JP2013071071A - Method for treating exhaust gas - Google Patents
Method for treating exhaust gas Download PDFInfo
- Publication number
- JP2013071071A JP2013071071A JP2011212736A JP2011212736A JP2013071071A JP 2013071071 A JP2013071071 A JP 2013071071A JP 2011212736 A JP2011212736 A JP 2011212736A JP 2011212736 A JP2011212736 A JP 2011212736A JP 2013071071 A JP2013071071 A JP 2013071071A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- catalyst
- nox
- denitration catalyst
- treatment method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 239000003054 catalyst Substances 0.000 claims abstract description 106
- 239000007789 gas Substances 0.000 claims abstract description 71
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 49
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims abstract description 43
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical group N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 40
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 18
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 17
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims abstract description 14
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000004202 carbamide Substances 0.000 claims abstract description 11
- 239000001272 nitrous oxide Substances 0.000 claims abstract description 5
- 238000011282 treatment Methods 0.000 claims description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 229910001868 water Inorganic materials 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 150000001875 compounds Chemical class 0.000 claims description 10
- 239000010936 titanium Substances 0.000 claims description 10
- 229910052720 vanadium Inorganic materials 0.000 claims description 9
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 239000011733 molybdenum Substances 0.000 claims description 8
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 8
- 229910052721 tungsten Inorganic materials 0.000 claims description 8
- 239000010937 tungsten Substances 0.000 claims description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 230000003647 oxidation Effects 0.000 claims description 4
- 238000007254 oxidation reaction Methods 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 239000010955 niobium Substances 0.000 claims description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 3
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims 1
- 229910002089 NOx Inorganic materials 0.000 description 64
- 239000000243 solution Substances 0.000 description 17
- 239000002131 composite material Substances 0.000 description 13
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 12
- 239000000843 powder Substances 0.000 description 12
- 241000264877 Hippospongia communis Species 0.000 description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- 229910004339 Ti-Si Inorganic materials 0.000 description 10
- 229910010978 Ti—Si Inorganic materials 0.000 description 10
- 239000011148 porous material Substances 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 8
- 229910010413 TiO 2 Inorganic materials 0.000 description 7
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 6
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 6
- 235000011114 ammonium hydroxide Nutrition 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 239000004480 active ingredient Substances 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 5
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- 229910006295 Si—Mo Inorganic materials 0.000 description 4
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004898 kneading Methods 0.000 description 4
- 235000006408 oxalic acid Nutrition 0.000 description 4
- 229910000349 titanium oxysulfate Inorganic materials 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- XAYGUHUYDMLJJV-UHFFFAOYSA-Z decaazanium;dioxido(dioxo)tungsten;hydron;trioxotungsten Chemical compound [H+].[H+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O XAYGUHUYDMLJJV-UHFFFAOYSA-Z 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 description 3
- 229910000480 nickel oxide Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 150000003681 vanadium Chemical class 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000013076 target substance Substances 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 150000001844 chromium Chemical class 0.000 description 1
- GVHCUJZTWMCYJM-UHFFFAOYSA-N chromium(3+);trinitrate;nonahydrate Chemical compound O.O.O.O.O.O.O.O.O.[Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O GVHCUJZTWMCYJM-UHFFFAOYSA-N 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229910000039 hydrogen halide Inorganic materials 0.000 description 1
- 239000012433 hydrogen halide Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- -1 saddles Substances 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- CBXWGGFGZDVPNV-UHFFFAOYSA-N so4-so4 Chemical compound OS(O)(=O)=O.OS(O)(=O)=O CBXWGGFGZDVPNV-UHFFFAOYSA-N 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000005437 stratosphere Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/10—Capture or disposal of greenhouse gases of nitrous oxide (N2O)
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
本発明は、窒素酸化物が含まれる排ガスの処理に関するものであり、特に亜酸化窒素が含まれる排ガスの処理に関する技術である。 The present invention relates to treatment of exhaust gas containing nitrogen oxides, and particularly relates to technology for treatment of exhaust gas containing nitrous oxide.
硝酸やアジピン酸等を製造する化学プラント等から排出される各種産業排ガスに含まれる亜酸化窒素(以下、N2Oという。)は、成層圏で分解して一酸化窒素を生成し、また高い温室効果を示す事から、その効率的な除去方法の開発が望まれている。そのための有効な方法として、例えば特許文献1や非特許文献1に記載されている、触媒を用いた分解除去が挙げられる。この方法を用いればN2Oを無害な窒素等に効率よく分解する事が可能であるが、一方で、排ガス中に一酸化窒素や二酸化窒素(以下、まとめて「NOx」という。)が共存していると、N2O除去効率が大幅に低下するという問題点があった。 Nitrous oxide (hereinafter referred to as N 2 O) contained in various industrial exhaust gases discharged from chemical plants that produce nitric acid, adipic acid, etc., decomposes in the stratosphere to produce nitric oxide, Since the effect is shown, development of the efficient removal method is desired. As an effective method for that purpose, for example, decomposition and removal using a catalyst described in Patent Document 1 and Non-Patent Document 1 can be mentioned. Using this method, it is possible to efficiently decompose N 2 O into harmless nitrogen or the like, but on the other hand, nitrogen monoxide and nitrogen dioxide (hereinafter collectively referred to as “NOx”) coexist in the exhaust gas. In this case, there is a problem that the N 2 O removal efficiency is greatly reduced.
また上記プラントの排ガスにはNOxが含まれることが多くこれらのガス処理も望まれている。 Further, NOx is often contained in the exhaust gas of the plant, and these gas treatments are also desired.
本発明は、排ガスに含まれる窒素酸化物の除去、排ガス中のNOxのみならず、N2Oを分解する技術であり、かつ高効率で分解する事を目的とするものである。 The present invention is a technique for removing nitrogen oxides contained in exhaust gas, decomposing not only NOx in exhaust gas but also N 2 O, and aims to decompose with high efficiency.
前記課題を解決するために、本発明者らは鋭意検討の結果、下記構成を見出し、本発明を完成するに至った。本発明は以下に特定されるものである。 In order to solve the above-mentioned problems, the present inventors have intensively studied and found the following configuration to complete the present invention. The present invention is specified below.
本発明は、排ガス中の窒素酸化物をNOxおよびN2Oの二種のグループに分け処理するものである。具体的には、NOxおよびN2Oを含む排ガスを、脱硝触媒により処理し、更にN2O分解触媒により処理する事を特徴とする排ガス処理方法である。 In the present invention, nitrogen oxides in exhaust gas are divided into two groups of NOx and N 2 O. Specifically, the exhaust gas treatment method is characterized in that exhaust gas containing NOx and N 2 O is treated with a denitration catalyst and further treated with an N 2 O decomposition catalyst.
本発明を用いる事で、排ガス中の窒素酸化物の処理をする際に生じる窒素酸化物成分同士の影響を抑制することで有効に排ガス処理ができるものであり、詳しくは、NOxによる影響を抑制し、N2Oを高効率で分解除去する事ができるものである。 By using the present invention, it is possible to effectively treat exhaust gas by suppressing the influence of nitrogen oxide components generated when treating nitrogen oxide in exhaust gas. Specifically, the influence of NOx is suppressed. In addition, N 2 O can be decomposed and removed with high efficiency.
本発明は、排ガス中の窒素酸化物をNOxおよびN2Oの二種のグループに分け、各グループに有効に作用する条件・触媒により処理するものであり、詳しくは、まず、NOxおよびN2Oを含む排ガスを、脱硝触媒により処理し、更にN2O分解触媒により処理する事を特徴とする排ガス処理方法である。好ましくは当該排ガスに還元剤を添加した後に当該脱硝触媒に導入する事であり、また当該還元剤の添加量は当該排ガス中のNOxを窒素と水にする事ができる量であることが好ましい。以下に本発明を具体的に説明する。 The present invention divides nitrogen oxides in exhaust gas into two groups of NOx and N 2 O and treats them with conditions and catalysts that effectively act on each group. Specifically, first, NOx and N 2 are treated. An exhaust gas treatment method characterized in that exhaust gas containing O is treated with a denitration catalyst and further treated with an N 2 O decomposition catalyst. Preferably, a reducing agent is added to the exhaust gas and then introduced into the denitration catalyst, and the amount of the reducing agent added is preferably an amount capable of converting NOx in the exhaust gas into nitrogen and water. The present invention will be specifically described below.
本発明は、2段階の工程により構成され、第一工程は脱硝触媒を用いて処理する工程1、第二工程はN2O分解触媒により処理する工程2である。 The present invention is composed of two-stage processes, the first process is a process 1 using a denitration catalyst, and the second process is a process 2 using a N 2 O decomposition catalyst.
(工程1)
本工程では排ガス中に含まれるNOxを低減する事を目的とする。NOxとは、NO、NO2である。排ガス中に含まれる当該NOxの量は、10,000ppm以下(容量基準、以下ガス体について同じ)、好ましくは5,000ppm以下である。NOxの量が10,000ppmを超えると工程1の後の残存NOx量が多くなり、工程2の触媒に悪影響を与えるからである。排ガスに含まれる他の成分としては、排ガス源により異なるが二酸化炭素、一酸化炭素、水、二酸化硫黄、ハロゲン化水素、炭化水素、有機化合物、アンモニア、ダストなどがある。これらの成分は本発明にかかる技術を実施するに差し支えない量であれば含まれていても問題はない。本発明は窒素酸化物を処理する技術であるので、好ましくは還元作用を有する成分、例えば一酸化炭素、水素、炭化水素、アンモニアなどの還元物質が排ガス中に含まれている事が好ましい。当該還元物質の量は、NOxを窒素と水に分解できる量と同量含まれている事が好ましい。しかしながら排ガス組成は変動することが多く、還元物質が排ガスに存在していないときは、脱硝触媒の入口側に還元剤を添加する事が好ましい。
(Process 1)
The purpose of this step is to reduce NOx contained in the exhaust gas. The NOx, NO, is NO 2. The amount of the NOx contained in the exhaust gas is 10,000 ppm or less (volume basis, hereinafter the same for the gas body), preferably 5,000 ppm or less. This is because if the amount of NOx exceeds 10,000 ppm, the amount of residual NOx after step 1 increases, which adversely affects the catalyst in step 2. As other components contained in the exhaust gas, there are carbon dioxide, carbon monoxide, water, sulfur dioxide, hydrogen halide, hydrocarbon, organic compound, ammonia, dust, etc., depending on the exhaust gas source. There is no problem even if these components are contained in amounts that do not interfere with the implementation of the technique according to the present invention. Since the present invention is a technique for treating nitrogen oxides, it is preferable that reducing components such as carbon monoxide, hydrogen, hydrocarbons, and ammonia are preferably contained in the exhaust gas. The amount of the reducing substance is preferably the same as the amount capable of decomposing NOx into nitrogen and water. However, the composition of the exhaust gas often fluctuates, and when a reducing substance is not present in the exhaust gas, it is preferable to add a reducing agent to the inlet side of the denitration catalyst.
脱硝触媒の入口側に添加する還元剤としては、窒素酸化物を還元する事ができる化合物であれば何れのものであっても良いが、排ガスの浄化を目的とするものであれば取扱・処理の容易なものが好ましく、特にアンモニア、尿素を用いると、NOx除去効率が高くなるので好ましい。以下、「還元剤」としてアンモニアおよび/または尿素を代表例として記載する。 The reducing agent added to the inlet side of the denitration catalyst may be any compound as long as it is a compound capable of reducing nitrogen oxides. In particular, use of ammonia or urea is preferable because NOx removal efficiency is increased. Hereinafter, ammonia and / or urea will be described as representative examples of the “reducing agent”.
当該アンモニアおよび/または尿素の添加量は、NOxを窒素と水に分解できる当量に対して0.3〜1.2倍、好ましくは0.4〜1.1倍、より好ましくは0.5〜0.98倍が望ましい。アンモニアおよび/または尿素の添加量を前記範囲とする事によって効率的に処理を行う事ができる。なおNOxを窒素と水に分解できる当量とは次のようになる。すなわち対象物質がNOの場合は、NO1モルに対してアンモニアは1モルであり、尿素は0.5モルとなる。また対象物質がNO2の場合は、NO21モルに対してアンモニアは2モルであり、尿素は1モルとなる。 The amount of ammonia and / or urea added is 0.3 to 1.2 times, preferably 0.4 to 1.1 times, more preferably 0.5 to the equivalent of NOx that can be decomposed into nitrogen and water. 0.98 times is desirable. By making the addition amount of ammonia and / or urea within the above range, the treatment can be performed efficiently. An equivalent amount capable of decomposing NOx into nitrogen and water is as follows. That is, when the target substance is NO, ammonia is 1 mol and urea is 0.5 mol with respect to 1 mol of NO. When the target substance is NO 2 , ammonia is 2 mol and urea is 1 mol with respect to 1 mol of NO 2 .
本工程で用いる脱硝触媒は、NOxを効率よく分解除去できるものであれば良いが、還元剤として用いられるアンモニアや尿素からN2Oを副生させないものである事がより好ましい。具体的にはバナジウム、ニオブ、タンタル、モリブデン、タングステン、マンガン、鉄、コバルト、ニッケルおよび/または亜鉛から選ばれる1種以上の元素またはその化合物を活性成分として含むものがよく、特にバナジウム、モリブデンおよび/またはタングステンから選ばれる1種以上の元素またはその化合物を活性成分として含むものがNOx除去性能が高く、かつN2Oを副生させないという点で好適に用いられる。当該活性成分の含有量は、0.1〜20質量%であるのが好ましく、より好ましくは0.2〜15質量%、更に好ましくは0.4〜10質量%である。活性成分の含有量が0.1質量%よりも少ないと充分なNOx除去性能が得られず、20質量%を超えて多くすると還元剤の酸化を促進し、NOx除去効率の低下を起こすからである。なお、活性成分としてバナジウム、ニオブ、タンタル、モリブデン、タングステン、マンガン、鉄、コバルト、ニッケルおよび/または亜鉛から選ばれる2種以上の元素またはその化合物を含む場合、その含有量は各々の元素またはその化合物について前記範囲の中にあるのがよい。 The denitration catalyst used in this step is not particularly limited as long as it can efficiently decompose and remove NOx, but it is more preferable that N 2 O is not by-produced from ammonia or urea used as a reducing agent. Specifically, one containing one or more elements selected from vanadium, niobium, tantalum, molybdenum, tungsten, manganese, iron, cobalt, nickel and / or zinc or compounds thereof as an active ingredient is preferable. In particular, vanadium, molybdenum and A material containing one or more elements selected from tungsten or a compound thereof as an active component is preferably used in that it has high NOx removal performance and does not cause N 2 O to be a byproduct. The content of the active ingredient is preferably 0.1 to 20% by mass, more preferably 0.2 to 15% by mass, and still more preferably 0.4 to 10% by mass. If the content of the active ingredient is less than 0.1% by mass, sufficient NOx removal performance cannot be obtained. If the content exceeds 20% by mass, the oxidation of the reducing agent is promoted and the NOx removal efficiency is lowered. is there. In addition, when the active ingredient contains two or more elements selected from vanadium, niobium, tantalum, molybdenum, tungsten, manganese, iron, cobalt, nickel and / or zinc or compounds thereof, the content of each element or its The compound should be within the above range.
また、本工程で用いる脱硝触媒は、前記活性成分をチタン、アルミニウム、ケイ素および/またはジルコニウムの酸化物からなる少なくとも1種の基材成分に担持させたものである事が好ましい。当該基材成分の触媒全体に占める割合は、40〜99.5質量%であるのが好ましく、より好ましくは60〜99質量%、更に好ましくは70〜98質量%であり、基材成分の割合をこの範囲にする事によって、高いNOx除去性能を得る事ができる。更に、前記基材成分の中でも特にチタン酸化物がNOx除去性能や耐久性の点から好適に用いられる。当該チタン酸化物としては、酸化チタンの他、アルミニウム、ケイ素、ジルコニウム、モリブデンおよび/またはタングステンから選ばれる1種以上の元素とチタンの複合酸化物や混合酸化物を用いる事ができる。また、2種以上の複合酸化物や混合酸化物を混合して用いてもよく、酸化チタンに前記複合酸化物や混合酸化物を混合して用いる事もできる。当該複合酸化物または混合酸化物中のチタン含有量は、40〜99モル%であるのが好ましく、より好ましくは60〜98モル%、更に好ましくは70〜97モル%である。チタン含有量を前記範囲にする事によって、高いNOx除去性能が得られ、かつN2Oの副生を抑制する事ができる。特にN2Oの副生を抑制する為には、ケイ素、モリブデンおよび/またはタングステンから選ばれる1種以上の元素とチタンの複合酸化物または混合酸化物を1種以上含有している事が好ましい。 Further, the denitration catalyst used in this step is preferably one in which the active component is supported on at least one base material component made of oxide of titanium, aluminum, silicon and / or zirconium. The ratio of the base component to the entire catalyst is preferably 40 to 99.5% by mass, more preferably 60 to 99% by mass, and still more preferably 70 to 98% by mass, and the ratio of the base component By making this within this range, high NOx removal performance can be obtained. Furthermore, titanium oxide is particularly preferably used from the viewpoint of NOx removal performance and durability among the above-mentioned base material components. As the titanium oxide, in addition to titanium oxide, a complex oxide or mixed oxide of one or more elements selected from aluminum, silicon, zirconium, molybdenum, and / or tungsten and titanium can be used. Two or more composite oxides or mixed oxides may be mixed and used, and the composite oxide or mixed oxide may be mixed with titanium oxide. The titanium content in the composite oxide or mixed oxide is preferably 40 to 99 mol%, more preferably 60 to 98 mol%, still more preferably 70 to 97 mol%. By setting the titanium content in the above range, high NOx removal performance can be obtained, and N 2 O by-product can be suppressed. In particular, in order to suppress the by-production of N 2 O, it is preferable to contain one or more elements selected from silicon, molybdenum and / or tungsten and one or more complex oxides or mixed oxides of titanium. .
本工程で用いる脱硝触媒の比表面積は、50〜200m2/gの範囲にあるのがよく、より好ましくは60〜150m2/g、更に好ましくは65〜130m2/gの範囲にあるのがよい。触媒の比表面積が低すぎると充分な触媒性能が得られない他、活性成分のシンタリングが起こりやすくなり、高すぎても触媒性能はそれほど向上しないが、被毒物質の蓄積量が多くなって耐久性が低くなる場合があるからである。 The specific surface area of the denitration catalyst used in this step should be in the range of 50 to 200 m 2 / g, more preferably 60 to 150 m 2 / g, and still more preferably in the range of 65 to 130 m 2 / g. Good. If the specific surface area of the catalyst is too low, sufficient catalyst performance cannot be obtained, and active component sintering tends to occur. If it is too high, the catalyst performance will not improve much, but the amount of poisonous substances accumulated will increase. This is because the durability may be lowered.
また、本工程で用いる脱硝触媒の細孔容積は、全細孔容積が0.2〜0.7mL/gの範囲にあるのがよく、より好ましくは0.3〜0.6mL/g、更に好ましくは0.35〜0.5mL/gの範囲にあるのがよい。触媒の細孔容積が小さすぎると十分な触媒性能が得られず、大きすぎても触媒性能はそれほど向上しないが、触媒の機械的強度が低下してハンドリングに支障をきすことや耐磨耗性が低くなるなどの弊害が生じるおそれがあるので好ましくない。 The pore volume of the denitration catalyst used in this step is such that the total pore volume is in the range of 0.2 to 0.7 mL / g, more preferably 0.3 to 0.6 mL / g, Preferably it is in the range of 0.35 to 0.5 mL / g. If the pore volume of the catalyst is too small, sufficient catalyst performance will not be obtained, and if it is too large, the catalyst performance will not improve so much, but the mechanical strength of the catalyst will be reduced and handling will be hindered and abrasion resistance This is not preferable because there is a risk of adverse effects such as lowering.
脱硝触媒の調製法としては、各種金属化合物を用いた一般的な調製方法を用いる事ができ、例えば、含浸法、共沈法、混錬法、アルコキシド法などが用いられる。 As a preparation method of the denitration catalyst, a general preparation method using various metal compounds can be used. For example, an impregnation method, a coprecipitation method, a kneading method, an alkoxide method, and the like are used.
各触媒成分の出発原料としては、各元素の酸化物、水酸化物、無機塩、有機塩などが用いられる。具体的にはアンモニウム塩、シュウ酸塩、硫酸塩、硝酸塩、ハロゲン化物などが挙げられ、例えばチタン供給源としては、硫酸チタニル、四塩化チタン、テトライソプロピルチタネートなどが用いられ、ケイ素供給源としてはシリカゾル、水ガラス、四塩化ケイ素などを用いる事ができる。またバナジウム源としては、メタタングステンバナジン酸アンモニウムなどが用いられ、タングステン源としてはメタタングステン酸アンモニウム、パラタングステン酸アンモニウムなどが用いられ、モリブデン源としてはパラモリブデン酸アンモニウム、モリブデン酸などが用いられる。 As starting materials for each catalyst component, oxides, hydroxides, inorganic salts, organic salts, and the like of each element are used. Specific examples include ammonium salts, oxalates, sulfates, nitrates, halides, etc. For example, titanium sources include titanyl sulfate, titanium tetrachloride, tetraisopropyl titanate, etc. Silica sol, water glass, silicon tetrachloride and the like can be used. As the vanadium source, ammonium metatungsten vanadate is used, as the tungsten source, ammonium metatungstate, ammonium paratungstate, etc. are used, and as the molybdenum source, ammonium paramolybdate, molybdic acid, etc. are used.
本工程で用いる脱硝触媒は、押し出し成形、打錠成形、転動造粒などにより、サドル状、ペレット、球体、ハニカム状に成形して用いることができる。またサドル状、ペレット、球体、ハニカム状の担体に脱硝触媒の成分を被覆して用いる事もできる。排ガス処理装置の圧力損失を少なくするにはハニカム状が好ましい。 The denitration catalyst used in this step can be formed into a saddle, pellet, sphere, or honeycomb by extrusion, tableting, rolling granulation, or the like. Further, a saddle-shaped, pellet, sphere, or honeycomb-shaped carrier can be used by coating the components of the denitration catalyst. A honeycomb shape is preferable for reducing the pressure loss of the exhaust gas treatment apparatus.
本工程は、後段のN2O分解触媒に対するNOxの影響を極力低減する事を目的としているものであり、その為には、脱硝触媒出口側(つまり、N2O分解触媒入口側)の排ガス中のNOx濃度は50ppm以下であるのが好ましく、より好ましくは10ppm以下、更に好ましくは5ppm以下であるのがよい。 The purpose of this step is to reduce the influence of NOx on the subsequent N 2 O decomposition catalyst as much as possible. For this purpose, the exhaust gas on the denitration catalyst outlet side (that is, the N 2 O decomposition catalyst inlet side) The NOx concentration therein is preferably 50 ppm or less, more preferably 10 ppm or less, and even more preferably 5 ppm or less.
上記の観点から、排ガスの処理温度や空間速度(SV)などについて、好ましい触媒使用条件が設定される。具体的には、排ガスの処理温度は、150〜600℃、好ましくは170〜550℃、より好ましくは200〜500℃の範囲にあるのがよい。排ガスの処理温度が150℃未満では前記目的を達成する為の充分なNOx除去効率が得られず、600℃を超えると触媒の熱劣化が大きくなる他、還元剤の酸化が促進されてかえってNOx除去効率の低下を起こすからである。排ガス処理に際しての空間速度は、500〜100,000hr−1(STP)、好ましくは1,000〜50,000hr−1(STP)、より好ましくは1,500〜30,000hr−1(STP)の範囲にあるのがよい。空間速度が100,000hr−1(STP)を超えると前記目的を達成する為の充分なNOx除去効率が得られず、500hr−1(STP)未満ではNOx除去効率は大きく変わらないが排ガス処理装置の圧力損失が高くなり、また装置自体も大きくなって非効率だからである。また、排ガス処理に際しての触媒層を通過するガスの線速度は、0.1〜10m/sec(Normal)、好ましくは0.5〜7m/sec(Normal)、より好ましくは0.7〜4m/sec(Normal)の範囲にあるのがよい。線速度が0.1m/sec(Normal)未満では前記目的を達成する為の充分なNOx除去効率が得られず、10m/sec(Normal)を超えるとNOx除去効率は大きく変わらないが、排ガス処理装置の圧力損失が高くなるからである。 From the above viewpoint, preferable catalyst use conditions are set for the processing temperature, space velocity (SV), etc. of the exhaust gas. Specifically, the treatment temperature of the exhaust gas is in the range of 150 to 600 ° C, preferably 170 to 550 ° C, more preferably 200 to 500 ° C. If the treatment temperature of the exhaust gas is less than 150 ° C., sufficient NOx removal efficiency for achieving the above-mentioned purpose cannot be obtained, and if it exceeds 600 ° C., the thermal deterioration of the catalyst increases and the oxidation of the reducing agent is promoted. This is because the removal efficiency is lowered. The space velocity during the exhaust gas treatment is 500 to 100,000 hr −1 (STP), preferably 1,000 to 50,000 hr −1 (STP), more preferably 1,500 to 30,000 hr −1 (STP). It should be in range. Not sufficient NOx removal efficiency can be obtained for the space velocity to achieve the object exceeds 100,000hr -1 (STP), does not change significantly NOx removal efficiency is less than 500 hr -1 (STP) but the exhaust gas treatment apparatus This is because the pressure loss increases and the apparatus itself becomes large and inefficient. The linear velocity of the gas passing through the catalyst layer during exhaust gas treatment is 0.1 to 10 m / sec (Normal), preferably 0.5 to 7 m / sec (Normal), and more preferably 0.7 to 4 m / sec. It should be in the range of sec (Normal). If the linear velocity is less than 0.1 m / sec (Normal), sufficient NOx removal efficiency for achieving the above-mentioned purpose cannot be obtained, and if it exceeds 10 m / sec (Normal), the NOx removal efficiency does not change greatly. This is because the pressure loss of the apparatus becomes high.
本工程の脱硝触媒は、排ガス中に酸素が存在する条件下で好適に用いられるが、この場合の酸素濃度は、1〜50容量%の範囲にあるのが好ましく、より好ましくは1.5〜20容量%、更に好ましくは2〜16容量%の範囲にあるのがよい。酸素濃度が1容量%未満ではNOx除去効率が低下し、50容量%を超えると還元剤の酸化が促進される場合があるからである。また、排ガス中に水分を含む場合には、その濃度は50容量%以下であるのが好ましく、より好ましくは40容量%以下、更に好ましくは30容量%以下であるのがよい。排ガス中の水分濃度が50容量%を超えるとNOx除去効率が低下するからである。 The denitration catalyst of this step is suitably used under the condition where oxygen is present in the exhaust gas. In this case, the oxygen concentration is preferably in the range of 1 to 50% by volume, more preferably 1.5 to It should be in the range of 20% by volume, more preferably 2-16% by volume. This is because if the oxygen concentration is less than 1% by volume, the NOx removal efficiency decreases, and if it exceeds 50% by volume, oxidation of the reducing agent may be promoted. When the exhaust gas contains moisture, the concentration is preferably 50% by volume or less, more preferably 40% by volume or less, and further preferably 30% by volume or less. This is because NOx removal efficiency decreases when the moisture concentration in the exhaust gas exceeds 50% by volume.
(工程2)
本工程ではN2Oを分解除去する事を目的とする。N2O分解触媒はN2Oを効率よく分解除去できるものであれば良いが、例えば特許文献1に記載の触媒を用いる事ができ、好ましい触媒組成としては、周期律表7〜11族から選ばれる少なくとも1種の元素またはその化合物と、周期律表1〜3族から選ばれる少なくとも1種の元素またはその化合物を活性成分として含むものなどがある。N2O分解触媒の形状は、粉体、粒体、サドル状、ペレット、球体、ハニカム状に成形して用いることができる他、球体、サドル状、ハニカム状の担体にN2O分解触媒を被覆して用いることができる。
(Process 2)
The purpose of this step is to decompose and remove N 2 O. The N 2 O decomposition catalyst may be any catalyst as long as it can efficiently decompose and remove N 2 O. For example, the catalyst described in Patent Document 1 can be used. Preferred catalyst compositions include those from groups 7 to 11 of the periodic table. There are at least one selected element or compound thereof, and at least one element selected from Groups 1 to 3 of the periodic table or compound thereof as an active ingredient. The N 2 O decomposition catalyst can be used in the form of powder, granules, saddles, pellets, spheres, and honeycombs, and the N 2 O decomposition catalyst can be used on spheres, saddles, and honeycombs. It can be used by coating.
本工程における排ガスのN2O濃度は、好ましくは20,000ppm以下、より好ましくは10,000ppm以下、更に好ましくは5,000ppm以下である。N2O濃度が20,000ppmを超えると、触媒層での発熱が大きくなって触媒が熱的ダメージを受ける事があるからである。また、場合によっては、本工程の前にN2Oを処理する為の還元剤を添加する事もでき、その際の還元剤としては水素、炭化水素、一酸化炭素、アンモニア、尿素などを用いる事ができる。本工程における処理温度や空間速度などの触媒使用条件は、要求されるN2O分解率によって適宜決定されるが、好ましい範囲として、排ガスの温度は150〜650℃、より好ましくは170〜600℃であり、空間速度は100〜50,000hr−1(STP)、より好ましくは500〜30,000hr−1(STP)であり、触媒層を通過するガスの線速度は0.1〜10m/sec(Normal)、より好ましくは0.5〜7m/sec(Normal)である。 The N 2 O concentration of the exhaust gas in this step is preferably 20,000 ppm or less, more preferably 10,000 ppm or less, and even more preferably 5,000 ppm or less. This is because if the N 2 O concentration exceeds 20,000 ppm, the heat generation in the catalyst layer increases and the catalyst may be thermally damaged. In some cases, a reducing agent for treating N 2 O can be added before this step, and hydrogen, hydrocarbon, carbon monoxide, ammonia, urea, or the like is used as the reducing agent at that time. I can do things. The catalyst use conditions such as the treatment temperature and space velocity in this step are appropriately determined depending on the required N 2 O decomposition rate. As a preferred range, the temperature of the exhaust gas is 150 to 650 ° C., more preferably 170 to 600 ° C. The space velocity is 100 to 50,000 hr −1 (STP), more preferably 500 to 30,000 hr −1 (STP), and the linear velocity of the gas passing through the catalyst layer is 0.1 to 10 m / sec. (Normal), more preferably 0.5 to 7 m / sec (Normal).
また、工程1の触媒と工程2の触媒との関係は、工程2の処理温度は工程1の処理温度に較べて、好ましくは−50〜+300℃、より好ましくは−30〜+250℃、更に好ましくは−20〜+200℃の範囲である事が望ましく、場合よっては工程2の触媒を加熱することが好ましい。工程2の処理温度が工程1の処理温度に較べて30℃を超えて低くなると充分なN2O処理効率が得られない場合があり、300℃を超えて高くなると触媒が熱的ダメージを受ける事があるからである。また、工程1の触媒の体積は工程2に較べて好ましくは0.1〜5倍、より好ましくは0.2〜3倍、更に好ましくは0.3〜2倍である事が望ましい。工程1の触媒の体積が工程2に較べて0.1倍よりも小さいとNOx処理効率が低下して本発明の効果が充分に得られない場合があり、5倍よりも大きくすると排ガス処理装置の圧力損失が高くなり、また装置自体も大きくなって非効率だからである。 Further, the relationship between the catalyst of step 1 and the catalyst of step 2 is that the processing temperature of step 2 is preferably −50 to + 300 ° C., more preferably −30 to + 250 ° C., even more preferably compared to the processing temperature of step 1. Is preferably in the range of −20 to + 200 ° C. In some cases, it is preferable to heat the catalyst in Step 2. If the treatment temperature in step 2 is lower than 30 ° C. compared to the treatment temperature in step 1, sufficient N 2 O treatment efficiency may not be obtained, and if it exceeds 300 ° C., the catalyst is thermally damaged. Because there is a thing. Further, the volume of the catalyst in Step 1 is preferably 0.1 to 5 times, more preferably 0.2 to 3 times, and still more preferably 0.3 to 2 times that of Step 2. If the volume of the catalyst in step 1 is less than 0.1 times that in step 2, the NOx treatment efficiency may be reduced and the effects of the present invention may not be sufficiently obtained. This is because the pressure loss increases and the apparatus itself becomes large and inefficient.
以下に実施例により発明を詳細に説明するが、本発明の効果を奏するものであれば以下の実施例に限定されるものではない。 The present invention will be described in detail below with reference to examples. However, the present invention is not limited to the following examples as long as the effects of the present invention are achieved.
(実施例1)
<脱硝触媒の調製>
シリカゾル(SiO2として20質量%含有)20kgと25質量%アンモニア水225kgを混合した液に、硫酸チタニルの硫酸溶液(TiO2として125g/L、硫酸濃度550g/L)240Lをよく攪拌しながら徐々に滴下し、沈殿を生成させ後、適量のアンモニア水を加えてpHを8に調整した。このスラリーを熟成、濾過、洗浄した後、150℃で10時間乾燥した。これを空気雰囲気下550℃で6時間焼成し、さらにハンマーミルを用いて粉砕し、Ti−Si複合酸化物粉体を得た。このようにして調製したTi−Si複合酸化物粉体の組成は、Ti:Si=85:15(モル比)であった。
Example 1
<Preparation of denitration catalyst>
While mixing 20 liters of silica sol (containing 20 mass% as SiO 2 ) and 225 kg of 25 mass% ammonia water, 240 L of sulfuric acid solution of titanyl sulfate (125 g / L as TiO 2 , sulfuric acid concentration 550 g / L) is gradually stirred. After adding dropwise to form a precipitate, an appropriate amount of aqueous ammonia was added to adjust the pH to 8. The slurry was aged, filtered, washed and dried at 150 ° C. for 10 hours. This was fired at 550 ° C. for 6 hours in an air atmosphere, and further pulverized using a hammer mill to obtain a Ti—Si composite oxide powder. The composition of the Ti—Si composite oxide powder thus prepared was Ti: Si = 85: 15 (molar ratio).
次にメタバナジン酸アンモニウム0.6kg、シュウ酸0.7kg、モノエタノールアミン0.2kgを水2Lに混合・溶解させ、均一溶液を調製した。このバナジウム含有溶液とパラタングステン酸アンモニウムの10質量%メチルアミン水溶液(WO3として400g/L)4.4Lを成形助剤と適量の水とともに、先に調製したTi−Si複合酸化物20kgに加え、ニーダーで混練した後、外形80mm角、長さ500mm、目開き2.9mm、肉厚0.4mmのハニカム状に押し出し成形した。このハニカム成形体を80℃で乾燥した後、空気雰囲気下450℃で3時間焼成し、脱硝触媒Aを得た。 Next, 0.6 kg of ammonium metavanadate, 0.7 kg of oxalic acid, and 0.2 kg of monoethanolamine were mixed and dissolved in 2 L of water to prepare a uniform solution. 4.4 L of this vanadium-containing solution and 10 mass% aqueous solution of ammonium paratungstate methylamine (400 g / L as WO 3 ) are added to 20 kg of the Ti-Si composite oxide prepared above together with a molding aid and an appropriate amount of water. The mixture was kneaded with a kneader and extruded into a honeycomb shape having an outer shape of 80 mm square, a length of 500 mm, an opening of 2.9 mm, and a wall thickness of 0.4 mm. The honeycomb formed body was dried at 80 ° C. and then calcined at 450 ° C. for 3 hours in an air atmosphere to obtain a denitration catalyst A.
脱硝触媒Aの組成は、(Ti−Si複合酸化物):V2O5:WO3=90:2:8(質量比)であり、BET比表面積は116m2/g、全細孔容積は0.46mL/gであった。 The composition of the denitration catalyst A is (Ti—Si composite oxide): V 2 O 5 : WO 3 = 90: 2: 8 (mass ratio), the BET specific surface area is 116 m 2 / g, and the total pore volume is It was 0.46 mL / g.
<N2O分解触媒の調製>
炭酸カルシウム800g、酸化ニッケル(NiO)200gに成形助剤と適量の水を加え、ニーダーで混練した後、直径5mm、長さ5mmのペレット状に押し出し成形した。このペレットを100℃で乾燥した後、空気雰囲気下500℃で5時間焼成し、N2O分解触媒を得た。この触媒の組成はCaO:NiO=69:31(質量比)であり、全細孔容積は0.25mL/gであった。
<Preparation of N 2 O decomposition catalyst>
A molding aid and an appropriate amount of water were added to 800 g of calcium carbonate and 200 g of nickel oxide (NiO), kneaded by a kneader, and then extruded into a pellet having a diameter of 5 mm and a length of 5 mm. The pellet was dried at 100 ° C. and then calcined at 500 ° C. for 5 hours in an air atmosphere to obtain an N 2 O decomposition catalyst. The composition of this catalyst was CaO: NiO = 69: 31 (mass ratio), and the total pore volume was 0.25 mL / g.
<NOx、N2O分解試験>
ガラス製反応管に上記脱硝触媒AおよびN2O分解触媒を、脱硝触媒AがN2O分解触媒の前段になるように充填し、下記組成の合成ガスを下記処理条件で導入した。なお、各触媒の充填量は、下記処理条件に記載の空間速度(SV)にあわせて決定した。
<NOx, N 2 O decomposition test>
A glass reaction tube was filled with the denitration catalyst A and the N 2 O decomposition catalyst so that the denitration catalyst A was in front of the N 2 O decomposition catalyst, and a synthesis gas having the following composition was introduced under the following processing conditions. In addition, the filling amount of each catalyst was determined according to the space velocity (SV) described in the following processing conditions.
[合成ガス組成]
NOx:約100ppm,NH3:約110ppm,N2O:約500ppm,O2:5容量%,H2O:10容量%,N2:balance
[処理条件]
・脱硝触媒(前段)
処理温度:450℃,空間速度:15,000hr−1(STP),ガス線速度:2.0m/sec(Normal)
・N2O分解触媒(後段)
処理温度:450℃,空間速度:5,000hr−1(STP),ガス線速度:0.8m/sec(Normal)
次に、脱硝触媒入口、脱硝触媒出口(N2O分解触媒入口)、N2O分解触媒出口のNOx、NH3、N2O濃度を測定し、次式に従ってN2O除去率を算出した。結果を表1に示す。
N2O除去率(%)={(脱硝触媒入口N2O濃度)−(N2O分解触媒出口N2O濃度)}/(脱硝触媒入口N2O濃度)×100
なお、NOx濃度の測定にはNOx分析計(日本サーモエレクトロン(株)製、Model 5100)、N2O濃度の測定にはN2O分析計(日本サーモエレクトロン(株)製、Model 46−HL)を用い、NH3濃度はガス中のNH3を0.5%ホウ酸水溶液で捕集した後に、イオンクロマトグラフ(東ソー(株)製、IC−2100)で分析する事によって求めた。
[Syngas composition]
NOx: about 100 ppm, NH 3 : about 110 ppm, N 2 O: about 500 ppm, O 2 : 5% by volume, H 2 O: 10% by volume, N 2 : balance
[Processing conditions]
・ Denitration catalyst (front)
Processing temperature: 450 ° C., space velocity: 15,000 hr −1 (STP), gas linear velocity: 2.0 m / sec (Normal)
・ N 2 O decomposition catalyst (second stage)
Processing temperature: 450 ° C., space velocity: 5,000 hr −1 (STP), gas linear velocity: 0.8 m / sec (Normal)
Next, a denitration catalyst inlet, the denitration catalyst outlet (N 2 O decomposition catalyst inlet), N 2 O decomposition catalyst outlet of NOx, the NH 3, N 2 O concentration was measured to calculate the N 2 O removal ratio according to the following equation . The results are shown in Table 1.
N 2 O removal rate (%) = {(denitration catalyst inlet N 2 O concentration) − (N 2 O decomposition catalyst outlet N 2 O concentration)} / (denitration catalyst inlet N 2 O concentration) × 100
In addition, a NOx analyzer (Nippon Thermo Electron Co., Ltd., Model 5100) is used for measuring NOx concentration, and an N 2 O analyzer (Nippon Thermo Electron Co., Ltd., Model 46-HL) is used for measuring N 2 O concentration. The NH 3 concentration was determined by collecting NH 3 in the gas with a 0.5% boric acid aqueous solution and then analyzing it with an ion chromatograph (IC-2100, manufactured by Tosoh Corporation).
(実施例2)
<脱硝触媒の調製>
実施例1で調製したTi−Si複合酸化物粉体16kgに、TiO2としてCristal Global社製のDT−51(商品名)4kgを加え、混合した。次にメタバナジン酸アンモニウム0.6kg、シュウ酸0.7kg、モノエタノールアミン0.2kgを水2Lに混合・溶解させ、均一溶液を調製した。このバナジウム含有溶液とパラタングステン酸アンモニウムの10質量%メチルアミン水溶液(WO3として400g/L)4.4Lを成形助剤と適量の水とともに、先に混合したTi−Si複合酸化物とDT−51の混合粉体に加え、ニーダーで混練した後、外形80mm角、長さ500mm、目開き2.9mm、肉厚0.4mmのハニカム状に押し出し成形した。その後、80℃で乾燥した後、空気雰囲気下450℃で3時間焼成し、脱硝触媒Bを得た。
(Example 2)
<Preparation of denitration catalyst>
To 16 kg of the Ti—Si composite oxide powder prepared in Example 1, 4 kg of DT-51 (trade name) manufactured by Cristal Global was added as TiO 2 and mixed. Next, 0.6 kg of ammonium metavanadate, 0.7 kg of oxalic acid, and 0.2 kg of monoethanolamine were mixed and dissolved in 2 L of water to prepare a uniform solution. The vanadium-containing solution and 4.4 L of 10% by weight aqueous methylamine solution of ammonium paratungstate (400 g / L as WO 3 ) together with a molding aid and an appropriate amount of water were mixed with Ti-Si composite oxide and DT- In addition to the mixed powder of 51, the mixture was kneaded with a kneader, and then extruded into a honeycomb shape having an outer shape of 80 mm square, a length of 500 mm, an aperture of 2.9 mm, and a wall thickness of 0.4 mm. Then, after drying at 80 degreeC, it baked at 450 degreeC by air atmosphere for 3 hours, and the denitration catalyst B was obtained.
脱硝触媒Bの組成は(Ti−Si複合酸化物):TiO2:V2O5:WO3=72:18:2:8(質量比)であり、BET比表面積は108m2/g、全細孔容積は0.44mL/gであった。 The composition of the denitration catalyst B is (Ti—Si composite oxide): TiO 2 : V 2 O 5 : WO 3 = 72: 18: 2: 8 (mass ratio), and the BET specific surface area is 108 m 2 / g, all The pore volume was 0.44 mL / g.
<NOx、N2O分解試験>
実施例1のNOx、N2O分解試験において、脱硝触媒Aのかわりに上記脱硝触媒Bを用いた事以外は、実施例1と同様にしてNOx、N2O分解試験を行なった。結果を表1に示す。
<NOx, N 2 O decomposition test>
In the NOx and N 2 O decomposition test of Example 1, a NOx and N 2 O decomposition test was performed in the same manner as in Example 1 except that the denitration catalyst B was used instead of the denitration catalyst A. The results are shown in Table 1.
(実施例3)
<脱硝触媒の調製>
シリカゾル(SiO2として20質量%含有)15kgと25質量%アンモニア水180kgと水100Lを混合した液にモリブデン酸3kgを加え、よく攪拌してモリブデン酸を完全に溶解させ、均一溶液を調製した。この溶液に硫酸チタニルの硫酸溶液(TiO2として125g/L、硫酸濃度550g/L)190Lをよく攪拌しながら徐々に滴下し、沈殿を生成させた後、適量のアンモニア水を加えてpHを4に調整した。このスラリーを熟成、濾過、洗浄した後、100℃で10時間乾燥した。これを空気雰囲気下500℃で4時間焼成し、さらにハンマーミルを用いて粉砕し、Ti−Si−Mo混合酸化物粉体を得た。このようにして調製したTi−Si−Mo混合酸化物粉体の組成は、Ti:Si:Mo=81:13:6(モル比)であった。
(Example 3)
<Preparation of denitration catalyst>
3 kg of molybdic acid was added to a liquid obtained by mixing 15 kg of silica sol (containing 20% by mass as SiO 2 ), 180 kg of 25% by mass ammonia water and 100 L of water, and stirred well to completely dissolve the molybdic acid to prepare a uniform solution. To this solution, 190 L of titanyl sulfate sulfuric acid solution (125 g / L as TiO 2 , sulfuric acid concentration 550 g / L) was gradually added dropwise with good stirring to form a precipitate, and then an appropriate amount of aqueous ammonia was added to adjust the pH to 4 Adjusted. The slurry was aged, filtered, washed, and dried at 100 ° C. for 10 hours. This was calcined at 500 ° C. for 4 hours in an air atmosphere, and further pulverized using a hammer mill to obtain a Ti—Si—Mo mixed oxide powder. The composition of the Ti—Si—Mo mixed oxide powder thus prepared was Ti: Si: Mo = 81: 13: 6 (molar ratio).
次にメタバナジン酸アンモニウム0.5kg、シュウ酸0.7kg、モノエタノールアミン0.2kgを水2Lに混合・溶解させ、均一溶液を調製した。このバナジウム含有溶液を成形助剤と適量の水とともに、先に調製したTi−Si−Mo混合酸化物粉体20kgに加え、ニーダーで混練した後、外形80mm角、長さ500mm、目開き3.65mm、肉厚0.6mmのハニカム状に押し出し成形した。その後、80℃で乾燥した後、空気雰囲気下450℃で3時間焼成し、脱硝触媒Cを得た。 Next, 0.5 kg of ammonium metavanadate, 0.7 kg of oxalic acid, and 0.2 kg of monoethanolamine were mixed and dissolved in 2 L of water to prepare a uniform solution. This vanadium-containing solution is added to 20 kg of the previously prepared Ti—Si—Mo mixed oxide powder together with a molding aid and an appropriate amount of water, and after kneading with a kneader, the outer shape is 80 mm square, the length is 500 mm, and the mesh is 3. It was extruded into a honeycomb shape having a thickness of 65 mm and a thickness of 0.6 mm. Then, after drying at 80 degreeC, it baked at 450 degreeC by air atmosphere for 3 hours, and the denitration catalyst C was obtained.
脱硝触媒Cの組成は(Ti−Si−Mo混合酸化物):V2O5=98:2(質量比)であり、BET比表面積は101m2/g、全細孔容積は0.39mL/gであった。 The composition of the denitration catalyst C is (Ti—Si—Mo mixed oxide): V 2 O 5 = 98: 2 (mass ratio), the BET specific surface area is 101 m 2 / g, and the total pore volume is 0.39 mL / g.
<NOx、N2O分解試験>
実施例1のNOx、N2O分解試験において、脱硝触媒Aのかわりに上記脱硝触媒Cを用いた事以外は、実施例1と同様にしてNOx、N2O分解試験を行なった。結果を表1に示す。
<NOx, N 2 O decomposition test>
In the NOx and N 2 O decomposition test of Example 1, a NOx and N 2 O decomposition test was performed in the same manner as in Example 1 except that the denitration catalyst C was used instead of the denitration catalyst A. The results are shown in Table 1.
(実施例4)
<脱硝触媒の調製>
パラタングステン酸アンモニウムの10質量%メチルアミン水溶液(WO3として400g/L)7.5Lと25質量%アンモニア水200kgを混合した液に、硫酸チタニルの硫酸溶液(TiO2として125g/L、硫酸濃度550g/L)216Lをよく攪拌しながら徐々に滴下し、沈殿を生成させた後、適量のアンモニア水を加えてpHを5に調整した。このスラリーを熟成、濾過、洗浄した後、150℃で10時間乾燥した。これを空気雰囲気下500℃で6時間焼成し、さらにハンマーミルを用いて粉砕し、Ti−W混合酸化物粉体を得た。このようにして調製したTi−W混合酸化物粉体の組成は、Ti:W=96:4(モル比)であった。
Example 4
<Preparation of denitration catalyst>
A solution obtained by mixing 7.5 L of a 10% by weight aqueous solution of methyl paratungstate methylamine (400 g / L as WO 3 ) and 200 kg of 25% by weight aqueous ammonia with a sulfuric acid solution of titanyl sulfate (125 g / L as TiO 2 , sulfuric acid concentration) (550 g / L) 216 L was gradually added dropwise with good stirring to form a precipitate, and then an appropriate amount of aqueous ammonia was added to adjust the pH to 5. The slurry was aged, filtered, washed and dried at 150 ° C. for 10 hours. This was fired at 500 ° C. for 6 hours in an air atmosphere, and further pulverized using a hammer mill to obtain a Ti—W mixed oxide powder. The composition of the Ti—W mixed oxide powder thus prepared was Ti: W = 96: 4 (molar ratio).
上記Ti−W混合酸化物粉体10kgに、実施例1で調製したTi−Si複合酸化物粉体10kgを加え、混合した。次にメタバナジン酸アンモニウム0.5kg、シュウ酸0.7kg、モノエタノールアミン0.2kgを水2Lに混合・溶解させ、均一溶液を調製した。このバナジウム含有溶液を成形助剤と適量の水とともに、先に混合したTi−W混合酸化物とTi−Si複合酸化物の混合粉体に加え、ニーダーで混練した後、外形80mm角、長さ500mm、目開き2.9mm、肉厚0.4mmのハニカム状に押し出し成形した。その後、80℃で乾燥した後、空気雰囲気下450℃で3時間焼成し、脱硝触媒Dを得た。 To 10 kg of the Ti—W mixed oxide powder, 10 kg of the Ti—Si composite oxide powder prepared in Example 1 was added and mixed. Next, 0.5 kg of ammonium metavanadate, 0.7 kg of oxalic acid, and 0.2 kg of monoethanolamine were mixed and dissolved in 2 L of water to prepare a uniform solution. This vanadium-containing solution is added to the mixed powder of the Ti—W mixed oxide and Ti—Si composite oxide mixed together with the molding aid and an appropriate amount of water, and after kneading with a kneader, the outer shape is 80 mm square and length. It was extruded into a honeycomb shape having a thickness of 500 mm, an opening of 2.9 mm, and a wall thickness of 0.4 mm. Then, after drying at 80 degreeC, it baked at 450 degreeC by air atmosphere for 3 hours, and the denitration catalyst D was obtained.
脱硝触媒Dの組成は(Ti−W混合酸化物):(Ti−Si複合酸化物):V2O5=49:49:2(質量比)であり、BET比表面積は96m2/g、全細孔容積は0.41mL/gであった。 The composition of the denitration catalyst D is (Ti—W mixed oxide) :( Ti—Si composite oxide): V 2 O 5 = 49: 49: 2 (mass ratio), and the BET specific surface area is 96 m 2 / g, The total pore volume was 0.41 mL / g.
<NOx、N2O分解試験>
実施例1のNOx、N2O分解試験において、脱硝触媒Aのかわりに上記脱硝触媒Dを用いた事以外は、実施例1と同様にしてNOx、N2O分解試験を行なった。結果を表1に示す。
<NOx, N 2 O decomposition test>
In the NOx and N 2 O decomposition test of Example 1, a NOx and N 2 O decomposition test was performed in the same manner as in Example 1 except that the denitration catalyst D was used instead of the denitration catalyst A. The results are shown in Table 1.
(実施例5)
実施例1のNOx、N2O分解試験において、合成ガス中のアンモニア濃度を約98ppmにした事以外は、実施例1と同様にしてNOx、N2O分解試験を行なった。結果を表1に示す。
(Example 5)
In the NOx and N 2 O decomposition test of Example 1, the NOx and N 2 O decomposition test was performed in the same manner as in Example 1 except that the ammonia concentration in the synthesis gas was about 98 ppm. The results are shown in Table 1.
(実施例6)
実施例2のNOx、N2O分解試験において、合成ガス中のアンモニア濃度を約98ppmにした事以外は、実施例2と同様にしてNOx、N2O分解試験を行なった。結果を表1に示す。
(Example 6)
In the NOx and N 2 O decomposition test of Example 2, the NOx and N 2 O decomposition test was performed in the same manner as in Example 2 except that the ammonia concentration in the synthesis gas was about 98 ppm. The results are shown in Table 1.
(実施例7)
実施例3のNOx、N2O分解試験において、合成ガス中のアンモニア濃度を約98ppmにした事以外は、実施例3と同様にしてNOx、N2O分解試験を行なった。結果を表1に示す。
(Example 7)
In the NOx and N 2 O decomposition test of Example 3, the NOx and N 2 O decomposition test was performed in the same manner as in Example 3 except that the ammonia concentration in the synthesis gas was about 98 ppm. The results are shown in Table 1.
(実施例8)
実施例4のNOx、N2O分解試験において、合成ガス中のアンモニア濃度を約98ppmにした事以外は、実施例4と同様にしてNOx、N2O分解試験を行なった。結果を表1に示す。
(Example 8)
In the NOx and N 2 O decomposition test of Example 4, the NOx and N 2 O decomposition test was performed in the same manner as in Example 4 except that the ammonia concentration in the synthesis gas was about 98 ppm. The results are shown in Table 1.
(実施例9)
<脱硝触媒の調製>
硝酸クロム(III)九水和物8.4kgを水8Lに混合・溶解させ、均一溶液を調製した。このクロム含有溶液を成形助剤と適量の水とともに、TiO2粉体(Cristal Global社製、DT−51(商品名))20kgに加え、ニーダーで混練した後、外形80mm角、長さ500mm、目開き2.9mm、肉厚0.4mmのハニカム状に押し出し成形した。このハニカム成形体を80℃で乾燥した後、空気雰囲気下450℃で3時間焼成し、脱硝触媒Eを得た。
Example 9
<Preparation of denitration catalyst>
8.4 kg of chromium (III) nitrate nonahydrate was mixed and dissolved in 8 L of water to prepare a uniform solution. This chromium-containing solution was added to 20 kg of TiO 2 powder (manufactured by Cristal Global, DT-51 (trade name)) together with a molding aid and an appropriate amount of water, and after kneading with a kneader, the outer shape was 80 mm square, length 500 mm Extrusion was performed in a honeycomb shape having a mesh opening of 2.9 mm and a wall thickness of 0.4 mm. The honeycomb formed body was dried at 80 ° C. and then calcined at 450 ° C. for 3 hours in an air atmosphere to obtain a denitration catalyst E.
脱硝触媒Eの組成は、TiO2:Cr2O3=98:2(質量比)であり、BET比表面積は78m2/g、全細孔容積は0.31mL/gであった。 The composition of the denitration catalyst E was TiO 2 : Cr 2 O 3 = 98: 2 (mass ratio), the BET specific surface area was 78 m 2 / g, and the total pore volume was 0.31 mL / g.
<NOx、N2O分解試験>
実施例1のNOx、N2O分解試験において、脱硝触媒Aのかわりに上記脱硝触媒Eを用いた事以外は、実施例1と同様にしてNOx、N2O分解試験を行なった。結果を表1に示す。
<NOx, N 2 O decomposition test>
In the NOx and N 2 O decomposition test of Example 1, a NOx and N 2 O decomposition test was performed in the same manner as in Example 1 except that the denitration catalyst E was used instead of the denitration catalyst A. The results are shown in Table 1.
実施例1のNOx、N2O分解試験において、脱硝触媒Aを充填せず、かつ合成ガス中にアンモニアを添加しなかった事以外は、実施例1と同様にしてNOx、N2O分解試験を行なった。なお、この場合はN2O分解触媒入口およびN2O分解触媒出口のNOx、N2O、NH3濃度を測定し、N2O除去率は次式に従って算出した。結果を表1に示す。
N2O除去率(%)={(N2O分解触媒入口N2O濃度)−(N2O分解触媒出口N2O濃度)}/(N2O分解触媒入口N2O濃度)×100
NOx Example 1, the N 2 O decomposition test, without filling the denitration catalyst A, and except that not adding ammonia in the synthesis gas, NOx in the same manner as in Example 1, N 2 O decomposition test Was done. Incidentally, NOx in the N 2 O decomposition catalyst inlet and N 2 O decomposition catalyst outlet if, N 2 O, by measuring the NH 3 concentration, N 2 O removal ratio was calculated according to the following equation. The results are shown in Table 1.
N 2 O removal rate (%) = {(N 2 O decomposition catalyst inlet N 2 O concentration) − (N 2 O decomposition catalyst outlet N 2 O concentration)} / (N 2 O decomposition catalyst inlet N 2 O concentration) × 100
本発明は排ガスの処理に用いることができ、特にNOxおよびN2Oを含む排ガス処理分野に用いることができる。 The present invention can be used for the treatment of exhaust gas, and in particular, can be used in the field of exhaust gas treatment containing NOx and N 2 O.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011212736A JP2013071071A (en) | 2011-09-28 | 2011-09-28 | Method for treating exhaust gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011212736A JP2013071071A (en) | 2011-09-28 | 2011-09-28 | Method for treating exhaust gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013071071A true JP2013071071A (en) | 2013-04-22 |
Family
ID=48476006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011212736A Withdrawn JP2013071071A (en) | 2011-09-28 | 2011-09-28 | Method for treating exhaust gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013071071A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014237117A (en) * | 2013-06-11 | 2014-12-18 | 株式会社豊田中央研究所 | System and method for purifying exhaust gas |
JP2016529099A (en) * | 2013-07-31 | 2016-09-23 | シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー | Nitrous oxide decomposition catalyst |
-
2011
- 2011-09-28 JP JP2011212736A patent/JP2013071071A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014237117A (en) * | 2013-06-11 | 2014-12-18 | 株式会社豊田中央研究所 | System and method for purifying exhaust gas |
JP2016529099A (en) * | 2013-07-31 | 2016-09-23 | シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー | Nitrous oxide decomposition catalyst |
JP2020182945A (en) * | 2013-07-31 | 2020-11-12 | シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー | Nitrous oxide decomposition catalyst |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100375646C (en) | Method for treating exhaust gas | |
JP2013091045A (en) | Exhaust gas treating method | |
WO2006100987A1 (en) | Catalyst for removing oxygen and method for removing oxygen using the catalyst | |
CZ343796A3 (en) | Catalyst for reducing amount of nitrogen oxides in flowing media and process for preparing thereof | |
JP4113090B2 (en) | Exhaust gas treatment method | |
JP6591919B2 (en) | Method for manufacturing honeycomb-type denitration catalyst | |
KR20190068173A (en) | SCR Catalyst Added Carbon Supported Active Catalytic Materials and Preparation Method Thereof | |
JP2015182067A (en) | Catalyst and method for treating marine exhaust gas | |
JP6132498B2 (en) | Titanium / silicon / tungsten oxide, denitration catalyst using the same, method for preparing the oxide, and denitration method | |
JP2012192338A (en) | Method of treating exhaust | |
JP2013071071A (en) | Method for treating exhaust gas | |
JP5483723B2 (en) | Nitrous oxide decomposition catalyst and purification method of gas containing nitrous oxide using the same | |
JP5215990B2 (en) | Exhaust gas treatment catalyst and exhaust gas treatment method | |
JP6016572B2 (en) | Exhaust gas treatment catalyst and exhaust gas treatment method | |
JP3984122B2 (en) | NOx removal catalyst, NOx removal method and method | |
JP4098698B2 (en) | Exhaust gas treatment method | |
JP2006150352A (en) | Catalyst and method for exhaust gas treatment | |
JP6261260B2 (en) | Ship exhaust gas treatment catalyst and exhaust gas treatment method | |
JP2020163368A (en) | Exhaust gas-treating catalyst, production method therefor, exhaust gas treatment method using the catalyst and method for engineering the catalyst | |
JP2017177051A (en) | Exhaust gas treatment catalyst and exhaust gas treatment method | |
JPS61230748A (en) | Catalyst for purifying nitrogen oxide | |
JP4499511B2 (en) | Method for treating exhaust gas containing nitrogen oxides | |
JP2012206058A (en) | Denitration catalyst and denitrification method | |
JP2013193938A (en) | Denitration catalyst, method of preparing the same, and method of denitration | |
JP3860734B2 (en) | Exhaust gas treatment catalyst and exhaust gas treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20141202 |