30 | 2021-11-18 | Exxonmobil Chemical Patents Inc. | Hydrocarbon pyrolysis with less exhaust emission |
CN114901785B (zh) | 2019-12-30 | 2025-03-18 | 埃克森美孚化学专利公司 | 使用co2回路的热解气体产物的压缩 |
US11732651B2 (en) * | 2021-03-08 | 2023-08-22 | Mitsubishi Power Americas, Inc. | Supercritical CO2 power cycle with dry reforming of methane |
CA3238618A1 (en) * | 2021-11-18 | 2023-05-25 | 8 Rivers Capital, Llc | Heat generation for separate endothermic process with carbon capture |
CN216617683U (zh) * | 2022-02-16 | 2022-05-27 | 烟台杰瑞石油装备技术有限公司 | 涡轮发动机进气冷却系统以及涡轮发动机设备 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06264764A (ja) * | 1993-03-15 | 1994-09-20 | Nkk Corp | 排ガスエネルギーを利用したメタノール発電方法 |
US5724805A (en) * | 1995-08-21 | 1998-03-10 | University Of Massachusetts-Lowell | Power plant with carbon dioxide capture and zero pollutant emissions |
JP2000204965A (ja) * | 1999-01-14 | 2000-07-25 | Ishikawajima Harima Heavy Ind Co Ltd | メタンガスを用いたガスタ―ビン発電システム |
JP2002213255A (ja) * | 2001-01-15 | 2002-07-31 | Toshiba Corp | ガスタービンシステム |
JP2003074372A (ja) * | 2001-06-22 | 2003-03-12 | Kawasaki Heavy Ind Ltd | 地下の石炭層を用いて燃料と燃焼ガスのクローズドシステムを構築したガスタービン設備 |
JP2003176724A (ja) * | 2001-12-07 | 2003-06-27 | Toshiba Corp | 水素分離改質ガスタービンシステム |
US20060005542A1 (en) * | 2004-06-11 | 2006-01-12 | Campbell Paul A | Low emissions combustion apparatus and method |
WO2010044958A1 (en) * | 2008-10-14 | 2010-04-22 | Exxonmobil Upstream Research Company | Methods and systems for controlling the products of combustion |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1221430A (en) * | 1967-07-11 | 1971-02-03 | Struthers Scientific Int Corp | Multiple turbine exhaust system |
US5267434A (en) * | 1992-04-14 | 1993-12-07 | Siemens Power Corporation | Gas turbine topped steam plant |
US5467591A (en) * | 1993-12-30 | 1995-11-21 | Combustion Engineering, Inc. | Gas turbine combined cycle system |
DK171830B1 (da) * | 1995-01-20 | 1997-06-23 | Topsoe Haldor As | Fremgangsmåde til generering af elektrisk energi |
US5595059A (en) * | 1995-03-02 | 1997-01-21 | Westingthouse Electric Corporation | Combined cycle power plant with thermochemical recuperation and flue gas recirculation |
US5715672A (en) * | 1996-04-01 | 1998-02-10 | Braden Manufacturing | Exhaust silencer panel for gas turbine |
US6277894B1 (en) * | 1999-03-30 | 2001-08-21 | Syntroleum Corporation | System and method for converting light hydrocarbons into heavier hydrocarbons with a plurality of synthesis gas subsystems |
AU5187501A (en) * | 2000-05-03 | 2001-11-08 | Alberta Energy Company Ltd. | Water treatment process for thermal heavy oil recovery |
US7284362B2 (en) * | 2002-02-11 | 2007-10-23 | L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Étude et l'Exploitation des Procedes Georges Claude | Integrated air separation and oxygen fired power generation system |
DK1576266T3 (en) * | 2002-11-15 | 2014-12-01 | Clean Energy Systems Inc | Low pollutant energy generation system with air separation using an ion transfer membrane |
US7752848B2 (en) * | 2004-03-29 | 2010-07-13 | General Electric Company | System and method for co-production of hydrogen and electrical energy |
US20070044479A1 (en) * | 2005-08-10 | 2007-03-01 | Harry Brandt | Hydrogen production from an oxyfuel combustor |
US20070245736A1 (en) * | 2006-04-25 | 2007-10-25 | Eastman Chemical Company | Process for superheated steam |
US7870717B2 (en) * | 2006-09-14 | 2011-01-18 | Honeywell International Inc. | Advanced hydrogen auxiliary power unit |
US7802434B2 (en) * | 2006-12-18 | 2010-09-28 | General Electric Company | Systems and processes for reducing NOx emissions |
US20080155984A1 (en) * | 2007-01-03 | 2008-07-03 | Ke Liu | Reforming system for combined cycle plant with partial CO2 capture |
NO20070476L (no) * | 2007-01-25 | 2008-07-28 | Statoil Asa | Fremgangsmate og anlegg for a forbedre CO2-innfanging fra et gasskraftverk eller et varmekraftverk |
US7650939B2 (en) * | 2007-05-20 | 2010-01-26 | Pioneer Energy, Inc. | Portable and modular system for extracting petroleum and generating power |
CN201027490Y (zh) * | 2007-05-23 | 2008-02-27 | 乐炳钧 | 涡轮升降式楼层钻孔机 |
US20110185701A1 (en) * | 2007-09-28 | 2011-08-04 | Central Research Institute of Electric Power Indus try | Turbine equipment and power generating plant |
-
2010
- 2010-07-09 EA EA201270362A patent/EA023216B1/ru not_active IP Right Cessation
- 2010-07-09 BR BR112012004591A patent/BR112012004591A2/pt not_active Application Discontinuation
- 2010-07-09 JP JP2012527876A patent/JP6076088B2/ja not_active Expired - Fee Related
- 2010-07-09 SG SG10201404506YA patent/SG10201404506YA/en unknown
- 2010-07-09 PL PL10814115T patent/PL2473706T3/pl unknown
- 2010-07-09 AU AU2010290003A patent/AU2010290003B2/en not_active Ceased
- 2010-07-09 EP EP10814115.1A patent/EP2473706B1/en not_active Not-in-force
- 2010-07-09 CN CN2010800388905A patent/CN102482940A/zh active Pending
- 2010-07-09 CA CA2769955A patent/CA2769955C/en not_active Expired - Fee Related
- 2010-07-09 WO PCT/US2010/041548 patent/WO2011028322A1/en active Application Filing
- 2010-07-09 US US13/387,617 patent/US20120144837A1/en not_active Abandoned
- 2010-07-09 CN CN201410177341.6A patent/CN103953446B/zh not_active Expired - Fee Related
- 2010-07-09 MX MX2012001375A patent/MX2012001375A/es unknown
- 2010-07-09 SG SG2012006391A patent/SG178160A1/en unknown
- 2010-07-09 MY MYPI2012000810A patent/MY163113A/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06264764A (ja) * | 1993-03-15 | 1994-09-20 | Nkk Corp | 排ガスエネルギーを利用したメタノール発電方法 |
US5724805A (en) * | 1995-08-21 | 1998-03-10 | University Of Massachusetts-Lowell | Power plant with carbon dioxide capture and zero pollutant emissions |
JP2000204965A (ja) * | 1999-01-14 | 2000-07-25 | Ishikawajima Harima Heavy Ind Co Ltd | メタンガスを用いたガスタ―ビン発電システム |
JP2002213255A (ja) * | 2001-01-15 | 2002-07-31 | Toshiba Corp | ガスタービンシステム |
JP2003074372A (ja) * | 2001-06-22 | 2003-03-12 | Kawasaki Heavy Ind Ltd | 地下の石炭層を用いて燃料と燃焼ガスのクローズドシステムを構築したガスタービン設備 |
JP2003176724A (ja) * | 2001-12-07 | 2003-06-27 | Toshiba Corp | 水素分離改質ガスタービンシステム |
US20060005542A1 (en) * | 2004-06-11 | 2006-01-12 | Campbell Paul A | Low emissions combustion apparatus and method |
WO2010044958A1 (en) * | 2008-10-14 | 2010-04-22 | Exxonmobil Upstream Research Company | Methods and systems for controlling the products of combustion |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016517491A (ja) * | 2013-03-08 | 2016-06-16 | エクソンモービル アップストリーム リサーチ カンパニー | 原油二次回収に使用するための排気の処理 |
JP2017508093A (ja) * | 2013-12-04 | 2017-03-23 | エクソンモービル アップストリーム リサーチ カンパニー | ガスタービンエンジンのためのシステム及び方法 |
WO2017065038A1 (ja) * | 2015-10-16 | 2017-04-20 | 寛治 泉 | 水素と富化酸素空気を連続燃焼するエンジンシステム。 |
JPWO2017065038A1 (ja) * | 2016-07-31 | 2019-12-12 | 寛治 泉 | 水素と富化酸素空気を連続燃焼するエンジンシステム。 |
JP2020200812A (ja) * | 2019-06-13 | 2020-12-17 | 三菱パワー株式会社 | 複合プラント |
JP7351648B2 (ja) | 2019-06-13 | 2023-09-27 | 三菱重工業株式会社 | 複合プラント |
Also Published As
Publication number | Publication date |
---|---|
CA2769955A1 (en) | 2011-03-10 |
CN103953446B (zh) | 2016-08-31 |
EA201270362A1 (ru) | 2012-07-30 |
MY163113A (en) | 2017-08-15 |
WO2011028322A1 (en) | 2011-03-10 |
SG178160A1 (en) | 2012-03-29 |
AU2010290003B2 (en) | 2016-08-11 |
BR112012004591A2 (pt) | 2016-04-05 |
PL2473706T3 (pl) | 2019-12-31 |
EP2473706A4 (en) | 2017-11-08 |
EP2473706A1 (en) | 2012-07-11 |
JP6076088B2 (ja) | 2017-02-08 |
CN102482940A (zh) | 2012-05-30 |
SG10201404506YA (en) | 2014-10-30 |
MX2012001375A (es) | 2012-03-06 |
US20120144837A1 (en) | 2012-06-14 |
AU2010290003A1 (en) | 2012-03-22 |
EA023216B1 (ru) | 2016-05-31 |
CN103953446A (zh) | 2014-07-30 |
CA2769955C (en) | 2017-08-15 |
EP2473706B1 (en) | 2019-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6076088B2 (ja) | 低排出発電および炭化水素回収のシステムおよび方法 | |
JP7112378B2 (ja) | 効率が向上した動力発生方法およびシステム | |
JP5920727B2 (ja) | 低排出発電並びに炭化水素回収システム及び方法 | |
AU2009228283B2 (en) | Low emission power generation and hydrocarbon recovery systems and methods | |
US7765810B2 (en) | Method for obtaining ultra-low NOx emissions from gas turbines operating at high turbine inlet temperatures | |
TW201217630A (en) | Low emission triple-cycle power generation systems and methods | |
MX2012014223A (es) | Sistema y metodos de generacion de potencia de triple ciclo de baja emision. | |
CN102400787B (zh) | 用于生产富氢燃料的系统和方法 | |
US9708973B2 (en) | Integrated reformer and waste heat recovery system for power generation | |
US20100199682A1 (en) | Process for the production of hydrogen with total recovery of co2 and reduction of unconverted methane | |
US8869502B2 (en) | Fuel reformer system for a turbomachine system | |
Fiaschi et al. | Exergy analysis of the recuperative auto thermal reforming (R-ATR) and recuperative reforming (R-REF) power cycles with CO2 removal | |
Hoffmann et al. | Performance and cost analysis of advanced gas turbine cycles with pre-combustion CO2 capture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130708 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130708 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140611 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20140910 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20140918 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150706 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20151006 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160413 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160812 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160902 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20161013 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170110 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6076088 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |