[go: up one dir, main page]

JP2013193938A - Denitration catalyst, method of preparing the same, and method of denitration - Google Patents

Denitration catalyst, method of preparing the same, and method of denitration Download PDF

Info

Publication number
JP2013193938A
JP2013193938A JP2012064551A JP2012064551A JP2013193938A JP 2013193938 A JP2013193938 A JP 2013193938A JP 2012064551 A JP2012064551 A JP 2012064551A JP 2012064551 A JP2012064551 A JP 2012064551A JP 2013193938 A JP2013193938 A JP 2013193938A
Authority
JP
Japan
Prior art keywords
composite oxide
ammonia
oxide
catalyst
desorption amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012064551A
Other languages
Japanese (ja)
Inventor
Hiroki Tsutsumi
広樹 堤
Mitsuharu Hagi
光晴 萩
Atsushi Morita
敦 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2012064551A priority Critical patent/JP2013193938A/en
Publication of JP2013193938A publication Critical patent/JP2013193938A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicon Compounds (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a denitration catalyst capable of obtaining a highly active catalyst, efficiently processing a nitrogen oxide (NOX) in an exhaust gas, and in particular effectively affecting the processing of exhaust gas generated from a gas-fired boiler and a gas turbine.SOLUTION: A denitration catalyst including a composite oxide of titanium and tungsten (hereinafter, referred to as a Ti-W composite oxide) or a composite oxide of titanium, silicon, and tungsten (hereinafter, referred to as a Ti-Si-W composite oxide) satisfies the conditions: (1) To measure the desorption amount of ammonia at 250 to 350°C by ammonia temperature rise desorption measurement (NH-TPD) (L-desorption amount), (2) to measure the desorption amount of ammonia at 450 to 550°C by ammonia temperature rise desorption measurement (NH-TPD) (H desorption amount), and (3) to set H desorption amount/L-desorption amount at 0.7 to 1.5.

Description

本発明は、脱硝触媒、その調製方法、および脱硝方法に関する。特に、重油焚きボイラや石炭焚きボイラ、ガス焚きボイラ、ガスタービン、ガスエンジン、ディーゼルエンジン、火力発電所、ごみ焼却炉および各種工業プロセスから排出される排ガス中に含まれる窒素酸化物(NOx)の除去に優れた脱硝触媒、その調製方法、および脱硝方法に関する。   The present invention relates to a denitration catalyst, a preparation method thereof, and a denitration method. In particular, heavy oil fired boilers, coal fired boilers, gas fired boilers, gas turbines, gas engines, diesel engines, thermal power plants, waste incinerators, and nitrogen oxides (NOx) contained in exhaust gas discharged from various industrial processes. The present invention relates to a denitration catalyst excellent in removal, a preparation method thereof, and a denitration method.

現在実用化されている排ガス中の窒素酸化物除去方法としては、アンモニアまたは尿素などの還元剤を用いて排ガス中の窒素酸化物を触媒上で接触還元して窒素と水に分解する選択的触媒還元法(SCR法)が一般的である。近年、酸性雨に代表されるように窒素酸化物による環境汚染が世界的に深刻化するに伴い、高性能な触媒が求められている。   As a method for removing nitrogen oxides in exhaust gas that is currently in practical use, a selective catalyst that catalytically reduces nitrogen oxides in exhaust gas using a reducing agent such as ammonia or urea and decomposes it into nitrogen and water. The reduction method (SCR method) is common. In recent years, as environmental pollution caused by nitrogen oxides has become serious worldwide, as represented by acid rain, a high-performance catalyst has been demanded.

脱硝触媒に関する従来技術としては、例えば、窒素酸化物の除去に有効な触媒として二酸化チタンおよび/またはチタン複合酸化物からなる排ガス処理触媒について開示されているが(特許文献1)、充分な処理性能を有するとはいえなかった。   As a prior art relating to a denitration catalyst, for example, an exhaust gas treatment catalyst comprising titanium dioxide and / or a titanium composite oxide is disclosed as an effective catalyst for removing nitrogen oxides (Patent Document 1), but sufficient treatment performance is disclosed. Could not be said to have.

また、酸化チタンと酸化ケイ素の複合酸化物を触媒成分とする排ガス処理触媒が数多く提案されているが(特許文献2)、更なる活性の向上が望まれている。   Many exhaust gas treatment catalysts using a composite oxide of titanium oxide and silicon oxide as a catalyst component have been proposed (Patent Document 2), but further improvement in activity is desired.

これらの触媒が有効に作用しない原因として、排出されるガスの対象である重油焚きボイラや石炭焚きボイラ、ガス焚きボイラ、ガスタービン、ガスエンジン、ディーゼルエンジン、火力発電所、ごみ焼却炉および各種工業プロセスから排出される排ガスの差異より、触媒毒となるもの存在、水蒸気の存在および処理するガスと触媒との関係である空間速度、窒素酸化物(NOx)の濃度などの関係から処理対象となる窒素酸化物(NOx)が効率よく処理できないことにある。   The reasons why these catalysts do not work effectively include heavy oil-fired boilers, coal-fired boilers, gas-fired boilers, gas turbines, gas engines, diesel engines, thermal power plants, waste incinerators, and various industries. Due to the difference in exhaust gas discharged from the process, it becomes the object of treatment due to the existence of catalyst poisons, the presence of water vapor, the space velocity between the gas to be treated and the catalyst, the concentration of nitrogen oxides (NOx), etc. Nitrogen oxide (NOx) cannot be treated efficiently.

特開2004−943号公報Japanese Patent Laid-Open No. 2004-943 特開平7−88368号公報JP-A-7-88368

本発明は上記触媒の活性向上を目的としている。特にガス焚きボイラやガスタービンから生じる排ガスの処理に有効な触媒開発を目的としている。   The present invention aims to improve the activity of the catalyst. In particular, it aims to develop an effective catalyst for the treatment of exhaust gas generated from gas-fired boilers and gas turbines.

上記課題を解決するために本発明者らは鋭意検討の結果、下記技術を見出し発明を完成するに至ったものである。即ち、下記条件を満たすことを特徴とするチタンおよびタングステンの複合酸化物(以下「Ti−W複合酸化物」という)またはチタン、ケイ素およびタングステンの複合酸化物(以下「Ti−Si−W複合酸化物」という)を含む脱硝触媒である。(1)アンモニア−昇温脱離測定(NH−TPD)により250〜350℃のアンモニア脱離量を測定すること(L−脱離量)。(2)アンモニア−昇温脱離測定(NH−TPD)により450〜550℃のアンモニア脱離量を測定すること(H−脱離量)。(3)H−脱離量/L−脱離量が0.7〜1.5であること。 As a result of diligent studies, the present inventors have found the following technique and have completed the invention. That is, a composite oxide of titanium and tungsten (hereinafter referred to as “Ti—W composite oxide”) or a composite oxide of titanium, silicon and tungsten (hereinafter referred to as “Ti—Si—W composite oxidation” characterized by satisfying the following conditions: A denitration catalyst containing a product. (1) Measure ammonia desorption amount at 250 to 350 ° C. by ammonia-temperature programmed desorption measurement (NH 3 -TPD) (L-desorption amount). (2) Measuring ammonia desorption amount at 450 to 550 ° C. by ammonia-temperature programmed desorption measurement (NH 3 -TPD) (H-desorption amount). (3) H-desorption amount / L-desorption amount is 0.7 to 1.5.

更に当該Ti−W複合酸化物またはTi−Si−W複合酸化物を含む触媒を用いた窒素酸化物(NOx)の処理方法である。   Furthermore, this is a method for treating nitrogen oxide (NOx) using a catalyst containing the Ti—W composite oxide or Ti—Si—W composite oxide.

本発明にかかるTi−W複合酸化物またはTi−Si−W複合酸化物を用いることで高活性な触媒を得ることができかつ効率よく排ガス中の窒素酸化物(NOx)を処理することができ、特にガス焚きボイラやガスタービンから生じる排ガスの処理に有効に作用するものである。   By using the Ti—W composite oxide or Ti—Si—W composite oxide according to the present invention, a highly active catalyst can be obtained and nitrogen oxide (NOx) in exhaust gas can be efficiently treated. In particular, it effectively acts on the treatment of exhaust gas generated from a gas-fired boiler or gas turbine.

本発明にかかる実施例1で得られたTi−W複合酸化物(化合物A)のアンモニア−昇温脱離測定(NH−TPD)のチャートである。縦軸はTi−W複合酸化物(化合物A)1g当たりのアンモニア脱離量を示す装置のカウント数、横軸は温度である。2 is a chart of ammonia-temperature programmed desorption measurement (NH 3 -TPD) of the Ti—W composite oxide (compound A) obtained in Example 1 according to the present invention. The vertical axis represents the count number of the ammonia indicating the ammonia desorption amount per gram of the Ti—W composite oxide (compound A), and the horizontal axis represents the temperature. 本発明にかかる実施例2で得られたTi−W複合酸化物(化合物B)のアンモニア−昇温脱離測定(NH−TPD)のチャートである。縦軸はTi−W複合酸化物(化合物B)1g当たりのアンモニア脱離量を示す装置のカウント数、横軸は温度である。Ammonia Ti-W composite oxide obtained in Example 2 according to the present invention (Compound B) - is a chart of the Atsushi Nobori measurement (NH 3 -TPD). The vertical axis represents the count number of the ammonia indicating the ammonia desorption amount per gram of the Ti—W composite oxide (compound B), and the horizontal axis represents the temperature. 本発明にかかる実施例3で得られたTi−Si−W複合酸化物(化合物C)のアンモニア−昇温脱離測定(NH−TPD)のチャートである。縦軸はTi−Si−W複合酸化物(化合物C)1g当たりのアンモニア脱離量を示す装置のカウント数、横軸は温度である。It is a chart of ammonia-temperature-programmed desorption measurement (NH 3 -TPD) of the Ti—Si—W composite oxide (compound C) obtained in Example 3 according to the present invention. The vertical axis represents the count number of the ammonia indicating the ammonia desorption amount per gram of the Ti—Si—W complex oxide (compound C), and the horizontal axis represents the temperature. 本発明にかかる比較例1で得られたTi−W混合酸化物(混合物a)のアンモニア−昇温脱離測定(NH−TPD)のチャートである。縦軸はTi−W混合酸化物(混合物a)1g当たりのアンモニア脱離量を示す装置のカウント数、横軸は温度である。Ammonia Ti-W mixed oxide obtained in Comparative Example 1 according to the present invention (mixture a) - is a chart of the Atsushi Nobori measurement (NH 3 -TPD). The vertical axis represents the count number of the ammonia indicating the ammonia desorption amount per 1 g of the Ti—W mixed oxide (mixture a), and the horizontal axis represents the temperature.

本発明は、下記条件を満たすことを特徴とするTi−W複合酸化物またはTi−Si−W複合酸化物を含む脱硝触媒である。(1)アンモニア−昇温脱離測定(NH−TPD)により250〜350℃のアンモニア脱離量を測定すること(L−脱離量)。(2)アンモニア−昇温脱離測定(NH−TPD)により450〜550℃のアンモニア脱離量を測定すること(H−脱離量)。(3)H−脱離量/L−脱離量が0.7〜1.5であること。 The present invention is a denitration catalyst containing a Ti—W composite oxide or a Ti—Si—W composite oxide that satisfies the following conditions. (1) Measure ammonia desorption amount at 250 to 350 ° C. by ammonia-temperature programmed desorption measurement (NH 3 -TPD) (L-desorption amount). (2) Measuring ammonia desorption amount at 450 to 550 ° C. by ammonia-temperature programmed desorption measurement (NH 3 -TPD) (H-desorption amount). (3) H-desorption amount / L-desorption amount is 0.7 to 1.5.

好ましくは当該触媒がTi−W複合酸化物、またはTi−Si−W複合酸化物を含むものであること。また当該触媒がチタンおよびケイ素との複合酸化物(以下「Ti−Si複合酸化物」という)を添加することができること。   Preferably, the catalyst contains a Ti—W composite oxide or a Ti—Si—W composite oxide. The catalyst can add a composite oxide of titanium and silicon (hereinafter referred to as “Ti-Si composite oxide”).

当該Ti−W複合酸化物またはTi−Si−W複合酸化物は沈殿法により得られたものであることが好ましい。   The Ti-W composite oxide or Ti-Si-W composite oxide is preferably obtained by a precipitation method.

更に当該触媒を用いて窒素酸化物(NOx)を処理することができる。   Further, nitrogen oxide (NOx) can be treated using the catalyst.

以下に、本発明を詳細に説明するが本発明の効果を奏するものであれば以下の説明に限定されるものではない。   Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following description as long as the effects of the present invention are achieved.

(アンモニア−昇温脱離測定(NH−TPD))
当該測定方法は、予めサンプルにアンモニアを吸着させた後、不活性ガス(ヘリウム)を流入し、当該ガスの温度を一定の速度で上げ、脱離するアンモニアを測定するものである。アンモニアは触媒の酸点に付着しており、弱い酸点に吸着するアンモニアは低温で脱離し、強い酸点に吸着するアンモニアは高温において脱離することから、アンモニアの脱離温度と脱離量を測定することで、一定量のサンプル当たり、各酸点の有無、その量を測定することができるものである。以下に手順を示すと、
(1)150℃で20時間乾燥させたサンプル0.1gを使用すること、
(2)測定に先立ち100℃にてヘリウムガスを50Nml/min(ノルマル・ミリリットル/分)で10分間、サンプルに通過させ表面を浄化すること、
(3)100℃にてアンモニア標準ガス(アンモニア:10%/ヘリウム:Balance)を50Nml/minで60分間、サンプルに通過させアンモニアを吸着させること、
(4)ヘリウムガスを100℃にて50Nml/minで50分間、サンプルに通過させ余剰のアンモニアを除去すること、
(5)ヘリウムガスを50Nml/minでサンプルに通過させ、10℃/分の速度で100℃から600℃まで昇温すること、
(6)サンプルを通過した下流のガスを120℃に設定したTCD(検出器)にて連続的に測定すること。である。
測定装置として日本ベル株式会社のBELCATを用いた。
(Ammonia - TPD measurement (NH 3 -TPD))
In this measurement method, after ammonia is adsorbed on a sample in advance, an inert gas (helium) is introduced, the temperature of the gas is increased at a constant rate, and the desorbed ammonia is measured. Ammonia adheres to the acid sites of the catalyst, and ammonia adsorbed on weak acid sites desorbs at low temperatures, and ammonia adsorbed on strong acid sites desorbs at high temperatures. By measuring the presence / absence of each acid point and its amount per sample of a certain amount. The procedure is as follows:
(1) Use 0.1 g of sample dried at 150 ° C. for 20 hours,
(2) Purify the surface by passing helium gas through the sample at 50 Nml / min (normal milliliter / min) for 10 minutes at 100 ° C. prior to measurement;
(3) Ammonia standard gas (ammonia: 10% / helium: Balance) is passed through the sample at 50 Nml / min for 60 minutes at 100 ° C. to adsorb ammonia.
(4) Passing helium gas through the sample at 100 ° C. and 50 Nml / min for 50 minutes to remove excess ammonia;
(5) passing helium gas through the sample at 50 Nml / min and raising the temperature from 100 ° C. to 600 ° C. at a rate of 10 ° C./min;
(6) Continuously measure the downstream gas that has passed through the sample with a TCD (detector) set at 120 ° C. It is.
BELCAT manufactured by Nippon Bell Co., Ltd. was used as a measuring device.

H−脱離量とL−脱離量との関係は、H−脱離量/L−脱離量が0.7〜1.5であることが好ましい。0.7未満であれば脱硝性能が低くなり好ましくはないからである。   Regarding the relationship between the H-desorption amount and the L-desorption amount, the H-desorption amount / L-desorption amount is preferably 0.7 to 1.5. If it is less than 0.7, the denitration performance is lowered, which is not preferable.

(化合物成分)
上記アンモニア脱離量の値を満たす化合物組成であれば、特に成分に限定されるものではなく、当該成分更に通常触媒分野において用いられる成分を使用することもできる。
(Compound component)
The compound composition is not particularly limited as long as it is a compound composition satisfying the value of the ammonia desorption amount, and it is also possible to use the component and a component usually used in the catalyst field.

当該触媒としては、Ti−W複合酸化物、またはTi−Si−W複合酸化物を含むものが好ましい。また当該触媒はTi−Si複合酸化物を添加することができる。   As the said catalyst, the thing containing Ti-W complex oxide or Ti-Si-W complex oxide is preferable. In addition, Ti-Si composite oxide can be added to the catalyst.

Ti−W複合酸化物の組成は、チタンとタングステンとを質量比(酸化物換算)で99/1〜70/30質量%(TiO/WO)、好ましくは99/1〜80/20質量%(TiO/WO)、更に好ましくは99/1〜90/10質量%(TiO/WO)である。 The composition of the Ti—W composite oxide is 99/1 to 70/30 mass% (TiO 2 / WO 3 ), preferably 99/1 to 80/20 mass, in terms of mass ratio (as oxide) of titanium and tungsten. % (TiO 2 / WO 3 ), more preferably 99/1 to 90/10 mass% (TiO 2 / WO 3 ).

Ti−Si−W複合酸化物の組成は、チタンとケイ素とタングステンとを質量比(酸化物換算)で98/1/1〜40/30/30質量%(TiO/SiO/WO)、好ましくは98/1/1〜60/20/20質量%(TiO/SiO/WO)、更に好ましくは98/1/1〜70/20/10質量%(TiO/SiO/WO)である。 The composition of the Ti—Si—W composite oxide is 98/1/1 to 40/30/30 mass% (TiO 2 / SiO 2 / WO 3 ) in terms of mass ratio (as oxide) of titanium, silicon and tungsten. , Preferably 98/1/1 to 60/20/20% by mass (TiO 2 / SiO 2 / WO 3 ), more preferably 98/1/1 to 70/20/10% by mass (TiO 2 / SiO 2 / WO 3 ).

Ti−Si複合酸化物の組成は、チタンとケイ素とを質量比(酸化物換算)で99/1〜60/40質量%(TiO/SiO)、好ましくは99/1〜70/30質量%(TiO/SiO)、更に好ましくは99/1〜80/20質量%(TiO/SiO)である。 The composition of the Ti—Si composite oxide is 99/1 to 60/40 mass% (TiO 2 / SiO 2 ), preferably 99/1 to 70/30 mass by mass ratio (as oxide) of titanium and silicon. % (TiO 2 / SiO 2 ), more preferably 99/1 to 80/20 mass% (TiO 2 / SiO 2 ).

本発明にかかる当該Ti−W複合酸化物、Ti−Si−W複合酸化物、Ti−Si複合酸化物とは、ともにX線回折測定により酸化チタン、酸化ケイ素、酸化タングステンの鋭いピークが見られず、アモロファスといわれる程度の状態のものが測定されるものである。   In the Ti-W composite oxide, Ti-Si-W composite oxide, and Ti-Si composite oxide according to the present invention, sharp peaks of titanium oxide, silicon oxide, and tungsten oxide are observed by X-ray diffraction measurement. What is called an amorofus is measured.

(調製方法)
Ti−W複合酸化物の調製方法としては、(1)アンモニア水とタングステン源の混合水溶液に硫酸チタニルの硫酸水溶液を中和混合し、pH3〜10好ましくはpH4〜8でpH調整して沈殿を生成させ、沈殿スラリーを濾過、水洗後、乾燥し、焼成する沈殿法、(2)一方の酸化物に他方の水溶液を含浸し乾燥し、焼成する含浸法、(3)各々の前駆体である水不溶物質を水と混合しスラリーとし混練し、乾燥し、焼成する混練法、(4)各々の酸化物前駆体を十分混合し焼成する固相反応法があるが、好ましくは沈殿法である。
(Preparation method)
The preparation method of the Ti-W composite oxide is as follows: (1) A mixed aqueous solution of ammonia water and a tungsten source is neutralized and mixed with a sulfuric acid aqueous solution of titanyl sulfate, pH is adjusted to 3 to 10, preferably 4 to 8, and precipitation is carried out. (2) impregnation method in which one oxide is impregnated with the other aqueous solution and dried and calcined, and (3) each precursor. There is a kneading method in which a water-insoluble substance is mixed with water, kneaded into a slurry, dried and fired, and (4) a solid-phase reaction method in which each oxide precursor is sufficiently mixed and fired, preferably a precipitation method. .

Ti−Si−W複合酸化物の調製方法としては、(1)アンモニア水とケイ素源とタングステン源の混合水溶液に硫酸チタニルの硫酸水溶液を中和混合しpH3〜10好ましくはpH4〜8でpH調整して沈殿を生成させ、沈殿スラリーを濾過、水洗後、乾燥し、焼成する沈殿法、(2)一方の酸化物に他方の水溶液を含浸し乾燥し、焼成する含浸法、(3)各々の前駆体である水不溶物質を水と混合しスラリーとし混練し、乾燥し、焼成する混練法、(4)各々の酸化物前駆体を十分混合し焼成する固相反応法があるが、好ましくは沈殿法である。   The preparation method of Ti-Si-W composite oxide is as follows: (1) pH adjustment of pH 3-10, preferably pH 4-8, by neutralizing and mixing sulfuric acid aqueous solution of titanyl sulfate with mixed aqueous solution of ammonia water, silicon source and tungsten source. (2) impregnation method in which one oxide is impregnated with the other aqueous solution, dried and calcined, (3) There is a kneading method in which a water-insoluble substance as a precursor is mixed with water, kneaded into a slurry, dried and fired, and (4) a solid-phase reaction method in which each oxide precursor is sufficiently mixed and fired, preferably It is a precipitation method.

Ti−Si複合酸化物の調製方法としては、(1)アンモニア水とケイ素源の混合水溶液に硫酸チタニルの硫酸水溶液を中和混合し、pH3〜10好ましくはpH4〜8でpH調整して沈殿を生成させ、沈殿スラリーを濾過、水洗後、乾燥し、焼成する沈殿法、(2)一方の酸化物に他方の水溶液を含浸し乾燥し、焼成する含浸法、(3)各々の前駆体である水不溶物質を水と混合しスラリーとし混練し、乾燥し、焼成する混練法、(4)各々の酸化物前駆体を十分混合し焼成する固相反応法があるが、好ましくは沈殿法である。   The preparation method of the Ti-Si composite oxide is as follows: (1) A mixed aqueous solution of ammonia water and a silicon source is neutralized and mixed with a sulfuric acid aqueous solution of titanyl sulfate, pH is adjusted to 3 to 10, preferably pH 4 to 8, and precipitation is carried out. (2) impregnation method in which one oxide is impregnated with the other aqueous solution and dried and calcined, and (3) each precursor. There is a kneading method in which a water-insoluble substance is mixed with water, kneaded into a slurry, dried and fired, and (4) a solid-phase reaction method in which each oxide precursor is sufficiently mixed and fired, preferably a precipitation method. .

(触媒成分)
Ti−W複合酸化物、Ti−Si−W複合酸化物、Ti−Si複合酸化物を適宜含む触媒であるときは、Ti−W複合酸化物、Ti−Si−W複合酸化物、Ti−Si複合酸化物は別々に作り、触媒化時に調製した粉体を混合すること、Ti、Si、Wの各々原料を混合水溶液とし加えることもできる。
(Catalyst component)
When the catalyst contains Ti-W composite oxide, Ti-Si-W composite oxide, Ti-Si composite oxide as appropriate, Ti-W composite oxide, Ti-Si-W composite oxide, Ti-Si The composite oxide can be prepared separately, and the powder prepared at the time of catalysis can be mixed, and each raw material of Ti, Si, and W can be added as a mixed aqueous solution.

Ti−W複合酸化物およびTi−Si複合酸化物の混合比は、Ti−W複合酸化物とTi−Si複合酸化物とを質量比(酸化物換算)で100/0〜30/70質量%、好ましくは99/1〜40/60質量%、更に好ましくは95/5〜50/50質量%である。   The mixing ratio of the Ti—W composite oxide and the Ti—Si composite oxide is 100/0 to 30/70 mass% of the Ti—W composite oxide and the Ti—Si composite oxide in terms of mass ratio (oxide conversion). The ratio is preferably 99/1 to 40/60% by mass, and more preferably 95/5 to 50/50% by mass.

Ti−Si−W複合酸化物およびTi−Si複合酸化物の混合比は、Ti−Si−W複合酸化物とTi−Si複合酸化物とを質量比(酸化物換算)で100/0〜30/70質量%、好ましくは100/0〜40/60質量%、更に好ましくは100/0〜50/50質量%である。   The mixing ratio of the Ti—Si—W composite oxide and the Ti—Si composite oxide is 100/0 to 30 in terms of mass ratio (as oxide) of the Ti—Si—W composite oxide and the Ti—Si composite oxide. / 70 mass%, preferably 100/0 to 40/60 mass%, more preferably 100/0 to 50/50 mass%.

上記成分の他に当該触媒の活性成分として、バナジウム、タングステン、モリブデン、鉄、マンガンおよびニッケルからなる群より選ばれる1種以上の元素またはその化合物を加えることができる。特にバナジウム、タングステンおよびモリブデンからなる群より選ばれる1種以上の元素またはその化合物を活性成分として含むものが好ましい。当該活性成分の含有量は、0.1〜20質量%、好ましくは0.2〜15質量%、更に好ましくは0.4〜10質量%である。   In addition to the above components, one or more elements selected from the group consisting of vanadium, tungsten, molybdenum, iron, manganese, and nickel, or compounds thereof can be added as the active component of the catalyst. In particular, those containing one or more elements selected from the group consisting of vanadium, tungsten and molybdenum or compounds thereof as active ingredients are preferred. Content of the said active ingredient is 0.1-20 mass%, Preferably it is 0.2-15 mass%, More preferably, it is 0.4-10 mass%.

上記触媒成分は、水、成形助剤等を加え粘土状とし、使用する用途に適応した形状、例えばハニカム状、ペレット状、粉体状に成形されることがある。ハニカム状であれば、一辺50〜200mmの角、目開きが一辺1〜10mmの角、リブ厚が0.1〜1.5mm、長さが200〜2000mmのものが好ましい。   The catalyst component may be formed into a clay shape by adding water, a molding aid, and the like, and may be formed into a shape suitable for the intended use, for example, a honeycomb shape, a pellet shape, or a powder shape. In the case of a honeycomb, it is preferable that the corner has a side of 50 to 200 mm, the opening has a side of 1 to 10 mm, the rib thickness is 0.1 to 1.5 mm, and the length is 200 to 2000 mm.

(脱硝方法)
窒素酸化物(NOx)を含むガスであれば何れのガスであってもよいが、好ましくはガス焚きボイラやガスタービンから生じる排ガスである。窒素酸化物(NOx)の濃度は10〜2000ppm(NOx換算)、好ましくは20〜500ppm(NOx換算)、更に好ましくは40〜100ppm(NOx換算)である。これらのガスには水、SOx、ダストなどが含まれていても処理することができる。
(Denitration method)
Any gas may be used as long as it contains nitrogen oxides (NOx), but it is preferably exhaust gas generated from a gas-fired boiler or a gas turbine. The concentration of nitrogen oxide (NOx) is 10 to 2000 ppm (NOx conversion), preferably 20 to 500 ppm (NOx conversion), more preferably 40 to 100 ppm (NOx conversion). These gases can be treated even if they contain water, SOx, dust or the like.

脱硝に際して、排ガス中にアンモニアまたは尿素を添加することができる。添加量は、窒素酸化物(NOx換算)1モルに対して、アンモニア換算(尿素の場合は1/2モル)で0.2〜2.0モル、好ましくは0.5〜1.0モルである。   At the time of denitration, ammonia or urea can be added to the exhaust gas. The amount of addition is 0.2 to 2.0 mol, preferably 0.5 to 1.0 mol in terms of ammonia (1/2 mol in the case of urea) with respect to 1 mol of nitrogen oxide (NOx conversion). is there.

処理温度は、150〜500℃、好ましくは200〜450℃、更に好ましくは250〜400℃である。   Processing temperature is 150-500 degreeC, Preferably it is 200-450 degreeC, More preferably, it is 250-400 degreeC.

空間速度は1000〜100000hr−1(STP)、好ましくは2000〜50000hr−1(STP)、更に好ましくは3000〜30000hr−1(STP)である。 The space velocity is 1000 to 100000 hr −1 (STP), preferably 2000 to 50000 hr −1 (STP), more preferably 3000 to 30000 hr −1 (STP).

以下に実施例、比較例により、発明を詳細に説明するが、本発明の効果を奏するものであれば以下の実施例に限定されるものではない。   The present invention will be described in detail below with reference to examples and comparative examples, but the present invention is not limited to the following examples as long as the effects of the present invention are exhibited.

(実施例1)
<化合物A(Ti−W複合酸化物)の調製>
パラタングステン酸アンモニウム(WOとして90重量%含有)2.3kg、モノエタノールアミン1kgを水10Lに混合・溶解させ、均一溶液を調製した。このタングステン含有溶液と10質量%アンモニア水100Lを混合した溶液に、硫酸チタニルの硫酸溶液(TiOとして70g/L含有、硫酸濃度290g/L)260Lをよく撹拌しながら徐々に滴下し、沈殿を生成させた後、適量の25質量%アンモニア水を加えてpHを4に調整した。このスラリーをそのまま40時間放置して熟成した後、濾過、洗浄し、150℃で20時間乾燥した。これを空気雰囲気下500℃で5時間焼成し、さらにハンマーミルを用いて粉砕し、化合物A(Ti−W複合酸化物)を得た。
Example 1
<Preparation of Compound A (Ti-W Composite Oxide)>
A uniform solution was prepared by mixing and dissolving 2.3 kg of ammonium paratungstate (containing 90 wt% as WO 3 ) and 1 kg of monoethanolamine in 10 L of water. To a mixed solution of this tungsten-containing solution and 100 L of 10% by mass ammonia water, 260 L of a sulfuric acid solution of titanyl sulfate (containing 70 g / L as TiO 2 and a sulfuric acid concentration of 290 g / L) was gradually added dropwise with good stirring to precipitate. After the formation, an appropriate amount of 25% by mass aqueous ammonia was added to adjust the pH to 4. The slurry was left to mature for 40 hours, then filtered, washed and dried at 150 ° C. for 20 hours. This was calcined at 500 ° C. for 5 hours in an air atmosphere, and further pulverized using a hammer mill to obtain Compound A (Ti—W composite oxide).

化合物Aの組成はTiO/WOの質量比(酸化物換算)で90/10質量%であった。さらに化合物AはX線回折測定により酸化チタン、酸化タングステンの鋭いピークが見られず、アモロファスといわれる状態のものが測定された。 The composition of Compound A was 90/10% by mass in terms of the mass ratio of TiO 2 / WO 3 (as oxide). Further, Compound A showed no sharp peaks of titanium oxide and tungsten oxide by X-ray diffraction measurement, and was in a state called amorofas.

(実施例2)
<化合物B(Ti−W複合酸化物)の調製>
パラタングステン酸アンモニウム(WOとして90重量%含有)2.3kg、モノエタノールアミン1kgを水10Lに混合・溶解させ、均一溶液を調製した。このタングステン含有溶液と10質量%アンモニア水240Lを混合した溶液に、硫酸チタニルの硫酸溶液(TiOとして70g/L含有、硫酸濃度290g/L)260Lをよく撹拌しながら徐々に滴下し、沈殿を生成させた後、適量の25質量%アンモニア水を加えてpHを5に調整した。このスラリーをそのまま40時間放置して熟成した後、濾過、洗浄し、150℃で20時間乾燥した。これを空気雰囲気下500℃で5時間焼成し、さらにハンマーミルを用いて粉砕し、化合物B(Ti−W複合酸化物)を得た。
(Example 2)
<Preparation of compound B (Ti-W composite oxide)>
A uniform solution was prepared by mixing and dissolving 2.3 kg of ammonium paratungstate (containing 90 wt% as WO 3 ) and 1 kg of monoethanolamine in 10 L of water. To a mixed solution of this tungsten-containing solution and 240 L of 10% by mass ammonia water, 260 L of a sulfuric acid solution of titanyl sulfate (containing 70 g / L as TiO 2 and a sulfuric acid concentration of 290 g / L) was gradually added dropwise with good stirring to precipitate. After the formation, an appropriate amount of 25% by mass aqueous ammonia was added to adjust the pH to 5. The slurry was left to mature for 40 hours, then filtered, washed and dried at 150 ° C. for 20 hours. This was calcined at 500 ° C. for 5 hours in an air atmosphere, and further pulverized using a hammer mill to obtain Compound B (Ti—W composite oxide).

化合物Bの組成はTiO/WOの質量比(酸化物換算)で90/10質量%であった。さらに化合物BはX線回折測定により酸化チタン、酸化タングステンの鋭いピークが見られず、アモロファスといわれる状態のものが測定された。 The composition of Compound B was 90/10% by mass in terms of the mass ratio of TiO 2 / WO 3 (as oxide). Further, Compound B showed no sharp peaks of titanium oxide and tungsten oxide by X-ray diffraction measurement, and was in a state called amorofas.

(実施例3)
<化合物C(Ti−Si−W複合酸化物)の調製>
パラタングステン酸アンモニウム(WOとして90重量%含有)1.4kg、モノエタノールアミン0.6kgを水10Lに混合・溶解させ、均一溶液を調製した。このタングステン含有溶液とシリカゾル(SiOとして30重量%含有)3.4kg、10質量%アンモニア水240Lを混合した溶液に、硫酸チタニルの硫酸溶液(TiOとして70g/L含有、硫酸濃度290g/L)260Lをよく撹拌しながら徐々に滴下し、沈殿を生成させた後、適量の25質量%アンモニア水を加えてpHを7に調整した。このスラリーをそのまま40時間放置して熟成した後、濾過、洗浄し、150℃で20時間乾燥した。これを空気雰囲気下500℃で5時間焼成し、さらにハンマーミルを用いて粉砕し、化合物C(Ti−Si−W複合酸化物)を得た。
(Example 3)
<Preparation of Compound C (Ti-Si-W Composite Oxide)>
1.4 kg of ammonium paratungstate (containing 90 wt% as WO 3 ) and 0.6 kg of monoethanolamine were mixed and dissolved in 10 L of water to prepare a uniform solution. A solution obtained by mixing this tungsten-containing solution with silica sol (containing 30 wt% as SiO 2 ) 3.4 kg, 10 mass% ammonia water 240 L, sulfuric acid solution of titanyl sulfate (containing 70 g / L as TiO 2 , sulfuric acid concentration 290 g / L) 260 L was gradually added dropwise with good stirring to form a precipitate, and then an appropriate amount of 25% by mass aqueous ammonia was added to adjust the pH to 7. The slurry was left to mature for 40 hours, then filtered, washed and dried at 150 ° C. for 20 hours. This was calcined at 500 ° C. for 5 hours in an air atmosphere, and further pulverized using a hammer mill to obtain Compound C (Ti—Si—W composite oxide).

化合物Cの組成はTiO/SiO/WOの質量比(酸化物換算)で89/5/6質量%であった。さらに化合物CはX線回折測定により酸化チタン、酸化ケイ素、酸化タングステンの鋭いピークが見られず、アモロファスといわれる状態のものが測定された。 The composition of Compound C was 89/5/6 mass% in terms of mass ratio of TiO 2 / SiO 2 / WO 3 (as oxide). Further, Compound C showed no sharp peaks of titanium oxide, silicon oxide, and tungsten oxide by X-ray diffraction measurement, and a compound called amorofus was measured.

(比較例1)
市販のチタンおよびタングステンの混合酸化物(以下「Ti−W混合酸化物」という)であるCristal Global社製のDT−52(商品名)を混合物aとした。
(Comparative Example 1)
DT-52 (trade name) manufactured by Cristal Global, which is a commercially available mixed oxide of titanium and tungsten (hereinafter referred to as “Ti—W mixed oxide”) was used as the mixture a.

混合物aの組成はTiO/WOの質量比(酸化物換算)で90/10質量%であった。 The composition of the mixture a was 90/10% by mass in terms of TiO 2 / WO 3 (as oxide).

(アンモニア−昇温脱離測定(NH−TPD))
実施例1〜3で得られた化合物A〜Cおよび比較例1で得られた混合物aを用いて、下記測定条件でアンモニア−昇温脱離測定(NH−TPD)を行った。
(Ammonia - TPD measurement (NH 3 -TPD))
Using the compounds A to C obtained in Examples 1 to 3 and the mixture a obtained in Comparative Example 1, ammonia-temperature programmed desorption measurement (NH 3 -TPD) was performed under the following measurement conditions.

なお、アンモニア−昇温脱離測定(NH−TPD)には日本ベル株式会社のBELCATを用いた。 BELCAT manufactured by Nippon Bell Co., Ltd. was used for ammonia-temperature programmed desorption measurement (NH 3 -TPD).

<測定条件>
(1)150℃で20時間乾燥させたサンプル0.1gを使用する。
(2)測定に先立ち100℃にてヘリウムガスを50Nml/minで10分間、サンプルに通過させ表面を浄化する。
(3)100℃にてアンモニア標準ガス(アンモニア:10%/ヘリウム:Balance)を50Nml/minで60分間、サンプルに通過させアンモニアを吸着させる。
(4)ヘリウムガスを100℃にて50Nml/minで50分間、サンプルに通過させ余剰のアンモニアを除去する。
(5)ヘリウムガスを50Nml/minでサンプルに通過させ、10℃/分の速度で100℃から600℃まで昇温する。
(6)サンプルを通過した下流のガスを120℃に設定したTCD(検出器)にて連続的に測定する。
<Measurement conditions>
(1) Use 0.1 g of sample dried at 150 ° C. for 20 hours.
(2) Prior to measurement, the surface is purified by passing helium gas through the sample at 50 Nml / min for 10 minutes at 100 ° C.
(3) At 100 ° C., ammonia standard gas (ammonia: 10% / helium: Balance) is passed through the sample at 50 Nml / min for 60 minutes to adsorb ammonia.
(4) Helium gas is passed through the sample at 100 N ° C. and 50 Nml / min for 50 minutes to remove excess ammonia.
(5) Helium gas is passed through the sample at 50 Nml / min, and the temperature is raised from 100 ° C. to 600 ° C. at a rate of 10 ° C./min.
(6) The downstream gas that has passed through the sample is continuously measured with a TCD (detector) set at 120 ° C.

上記条件において、化合物A〜C(実施例1〜3)および混合物a(比較例1)のアンモニア脱離量を測定し、このときのピーク面積から250〜350℃のアンモニア脱離量(L−脱離量)、450〜550℃のアンモニア脱離量(H−脱離量)を求めた。   Under the above conditions, the amount of ammonia desorbed from the compounds A to C (Examples 1 to 3) and the mixture a (Comparative Example 1) was measured, and the ammonia desorbed amount (L− Desorption amount), and ammonia desorption amount (H-desorption amount) at 450 to 550 ° C. were determined.

L−脱離量、H−脱離量およびH−脱離量/L−脱離量の値を表1に示した。表1から分かるように化合物A〜C(実施例1〜3)は混合物a(比較例1)に較べて、H−脱離量/L−脱離量の値が高いことが分かる。   The values of L-elimination amount, H-elimination amount, and H-elimination amount / L-elimination amount are shown in Table 1. As can be seen from Table 1, the compounds A to C (Examples 1 to 3) have higher H-elimination / L-desorption amounts than the mixture a (Comparative Example 1).

アンモニア−昇温脱離測定(NH−TPD)の結果を化合物A(実施例1)は図1、化合物B(実施例2)は図2、化合物C(実施例3)は図3、混合物a(比較例1)は図4に示した。図1〜4から分かるように化合物A〜C(実施例1〜3)は混合物a(比較例1)に較べて、450〜550℃におけるアンモニア脱離量(ピーク面積)が多いことが分かる。 The results of ammonia-temperature programmed desorption measurement (NH 3 -TPD) are shown in FIG. 1 for Compound A (Example 1), FIG. 2 for Compound B (Example 2), and FIG. 3 for Compound C (Example 3). a (Comparative Example 1) is shown in FIG. As can be seen from FIGS. 1 to 4, the compounds A to C (Examples 1 to 3) have a larger amount of ammonia desorption (peak area) at 450 to 550 ° C. than the mixture a (Comparative Example 1).

Figure 2013193938
(実施例4)
<化合物D(Ti−Si複合酸化物)の調製>
シリカゾル(SiOとして30重量%含有)8kgと10質量%アンモニア水240Lを混合した溶液に、硫酸チタニルの硫酸溶液(TiOとして70g/L含有、硫酸濃度290g/L)260Lをよく撹拌しながら徐々に滴下し、沈殿を生成させた後、適量の25質量%アンモニア水を加えてpHを8に調整した。このスラリーをそのまま40時間放置して熟成した後、濾過、洗浄し、150℃で20時間乾燥した。これを空気雰囲気下550℃で5時間焼成し、さらにハンマーミルを用いて粉砕し、化合物D(Ti−Si複合酸化物)を得た。
Figure 2013193938
Example 4
<Preparation of compound D (Ti-Si composite oxide)>
To a solution obtained by mixing 8 kg of silica sol (containing 30 wt% as SiO 2 ) and 240 L of 10 mass% ammonia water, 260 L of sulfuric acid solution of titanyl sulfate (containing 70 g / L as TiO 2 , sulfuric acid concentration 290 g / L) is thoroughly stirred. After gradually dropping to form a precipitate, an appropriate amount of 25% by mass aqueous ammonia was added to adjust the pH to 8. The slurry was left to mature for 40 hours, then filtered, washed and dried at 150 ° C. for 20 hours. This was calcined at 550 ° C. for 5 hours in an air atmosphere, and further pulverized using a hammer mill to obtain Compound D (Ti—Si composite oxide).

化合物Dの組成はTiO/SiOの質量比(酸化物換算)で88/12質量%であった。
<触媒Aの調製>
上記の方法で調製したTi−Si複合酸化物粉体(化合物D)8.3kgと、実施例2で得られたTi−W複合酸化物粉体(化合物B)11.7kgとを混合した。次にメタバナジン酸アンモニウム(Vとして78重量%含有)1.5kg、シュウ酸2.1kg、モノエタノールアミン0.5kgを水3Lに混合・溶解させた均一溶液とパラタングステン酸アンモニウム(WOとして90重量%含有)0.9kg、モノエタノールアミン0.4kgを水2Lに混合・溶解させた均一溶液を成型助剤と適量の水とともに、先に混合したTi−Si複合酸化物粉体(化合物D)とTi−W複合酸化物粉体(化合物B)の混合粉体に加え、ニーダーで混練した後、押出成型機で外形80mm角、長さ500mm、目開き2.9mm、肉厚0.4mmのハニカム状に成型した。これを80℃で乾燥した後、空気雰囲気下450℃で5時間焼成し、触媒Aを得た。
The composition of Compound D was 88/12% by mass in terms of a TiO 2 / SiO 2 mass ratio (as oxide).
<Preparation of catalyst A>
8.3 kg of the Ti—Si composite oxide powder (Compound D) prepared by the above method and 11.7 kg of the Ti—W composite oxide powder (Compound B) obtained in Example 2 were mixed. Next, 1.5 kg of ammonium metavanadate (containing 78 wt% as V 2 O 5 ), 2.1 kg of oxalic acid, and 0.5 kg of monoethanolamine were mixed and dissolved in 3 L of water and ammonium paratungstate (WO 3 as 90 wt% content) 0.9 kg, monoethanolamine 0.4kg homogeneous solution obtained by mixing and dissolving an appropriate amount of water and molding additive in water 2L, Ti-Si composite oxide powder was mixed into the earlier In addition to the mixed powder of (Compound D) and Ti—W complex oxide powder (Compound B), after kneading with a kneader, the outer shape is 80 mm square, the length is 500 mm, the opening is 2.9 mm, and the wall thickness is Molded into a 0.4 mm honeycomb. This was dried at 80 ° C. and then calcined at 450 ° C. for 5 hours in an air atmosphere to obtain Catalyst A.

触媒Aの組成は化合物D/化合物B/V/WOの質量比(酸化物換算)で38/53/5/4質量%であった。 The composition of the catalyst A was 38/53/5/4 mass% in terms of mass ratio of compound D / compound B / V 2 O 5 / WO 3 (as oxide).

(実施例5)
<触媒Bの調製>
実施例4で得られたTi−Si複合酸化物粉体(化合物D)8.3kgと、実施例3で得られたTi−Si−W複合酸化物粉体(化合物C)11.7kgとを混合した。次にメタバナジン酸アンモニウム(Vとして78重量%含有)1.5kg、シュウ酸2.1kg、モノエタノールアミン0.5kgを水3Lに混合・溶解させた均一溶液とパラタングステン酸アンモニウム(WOとして90重量%含有)0.9kg、モノエタノールアミン0.4kgを水2Lに混合・溶解させた均一溶液を成型助剤と適量の水とともに、先に混合したTi−Si複合酸化物粉体(化合物D)とTi−Si−W複合酸化物粉体(化合物C)の混合粉体に加え、ニーダーで混練した後、押出成型機で外形80mm角、長さ500mm、目開き2.9mm、肉厚0.4mmのハニカム状に成型した。これを80℃で乾燥した後、空気雰囲気下450℃で5時間焼成し、触媒Bを得た。
(Example 5)
<Preparation of catalyst B>
8.3 kg of the Ti—Si composite oxide powder (Compound D) obtained in Example 4 and 11.7 kg of the Ti—Si—W composite oxide powder (Compound C) obtained in Example 3 Mixed. Next, 1.5 kg of ammonium metavanadate (containing 78 wt% as V 2 O 5 ), 2.1 kg of oxalic acid, and 0.5 kg of monoethanolamine were mixed and dissolved in 3 L of water and ammonium paratungstate (WO 3 as 90 wt% content) 0.9 kg, monoethanolamine 0.4kg homogeneous solution obtained by mixing and dissolving an appropriate amount of water and molding additive in water 2L, Ti-Si composite oxide powder was mixed into the earlier In addition to the mixed powder of (Compound D) and Ti—Si—W complex oxide powder (Compound C), after kneading with a kneader, the outer shape is 80 mm square, the length is 500 mm, the opening is 2.9 mm, Molded into a honeycomb with a thickness of 0.4 mm. This was dried at 80 ° C. and then calcined at 450 ° C. for 5 hours in an air atmosphere to obtain Catalyst B.

触媒Bの組成は化合物D/化合物C/V/WOの質量比(酸化物換算)で38/53/5/4質量%であった。 The composition of the catalyst B was 38/53/5/4 mass% in terms of a mass ratio of compound D / compound C / V 2 O 5 / WO 3 (as oxide).

(実施例6)
<触媒Cの調製>
実施例2で得られたTi−W複合酸化物粉体(化合物B)20kgにメタバナジン酸アンモニウム(Vとして78重量%含有)1.5kg、シュウ酸2.1kg、モノエタノールアミン0.5kgを水3Lに混合・溶解させた均一溶液とパラタングステン酸アンモニウム(WOとして90重量%含有)0.9kg、モノエタノールアミン0.4kgを水2Lに混合・溶解させた均一溶液を成型助剤と適量の水とともに加え、ニーダーで混練した後、押出成型機で外形80mm角、長さ500mm、目開き2.9mm、肉厚0.4mmのハニカム状に成型した。これを80℃で乾燥した後、空気雰囲気下450℃で5時間焼成し、触媒Cを得た。
(Example 6)
<Preparation of catalyst C>
20 kg of the Ti—W composite oxide powder (compound B) obtained in Example 2 was added to 1.5 kg of ammonium metavanadate (containing 78 wt% as V 2 O 5 ), 2.1 kg of oxalic acid, 0.1% of monoethanolamine. A uniform solution in which 5 kg is mixed and dissolved in 3 L of water, 0.9 kg of ammonium paratungstate (containing 90 wt% as WO 3 ), and a uniform solution in which 0.4 kg of monoethanolamine is mixed and dissolved in 2 L of water It was added together with an agent and an appropriate amount of water, kneaded with a kneader, and then formed into a honeycomb shape having an external shape of 80 mm square, a length of 500 mm, an opening of 2.9 mm, and a wall thickness of 0.4 mm by an extruder. This was dried at 80 ° C. and then calcined at 450 ° C. for 5 hours in an air atmosphere to obtain Catalyst C.

触媒Cの組成は化合物B/V/WOの質量比(酸化物換算)で91/5/4質量%であった。 The composition of the catalyst C was 91/ 5 /4% by mass in terms of the mass ratio of compound B / V 2 O 5 / WO 3 (as oxide).

(実施例7)
<触媒Dの調製>
実施例3で得られたTi−Si−W複合酸化物粉体(化合物C)20kgにメタバナジン酸アンモニウム(Vとして78重量%含有)1.5kg、シュウ酸2.1kg、モノエタノールアミン0.5kgを水3Lに混合・溶解させた均一溶液とパラタングステン酸アンモニウム(WOとして90重量%含有)0.9kg、モノエタノールアミン0.4kgを水2Lに混合・溶解させた均一溶液を成型助剤と適量の水とともに加え、ニーダーで混練した後、押出成型機で外形80mm角、長さ500mm、目開き2.9mm、肉厚0.4mmのハニカム状に成型した。これを80℃で乾燥した後、空気雰囲気下450℃で5時間焼成し、触媒Dを得た。
(Example 7)
<Preparation of catalyst D>
20 kg of the Ti—Si—W complex oxide powder (Compound C) obtained in Example 3 1.5 kg of ammonium metavanadate (containing 78 wt% as V 2 O 5 ), 2.1 kg of oxalic acid, monoethanolamine A homogeneous solution in which 0.5 kg is mixed and dissolved in 3 L of water, 0.9 kg of ammonium paratungstate (containing 90 wt% as WO 3 ), and a homogeneous solution in which 0.4 kg of monoethanolamine is mixed and dissolved in 2 L of water The mixture was added together with a molding aid and an appropriate amount of water, kneaded with a kneader, and then molded into a honeycomb shape having an outer shape of 80 mm square, a length of 500 mm, an aperture of 2.9 mm, and a wall thickness of 0.4 mm by an extruder. This was dried at 80 ° C. and then calcined at 450 ° C. for 5 hours in an air atmosphere to obtain Catalyst D.

触媒Dの組成は化合物C/V/WOの質量比(酸化物換算)で91/5/4質量%であった。 The composition of the catalyst D was 91/5/4 mass% in terms of the mass ratio of compound C / V 2 O 5 / WO 3 (as oxide).

(比較例2)
<触媒aの調製>
実施例4で得られたTi−Si複合酸化物粉体(化合物D)8.3kgと、比較例1で得られたTi−W混合酸化物粉体(混合物a)11.7kgとを混合した。次にメタバナジン酸アンモニウム(Vとして78重量%含有)1.5kg、シュウ酸2.1kg、モノエタノールアミン0.5kgを水3Lに混合・溶解させた均一溶液とパラタングステン酸アンモニウム(WOとして90重量%含有)0.9kg、モノエタノールアミン0.4kgを水2Lに混合・溶解させた均一溶液を成型助剤と適量の水とともに、先に混合したTi−Si複合酸化物粉体(化合物D)とTi−W混合酸化物粉体(混合物a)の混合粉体に加え、ニーダーで混練した後、押出成型機で外形80mm角、長さ500mm、目開き2.9mm、肉厚0.4mmのハニカム状に成型した。これを80℃で乾燥した後、空気雰囲気下450℃で5時間焼成し、触媒aを得た。
(Comparative Example 2)
<Preparation of catalyst a>
8.3 kg of the Ti—Si composite oxide powder (compound D) obtained in Example 4 and 11.7 kg of the Ti—W mixed oxide powder (mixture a) obtained in Comparative Example 1 were mixed. . Next, 1.5 kg of ammonium metavanadate (containing 78 wt% as V 2 O 5 ), 2.1 kg of oxalic acid, and 0.5 kg of monoethanolamine were mixed and dissolved in 3 L of water and ammonium paratungstate (WO 3 as 90 wt% content) 0.9 kg, monoethanolamine 0.4kg homogeneous solution obtained by mixing and dissolving an appropriate amount of water and molding additive in water 2L, Ti-Si composite oxide powder was mixed into the earlier In addition to the mixed powder of (Compound D) and Ti—W mixed oxide powder (mixture a), after kneading with a kneader, external shape 80 mm square, length 500 mm, opening 2.9 mm, wall thickness Molded into a 0.4 mm honeycomb. This was dried at 80 ° C. and then calcined at 450 ° C. for 5 hours in an air atmosphere to obtain catalyst a.

触媒aの組成は化合物D/混合物a/V/WOの質量比(酸化物換算)で38/53/5/4質量%であった。 The composition of the catalyst a was 38/53/ 5 /4% by mass in terms of mass ratio of compound D / mixture a / V 2 O 5 / WO 3 (as oxide).

(比較例3)
<触媒bの調製>
比較例1で得られたTi−W混合酸化物粉体(混合物a)20kgにメタバナジン酸アンモニウム(Vとして78重量%含有)1.5kg、シュウ酸2.1kg、モノエタノールアミン0.5kgを水3Lに混合・溶解させた均一溶液とパラタングステン酸アンモニウム(WOとして90重量%含有)0.9kg、モノエタノールアミン0.4kgを水2Lに混合・溶解させた均一溶液を成型助剤と適量の水とともに加え、ニーダーで混練した後、押出成型機で外形80mm角、長さ500mm、目開き2.9mm、肉厚0.4mmのハニカム状に成型した。これを80℃で乾燥した後、空気雰囲気下450℃で5時間焼成し、触媒bを得た。
(Comparative Example 3)
<Preparation of catalyst b>
20 kg of the Ti—W mixed oxide powder (mixture a) obtained in Comparative Example 1, 1.5 kg of ammonium metavanadate (containing 78 wt% as V 2 O 5 ), 2.1 kg of oxalic acid, 0.1% of monoethanolamine A uniform solution in which 5 kg is mixed and dissolved in 3 L of water, 0.9 kg of ammonium paratungstate (containing 90 wt% as WO 3 ), and a uniform solution in which 0.4 kg of monoethanolamine is mixed and dissolved in 2 L of water It was added together with an agent and an appropriate amount of water, kneaded with a kneader, and then formed into a honeycomb shape having an external shape of 80 mm square, a length of 500 mm, an opening of 2.9 mm, and a wall thickness of 0.4 mm by an extruder. This was dried at 80 ° C. and then calcined at 450 ° C. for 5 hours in an air atmosphere to obtain catalyst b.

触媒bの組成は混合物a/V/WOの質量比(酸化物換算)で91/5/4質量%であった。 The composition of the catalyst b was 91/ 5 /4% by mass in terms of mass ratio (as oxide) of the mixture a / V 2 O 5 / WO 3 .

(触媒評価)
実施例4〜7で得られた触媒A〜Dおよび比較例2、3で得られた触媒a、bを溶融塩浴に浸漬されたステンレス製反応管に充填し、下記組成の合成ガスを下記条件下で触媒層に導入し、脱硝率の測定をおこなった。
(Catalyst evaluation)
Catalysts A to D obtained in Examples 4 to 7 and catalysts a and b obtained in Comparative Examples 2 and 3 were filled in a stainless steel reaction tube immersed in a molten salt bath, and synthesis gas having the following composition was added to the following composition gas: The denitration rate was measured by introducing the catalyst layer under the conditions.

脱硝率は反応管入口および反応管出口のNOx濃度をNOx計(化学発光式、日本サーモ株式会社製MODEL5100)により測定し、下記式1に従い求めた。得られた脱硝率を表2に示した。表2から分かるように触媒A〜D(実施例4〜7)は触媒a、b(比較例2、3)に較べて、脱硝率が高いことが分かる。   The NOx removal rate was determined according to the following formula 1 by measuring the NOx concentration at the reaction tube inlet and the reaction tube outlet with a NOx meter (chemiluminescence type, MODEL 5100 manufactured by Nippon Thermo Co., Ltd.). The obtained denitration rate is shown in Table 2. As can be seen from Table 2, the catalysts A to D (Examples 4 to 7) have a higher denitration rate than the catalysts a and b (Comparative Examples 2 and 3).

<反応条件>
ガス温度:350℃
空間速度(STP):26000hr−1
<合成ガス組成>
NOx:100ppm,dry
NH:100ppm,dry
:15%,dry
O:10%,wet
:balance
<Reaction conditions>
Gas temperature: 350 ° C
Space velocity (STP): 26000 hr −1
<Syngas composition>
NOx: 100ppm, dry
NH 3 : 100 ppm, dry
O 2 : 15%, dry
H 2 O: 10%, wet
N 2 : balance

Figure 2013193938
Figure 2013193938

Figure 2013193938
Figure 2013193938

本発明は排ガス処理分野、特に窒素酸化物(NOx)を含む排ガスの処理に有効な技術である。   The present invention is a technique effective in the field of exhaust gas treatment, particularly in the treatment of exhaust gas containing nitrogen oxides (NOx).

Claims (5)

下記条件を満たすことを特徴とするチタンおよびタングステンの複合酸化物(以下「Ti−W複合酸化物」という)またはチタン、ケイ素およびタングステンの複合酸化物(以下「Ti−Si−W複合酸化物」という)。
(1)アンモニア−昇温脱離測定(NH−TPD)により250〜350℃のアンモニア脱離量を測定すること(以下「L−脱離量」という)。
(2)アンモニア−昇温脱離測定(NH−TPD)により450〜550℃のアンモニア脱離量を測定すること(以下「H−脱離量」という)。
(3)H−脱離量/L−脱離量が0.7〜1.5であること。
A composite oxide of titanium and tungsten (hereinafter referred to as "Ti-W composite oxide") or a composite oxide of titanium, silicon and tungsten (hereinafter referred to as "Ti-Si-W composite oxide") characterized by satisfying the following conditions: Called).
(1) Measure ammonia desorption amount at 250 to 350 ° C. by ammonia-temperature programmed desorption measurement (NH 3 -TPD) (hereinafter referred to as “L-desorption amount”).
(2) Measuring ammonia desorption amount at 450 to 550 ° C. by ammonia-temperature programmed desorption measurement (NH 3 -TPD) (hereinafter referred to as “H-desorption amount”).
(3) H-desorption amount / L-desorption amount is 0.7 to 1.5.
当該触媒がTi−W複合酸化物、またはTi−Si−W複合酸化物を含むことを特徴とする請求項1記載の脱硝触媒。 2. The denitration catalyst according to claim 1, wherein the catalyst contains a Ti—W composite oxide or a Ti—Si—W composite oxide. 更に、チタンおよびケイ素との複合酸化物(以下「Ti−Si複合酸化物」という)を添加することを特徴とする請求項1又は2記載の脱硝触媒。 The denitration catalyst according to claim 1 or 2, further comprising a composite oxide of titanium and silicon (hereinafter referred to as "Ti-Si composite oxide"). 当該Ti−W複合酸化物またはTi−Si−W複合酸化物が沈殿法により得られたものであることを特徴とする請求項1または2記載の脱硝触媒の製造方法。 The method for producing a denitration catalyst according to claim 1 or 2, wherein the Ti-W composite oxide or Ti-Si-W composite oxide is obtained by a precipitation method. 請求項1〜4記載の触媒を用いて、窒素酸化物(NOx)を含む排ガスをアンモニア存在下に処理することを特徴とする脱硝方法。 A denitration method comprising treating an exhaust gas containing nitrogen oxides (NOx) in the presence of ammonia using the catalyst according to claim 1.
JP2012064551A 2012-03-21 2012-03-21 Denitration catalyst, method of preparing the same, and method of denitration Pending JP2013193938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012064551A JP2013193938A (en) 2012-03-21 2012-03-21 Denitration catalyst, method of preparing the same, and method of denitration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012064551A JP2013193938A (en) 2012-03-21 2012-03-21 Denitration catalyst, method of preparing the same, and method of denitration

Publications (1)

Publication Number Publication Date
JP2013193938A true JP2013193938A (en) 2013-09-30

Family

ID=49393327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012064551A Pending JP2013193938A (en) 2012-03-21 2012-03-21 Denitration catalyst, method of preparing the same, and method of denitration

Country Status (1)

Country Link
JP (1) JP2013193938A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103586017A (en) * 2013-11-22 2014-02-19 西南化工研究设计院有限公司 Preparation method of titanium and tungsten powder for flue gas denitration catalyst and product prepared through preparation method
CN106693953A (en) * 2016-12-27 2017-05-24 内蒙古华元科技有限公司 Ti-based catalyst for coking flue gas denitrification and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090043A (en) * 1983-10-21 1985-05-21 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying nitrogen oxide
JPH03126601A (en) * 1989-10-12 1991-05-29 Idemitsu Kosan Co Ltd Production of superfine particulate powder having solid strong acid point
JPH0788368A (en) * 1993-07-30 1995-04-04 Nippon Shokubai Co Ltd Denitration catalyst
JP2000070712A (en) * 1998-06-19 2000-03-07 Mitsubishi Heavy Ind Ltd Waste gas treatment catalyst, treatment of waste gas and apparatus therefor
JP2001104728A (en) * 1999-10-12 2001-04-17 Mitsubishi Heavy Ind Ltd Bag filter and exhaust gas cleaning method
JP2002102696A (en) * 2000-09-28 2002-04-09 Nippon Shokubai Co Ltd Denitration catalyst and processing method for exhaust gas using this
JP2003284927A (en) * 2002-03-28 2003-10-07 Hitachi Zosen Corp High temperature denitration catalyst
JP2005144299A (en) * 2003-11-13 2005-06-09 Nippon Shokubai Co Ltd Nitrogen oxide removal catalyst and nitrogen oxide removal method
JP2005270872A (en) * 2004-03-25 2005-10-06 Nippon Shokubai Co Ltd Catalyst for exhaust gas treatment and exhaust gas treatment method
JP2006255641A (en) * 2005-03-18 2006-09-28 Nippon Shokubai Co Ltd Catalyst for treating exhaust gas, its manufacturing method and exhaust gas treating method
JP2007313474A (en) * 2006-05-29 2007-12-06 Nippon Shokubai Co Ltd Catalyst and method for treating exhaust gas

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090043A (en) * 1983-10-21 1985-05-21 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying nitrogen oxide
JPH03126601A (en) * 1989-10-12 1991-05-29 Idemitsu Kosan Co Ltd Production of superfine particulate powder having solid strong acid point
JPH0788368A (en) * 1993-07-30 1995-04-04 Nippon Shokubai Co Ltd Denitration catalyst
JP2000070712A (en) * 1998-06-19 2000-03-07 Mitsubishi Heavy Ind Ltd Waste gas treatment catalyst, treatment of waste gas and apparatus therefor
JP2001104728A (en) * 1999-10-12 2001-04-17 Mitsubishi Heavy Ind Ltd Bag filter and exhaust gas cleaning method
JP2002102696A (en) * 2000-09-28 2002-04-09 Nippon Shokubai Co Ltd Denitration catalyst and processing method for exhaust gas using this
JP2003284927A (en) * 2002-03-28 2003-10-07 Hitachi Zosen Corp High temperature denitration catalyst
JP2005144299A (en) * 2003-11-13 2005-06-09 Nippon Shokubai Co Ltd Nitrogen oxide removal catalyst and nitrogen oxide removal method
JP2005270872A (en) * 2004-03-25 2005-10-06 Nippon Shokubai Co Ltd Catalyst for exhaust gas treatment and exhaust gas treatment method
JP2006255641A (en) * 2005-03-18 2006-09-28 Nippon Shokubai Co Ltd Catalyst for treating exhaust gas, its manufacturing method and exhaust gas treating method
JP2007313474A (en) * 2006-05-29 2007-12-06 Nippon Shokubai Co Ltd Catalyst and method for treating exhaust gas

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KOBAYASHI, M. ET AL: "V2O5-WO3/TiO2-SiO2-SO42- catalysts: Influence of active components and supports on activities in the", APPLIED CATALYSIS B: ENVIRONMENTAL, vol. Vol.63, No.1-2, JPN6015027424, 4 November 2005 (2005-11-04), pages 104 - 113, ISSN: 0003252902 *
NICOSIA, D. ET AL: "Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrica", APPLIED CATALYSIS B: ENVIRONMENTAL, JPN6015027423, 2 August 2007 (2007-08-02), pages 228 - 236, ISSN: 0003252900 *
POPOVA, N. M. ET AL: "TPD study of NH3 adsorption/desorption on the surface of V/Ti, V/Al based catalysts for selective ca", REACTION KINETICS AND CATALYSIS LETTERS, vol. 65, no. 2, JPN6015027421, November 1998 (1998-11-01), pages 371 - 379, ISSN: 0003252901 *
REICHE, M.A. ET AL: "Effect of grafting sequence on the behavior of titania-supported v V2O5-WO3 catalysts in the selecti", JOURNAL OF CATALYSIS, vol. 192, no. 2, JPN6015027425, 2 May 2002 (2002-05-02), pages 400 - 411, XP005100551, ISSN: 0003252903, DOI: 10.1006/jcat.2000.2862 *
触媒学会編, 触媒講座第3巻(基礎編3) 固体触媒のキャラクタリゼーション, JPN6015027418, October 1985 (1985-10-01), pages 145 - 156, ISSN: 0003111723 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103586017A (en) * 2013-11-22 2014-02-19 西南化工研究设计院有限公司 Preparation method of titanium and tungsten powder for flue gas denitration catalyst and product prepared through preparation method
CN103586017B (en) * 2013-11-22 2015-03-25 西南化工研究设计院有限公司 Preparation method of titanium and tungsten powder for flue gas denitration catalyst and product prepared through preparation method
CN106693953A (en) * 2016-12-27 2017-05-24 内蒙古华元科技有限公司 Ti-based catalyst for coking flue gas denitrification and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6347913B2 (en) Method, catalyst, system and method for preparing a copper-containing molecular sieve with a CHA structure
KR101950670B1 (en) Process for the production of metal doped zeolites and zeotypes and application of same to the catalytic remediation of nitrogen oxides
JP4745968B2 (en) Denitration catalyst with excellent low temperature characteristics
JP5936680B2 (en) Raw material for DeNOx catalyst containing no vanadium or reduced in vanadium and method for producing the same
CN101522298A (en) Catalyst, method and apparatus for purifying nitrogen oxide
JP2013091045A (en) Exhaust gas treating method
WO2011024847A1 (en) Highly heat-resistant aqueous scr catalyst and manufacturing method therefor
JP4508584B2 (en) Denitration catalyst for high temperature exhaust gas
JP6132498B2 (en) Titanium / silicon / tungsten oxide, denitration catalyst using the same, method for preparing the oxide, and denitration method
JPWO2012086413A1 (en) NOx removal catalyst carrier, NOx removal catalyst and NOx removal device
JPWO2011042953A1 (en) Denitration catalyst for high temperature exhaust gas and method for producing the same, high temperature exhaust gas denitration method
KR20150023523A (en) Scr catalyst and method of preparation thereof
KR20140006966A (en) Preparation method for denitration catalyst
JP2013193938A (en) Denitration catalyst, method of preparing the same, and method of denitration
JP4798909B2 (en) Nitrogen oxide removing catalyst and method for producing the same
JP4798908B2 (en) Nitrogen oxide removing catalyst and method for producing the same
JP2012192338A (en) Method of treating exhaust
JP7183081B2 (en) Denitrification catalyst and method for producing the same
JP6663761B2 (en) Method for producing honeycomb type denitration catalyst
JP2016068031A (en) Denitration catalyst and denitration method
JP2548756B2 (en) Catalyst for removing nitrogen oxides
JP2014062012A (en) Oxide of titanium/tungsten, denitration catalyst obtained by using the oxide, method for preparing the oxide, and denitration method
JP2014180645A (en) Denitration catalyst and denitration method
JP2012206058A (en) Denitration catalyst and denitrification method
JP2013071071A (en) Method for treating exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161005