[go: up one dir, main page]

JP2017177051A - Exhaust gas treatment catalyst and exhaust gas treatment method - Google Patents

Exhaust gas treatment catalyst and exhaust gas treatment method Download PDF

Info

Publication number
JP2017177051A
JP2017177051A JP2016071304A JP2016071304A JP2017177051A JP 2017177051 A JP2017177051 A JP 2017177051A JP 2016071304 A JP2016071304 A JP 2016071304A JP 2016071304 A JP2016071304 A JP 2016071304A JP 2017177051 A JP2017177051 A JP 2017177051A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
component
gas treatment
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016071304A
Other languages
Japanese (ja)
Inventor
拓也 辻口
Takuya Tsujiguchi
拓也 辻口
森田 敦
Atsushi Morita
敦 森田
広樹 堤
Hiroki Tsutsumi
広樹 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2016071304A priority Critical patent/JP2017177051A/en
Publication of JP2017177051A publication Critical patent/JP2017177051A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: an exhaust gas treatment catalyst that, in a treatment of an exhaust gas containing sulfur oxide, shows less performance deterioration and can remove nitrogen oxide and an organic halide compound in the exhaust gas for longer time than conventional catalysts; and an exhaust gas treatment method using the catalyst.SOLUTION: The present invention provides an exhaust gas treatment catalyst that comprises: a ternary composite oxide or a mixed oxide of titanium, tungsten, and silicon as a catalyst A component; a compound(s) of at least one element selected from vanadium, niobium, and tantalum as a catalyst B component; and a compound(s) of at least one element selected from molybdenum and tungsten as a catalyst C component; and further a sulfur compound in an amount of 0.4 to 1.0 mass% in terms of sulfur atom relative to a total mass of the catalyst. Also provided is an exhaust gas treatment method for treating an exhaust gas, containing nitrogen oxide (NOx) and/or an organic halide compound by using the catalyst.SELECTED DRAWING: None

Description

本発明は、排ガス中の窒素酸化物や有機ハロゲン化合物を除去するための排ガス処理触媒に関する。詳しくは、硫黄酸化物が含まれる排ガスの処理において耐久性を著しく向上させた排ガス処理用触媒に関する。   The present invention relates to an exhaust gas treatment catalyst for removing nitrogen oxides and organic halogen compounds in exhaust gas. Specifically, the present invention relates to an exhaust gas treatment catalyst that has significantly improved durability in the treatment of exhaust gas containing sulfur oxides.

窒素酸化物(NOx)は人体にとって有害な物質である他、酸性雨や光化学スモッグの原因物質であり、その対策技術として、アンモニアまたは尿素などの還元剤を用いて排ガス中の窒素酸化物を触媒上で接触還元して窒素と水に分解する選択的触媒還元法(SCR法)が一般的に用いられている。また、ダイオキシン類に代表される有機ハロゲン化合物も人体に深刻な影響を及ぼす有害物質であるが、その処理においても触媒による分解除去が広く用いられている。特に都市ごみ焼却炉など廃棄物処理施設から排出される排ガスでは、窒素酸化物と有機ハロゲン化合物の両方を除去することが必要になる場合も多い。   Nitrogen oxides (NOx) are harmful to the human body and are the cause of acid rain and photochemical smog. As a countermeasure, nitrogen oxides in exhaust gas are catalyzed using a reducing agent such as ammonia or urea. A selective catalytic reduction method (SCR method) in which catalytic reduction is carried out to decompose into nitrogen and water is generally used. Organohalogen compounds represented by dioxins are harmful substances that have a serious effect on the human body, and catalytic decomposition and removal are widely used in the treatment. In particular, exhaust gas discharged from waste treatment facilities such as municipal waste incinerators often needs to remove both nitrogen oxides and organic halogen compounds.

このような用途に用いられる排ガス処理触媒としては、例えば、チタン酸化物、バナジウム酸化物およびタングステン酸化物を含有する触媒(特許文献1、2)、またはチタン酸化物、バナジウム酸化物およびモリブデン酸化物を含有する触媒(特許文献3、4)について開示されている。   Examples of the exhaust gas treatment catalyst used for such applications include catalysts containing titanium oxide, vanadium oxide and tungsten oxide (Patent Documents 1 and 2), or titanium oxide, vanadium oxide and molybdenum oxide. The catalyst (patent documents 3 and 4) which contains is disclosed.

一方、近年では排ガス再加熱にかかるCO排出の低減などの観点から、排ガス処理温度の低温化が望まれており、例えば都市ごみ焼却炉排ガスの処理では200℃未満の低温度域においても優れた除去性能および耐久性を有する触媒が求められている。これに関しては、性能および耐久性をより向上させた触媒として、チタン系酸化物、バナジウム酸化物、および銅、コバルトなどの金属の硫酸塩を含有する触媒について提案されているが(特許文献5)、このような触媒を用いたとしても排ガスの処理温度が200℃未満になると硫黄酸化物による性能低下が大きく、要求される処理性能を維持する為には触媒を頻繁に交換する必要があった。 On the other hand, in recent years, from the viewpoint of reducing CO 2 emission due to exhaust gas reheating, it has been desired to lower the exhaust gas treatment temperature. For example, municipal waste incinerator exhaust gas treatment is excellent even in a low temperature range of less than 200 ° C. There is a need for a catalyst having excellent removal performance and durability. In this regard, as a catalyst with further improved performance and durability, a catalyst containing a titanium oxide, a vanadium oxide, and a sulfate of a metal such as copper or cobalt has been proposed (Patent Document 5). Even when such a catalyst is used, if the treatment temperature of the exhaust gas is less than 200 ° C., the performance degradation due to sulfur oxides is large, and the catalyst must be frequently replaced in order to maintain the required treatment performance. .

特開平10−235191号公報JP 10-235191 A 特開平10−235206号公報Japanese Patent Laid-Open No. 10-235206 特開2001−062292号公報JP 2001-066222 A 特開2001−276617号公報JP 2001-276617 A 特開2006−320803号公報JP 2006-320803 A

本発明の目的は、硫黄酸化物を含有する排ガスの処理において従来の触媒に比べて性能低下が少なく、より長時間にわたって排ガス中の窒素酸化物や有機ハロゲン化合物を除去することができる排ガス処理触媒、および該触媒を用いた排ガス処理方法を提供することにある。   An object of the present invention is to provide an exhaust gas treatment catalyst capable of removing nitrogen oxides and organic halogen compounds in the exhaust gas over a longer period of time with less performance degradation compared to conventional catalysts in the treatment of exhaust gas containing sulfur oxides. And an exhaust gas treatment method using the catalyst.

本発明者らは、上記課題を解決する為に鋭意検討を行った結果、以下に示す組成の触媒が有効であることを見出した。すなわち本発明の排ガス処理触媒は、触媒A成分としてチタン、タングステンおよびケイ素の三元系複合酸化物または混合酸化物、触媒B成分としてバナジウム、ニオブまたはタンタルの少なくとも1種の元素の化合物ならびに触媒C成分としてモリブデンまたはタングステンの少なくとも1種の元素の化合物を含有し、かつ硫黄化合物が硫黄原子換算で触媒の全体量に対し0.4〜1.0質量%含まれていることを特徴とするものである。   As a result of intensive studies to solve the above problems, the present inventors have found that a catalyst having the following composition is effective. That is, the exhaust gas treatment catalyst of the present invention comprises a ternary composite oxide or mixed oxide of titanium, tungsten and silicon as the catalyst A component, a compound of at least one element of vanadium, niobium or tantalum as the catalyst B component and the catalyst C. It contains at least one elemental compound of molybdenum or tungsten as a component, and the sulfur compound is contained in an amount of 0.4 to 1.0% by mass in terms of sulfur atom with respect to the total amount of the catalyst. It is.

本発明を用いることで、低温度域においても硫黄酸化物による性能低下を抑制することが可能になり、排ガス中に含まれるNOxや有機ハロゲン化合物を長時間にわたって安定的に処理することができる。   By using this invention, it becomes possible to suppress the performance fall by a sulfur oxide also in a low temperature range, and NOx and organic halogen compound contained in waste gas can be processed stably over a long time.

本発明の排ガス処理触媒は、触媒A成分としてチタン、タングステンおよびケイ素の三元系複合酸化物または混合酸化物、触媒B成分としてバナジウム、ニオブ、タンタルの少なくとも1種の元素の化合物ならびに触媒C成分としてモリブデン、タングステンの少なくとも1種の元素の化合物を含み、さらに硫黄化合物を硫黄原子換算で触媒の全質量に対し0.4〜1.0質量%を含むものである。   The exhaust gas treatment catalyst of the present invention comprises a ternary complex oxide or mixed oxide of titanium, tungsten and silicon as a catalyst A component, a compound of at least one element of vanadium, niobium, and tantalum as a catalyst B component, and a catalyst C component As a compound containing at least one element of molybdenum and tungsten, and further containing 0.4 to 1.0% by mass of a sulfur compound in terms of sulfur atom with respect to the total mass of the catalyst.

本発明の触媒のAの成分は出発原料として、各元素の酸化物、水酸化物、無機塩、有機塩などを用いることができる。たとえばチタン供給源としては、硫酸チタニル、四塩化チタン、テトライソプロピルチタネートなどが用いられ、ケイ素供給源としてはシリカゾル、水ガラス、四塩化ケイ素などが用いられ、タングステン源としてはパラタングステン酸アンモニウム、メタタングステン酸アンモニウム、タングステン酸などを用いることができる。触媒A成分の調製方法としてはゾル―ゲル法、水熱合成、共沈法、沈着法、混練法などを用いることができる。   As the component A of the catalyst of the present invention, oxides, hydroxides, inorganic salts, organic salts and the like of each element can be used as starting materials. For example, titanyl sulfate, titanium tetrachloride, tetraisopropyl titanate, etc. are used as the titanium source, silica sol, water glass, silicon tetrachloride, etc. are used as the silicon source, and ammonium paratungstate, Ammonium tungstate, tungstic acid, or the like can be used. As a preparation method of the catalyst A component, a sol-gel method, hydrothermal synthesis, a coprecipitation method, a deposition method, a kneading method and the like can be used.

本発明の触媒のB成分はバナジウム、ニオブまたはタンタルの少なくとも1種の元素の化合物であるが、酸化物の形態で触媒に含有されているのが除去性能の点から好ましい。またその含有量も除去性能に大きく影響し、触媒A成分と触媒B成分と触媒C成分の合計質量に対して酸化物換算で1〜20質量%であるのが好ましく、より好ましくは3〜15質量%、更に好ましくは5〜10質量%であるのがよい。触媒B成分の含有量が1質量%未満では充分な除去性能が得られず、20質量%を超えて多くすると金属種のシンタリングによって却って性能低下を引き起こす恐れがあるからである。なお、触媒B成分としてバナジウム、ニオブ、タンタルのうちから複数の元素の化合物を用いる場合には、各化合物の酸化物換算での合計量が上記範囲にあるのがよい。また、触媒B成分を調製する際の出発原料としては、各元素の酸化物、水酸化物、無機塩、有機塩などが用いられ、例えばバナジウム源としてはメタバナジン酸アンモニウムが好適に用いられ、ニオブ源としてはシュウ酸ニオブやそのアンモニウム塩を用いることができる。   The component B of the catalyst of the present invention is a compound of at least one element of vanadium, niobium or tantalum, but is preferably contained in the form of an oxide from the viewpoint of removal performance. Further, the content greatly affects the removal performance, and it is preferably 1 to 20% by mass in terms of oxide with respect to the total mass of the catalyst A component, the catalyst B component and the catalyst C component, more preferably 3 to 15%. It is good that it is 5 mass%, More preferably, it is 5-10 mass%. This is because if the content of the catalyst B component is less than 1% by mass, sufficient removal performance cannot be obtained, and if it exceeds 20% by mass, there is a risk of performance degradation due to sintering of the metal species. In addition, when using the compound of a some element from vanadium, niobium, and a tantalum as a catalyst B component, it is good that the total amount in conversion of the oxide of each compound exists in the said range. Further, as starting materials for preparing the catalyst B component, oxides, hydroxides, inorganic salts, organic salts, and the like of each element are used. For example, ammonium metavanadate is preferably used as the vanadium source. As a source, niobium oxalate or its ammonium salt can be used.

本発明の触媒のC成分はモリブデンまたはタングステンの少なくとも1種の元素の化合物であるが、酸化物の形態で触媒に含有されているのが除去性能の点から好ましい。また、その含有量は除去性能および耐久性に大きく影響し、触媒A成分と触媒B成分と触媒C成分の合計質量に対して酸化物換算で2〜10質量%であるのが好ましく、より好ましくは3〜8質量%、更に好ましくは4〜6質量%であるのがよい。含有量が2質量%未満では充分な耐久性が得られず、10質量%を超えて多くすると除去性能が低下する場合があるからである。なお触媒C成分としてモリブデン、タングステンの複数の元素の化合物を用いる場合には、各化合物の酸化物換算での合計量が上記範囲にあるのがよい。また、触媒C成分を調製する際の出発原料としては、各元素の酸化物、水酸化物、無機塩、有機塩などが用いられ、例えばモリブデン源としては酸化モリブデン、パラモリブデン酸アンモニウムおよびモリブデン酸が好適に用いられる。   The component C of the catalyst of the present invention is a compound of at least one element of molybdenum or tungsten, but is preferably contained in the catalyst in the form of an oxide from the viewpoint of removal performance. The content greatly affects removal performance and durability, and is preferably 2 to 10% by mass in terms of oxide with respect to the total mass of the catalyst A component, the catalyst B component, and the catalyst C component, and more preferably. Is 3 to 8% by mass, more preferably 4 to 6% by mass. This is because if the content is less than 2% by mass, sufficient durability cannot be obtained, and if the content exceeds 10% by mass, the removal performance may deteriorate. In addition, when using the compound of the some element of molybdenum and tungsten as a catalyst C component, the total amount in conversion of the oxide of each compound is good to exist in the said range. Further, as starting materials for preparing the catalyst C component, oxides, hydroxides, inorganic salts, organic salts and the like of each element are used. For example, molybdenum oxide, ammonium paramolybdate and molybdic acid are used as a molybdenum source. Are preferably used.

さらに、本発明の実施形態としては、触媒B成分としてバナジウム酸化物、触媒C成分としてモリブデン酸化物を用いるのが特に好ましく、これらを必須成分として含有することによって除去性能および耐久性に優れた触媒を得ることができる。   Furthermore, as an embodiment of the present invention, it is particularly preferable to use vanadium oxide as the catalyst B component and molybdenum oxide as the catalyst C component. By containing these as essential components, a catalyst having excellent removal performance and durability. Can be obtained.

本発明の触媒中の硫黄化合物の含有量は除去性能および耐久性に大きく影響し、具体的には硫黄化合物が硫黄原子換算で触媒の全質量に対し、0.4〜1.0質量%であるのがよく、より好ましくは0.5〜0.9質量%であるのがよい。硫黄化合物が0.4質量%未満では充分な耐久性が得られず、1.0質量%を超えて多くするとNOxや有機ハロゲン化合物の除去性能が低くなるからである。硫黄化合物の原料としては、硫酸アンモニウム、硫酸、亜硫酸アンモニウム、過硫酸アンモニウムなどを用いる事ができ、好適には硫酸アンモニウムである。硫黄化合物はA成分調製時、A成分にB成分・C成分添加時、3成分の混合時などに導入することができる。   The content of the sulfur compound in the catalyst of the present invention greatly affects the removal performance and durability. Specifically, the sulfur compound is 0.4 to 1.0% by mass with respect to the total mass of the catalyst in terms of sulfur atoms. It is good that it is 0.5 to 0.9% by mass. If the sulfur compound is less than 0.4% by mass, sufficient durability cannot be obtained, and if it exceeds 1.0% by mass, the removal performance of NOx and organic halogen compounds is lowered. As a raw material for the sulfur compound, ammonium sulfate, sulfuric acid, ammonium sulfite, ammonium persulfate, and the like can be used, and ammonium sulfate is preferable. The sulfur compound can be introduced when the A component is prepared, when the B component / C component is added to the A component, or when the three components are mixed.

なお、本発明にかかる触媒の性能を損なわないものであれば更に他の化合物を添加することもできる。   In addition, another compound can also be added as long as the performance of the catalyst according to the present invention is not impaired.

本発明の排ガス処理触媒の比表面積は、50〜200m/gの範囲にあるのがよく、より好ましくは60〜150m/g、更に好ましくは70〜120m/gの範囲にあるのがよい。触媒の比表面積が低すぎると十分な触媒性能が得られない他、活性成分のシンタリングが起こりやすくなり、高すぎても触媒性能はそれほど向上しないが、被毒物質の蓄積量が多くなって性能低下が大きくなる場合があるからである。 The specific surface area of the exhaust gas treatment catalyst of the present invention should be in the range of 50 to 200 m 2 / g, more preferably 60 to 150 m 2 / g, and still more preferably in the range of 70 to 120 m 2 / g. Good. If the specific surface area of the catalyst is too low, sufficient catalyst performance cannot be obtained, and active component sintering is likely to occur, and if it is too high, the catalyst performance will not improve much, but the accumulated amount of poisonous substances will increase. This is because there is a case where the performance degradation becomes large.

また、本発明で用いる脱硝触媒の細孔容積は、全細孔容積が0.20〜0.70mL/gの範囲にあるのがよく、より好ましくは0.25〜0.60mL/g、更に好ましくは0.30〜0.50mL/gの範囲にあるのがよい。触媒の細孔容積が小さすぎると十分な触媒性能が得られず、大きすぎても触媒性能はそれほど向上しないが、触媒の機械的強度が低下してハンドリングに支障をきたすことや耐摩耗性が低くなるなどの弊害が生じるおそれがあるので好ましくない。   The pore volume of the denitration catalyst used in the present invention is such that the total pore volume is in the range of 0.20 to 0.70 mL / g, more preferably 0.25 to 0.60 mL / g, Preferably it is in the range of 0.30 to 0.50 mL / g. If the pore volume of the catalyst is too small, sufficient catalyst performance will not be obtained, and if it is too large, the catalyst performance will not be improved so much, but the mechanical strength of the catalyst will be reduced, causing trouble in handling and wear resistance. This is not preferable because there is a risk that it may be lowered.

(触媒製造方法)
本発明の触媒の調製方法としては、(1)触媒A成分にかかる三元系複合酸化物または混合酸化物を上記の方法で得た後、触媒B成分および触媒C成分の水性液を加えニーダーなどで十分混合し所定形状に成形し乾燥、焼成する方法、(2)触媒A成分、触媒B成分および触媒C成分の原料を一度に混合し、乾燥、焼成し、更に水性媒体を加えスラリーとした後に所定形状に成形し乾燥、焼成する方法、(3)触媒A成分、触媒B成分および触媒C成分の原料を一度に混合し、場合によってはpH調整することで沈殿物を得た後、当該沈殿物を乾燥、焼成し、更に水性媒体を加えスラリーとした後に所定形状に成形し乾燥、焼成する方法、(4)(2)または(3)で得られたスラリーを通常触媒用担体として用いられる担体に被覆することもできる。(5)なお、(1)、(2)または(3)で成形する場合、ハニカム、ペレット、粒体に成形し乾燥、焼成し触媒とすることもできる。
(Catalyst production method)
As a method for preparing the catalyst of the present invention, (1) after obtaining the ternary complex oxide or mixed oxide relating to the catalyst A component by the above method, an aqueous solution of the catalyst B component and the catalyst C component is added to the kneader. (2) Catalyst A component, Catalyst B component and Catalyst C component raw materials are mixed at one time, dried and fired, and further added with an aqueous medium to form a slurry. After that, after forming into a predetermined shape, drying and firing, (3) mixing the raw materials of the catalyst A component, the catalyst B component and the catalyst C component at a time, and adjusting the pH in some cases to obtain a precipitate, A method in which the precipitate is dried and calcined, further added with an aqueous medium to form a slurry, then shaped into a predetermined shape, dried and calcined, and the slurry obtained in (4), (2) or (3) is usually used as a catalyst carrier Coating the carrier used It can be. (5) In addition, when shape | molding by (1), (2) or (3), it can also shape | mold into a honeycomb, a pellet, and a granule, can be dried and baked, and can also be set as a catalyst.

本発明にかかる触媒は、押し出し成形、打錠成形、転動造粒などにより、サドル状、ペレット、球体、ハニカム状に成形して用いることができる。またサドル状、ペレット、球体、ハニカム状の担体に触媒の成分を被覆して用いることもできる。排ガス処理装置の圧力損失を少なくするにはハニカム状が好ましい。また、触媒の調製においては各種金属化合物を用いた一般的な調製方法を用いることができ、例えば、触媒A成分の成形体に触媒B成分および触媒C成分の溶液を含浸する方法や、触媒A成分の粉体に触媒B成分および触媒C成分の溶液または粉体を混合した後に混練する方法などが挙げられるが、細孔容積の制御などの点から混練法が好適に用いられる。   The catalyst according to the present invention can be formed into a saddle, pellet, sphere, or honeycomb by extrusion molding, tableting, rolling granulation, or the like. Further, a catalyst component may be coated on a saddle, pellet, sphere, or honeycomb carrier. A honeycomb shape is preferable for reducing the pressure loss of the exhaust gas treatment apparatus. Further, in the preparation of the catalyst, a general preparation method using various metal compounds can be used. For example, a method of impregnating a molded product of the catalyst A component with a solution of the catalyst B component and the catalyst C component, Examples of the method include kneading after mixing the solution or powder of the catalyst B component and the catalyst C component to the component powder, and the kneading method is preferably used from the viewpoint of controlling the pore volume.

本発明は、前記本発明の触媒を用いて排ガス中のNOxおよび/または有機ハロゲン化合物を除去する排ガス処理方法でもある。本発明の排ガスの処理温度は、150〜400℃、好ましくは150〜300℃、より好ましくは160〜250℃、更に好ましくは160〜190℃の範囲にあるのがよい。排ガスの処理温度が150℃未満ではNOxや有機ハロゲン化合物の十分な除去効率が得られず、400℃を超えるとモリブデンの飛散による触媒性能の低下や後流機器への悪影響を引き起こす場合があるからである。   The present invention is also an exhaust gas treatment method for removing NOx and / or organic halogen compounds in exhaust gas using the catalyst of the present invention. The treatment temperature of the exhaust gas of the present invention is in the range of 150 to 400 ° C, preferably 150 to 300 ° C, more preferably 160 to 250 ° C, and still more preferably 160 to 190 ° C. If the treatment temperature of the exhaust gas is less than 150 ° C., sufficient removal efficiency of NOx and organic halogen compounds cannot be obtained, and if it exceeds 400 ° C., the catalyst performance may be deteriorated due to the scattering of molybdenum and the downstream equipment may be adversely affected. It is.

(排ガス処理方法)
本発明にかかる触媒が処理対象とする排ガスは窒素酸化物(NOx)および/または有機ハロゲン化合物を含むものであり、排ガス中のNOx濃度は5〜1000ppm(容量基準)であるのが好ましく、より好ましくは10〜500ppm、更に好ましくは20〜300ppmの範囲にあるのがよい。排ガス中のNOx濃度が5ppm未満では充分のNOx除去性能が発揮されず、一方、1000ppmを超えると排ガス中に硫黄酸化物が含まれている場合、硫安化合物の蓄積量が増加して性能低下が大きくなるため好ましくないからである。
(Exhaust gas treatment method)
The exhaust gas to be treated by the catalyst according to the present invention contains nitrogen oxide (NOx) and / or an organic halogen compound, and the NOx concentration in the exhaust gas is preferably 5 to 1000 ppm (volume basis), more Preferably it is in the range of 10 to 500 ppm, more preferably 20 to 300 ppm. If the NOx concentration in the exhaust gas is less than 5 ppm, sufficient NOx removal performance will not be exhibited. On the other hand, if it exceeds 1000 ppm, if the exhaust gas contains sulfur oxides, the accumulated amount of ammonium sulfate compounds will increase and the performance will deteriorate. This is because the size is not preferable.

排ガス中の有機ハロゲン化合物の濃度は0.1ppt〜3000ppm(容量基準)であるのが好ましく、より好ましくは0.5ppt〜1000ppm、更に好ましくは1ppt〜500ppmの範囲にあるのがよい。排ガス中の有機ハロゲン化合物の濃度が0.1ppt未満では充分な分解性能が発揮されず、一方、3000ppmを超えると反応による発熱が大きくなり、触媒が熱的ダメージを受ける場合があるためである。   The concentration of the organic halogen compound in the exhaust gas is preferably 0.1 ppt to 3000 ppm (volume basis), more preferably 0.5 ppt to 1000 ppm, and still more preferably 1 ppt to 500 ppm. If the concentration of the organic halogen compound in the exhaust gas is less than 0.1 ppt, sufficient decomposition performance is not exhibited. On the other hand, if it exceeds 3000 ppm, heat generated by the reaction increases and the catalyst may be thermally damaged.

排ガスを処理する場合には排ガス中にアンモニアまたは尿素(アンモニア等とも称する)を添加することができる。特に排ガス中に窒素酸化物が含まれている場合には効果的である。アンモニア等の添加量は、窒素酸化物(NOx換算)1モルに対して、アンモニア換算(尿素の場合は1/2モル)で0.2〜20モル、好ましくは0.5〜1.0モルである。   In the case of treating exhaust gas, ammonia or urea (also referred to as ammonia or the like) can be added to the exhaust gas. This is particularly effective when the exhaust gas contains nitrogen oxides. The addition amount of ammonia and the like is 0.2 to 20 mol, preferably 0.5 to 1.0 mol in terms of ammonia (1/2 mol in the case of urea) with respect to 1 mol of nitrogen oxide (NOx conversion). It is.

有機ハロゲン化合物が排ガス中に含まれる場合はアンモニア等を加える必要はないが、アンモニア等が排ガス中に加えられても本発明にかかる触媒の効果は損なわれるものではない。   When the organic halogen compound is contained in the exhaust gas, it is not necessary to add ammonia or the like, but even if ammonia or the like is added to the exhaust gas, the effect of the catalyst according to the present invention is not impaired.

排ガス中に含まれる成分として酸素、水、SOxなどがある。例えば、排ガス中に酸素が存在する条件下で好適に用いられるが、この場合の酸素濃度は、0.1〜50容量%の範囲にあるのが好ましく、より好ましくは0.3〜20容量%、更に好ましくは0.5〜16容量%の範囲にあるのがよい。酸素濃度が0.1容量%未満では除去効率が低下し、50容量%を超えると副反応であるSO酸化が促進されるため、好ましくない。また、排ガス中に水分を含む場合には、その濃度は50容量%以下であるのが好ましく、より好ましくは40容量%以下、更に好ましくは30容量%以下であるのがよい。排ガス中の水分濃度が50容量%を超えると除去効率が低下する他、場合によっては性能低下が大きくなるからである。 Examples of components contained in the exhaust gas include oxygen, water, and SOx. For example, it is preferably used under conditions where oxygen is present in the exhaust gas. In this case, the oxygen concentration is preferably in the range of 0.1 to 50% by volume, more preferably 0.3 to 20% by volume. More preferably, it is in the range of 0.5 to 16% by volume. If the oxygen concentration is less than 0.1% by volume, the removal efficiency decreases, and if it exceeds 50% by volume, SO 2 oxidation as a side reaction is promoted, which is not preferable. When the exhaust gas contains moisture, the concentration is preferably 50% by volume or less, more preferably 40% by volume or less, and further preferably 30% by volume or less. This is because when the moisture concentration in the exhaust gas exceeds 50% by volume, the removal efficiency is lowered and, in some cases, the performance is greatly lowered.

排ガス中に硫黄酸化物(SOx)を含有している場合であっても本発明にかかる触媒は好適に用いられるが、SOx濃度としては0.1〜2000ppm(容量基準)、好ましくは0.2〜500ppm、より好ましくは0.5〜100ppm、更に好ましくは1〜50ppmの範囲にあるのがよい。SOx濃度が0.1ppm以上である排ガスの処理において本発明の効果が発揮される。一方、排ガス中にSOx濃度が2000ppmを超えるとSOxによる性能低下が大きくなるため、好ましくない。   Even if the exhaust gas contains sulfur oxide (SOx), the catalyst according to the present invention is preferably used, but the SOx concentration is 0.1 to 2000 ppm (volume basis), preferably 0.2. It should be in the range of ˜500 ppm, more preferably 0.5 to 100 ppm, and still more preferably 1 to 50 ppm. The effect of the present invention is exhibited in the treatment of exhaust gas having a SOx concentration of 0.1 ppm or more. On the other hand, if the SOx concentration in the exhaust gas exceeds 2000 ppm, the performance degradation due to SOx increases, which is not preferable.

また、本発明の排ガス処理に際しての空間速度は、100〜50,000h−1(STP)、好ましくは200〜10,000h−1(STP)、より好ましくは500〜5,000h−1(STP)の範囲にあるのがよい。空間速度が50,000h−1(STP)を超えるとNOxや有機ハロゲン化合物の十分な除去効率が得られず、100h−1(STP)未満では除去効率は大きく変わらないが排ガス処理装置の圧力損失が高くなり、また装置自体も大きくなって非効率だからである。更に本発明の排ガス処理に際しての触媒層を通過するガスの線速度は、0.1〜10m/s(Normal)、好ましくは0.5〜7m/s(Normal)、より好ましくは0.7〜4m/s(Normal)の範囲にあるのがよい。線速度が0.1m/s(Normal)未満では充分な除去効率が得られず、10m/s(Normal)を超えると除去効率は大きくはらないが、排ガス処理装置の圧力損失が高くなるからである。 The space velocity during the exhaust gas treatment of the present invention is 100 to 50,000 h −1 (STP), preferably 200 to 10,000 h −1 (STP), more preferably 500 to 5,000 h −1 (STP). It is good to be in the range. Pressure loss of sufficient removal efficiency can not be obtained, it is less than 100h -1 (STP) but removal efficiency does not change greatly the exhaust gas treatment apparatus of the space velocity exceeds 50,000h -1 (STP) NOx and organic halogen compounds And the device itself becomes larger and inefficient. Furthermore, the linear velocity of the gas passing through the catalyst layer in the exhaust gas treatment of the present invention is 0.1 to 10 m / s (Normal), preferably 0.5 to 7 m / s (Normal), more preferably 0.7 to It should be in the range of 4 m / s (Normal). If the linear velocity is less than 0.1 m / s (Normal), sufficient removal efficiency cannot be obtained, and if it exceeds 10 m / s (Normal), the removal efficiency does not increase, but the pressure loss of the exhaust gas treatment device increases. is there.

以下に実施例により発明を詳細に説明するが、本発明の効果を奏するものであれば以下の実施例に限定されるものではない。   The present invention will be described in detail below with reference to examples. However, the present invention is not limited to the following examples as long as the effects of the present invention are achieved.

(実施例1)
<触媒の製造>
4Lの水にメタバナジン酸アンモニウム1.42kgとシュウ酸2.55kg、さらにモノエタノールアミン0.77kgを混合し、溶解させ、均一溶液を調製した。硫黄化合物が硫黄原子換算で0.8質量%含まれるTi−Si−W複合酸化物粉体(質量比がTiO:SiO:WO=93:5:2)21.1kgとモリブデン酸(HMoO・HO)1.18kgをニーダーに投入後、有機バインダーなどの成形助剤とともにバナジウム含有均一溶液を加え、よく撹拌した。さらに適量の水を加えつつブレンダ―でよく混合した後、連続ニーダーで充分混練りし、外形80mm角、長さ550mm、目開き2.90mm、肉厚0.4mmのハニカム状に押し出し成形した。得られた成形物を60℃で1.5時間乾燥後、420℃で5時間焼成して触媒Aを得た。この触媒Aの組成は、TiO:SiO:WO:MoO:V=78:7:2:6:7(質量比)であり、BET比表面積は73m/g、全細孔容積は0.40mL/g、であった。また触媒Aに含有される硫黄化合物は硫黄原子換算で触媒Aの全体量に対し0.5質量%であった。
Example 1
<Manufacture of catalyst>
In 4 L of water, 1.42 kg of ammonium metavanadate, 2.55 kg of oxalic acid, and 0.77 kg of monoethanolamine were mixed and dissolved to prepare a uniform solution. Ti-Si-W complex oxide powder (mass ratio is TiO 2 : SiO 2 : WO 3 = 93: 5: 2) 20.8 kg and molybdic acid (0.8% by mass in terms of sulfur atom) after introducing H 2 MoO 4 · H 2 O ) 1.18kg in a kneader, a vanadium-containing homogeneous solution was added with a molding aid such as an organic binder, followed by thorough stirring. Further, after mixing well with a blender while adding an appropriate amount of water, the mixture was sufficiently kneaded with a continuous kneader and extruded into a honeycomb shape having an outer shape of 80 mm square, a length of 550 mm, an opening of 2.90 mm, and a wall thickness of 0.4 mm. The obtained molded product was dried at 60 ° C. for 1.5 hours and then calcined at 420 ° C. for 5 hours to obtain Catalyst A. The composition of the catalyst A is TiO 2 : SiO 2 : WO 3 : MoO 3 : V 2 O 5 = 78: 7: 2: 6: 7 (mass ratio), and the BET specific surface area is 73 m 2 / g. The pore volume was 0.40 mL / g. Moreover, the sulfur compound contained in the catalyst A was 0.5 mass% with respect to the total amount of the catalyst A in terms of sulfur atoms.

(実施例2)
実施例1において、硫黄化合物が硫黄原子換算で2.0質量%含まれるTi−Si−W複合酸化物粉体21.1kgの代わりに硫黄化合物が硫黄原子換算で2.0質量%含まれるTi−Si−W複合酸化物粉体21.1kgを使用した以外は実施例1と同様にして、触媒Bを得た。この触媒Bの組成は、TiO:SiO:WO:MoO:V=78:7:2:6:7(質量比)であり、BET比表面積は75m/g、全細孔容積は0.41mL/g、であった。また触媒Bに含有される硫黄化合物は硫黄原子換算で触媒Bの全体量に対し質量0.8%であった。
(Example 2)
In Example 1, instead of 21.1 kg of the Ti—Si—W composite oxide powder containing 2.0 mass% of the sulfur compound in terms of sulfur atom, Ti containing 2.0 mass% of the sulfur compound in terms of sulfur atom A catalyst B was obtained in the same manner as in Example 1 except that 21.1 kg of the Si-W composite oxide powder was used. The composition of the catalyst B is TiO 2 : SiO 2 : WO 3 : MoO 3 : V 2 O 5 = 78: 7: 2: 6: 7 (mass ratio), and the BET specific surface area is 75 m 2 / g. The pore volume was 0.41 mL / g. Further, the sulfur compound contained in the catalyst B was 0.8% by mass with respect to the total amount of the catalyst B in terms of sulfur atoms.

(比較例1)
実施例1において、硫黄化合物が硫黄原子換算で0.6質量%含まれるTi−Si−W複合酸化物粉体21.1kgの代わりに硫黄化合物が硫黄原子換算で0.6質量%含まれるTi−Si−W複合酸化物粉体21.1kgを使用した以外は実施例1と同様にして、触媒Cを得た。この触媒Cの組成は、TiO:SiO:WO:MoO:V=78:7:2:6:7(質量比)であり、BET比表面積は79m/g、全細孔容積は0.45mL/g、であった。また触媒Cに含有される硫黄化合物は硫黄原子換算で触媒Cの全体量に対し0.3質量%であった。
(Comparative Example 1)
In Example 1, instead of 21.1 kg of the Ti—Si—W composite oxide powder containing 0.6 mass% of the sulfur compound in terms of sulfur atom, Ti containing 0.6 mass% of the sulfur compound in terms of sulfur atom A catalyst C was obtained in the same manner as in Example 1 except that 21.1 kg of the Si-W composite oxide powder was used. The composition of this catalyst C is TiO 2 : SiO 2 : WO 3 : MoO 3 : V 2 O 5 = 78: 7: 2: 6: 7 (mass ratio), BET specific surface area is 79 m 2 / g, all The pore volume was 0.45 mL / g. Moreover, the sulfur compound contained in the catalyst C was 0.3 mass% with respect to the total amount of the catalyst C in terms of sulfur atoms.

(比較例2)
実施例1において、硫黄化合物が硫黄原子換算で3.1質量%含まれるTi−Si−W複合酸化物粉体21.1kgの代わりに硫黄化合物が硫黄原子換算で3.0質量%含まれるTi−Si−W複合酸化物粉体21.1kgを使用した以外は実施例1と同様にして、触媒Dを得た。この触媒Dの組成は、TiO:SiO:WO:MoO:V=78:7:2:6:7(質量比)であり、BET比表面積は84m/g、全細孔容積は0.41mL/g、であった。また触媒Dに含有される硫黄化合物は硫黄原子換算で触媒Dの全体量に対し1.3質量%であった。
(Comparative Example 2)
In Example 1, instead of 21.1 kg of Ti-Si-W composite oxide powder containing 3.1% by mass of sulfur compound in terms of sulfur atom, Ti containing 3.0% by mass of sulfur compound in terms of sulfur atom A catalyst D was obtained in the same manner as in Example 1 except that 21.1 kg of the Si-W composite oxide powder was used. The composition of the catalyst D is TiO 2 : SiO 2 : WO 3 : MoO 3 : V 2 O 5 = 78: 7: 2: 6: 7 (mass ratio), and the BET specific surface area is 84 m 2 / g, The pore volume was 0.41 mL / g. Further, the sulfur compound contained in the catalyst D was 1.3% by mass with respect to the total amount of the catalyst D in terms of sulfur atoms.

(NOx除去試験)
実施例1〜2および比較例1〜2で得た触媒A〜Dを用い、下記性能評価条件でNOx除去性能の評価を行った。
(NOx removal test)
Using the catalysts A to D obtained in Examples 1-2 and Comparative Examples 1-2, the NOx removal performance was evaluated under the following performance evaluation conditions.

(SO2曝露耐久試験)
下記条件で300時間曝露した後、NOx除去性能の評価を行った。
(SO2 exposure durability test)
After exposure for 300 hours under the following conditions, the NOx removal performance was evaluated.

[NOx除去性能評価条件]
NOx:300ppm,NH3:300ppm,O2:12容量%,H2O:10容量%,N2:balance,ガス温度:250℃,空間速度:23,000h−1(STP),ガス線速度:1.0m/s(Normal)
[曝露条件]
NOx:1,000ppm,NH3:1,000ppm,SOx:600ppm,SO3:10ppm,O2:12容量%,H2O:10容量%,N2:balance,ガス温度:250℃,空間速度:12,500h−1(STP),ガス線速度:0.5m/s(Normal)
次に、触媒入口および触媒出口のNOx濃度を測定し、次式に従って脱硝率(NOx除去率)を算出した。結果を表1に示す。
[NOx removal performance evaluation conditions]
NOx: 300 ppm, NH3: 300 ppm, O2: 12 vol%, H2O: 10 vol%, N2: balance, gas temperature: 250 ° C, space velocity: 23,000 h-1 (STP), gas linear velocity: 1.0 m / s (Normal)
[Exposure conditions]
NOx: 1,000 ppm, NH3: 1,000 ppm, SOx: 600 ppm, SO3: 10 ppm, O2: 12 vol%, H2O: 10 vol%, N2: balance, gas temperature: 250 ° C, space velocity: 12,500 h-1 (STP), gas linear velocity: 0.5 m / s (Normal)
Next, the NOx concentrations at the catalyst inlet and the catalyst outlet were measured, and the denitration rate (NOx removal rate) was calculated according to the following equation. The results are shown in Table 1.

Figure 2017177051
Figure 2017177051

(クロロトルエン分解試験)
実施例1〜2触媒A〜Bを用い、下記条件でクロロトルエン分解性能評価を行った。
(Chlorotoluene decomposition test)
Examples 1-2 The chlorotoluene decomposition performance evaluation was performed on the following conditions using catalyst AB.

[クロロトルエン分解性能評価条件]
クロロトルエン:30ppm,O2:10容量%,H2O:15容量%,N2:balance,ガス温度:200℃,空間速度:8250h−1(STP),ガス線速度0.5m/s(Normal)
次に、触媒入口および触媒出口のクロロトルエン(CT)濃度を測定し、次式に従ってクロロトルエン(CT)分解率を算出した。結果を表1に示す。
[Chlorotoluene decomposition performance evaluation conditions]
Chlorotoluene: 30 ppm, O2: 10% by volume, H2O: 15% by volume, N2: balance, gas temperature: 200 ° C., space velocity: 8250 h −1 (STP), gas linear velocity 0.5 m / s (Normal)
Next, the chlorotoluene (CT) concentration at the catalyst inlet and the catalyst outlet was measured, and the chlorotoluene (CT) decomposition rate was calculated according to the following equation. The results are shown in Table 1.

Figure 2017177051
Figure 2017177051

Figure 2017177051
Figure 2017177051

比較例1の触媒Cは、S含有率が低いため曝露前の脱硝率は高いものの、300時間曝露後の脱硝率が大きく低下し十分な耐久性を有していない。比較例2の触媒Dは、S含有率が高いために、曝露前の脱硝率が低く、300時間曝露後の脱硝率も大きく低下した。これに対して、本発明の実施例1、2の触媒A、Bは、いずれも300時間曝露後に高い脱硝率を有しており、暴露前後の脱硝率の低下割合が触媒C、Dよりも小さいことから十分な耐久性を有していることが分かる。このように本発明の触媒では硫黄酸化物による性能低下が軽減されるので触媒交換の頻度が減り、排ガス処理装置のランニングコストを低減することが可能になる。   Although the catalyst C of Comparative Example 1 has a low S content, the denitration rate before exposure is high, but the denitration rate after exposure for 300 hours is greatly reduced and does not have sufficient durability. Since the catalyst D of Comparative Example 2 has a high S content, the denitration rate before exposure was low, and the denitration rate after exposure for 300 hours was greatly reduced. On the other hand, the catalysts A and B of Examples 1 and 2 of the present invention both have a high denitration rate after exposure for 300 hours, and the rate of decrease in the denitration rate before and after exposure is higher than that of the catalysts C and D. Since it is small, it turns out that it has sufficient durability. As described above, in the catalyst of the present invention, the performance degradation due to sulfur oxide is reduced, so the frequency of catalyst replacement is reduced, and the running cost of the exhaust gas treatment device can be reduced.

また、触媒Aと触媒Bのクロロトルエン分解率はそれぞれ72.0%、66.4%であり、本発明の触媒は有機ハロゲン化合物の分解においても有効であることが分かる。   Moreover, the chlorotoluene decomposition rates of the catalyst A and the catalyst B are 72.0% and 66.4%, respectively, which shows that the catalyst of the present invention is also effective in the decomposition of the organic halogen compound.

本発明は排ガス処理に関する技術であり、各種産業排ガスの処理、特に窒素酸化物や有機ハロゲン化合物を含む排ガスの処理に用いることができる。更に詳しくは、都市ごみや産業廃棄物を処理する焼却施設、重油焚きボイラや石炭焚きボイラ、ディーゼルエンジン、火力発電所および各種工業プロセスから排出される排ガス中に含まれる窒素酸化物(NOx)および/または有機ハロゲン化合物を接触還元または分解除去する為の排ガス処理触媒、およびこの触媒を用いた排ガス処理方法に応用することができる。   The present invention is a technology related to exhaust gas treatment, and can be used for treatment of various industrial exhaust gases, particularly for treatment of exhaust gas containing nitrogen oxides and organic halogen compounds. More specifically, incineration facilities for treating municipal waste and industrial waste, heavy oil fired boilers, coal fired boilers, diesel engines, thermal power plants, and nitrogen oxides (NOx) contained in exhaust gas discharged from various industrial processes and The present invention can be applied to an exhaust gas treatment catalyst for catalytic reduction or decomposition removal of organic halogen compounds and an exhaust gas treatment method using this catalyst.

Claims (4)

窒素酸化物および/または有機ハロゲン化合物を含有する排ガスを処理するための触媒であって、触媒A成分としてチタン、タングステンおよびケイ素の三元系複合酸化物または混合酸化物、触媒B成分としてバナジウム、ニオブまたはタンタルの少なくとも1種の元素の化合物ならびに触媒C成分としてモリブデンまたはタングステンの少なくとも1種の元素の化合物を含有し、かつ硫黄化合物が硫黄原子換算で触媒の全体量に対し0.4〜1.0質量%含まれていることを特徴とする排ガス処理触媒。 A catalyst for treating exhaust gas containing nitrogen oxides and / or organic halogen compounds, wherein the catalyst A component is a ternary complex oxide or mixed oxide of titanium, tungsten and silicon, the catalyst B component is vanadium, A compound of at least one element of niobium or tantalum and a compound of at least one element of molybdenum or tungsten as the catalyst C component, and the sulfur compound is 0.4 to 1 in terms of sulfur atom with respect to the total amount of the catalyst An exhaust gas treatment catalyst characterized by containing 0.0 mass%. 触媒B成分の含有量が、触媒A成分と触媒B成分と触媒C成分の合計質量に対して1〜20質量%であり、かつ触媒C成分の含有量が、触媒A成分と触媒B成分と触媒C成分の合計質量に対して、2〜10質量%であることを特徴とする請求項1に記載の排ガス処理触媒。 The content of the catalyst B component is 1 to 20% by mass with respect to the total mass of the catalyst A component, the catalyst B component, and the catalyst C component, and the content of the catalyst C component is the catalyst A component and the catalyst B component. It is 2-10 mass% with respect to the total mass of the catalyst C component, The exhaust gas treatment catalyst of Claim 1 characterized by the above-mentioned. 請求項1または2に記載の触媒を用いて、窒素酸化物および/または有機ハロゲン化合物を含有する排ガスを処理することを特徴とする排ガス処理方法。 An exhaust gas treatment method comprising treating exhaust gas containing nitrogen oxides and / or organic halogen compounds using the catalyst according to claim 1. 排ガスがさらに硫黄酸化物を含有していることを特徴とする請求項3に記載の排ガス処理方法。 The exhaust gas treatment method according to claim 3, wherein the exhaust gas further contains a sulfur oxide.
JP2016071304A 2016-03-31 2016-03-31 Exhaust gas treatment catalyst and exhaust gas treatment method Pending JP2017177051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016071304A JP2017177051A (en) 2016-03-31 2016-03-31 Exhaust gas treatment catalyst and exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016071304A JP2017177051A (en) 2016-03-31 2016-03-31 Exhaust gas treatment catalyst and exhaust gas treatment method

Publications (1)

Publication Number Publication Date
JP2017177051A true JP2017177051A (en) 2017-10-05

Family

ID=60008095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016071304A Pending JP2017177051A (en) 2016-03-31 2016-03-31 Exhaust gas treatment catalyst and exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP2017177051A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019072663A (en) * 2017-10-16 2019-05-16 株式会社日本触媒 Method for producing organic composite oxide and method for treating exhaust gas using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090043A (en) * 1983-10-21 1985-05-21 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying nitrogen oxide
JP2002102696A (en) * 2000-09-28 2002-04-09 Nippon Shokubai Co Ltd Denitration catalyst and processing method for exhaust gas using this
JP2004097914A (en) * 2002-09-06 2004-04-02 Nippon Shokubai Co Ltd Catalyst for removal of organic halogen compound and method for removing organic halogen compound
JP2005144299A (en) * 2003-11-13 2005-06-09 Nippon Shokubai Co Ltd Nitrogen oxide removal catalyst and nitrogen oxide removal method
JP2006320803A (en) * 2005-05-18 2006-11-30 Nippon Shokubai Co Ltd Catalyst and method for treating exhaust gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090043A (en) * 1983-10-21 1985-05-21 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying nitrogen oxide
JP2002102696A (en) * 2000-09-28 2002-04-09 Nippon Shokubai Co Ltd Denitration catalyst and processing method for exhaust gas using this
JP2004097914A (en) * 2002-09-06 2004-04-02 Nippon Shokubai Co Ltd Catalyst for removal of organic halogen compound and method for removing organic halogen compound
JP2005144299A (en) * 2003-11-13 2005-06-09 Nippon Shokubai Co Ltd Nitrogen oxide removal catalyst and nitrogen oxide removal method
JP2006320803A (en) * 2005-05-18 2006-11-30 Nippon Shokubai Co Ltd Catalyst and method for treating exhaust gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019072663A (en) * 2017-10-16 2019-05-16 株式会社日本触媒 Method for producing organic composite oxide and method for treating exhaust gas using the same

Similar Documents

Publication Publication Date Title
CN100375646C (en) Method for treating exhaust gas
JP2008119651A (en) Catalyst for removing nitrogen oxides and exhaust gas treatment method
JP2013091045A (en) Exhaust gas treating method
JP4113090B2 (en) Exhaust gas treatment method
JPH0368456A (en) Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst
JP5636577B2 (en) Method for purifying exhaust gas containing metallic mercury and oxidation catalyst for metallic mercury in exhaust gas
JPH0242536B2 (en)
JP2008024565A (en) Modified titanium oxide particles, production method thereof, and exhaust gas treatment catalyst using the modified titanium oxide particles
JP2015182067A (en) Catalyst and method for treating marine exhaust gas
JP6591919B2 (en) Method for manufacturing honeycomb-type denitration catalyst
JP6132498B2 (en) Titanium / silicon / tungsten oxide, denitration catalyst using the same, method for preparing the oxide, and denitration method
JP2005081189A (en) Catalyst for denitrifying high temperature waste gas
JP2017177051A (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP6016572B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JPH0824651A (en) Ammonia decomposition catalyst and method for decomposing ammonia using the same
JP6663761B2 (en) Method for producing honeycomb type denitration catalyst
JP6261260B2 (en) Ship exhaust gas treatment catalyst and exhaust gas treatment method
JP7486301B2 (en) Exhaust gas treatment catalyst, its manufacturing method, exhaust gas treatment method using the same, and catalyst design method
JP6906420B2 (en) Manufacturing method of inorganic composite oxide and exhaust gas treatment method using this
JP2004290754A (en) Denitration method for diesel engine exhaust gas
EP3556465B1 (en) CATALYST AND METHOD FOR REMOVING NOx FROM COMBUSTION EXHAUST GAS
JP2013071071A (en) Method for treating exhaust gas
JP4098698B2 (en) Exhaust gas treatment method
JP2016064358A (en) Marine exhaust gas treatment catalyst, and exhaust treatment method
JP2015181971A (en) Catalyst and method for treating marine exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200303