JP2012068430A - Retardation film - Google Patents
Retardation film Download PDFInfo
- Publication number
- JP2012068430A JP2012068430A JP2010213132A JP2010213132A JP2012068430A JP 2012068430 A JP2012068430 A JP 2012068430A JP 2010213132 A JP2010213132 A JP 2010213132A JP 2010213132 A JP2010213132 A JP 2010213132A JP 2012068430 A JP2012068430 A JP 2012068430A
- Authority
- JP
- Japan
- Prior art keywords
- film
- polymer
- retardation film
- mass
- retardation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000642 polymer Polymers 0.000 claims abstract description 69
- 229920000058 polyacrylate Polymers 0.000 claims abstract description 59
- 239000000178 monomer Substances 0.000 claims abstract description 51
- 239000011342 resin composition Substances 0.000 claims abstract description 50
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 47
- 229920002554 vinyl polymer Polymers 0.000 claims abstract description 31
- 230000009477 glass transition Effects 0.000 claims abstract description 22
- 229920001893 acrylonitrile styrene Polymers 0.000 claims description 6
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 claims description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 5
- 125000004432 carbon atom Chemical group C* 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 abstract description 18
- 239000004925 Acrylic resin Substances 0.000 abstract description 5
- 229920000178 Acrylic resin Polymers 0.000 abstract description 5
- 239000010408 film Substances 0.000 description 170
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical group C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 23
- 238000004519 manufacturing process Methods 0.000 description 20
- 229920005989 resin Polymers 0.000 description 18
- 239000011347 resin Substances 0.000 description 18
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 17
- 238000000034 method Methods 0.000 description 14
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 9
- 230000000704 physical effect Effects 0.000 description 9
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 8
- -1 ethylene, propylene, 4-methyl-1-pentene Chemical class 0.000 description 8
- 239000004973 liquid crystal related substance Substances 0.000 description 8
- 238000000465 moulding Methods 0.000 description 8
- 229920001971 elastomer Polymers 0.000 description 7
- 238000007363 ring formation reaction Methods 0.000 description 7
- 230000001771 impaired effect Effects 0.000 description 6
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 6
- 239000004926 polymethyl methacrylate Substances 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 210000002858 crystal cell Anatomy 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002596 lactones Chemical group 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- KNCYXPMJDCCGSJ-UHFFFAOYSA-N piperidine-2,6-dione Chemical group O=C1CCCC(=O)N1 KNCYXPMJDCCGSJ-UHFFFAOYSA-N 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 2
- BSZGXCFUKRLAAN-UHFFFAOYSA-N 2-phenylprop-2-en-1-ol Chemical compound OCC(=C)C1=CC=CC=C1 BSZGXCFUKRLAAN-UHFFFAOYSA-N 0.000 description 2
- ZIJWGEHOVHJHKB-UHFFFAOYSA-N 4-phenylbut-3-en-2-ol Chemical compound CC(O)C=CC1=CC=CC=C1 ZIJWGEHOVHJHKB-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 229920000800 acrylic rubber Polymers 0.000 description 2
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 2
- FUSUHKVFWTUUBE-UHFFFAOYSA-N buten-2-one Chemical compound CC(=O)C=C FUSUHKVFWTUUBE-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 238000004043 dyeing Methods 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- KKFHAJHLJHVUDM-UHFFFAOYSA-N n-vinylcarbazole Chemical compound C1=CC=C2N(C=C)C3=CC=CC=C3C2=C1 KKFHAJHLJHVUDM-UHFFFAOYSA-N 0.000 description 2
- 239000012788 optical film Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 2
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- UVHXEHGUEKARKZ-UHFFFAOYSA-N 1-ethenylanthracene Chemical compound C1=CC=C2C=C3C(C=C)=CC=CC3=CC2=C1 UVHXEHGUEKARKZ-UHFFFAOYSA-N 0.000 description 1
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical compound C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 1
- WHBAYNMEIXUTJV-UHFFFAOYSA-N 2-chloroethyl prop-2-enoate Chemical compound ClCCOC(=O)C=C WHBAYNMEIXUTJV-UHFFFAOYSA-N 0.000 description 1
- BYDRTKVGBRTTIT-UHFFFAOYSA-N 2-methylprop-2-en-1-ol Chemical compound CC(=C)CO BYDRTKVGBRTTIT-UHFFFAOYSA-N 0.000 description 1
- NJMYQRVWBCSLEU-UHFFFAOYSA-N 4-hydroxy-2-methylidenebutanoic acid Chemical compound OCCC(=C)C(O)=O NJMYQRVWBCSLEU-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 0 CCC(C)(C)C(C)(*)C(N(*)C(C(C)(C)*)=O)=O Chemical compound CCC(C)(C)C(C)(*)C(N(*)C(C(C)(C)*)=O)=O 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004986 Cholesteric liquid crystals (ChLC) Substances 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920000305 Nylon 6,10 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229920007962 Styrene Methyl Methacrylate Polymers 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- PQYJRMFWJJONBO-UHFFFAOYSA-N Tris(2,3-dibromopropyl) phosphate Chemical compound BrCC(Br)COP(=O)(OCC(Br)CBr)OCC(Br)CBr PQYJRMFWJJONBO-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- BAPJBEWLBFYGME-UHFFFAOYSA-N acrylic acid methyl ester Natural products COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000005537 brownian motion Methods 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- VANNPISTIUFMLH-UHFFFAOYSA-N glutaric anhydride Chemical group O=C1CCCC(=O)O1 VANNPISTIUFMLH-UHFFFAOYSA-N 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- ADFPJHOAARPYLP-UHFFFAOYSA-N methyl 2-methylprop-2-enoate;styrene Chemical compound COC(=O)C(C)=C.C=CC1=CC=CC=C1 ADFPJHOAARPYLP-UHFFFAOYSA-N 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- QMMOXUPEWRXHJS-UHFFFAOYSA-N pent-2-ene Chemical compound CCC=CC QMMOXUPEWRXHJS-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 150000004291 polyenes Chemical class 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- XHGIFBQQEGRTPB-UHFFFAOYSA-N tris(prop-2-enyl) phosphate Chemical compound C=CCOP(=O)(OCC=C)OCC=C XHGIFBQQEGRTPB-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、負の固有複屈折を有する熱可塑性樹脂組成物からなる位相差フィルムと、このフィルムを備える偏光板および画像表示装置とに関する。 The present invention relates to a retardation film made of a thermoplastic resin composition having negative intrinsic birefringence, and a polarizing plate and an image display device including the film.
樹脂フィルムを一軸延伸または二軸延伸して得た延伸フィルムが、画像表示分野において幅広く使用されている。その一種に、延伸により生じた高分子鎖の配向に基づく複屈折を利用した位相差フィルムがあり、位相差フィルムは、液晶表示装置(LCD)における色調補償、視野角補償に広く使用されている。従来、複屈折により生じた位相差に基づく光路長差(レターデーション)が波長の1/4であるλ/4板が、LCDに用いる位相差フィルムとして代表的である。 A stretched film obtained by uniaxially stretching or biaxially stretching a resin film is widely used in the field of image display. One type is a retardation film that utilizes birefringence based on the orientation of polymer chains generated by stretching, and the retardation film is widely used for color tone compensation and viewing angle compensation in liquid crystal display devices (LCD). . Conventionally, a λ / 4 plate whose optical path length difference (retardation) based on the phase difference caused by birefringence is ¼ of the wavelength is a typical retardation film used in LCDs.
近年、光学的な設計技術の進歩により、また、消費者へのLCDの訴求力向上のために、様々な光学設計に対応可能な位相差フィルムが求められるようになってきている。例えば、液晶表示モードの一種であるインプレーンスイッチング(IPS)モードは、位相差フィルムを用いることなく広い視野角を実現できることが特長である。しかし、液晶セルの光学的な特性上、斜め方向から画面をみたときに光漏れが発生し、いわゆる「黒浮き」による表示画像のコントラストの低下が生じる。一方、IPSモードと競合する液晶表示モードに垂直配向(VA)モードがあるが、VAモードでは、IPSモードのような広い視野角は得られないものの、光漏れの少ない、高コントラストの画像表示を実現できる。現在、VAモードにおける視野角拡大の技術が急速に進歩しており、これに対抗するために、位相差フィルムの配置によるIPSモードでの光漏れの抑制が求められている。 In recent years, retardation films capable of supporting various optical designs have been demanded due to advances in optical design technology and to improve the appeal of LCDs to consumers. For example, an in-plane switching (IPS) mode, which is a kind of liquid crystal display mode, is characterized in that a wide viewing angle can be realized without using a retardation film. However, due to the optical characteristics of the liquid crystal cell, light leakage occurs when the screen is viewed from an oblique direction, and the contrast of the display image is lowered due to so-called “black floating”. On the other hand, there is a vertical alignment (VA) mode as a liquid crystal display mode competing with the IPS mode. In the VA mode, although a wide viewing angle as in the IPS mode cannot be obtained, a high contrast image display with less light leakage is obtained. realizable. At present, a technique for widening the viewing angle in the VA mode is rapidly progressing, and in order to counter this, suppression of light leakage in the IPS mode by arrangement of a retardation film is required.
IPSモードの液晶セルにおける厚さ方向の屈折率は、面内方向の屈折率よりも小さい。このため、光漏れの抑制には、厚さ方向の位相差Rthが負である「負の位相差フィルム」が必要となる。位相差Rthは、フィルム面内における遅相軸の屈折率をnx、フィルム面内における進相軸の屈折率をny、フィルムの厚さ方向の屈折率をnz、フィルムの厚さをdとしたときに、式{(nx+ny)/2−nz}×dにより与えられる。負の位相差フィルムは、負の固有複屈折を有する樹脂の延伸により得ることができる。 The refractive index in the thickness direction of the IPS mode liquid crystal cell is smaller than the refractive index in the in-plane direction. For this reason, in order to suppress light leakage, a “negative retardation film” having a negative retardation Rth in the thickness direction is required. The retardation Rth is defined as nx as the refractive index of the slow axis in the film plane, ny as the refractive index of the fast axis in the film plane, nz as the refractive index in the thickness direction of the film, and d as the film thickness. Sometimes given by the expression {(nx + ny) / 2−nz} × d. The negative retardation film can be obtained by stretching a resin having negative intrinsic birefringence.
ところで、成形加工性や表面硬度などのバランスが良く、高い光線透過率や低波長依存性などの光学特性に優れているポリメタクリル酸メチル(PMMA)は光学材料として広く使用されているが、負の固有複屈折を有しており、PMMAからなるフィルムの延伸により、負の位相差フィルムが得られる(特許文献1)。しかし、PMMAからなる位相差フィルムのガラス転移温度(Tg)は100℃程度とやや低く、より高いTgが求められる用途への使用(より高い耐熱性が求められる用途への使用:例えば、画像表示装置への使用)が困難である。 By the way, polymethyl methacrylate (PMMA) having a good balance of molding processability and surface hardness and excellent optical characteristics such as high light transmittance and low wavelength dependency is widely used as an optical material. Thus, a negative retardation film is obtained by stretching a film made of PMMA (Patent Document 1). However, the glass transition temperature (Tg) of the retardation film made of PMMA is slightly low, about 100 ° C., and is used for applications requiring higher Tg (use for applications requiring higher heat resistance: for example, image display It is difficult to use the device.
他方、透明性と耐熱性とを兼ね備えたアクリル樹脂として、主鎖に環構造を有するアクリル系重合体を含む樹脂が開発されている。例えば、分子鎖中に水酸基とエステル基とを有する重合体をラクトン環化縮合反応させることによって得られる主鎖にラクトン環構造を含む重合体(例えば、特許文献2および3参照)やグルタルイミド環構造を含む重合体(例えば、特許文献4参照)、グルタル酸無水物構造を含む重合体(例えば、特許文献5参照)などにおいて、それらの位相差フィルムなどの光学フィルム用途への応用が進められている。 On the other hand, as an acrylic resin having both transparency and heat resistance, a resin containing an acrylic polymer having a ring structure in the main chain has been developed. For example, a polymer having a lactone ring structure in the main chain obtained by subjecting a polymer having a hydroxyl group and an ester group in the molecular chain to a lactone cyclocondensation reaction (for example, see Patent Documents 2 and 3) or a glutarimide ring Polymers containing a structure (for example, see Patent Document 4), polymers containing a glutaric anhydride structure (for example, see Patent Document 5), etc. are being applied to optical film applications such as retardation films. ing.
これらの主鎖に環構造を有するアクリル系重合体を含むフィルムは、アクリル樹脂本来の光線透過率や低波長依存性などの優れた光学特性を維持しながら、耐熱性を付与することが出来たが、反面、主鎖の環構造環構造が正の固有複屈折を有しているため、負の位相差フィルムへの適用は困難であった。そこで、特許文献4では、負の固有複屈折を付与するスチレン系単量体を共重合した主鎖にグルタルイミド環構造を含む重合体を含む負の位相差フィルムが開示されている。また、特許文献6には、主鎖にラクトン環構造を含むアクリル系重合体とスチレン系重合体を含む負の位相差フィルムが開示されている。 These films containing an acrylic polymer having a ring structure in the main chain were able to impart heat resistance while maintaining excellent optical properties such as the original light transmittance and low wavelength dependency of the acrylic resin. However, since the ring structure of the main chain has a positive intrinsic birefringence, application to a negative retardation film is difficult. Therefore, Patent Document 4 discloses a negative retardation film including a polymer containing a glutarimide ring structure in a main chain obtained by copolymerizing a styrene monomer imparting negative intrinsic birefringence. Patent Document 6 discloses a negative retardation film containing an acrylic polymer containing a lactone ring structure in the main chain and a styrene polymer.
しかしながら、主鎖の環構造由来の正の固有複屈折を打ち消して負の位相差フィルムを得るためには、主鎖に環構造を有するアクリル系重合体に負の固有複屈折を付与するスチレン系単量体を多量に共重合することが必要になるが、多量のスチレン系単量体を共重合した場合には、主鎖に環構造を有するアクリル系重合体に加えてスチレン系単量体由来の構造単位も脆いため、延伸でポリマー鎖を配向させても高いフィルム強度を得ることは容易ではない。 However, in order to cancel the positive intrinsic birefringence derived from the ring structure of the main chain and obtain a negative retardation film, a styrene system that imparts a negative intrinsic birefringence to the acrylic polymer having a ring structure in the main chain It is necessary to copolymerize a large amount of monomer, but when a large amount of styrene monomer is copolymerized, in addition to the acrylic polymer having a ring structure in the main chain, the styrene monomer Since the derived structural unit is also brittle, it is not easy to obtain high film strength even if the polymer chain is oriented by stretching.
また、主鎖に環構造を有するアクリル系重合体は重合後の環化反応で主鎖に環構造を導入する場合があるが、スチレン系単量体を共重合した後に環化反応を行った場合には、スチレン系単量体由来の構造単位が環化反応に寄与しないため環化が不十分になり、フィルムの耐熱性や強度が低下してしまうことがある。更には、未環化の反応性基によって架橋反応が起こってしまうことがあり、成形時に溶融樹脂の流動性が変化して成形加工性が低下したり、ゲル化が発生してフィルムの外観欠点が増加してしまうことがあった。 In addition, acrylic polymers having a ring structure in the main chain may introduce a ring structure into the main chain in the cyclization reaction after polymerization, but the cyclization reaction was performed after copolymerizing styrene monomers. In some cases, the structural unit derived from the styrenic monomer does not contribute to the cyclization reaction, resulting in insufficient cyclization, and the heat resistance and strength of the film may be reduced. Furthermore, a crosslinking reaction may occur due to an uncyclized reactive group, and the fluidity of the molten resin may change during molding, resulting in a decrease in molding processability, and gelation may occur, resulting in defects in the appearance of the film. May increase.
本発明は、前記現状に鑑みてなされたものであり、アクリル樹脂本来の成形性や優れた光学特性を維持しながら、高いガラス転移温度を実現できる負の位相差フィルムの提供を目的とする。 This invention is made | formed in view of the said present condition, and aims at provision of the negative phase difference film which can implement | achieve a high glass transition temperature, maintaining the original moldability and the outstanding optical characteristic of an acrylic resin.
本発明の位相差フィルムは、下記条件(I)から(IV)を満たす熱可塑性樹脂組成物(C)からなり、フィルム面内における遅相軸の屈折率をnx、フィルム面内における進相軸の屈折率をny、フィルムの厚さ方向の屈折率をnz、フィルムの厚さをdとしたときに、Rth={(nx+ny)/2−nz}×dで表される厚さ方向の位相差Rthが−30nm以下である位相差フィルムである。 The retardation film of the present invention comprises a thermoplastic resin composition (C) that satisfies the following conditions (I) to (IV), and the refractive index of the slow axis in the film plane is nx, and the fast axis in the film plane: Where Nth is the refractive index of the film, nz is the refractive index in the thickness direction of the film, and d is the thickness of the film, the thickness direction is represented by Rth = {(nx + ny) / 2−nz} × d. The retardation film has a retardation Rth of −30 nm or less.
(I) ;下記一般式(1)で表される繰り返し単位(a)を含有する正の固有複屈折を有するアクリル系重合体(A)と芳香族ビニル単量体単位(b)を含む負の固有複屈折を有する重合体(B)を含む。 (I): negative containing an acrylic polymer (A) having a positive intrinsic birefringence containing a repeating unit (a) represented by the following general formula (1) and an aromatic vinyl monomer unit (b) A polymer (B) having an intrinsic birefringence of
(II) ;繰り返し単位(a)と芳香族ビニル単量体単位(b)との質量比(a/b)が0.5〜2である。 (II): The mass ratio (a / b) of the repeating unit (a) to the aromatic vinyl monomer unit (b) is 0.5-2.
(III);アクリル系重合体(A)と重合体(B)の総和に対する、繰り返し単位(a)の含有量が25質量%以上である。 (III): The content of the repeating unit (a) with respect to the sum of the acrylic polymer (A) and the polymer (B) is 25% by mass or more.
(IV) ;アクリル系重合体(A)と重合体(B)の総和に対する、芳香族ビニル単量体単位(b)の含有量が20質量%以上である。 (IV): The content of the aromatic vinyl monomer unit (b) with respect to the sum of the acrylic polymer (A) and the polymer (B) is 20% by mass or more.
[式中、R1、R2、R3はそれぞれ独立して水素原子または、炭素数1〜20の有機残基を表す。]
本発明の偏光板は、上記本発明の位相差フィルムを備える。
[Wherein, R 1, R 2 and R 3 each independently represents a hydrogen atom or an organic residue having 1 to 20 carbon atoms. ]
The polarizing plate of the present invention includes the retardation film of the present invention.
本発明の画像表示装置は、上記本発明の位相差フィルムを備える。 The image display device of the present invention includes the retardation film of the present invention.
ここで、重合体の固有複屈折とは、当該重合体の分子鎖が一軸配向した層を想定したときに、当該層における分子鎖が配向する方向(配向軸)に平行な方向の光の屈折率から、配向軸に垂直な方向の光の屈折率を引いた値をいう。樹脂組成物の固有複屈折は、当該樹脂組成物が含む各重合体の固有複屈折の兼ね合いにより決定される。 Here, the intrinsic birefringence of a polymer is the refraction of light in a direction parallel to the direction (orientation axis) in which the molecular chains in the layer are aligned, assuming a layer in which the molecular chains of the polymer are uniaxially aligned. The value obtained by subtracting the refractive index of light in the direction perpendicular to the orientation axis from the ratio. The intrinsic birefringence of the resin composition is determined by the balance of intrinsic birefringence of each polymer contained in the resin composition.
本発明によれば、正の固有複屈折を有するアクリル系重合体(A)と芳香族ビニル単量体単位(b)を含む負の固有複屈折を有する重合体(B)とを含む熱可塑性樹脂組成物(C)を用いることにより、アクリル樹脂本来の成形性や優れた光学特性を維持しながら、高いガラス転移温度を実現できる可とう性に優れた位相差フィルムを得ることができる。 According to the present invention, a thermoplastic comprising an acrylic polymer (A) having a positive intrinsic birefringence and a polymer (B) having a negative intrinsic birefringence containing an aromatic vinyl monomer unit (b). By using the resin composition (C), it is possible to obtain a highly flexible retardation film capable of realizing a high glass transition temperature while maintaining the original moldability and excellent optical properties of the acrylic resin.
本発明の位相差フィルムが有するこの効果に基づき、本発明の偏光板は、様々な用途、例えば画像表示装置、に好適に使用できる。また、本発明の画像表示装置は、斜めから画面を見たときの光漏れが少ないなど、画像表示特性に優れる。 Based on this effect of the retardation film of the present invention, the polarizing plate of the present invention can be suitably used for various applications such as an image display device. Further, the image display device of the present invention is excellent in image display characteristics such as less light leakage when the screen is viewed from an oblique direction.
これ以降の説明において特に記載がない限り、「%」は「質量%」を、「部」は「質量部」を、それぞれ意味する。また、範囲を示す「A〜B」は、A以上B以下であることを示す。 Unless otherwise specified in the following description, “%” means “mass%” and “part” means “part by mass”. In addition, “A to B” indicating a range indicates that the range is A or more and B or less.
[アクリル系重合体(A)]
下記一般式(1)で表される繰り返し単位(a)を含有するアクリル系重合体(A)は正の固有複屈折を有する。
[Acrylic polymer (A)]
The acrylic polymer (A) containing the repeating unit (a) represented by the following general formula (1) has positive intrinsic birefringence.
[式中、R1、R2、R3はそれぞれ独立して水素原子または、炭素数1〜20の有機残基を表す。]
上記一般式(1)において、R1、R2はそれぞれ独立して、水素原子またはメチル基であることが好ましく、R3は水素原子、メチル基、エチル基、プロピル基、ブチル基、またはシクロヘキシル基であることが好ましい。
[Wherein, R 1, R 2 and R 3 each independently represents a hydrogen atom or an organic residue having 1 to 20 carbon atoms. ]
In the general formula (1), R1 and R2 are preferably each independently a hydrogen atom or a methyl group, and R3 is a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, or a cyclohexyl group. It is preferable.
通常、ポリメチルメタアクリレートなどのアクリル系重合体は、負の固有複屈折を有するが、本発明のアクリル系重合体(A)は、上記繰り返し単位(a)を含有することにより、正の固有複屈折を有する。 Usually, an acrylic polymer such as polymethyl methacrylate has a negative intrinsic birefringence, but the acrylic polymer (A) of the present invention has a positive intrinsic property by containing the repeating unit (a). Has birefringence.
アクリル系重合体(A)は、構成単位に(メタ)アクリル酸エステル単位を有する重合体であり、本発明の効果を損なわない限り特に限定されず、公知の熱可塑性アクリル系重合体を用いることが出来る。アクリル系重合体(A)の(メタ)アクリル酸エステル単位の含有量は10質量%以上が好ましく、更に好ましくは30質量%以上、特に好ましくは50質量%以上である。また、アクリル系重合体(A)が主鎖に環構造を有する場合には、全構成単位に占める(メタ)アクリル酸エステル単位の割合と環構造の含有率との合計は30質量%以上が好ましく、より好ましくは50質量%以上、さらに好ましくは70質量%以上、特に好ましくは90%重量以上である。 The acrylic polymer (A) is a polymer having a (meth) acrylic acid ester unit as a structural unit, and is not particularly limited as long as the effects of the present invention are not impaired, and a known thermoplastic acrylic polymer is used. I can do it. The content of the (meth) acrylic acid ester unit in the acrylic polymer (A) is preferably 10% by mass or more, more preferably 30% by mass or more, and particularly preferably 50% by mass or more. Further, when the acrylic polymer (A) has a ring structure in the main chain, the total of the proportion of (meth) acrylic acid ester units in the total structural units and the content of the ring structure is 30% by mass or more. More preferably, it is 50 mass% or more, More preferably, it is 70 mass% or more, Most preferably, it is 90% weight or more.
(メタ)アクリル酸エステル単量体の好ましい具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸シクロヘキシルなどの(メタ)アクリル酸アルキルエステル;(メタ)アクリル酸ベンジル;(メタ)アクリル酸クロロメチル;(メタ)アクリル酸2−クロロエチル;(メタ)アクリル酸ジシクロペンタニルオキシエチル;(メタ)アクリル酸ジシクロペンタニル;(メタ)アクリル酸2−ヒドロキシエチル;(メタ)アクリル酸3−ヒドロキシプロピル;(メタ)アクリル酸2,3,4,5,6−ペンタヒドロキシヘキシルおよび(メタ)アクリル酸2,3,4,5−テトラヒドロキシペンチルなどが挙げられ、これらの(メタ)アクリル酸エステル単量体由来の構造単位のうち1種を単独で含んでいてもよいし、2種以上併存してもよい。中でも、熱安定性や光学特性に優れる点で(メタ)アクリル酸アルキルエステルが好ましく、メタクリル酸メチルが最も好ましい。 Preferable specific examples of the (meth) acrylate monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, (meth ) (Meth) acrylic acid alkyl esters such as t-butyl acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate; benzyl (meth) acrylate; chloromethyl (meth) acrylate; (meth) 2-chloroethyl acrylate; (meth) acrylic acid dicyclopentanyloxyethyl; (meth) acrylic acid dicyclopentanyl; (meth) acrylic acid 2-hydroxyethyl; (meth) acrylic acid 3-hydroxypropyl; ) Acrylic acid 2,3,4,5,6-pentahydroxyhexyl and (meth) acrylic acid 2,3 Such as 4,5-tetrahydroxy-pentyl and the like, may contain one kind alone of these structural unit derived from (meth) acrylic acid ester monomer may be present together two or more. Among these, (meth) acrylic acid alkyl ester is preferable, and methyl methacrylate is most preferable in terms of excellent thermal stability and optical characteristics.
アクリル系重合体(A)は、上述した(メタ)アクリル酸エステル単量体由来以外の構造単位を含んでも良く、(メタ)アクリル酸エステル単量体以外の単量体を含む単量体混合物を重合して得られる。(メタ)アクリル酸エステル単量体以外の単量体としては、例えば、アクリロニトリル、メチルビニルケトン、エチレン、プロピレン、4−メチル−1−ペンテン、酢酸ビニル、メタリルアルコール、アリルアルコール、2−ヒドロキシメチル−1−ブテンなどのアリルアルコール、アクリル酸、メタクリル酸、クロトン酸などの(メタ)アクリル酸、2−(ヒドロキシメチル)アクリル酸メチル、2−(ヒドロキシメチル)アクリル酸エチルなどの2−(ヒドロキシアルキル)アクリル酸エステル、2−(ヒドロキシエチル)アクリル酸などの2−(ヒドロキシアルキル)アクリル酸、N−ビニルピロリドン、N−ビニルカルバゾールなどが挙げられ、これらの単量体は1種のみ用いてもよいし、2種以上を併用してもよい。 The acrylic polymer (A) may contain structural units other than those derived from the (meth) acrylic acid ester monomer described above, and a monomer mixture containing monomers other than the (meth) acrylic acid ester monomer. It is obtained by polymerizing. Examples of monomers other than (meth) acrylic acid ester monomers include, for example, acrylonitrile, methyl vinyl ketone, ethylene, propylene, 4-methyl-1-pentene, vinyl acetate, methallyl alcohol, allyl alcohol, and 2-hydroxy. Allyl alcohol such as methyl-1-butene, (meth) acrylic acid such as acrylic acid, methacrylic acid and crotonic acid, 2- (hydroxymethyl) methyl acrylate, 2- (hydroxymethyl) ethyl acrylate 2- ( (Hydroxyalkyl) acrylic acid ester, 2- (hydroxyalkyl) acrylic acid such as 2- (hydroxyethyl) acrylic acid, N-vinylpyrrolidone, N-vinylcarbazole and the like, and only one of these monomers is used. Or two or more of them may be used in combination.
アクリル系重合体(A)は、スチレン系単量体単位の含有割合が、好ましくは5質量%未満、より好ましくは3質量%未満、さらに好ましくは1質量%未満、特に好ましくは0.1質量%未満である。スチレン系単量体単位を5質量%以上含む場合には、延伸後も高いフィルム強度を得ることは難しい。また、スチレン系単量体の含有割合が5質量%以上で共重合した後に環化反応を行う場合には、環化が不十分になり、フィルムの耐熱性や強度が低下してしまうことがある。更には、未環化の反応性基によって架橋反応などが起こってしまうため、成形加工性が低下したり、フィルムの外観欠点が増加したりすることがある。スチレン系単量体は芳香族ビニル系単量体であれば、本発明の効果を損なわない限り、特に限定されず、例えば、スチレン、ビニルトルエン、α−メチルスチレン、α−ヒドロキシメチルスチレン、α−ヒドロキシエチルスチレン、クロロスチレンなどが挙げられる。 In the acrylic polymer (A), the content of the styrene monomer unit is preferably less than 5% by mass, more preferably less than 3% by mass, still more preferably less than 1% by mass, and particularly preferably 0.1% by mass. %. When the styrene monomer unit is contained in an amount of 5% by mass or more, it is difficult to obtain high film strength even after stretching. In addition, when the cyclization reaction is carried out after copolymerization at a styrene monomer content of 5% by mass or more, the cyclization becomes insufficient and the heat resistance and strength of the film may be reduced. is there. Furthermore, since a crosslinking reaction or the like occurs due to the uncyclized reactive group, the molding processability may be lowered, or the appearance defect of the film may be increased. The styrene monomer is not particularly limited as long as the effect of the present invention is not impaired as long as it is an aromatic vinyl monomer. For example, styrene, vinyl toluene, α-methyl styrene, α-hydroxymethyl styrene, α -Hydroxyethylstyrene, chlorostyrene, etc. are mentioned.
アクリル系重合体(A)において、上記繰り返し単位(a)の含有量は、特に限定されるものではなく、例えば、R3の構造等に依存して変化させることが好ましい。 In the acrylic polymer (A), the content of the repeating unit (a) is not particularly limited, and is preferably changed depending on, for example, the structure of R3.
一般的に、アクリル系重合体(A)における上記繰り返し単位(a)の含有量は、20質量%以上とすることが好ましく、20質量%〜95質量%とすることがより好ましく、30質量%〜90質量%とすることがさらに好ましく、40質量%〜80質量%とすることが特に好ましい。 Generally, the content of the repeating unit (a) in the acrylic polymer (A) is preferably 20% by mass or more, more preferably 20% by mass to 95% by mass, and 30% by mass. It is more preferable to set it to -90 mass%, and it is especially preferable to set it as 40 mass%-80 mass%.
上記繰り返し単位(a)の含有量が上記範囲内であれば、得られるアクリル系重合体(A)の耐熱性および透明性が低下したり、成形加工性、およびフィルムに加工したときの機械的強度が低下したりすることがない。 If the content of the repeating unit (a) is within the above range, the heat resistance and transparency of the resulting acrylic polymer (A) will be reduced, the moldability, and the mechanical properties when processed into a film. The strength does not decrease.
一方、上記繰り返し単位(a)の含有量が上記範囲より少ないと、得られるアクリル系重合体(A)の耐熱性が不足したり、透明性が損なわれたりする傾向がある。また、上記範囲よりも多いと、不必要に耐熱性および溶融粘度が高くなり、成形加工性が悪くなったり、フィルム加工時の機械的強度が極端に脆くなったり、透明性が損なわれたりする傾向がある。 On the other hand, if the content of the repeating unit (a) is less than the above range, the resulting acrylic polymer (A) tends to have insufficient heat resistance or its transparency may be impaired. On the other hand, if the amount is larger than the above range, the heat resistance and melt viscosity are unnecessarily increased, the molding processability is deteriorated, the mechanical strength during film processing becomes extremely brittle, or the transparency is impaired. Tend.
アクリル系重合体(A)は(メタ)アクリル酸エステル単量体を含む単量体混合物を重合して得られ、製法は公知の製法を適用出来る。上記一般式(1)で表される繰り返し単位(a)を導入する方法としては、米国特許3284425号、米国特許4246374号、特開平2−153904号公報、WO2005/108438号公報等に記載されているグルタルイミド樹脂と同様に、イミド化可能な単位を有する樹脂としてメタクリル酸メチルエステルなどを主原料として得られる樹脂を用い、該イミド化可能な単位を有する樹脂をアンモニアまたは置換アミンを用いてイミド化することにより得ることができる。 The acrylic polymer (A) is obtained by polymerizing a monomer mixture containing a (meth) acrylic acid ester monomer, and a known production method can be applied as the production method. Methods for introducing the repeating unit (a) represented by the general formula (1) are described in US Pat. No. 3,284,425, US Pat. No. 4,246,374, JP-A-2-153904, WO2005 / 108438, and the like. Similar to the glutarimide resin, a resin obtained by using methyl methacrylate as a main raw material as a resin having an imidizable unit is used, and the resin having the imidizable unit is imidized using ammonia or a substituted amine. Can be obtained.
アクリル系重合体(A)のガラス転移温度は110℃以上が好ましい。より好ましくは115℃以上、さらに好ましくは120℃以上であり、特に好ましくは125℃以上である。またガラス転移温度の上限は特に限定されないが、成形性からは200℃以下が好ましい。ここで、ガラス転移温度とは、ポリマー分子がミクロブラウン運動を始める温度であり、各種の測定方法があるが、本発明においては、示差走査熱熱量計(DSC)によって、JIS−K7121に準拠して、始点法で求めた温度と定義する。 The glass transition temperature of the acrylic polymer (A) is preferably 110 ° C. or higher. More preferably, it is 115 degreeC or more, More preferably, it is 120 degreeC or more, Most preferably, it is 125 degreeC or more. The upper limit of the glass transition temperature is not particularly limited, but is preferably 200 ° C. or less from the viewpoint of moldability. Here, the glass transition temperature is a temperature at which a polymer molecule starts micro-Brownian motion, and there are various measurement methods. In the present invention, a differential scanning calorimeter (DSC) conforms to JIS-K7121. This is defined as the temperature obtained by the starting point method.
アクリル系重合体(A)の重量平均分子量は、好ましくは10,000〜300,000、より好ましくは30,000〜300,000、更に好ましくは50,000〜250,000、特に好ましくは、80,000〜200,000である。 The weight average molecular weight of the acrylic polymer (A) is preferably 10,000 to 300,000, more preferably 30,000 to 300,000, still more preferably 50,000 to 250,000, and particularly preferably 80. , 000-200,000.
[重合体(B)]
本発明の重合体(B)は、芳香族ビニル単量体単位(b)を含み、負の固有複屈折を有する限り特に限定されず、芳香族ビニル単量体単位(b)に由来する構成単位を含む公知の重合体を使用できる。芳香族ビニル単量体としては特に限定されず、例えば、スチレン、ビニルトルエン、α−メチルスチレン、α−ヒドロキシメチルスチレン、α−ヒドロキシエチルスチレン、クロロスチレン、N−ビニルカルバゾール、ビニルナフタレン、ビニルアントラセンなどが挙げられる。重合体(B)の芳香族ビニル単量体の含有量は10質量%以上が好ましく、更に好ましくは30質量%以上、特に好ましくは50質量%以上である。
[Polymer (B)]
The polymer (B) of the present invention is not particularly limited as long as it contains an aromatic vinyl monomer unit (b) and has negative intrinsic birefringence, and is derived from the aromatic vinyl monomer unit (b). Known polymers containing units can be used. The aromatic vinyl monomer is not particularly limited. For example, styrene, vinyl toluene, α-methyl styrene, α-hydroxymethyl styrene, α-hydroxyethyl styrene, chlorostyrene, N-vinyl carbazole, vinyl naphthalene, vinyl anthracene. Etc. The content of the aromatic vinyl monomer in the polymer (B) is preferably 10% by mass or more, more preferably 30% by mass or more, and particularly preferably 50% by mass or more.
重合体(B)は(メタ)アクリル酸エステル単量体に由来する構成単位を含んでいてもよい。(メタ)アクリル酸エステル単量体としては、上記(メタ)アクリル酸エステル単量体を用いることができる。 The polymer (B) may contain a structural unit derived from a (meth) acrylic acid ester monomer. As the (meth) acrylic acid ester monomer, the above (meth) acrylic acid ester monomer can be used.
重合体(B)の具体的な種類は特に限定されないが、例えば、ポリスチレン、スチレン−(メタ)アクリル酸メチル共重合体、アクリロニトリル−スチレン共重合体、アクリロニトリル−スチレン−マレイミド共重合体スチレン−ブタジエンブロック共重合体などであってもよい。アクリル系重合体(A)との相容性に優れることから、アクリロニトリルやメタクリロニトリルなどのシアン化ビニル系単量体に由来する構成単位を含む重合体が好ましく、アクリロニトリルに由来する構成単位を含む重合体がより好ましく、アクリロニトリル−スチレン共重合体やアクリロニトリル−スチレン−マレイミド共重合体などのアクリロニトリル−スチレン系共重合体が特に好ましい。 Although the specific kind of polymer (B) is not specifically limited, For example, polystyrene, styrene-methyl methacrylate copolymer, acrylonitrile-styrene copolymer, acrylonitrile-styrene-maleimide copolymer styrene-butadiene It may be a block copolymer. A polymer containing a structural unit derived from a vinyl cyanide monomer such as acrylonitrile or methacrylonitrile is preferred because of its excellent compatibility with the acrylic polymer (A), and a structural unit derived from acrylonitrile is preferred. More preferred are polymers containing acrylonitrile-styrene copolymers such as acrylonitrile-styrene copolymers and acrylonitrile-styrene-maleimide copolymers.
なお、重合体(B)がアクリル系重合体(A)と相容性を有するか否かは、両者を混合して得た樹脂組成物のTgを後述する方法によって測定することにより確認できる。一般的には、当該組成物のTgが1点のみ確認されれば、重合体(B)はアクリル系重合体(A)と相容性を有しているといえる。 Whether or not the polymer (B) is compatible with the acrylic polymer (A) can be confirmed by measuring the Tg of the resin composition obtained by mixing the two by the method described later. Generally, if only one Tg of the composition is confirmed, it can be said that the polymer (B) has compatibility with the acrylic polymer (A).
重合体(B)が、アクリロニトリル−スチレン共重合体である場合、当該共重合体の全構成単位におけるスチレン単位が占める割合は特に限定されないが、通常、60〜80質量%程度の範囲であればよい。 When the polymer (B) is an acrylonitrile-styrene copolymer, the proportion of styrene units in all the structural units of the copolymer is not particularly limited, but is usually in the range of about 60 to 80% by mass. Good.
重合体(B)がアクリロニトリル−スチレン−マレイミド共重合体である場合、当該共重合体の全構成単位におけるスチレン単位が占める割合は特に限定されないが、通常、55〜80質量%程度の範囲であればよい。 When the polymer (B) is an acrylonitrile-styrene-maleimide copolymer, the proportion of styrene units in all the structural units of the copolymer is not particularly limited, but is usually in the range of about 55 to 80% by mass. That's fine.
重合体(B)はグラフト鎖に芳香族ビニル単量体単位を有するゴム質重合体を含んでいてもよい。グラフト鎖に芳香族ビニル単量体単位を有するゴム質重合体は、特に限定されないが、例えば、微粒子のアクリルゴムやブタジエンゴムなどの存在下に芳香族ビニル単量体を含む単量体を重合することによって製造が可能である。 The polymer (B) may contain a rubbery polymer having an aromatic vinyl monomer unit in the graft chain. The rubbery polymer having an aromatic vinyl monomer unit in the graft chain is not particularly limited. For example, a monomer containing an aromatic vinyl monomer is polymerized in the presence of fine particle acrylic rubber or butadiene rubber. Can be manufactured.
グラフト鎖に芳香族ビニル単量体単位を有するゴム質重合体としては、グラフト鎖にアクリロニトリルに由来する構成単位を含む芳香族ビニル単量体単位を有するゴム質重合体が好ましい。グラフト鎖がアクリロニトリルに由来する構成単位を含むと、アクリル系重合体(A)との相容性が向上するため、樹脂組成物中でゴム質重合体が均一に分散し、得られる位相差フィルムの全光線透過率が向上する。具体的には、アクリルゴムやブタジエンゴム、エチレン−プロピレンゴムにアクリロニトリル−スチレン共重合体をグラフトしたASA樹脂やABS樹脂、AES樹脂が挙げられ、重合体(B)の負の固有複屈折を低下させないことから、ASA樹脂が特に好ましい。 The rubbery polymer having an aromatic vinyl monomer unit in the graft chain is preferably a rubbery polymer having an aromatic vinyl monomer unit containing a structural unit derived from acrylonitrile in the graft chain. When the graft chain contains a structural unit derived from acrylonitrile, compatibility with the acrylic polymer (A) is improved, so that the rubbery polymer is uniformly dispersed in the resin composition, and the resulting retardation film The total light transmittance is improved. Specific examples include ASA resin, ABS resin, and AES resin obtained by grafting acrylonitrile-styrene copolymer to acrylic rubber, butadiene rubber, or ethylene-propylene rubber, which reduces the negative intrinsic birefringence of the polymer (B). ASA resin is particularly preferable because it is not allowed to occur.
重合体(B)の重量平均分子量は、好ましくは10,000〜500,000、より好ましくは50,000〜400,000であり、さらに好ましくは100,000〜300,000である。 The weight average molecular weight of the polymer (B) is preferably 10,000 to 500,000, more preferably 50,000 to 400,000, and still more preferably 100,000 to 300,000.
重合体(B)中の芳香族ビニル単量体単位(b)の含有量は、例えば、1H−NMRスペクトルの面積比から求めることができる。 The content of the aromatic vinyl monomer unit (b) in the polymer (B) can be determined, for example, from the area ratio of 1H-NMR spectrum.
[熱可塑性樹脂組成物(C)]
熱可塑性樹脂組成物(C)は、以下の(I)から(IV)の条件を満たす。
[Thermoplastic resin composition (C)]
The thermoplastic resin composition (C) satisfies the following conditions (I) to (IV).
(I) ;上記一般式(1)で表される繰り返し単位(a)を含有する正の固有複屈折を有するアクリル系重合体(A)と芳香族ビニル単量体単位(b)を含む負の固有複屈折を有する重合体(B)を含む。 (I); negative containing an acrylic polymer (A) having positive intrinsic birefringence containing the repeating unit (a) represented by the general formula (1) and an aromatic vinyl monomer unit (b) A polymer (B) having an intrinsic birefringence of
(II) ;繰り返し単位(a)と芳香族ビニル単量体単位(b)との質量比(a/b)が0.5〜2である。 (II): The mass ratio (a / b) of the repeating unit (a) to the aromatic vinyl monomer unit (b) is 0.5-2.
(III);アクリル系重合体(A)と重合体(B)の総和に対する、繰り返し単位(a)の含有量が25質量%以上である。 (III): The content of the repeating unit (a) with respect to the sum of the acrylic polymer (A) and the polymer (B) is 25% by mass or more.
(IV) ;アクリル系重合体(A)と重合体(B)の総和に対する、芳香族ビニル単量体単位(b)の含有量が20質量%以上である。 (IV): The content of the aromatic vinyl monomer unit (b) with respect to the sum of the acrylic polymer (A) and the polymer (B) is 20% by mass or more.
熱可塑性樹脂組成物(C)における正の固有複屈折を有するアクリル系重合体(A)の含有割合は、50質量%以上80質量%以下が好ましく、より好ましくは60質量%以上80質量%以下である。また、負の固有複屈折を有する重合体(B)の含有割合は20質量%以上50質量%以下が好ましく、より好ましくは25質量%以上40質量%以下である。 The content of the acrylic polymer (A) having positive intrinsic birefringence in the thermoplastic resin composition (C) is preferably 50% by mass or more and 80% by mass or less, and more preferably 60% by mass or more and 80% by mass or less. It is. The content of the polymer (B) having negative intrinsic birefringence is preferably 20% by mass or more and 50% by mass or less, more preferably 25% by mass or more and 40% by mass or less.
熱可塑性樹脂組成物(C)における上記繰り返し単位(a)と芳香族ビニル単量体単位(b)との質量比(a/b)は、0.5〜2であり、より好ましくは、0.5〜1.5である。 The mass ratio (a / b) of the repeating unit (a) to the aromatic vinyl monomer unit (b) in the thermoplastic resin composition (C) is 0.5 to 2, more preferably 0. .5 to 1.5.
熱可塑性樹脂組成物(C)は、アクリル系重合体(A)と重合体(B)の総和に対する、上記繰り返し単位(a)の含有量は25質量%以上である。上限は特にないが、80質量%以下であり、60質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下がさらに好ましい。上記範囲を外れると、アクリル系重合体(A)に由来する耐熱性や透明性が損なわれるおそれがある。 In the thermoplastic resin composition (C), the content of the repeating unit (a) with respect to the sum of the acrylic polymer (A) and the polymer (B) is 25% by mass or more. Although there is no upper limit in particular, it is 80 mass% or less, 60 mass% or less is preferable, 50 mass% or less is more preferable, and 40 mass% or less is further more preferable. If it is out of the above range, heat resistance and transparency derived from the acrylic polymer (A) may be impaired.
熱可塑性樹脂組成物(C)は、アクリル系重合体(A)と重合体(B)の総和に対する、芳香族ビニル単量体単位(b)の含有量が20質量%以上である。上限は特にないが、75質量%以下であり、60質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下がさらに好ましい。上記範囲を外れると、重合体(B)に由来する位相差特性が損なわれるおそれがある。 In the thermoplastic resin composition (C), the content of the aromatic vinyl monomer unit (b) with respect to the sum of the acrylic polymer (A) and the polymer (B) is 20% by mass or more. Although there is no upper limit in particular, it is 75 mass% or less, 60 mass% or less is preferable, 40 mass% or less is more preferable, and 30 mass% or less is more preferable. If it is out of the above range, the retardation characteristics derived from the polymer (B) may be impaired.
熱可塑性樹脂組成物(C)は、負の固有複屈折を有することが好ましい。負の固有複屈折を有することにより、位相差フィルムとしたときに、厚み方向の位相差Rthを−30nm以下とすることが容易となる。 The thermoplastic resin composition (C) preferably has negative intrinsic birefringence. By having negative intrinsic birefringence, when a retardation film is formed, the thickness direction retardation Rth can be easily set to -30 nm or less.
熱可塑性樹脂組成物(C)の可溶部の重量平均分子量は、好ましくは10,000〜500,000、より好ましくは50,000〜400,000であり、さらに好ましくは80,000〜300,000である。 The weight average molecular weight of the soluble part of the thermoplastic resin composition (C) is preferably 10,000 to 500,000, more preferably 50,000 to 400,000, and even more preferably 80,000 to 300, 000.
熱可塑性樹脂組成物(C)のガラス転移温度は110℃以上が好ましい。より好ましくは115℃以上、さらに好ましくは120℃以上であり、特に好ましくは125℃以上である。またガラス転移温度の上限は特に限定されないが、成形性からは200℃以下が好ましく、180℃以下がより好ましい。 The glass transition temperature of the thermoplastic resin composition (C) is preferably 110 ° C. or higher. More preferably, it is 115 degreeC or more, More preferably, it is 120 degreeC or more, Most preferably, it is 125 degreeC or more. Moreover, although the upper limit of glass transition temperature is not specifically limited, 200 degreeC or less is preferable from a moldability, and 180 degrees C or less is more preferable.
熱可塑性樹脂組成物(C)は、アクリル系重合体(A)とスチレン系重合体(B)以外のその他の熱可塑性樹脂を含んでいてもよい。これらのその他の熱可塑性樹脂は、特に種類は問わないが、例えば、ポリエチレン、ポリプロピレン、エチレン−プロピレン重合体、ポリ(4−メチル−1−ペンテン)等のオレフィン系ポリマー;塩化ビニル、塩素化ビニル樹脂等の含ハロゲン系ポリマー;ポリメタクリル酸メチル等のアクリルポリマー;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ナイロン6、ナイロン66、ナイロン610等のポリアミド;ポリアセタール:ポリカーボネート;ポリフェニレンオキシド;ポリフェニレンスルフィド:ポリエーテルエーテルケトン;ポリサルホン;ポリエーテルサルホン:ポリオキシペンジレン;ポリアミドイミド;スチレン系重合体をグラフト鎖に有しないゴム質重合体;などが挙げられる。 The thermoplastic resin composition (C) may contain other thermoplastic resins other than the acrylic polymer (A) and the styrene polymer (B). These other thermoplastic resins are not particularly limited in type, but are, for example, olefin polymers such as polyethylene, polypropylene, ethylene-propylene polymer, poly (4-methyl-1-pentene); vinyl chloride, chlorinated vinyl. Halogen-containing polymers such as resins; acrylic polymers such as polymethyl methacrylate; polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyamides such as nylon 6, nylon 66, and nylon 610; polyacetal: polycarbonate; polyphenylene oxide; Polyphenylene sulfide: Polyetheretherketone; Polysulfone; Polyethersulfone: Polyoxypentylene; Polyamideimide; Rubbery polymerization without styrenic polymer in the graft chain ; And the like.
熱可塑性樹脂組成物(C)は、その他の添加剤を含んでいてもよい。その他の添加剤としては、例えば、酸化防止剤、耐光安定剤、耐候安定剤、熱安定剤等の安定剤;位相差上昇剤、位相差低減剤、位相差安定剤などの位相差調整剤、ガラス繊維、炭素繊維等の補強材;紫外線吸収剤;近赤外線吸収剤;トリス(ジブロモプロピル)ホスフェート、トリアリルホスフェート、酸化アンチモン等の難燃剤;アニオン系、カチオン系、ノニオン系の界面活性剤等の帯電防止剤;無機顔料、有機顔料、染料等の着色剤;有機フィラーや無機フィラー:樹脂改質剤;可塑剤;滑剤;などが挙げられる。熱可塑性樹脂組成物中のその他の添加剤の含有割合は、好ましくは7質量%未満、より好ましくは2質量%以下、さらに好ましくは0.5質量%以下である。 The thermoplastic resin composition (C) may contain other additives. Other additives include, for example, antioxidants, light stabilizers, weathering stabilizers, heat stabilizers and other stabilizers; phase difference increasing agents, phase difference reducing agents, phase difference adjusting agents such as phase difference stabilizers, Reinforcing materials such as glass fibers and carbon fibers; ultraviolet absorbers; near infrared absorbers; flame retardants such as tris (dibromopropyl) phosphate, triallyl phosphate, antimony oxide; anionic, cationic, and nonionic surfactants Anti-static agents; colorants such as inorganic pigments, organic pigments and dyes; organic fillers and inorganic fillers: resin modifiers; plasticizers; lubricants; The content of other additives in the thermoplastic resin composition is preferably less than 7% by mass, more preferably 2% by mass or less, and still more preferably 0.5% by mass or less.
熱可塑性樹脂組成物(C)は、特に限定されないが、アクリル系重合体(A)とスチレン系重合体(B)、および、その他の熱可塑性樹脂や添加剤などを、従来公知の混合方法にて混合することで製造できる。例えば、オムニミキサー等の混合機でプレブレンドした後、得られた混合物を押出混練する方法を採用することができる。この場合、押出混練に用いる混練機は、特に限定されるものではなく、例えば、単軸押出機、二軸押出機等の押出機や加圧ニーダー等、例えば、従来公知の混練機を用いることができる。成形温度は、好ましくは200〜350℃、より好ましくは250〜320℃、更に好ましくは255℃〜300℃、特に好ましくは260℃〜300℃である。 The thermoplastic resin composition (C) is not particularly limited, but the acrylic polymer (A) and the styrene polymer (B), other thermoplastic resins and additives, etc. are mixed in a conventionally known mixing method. Can be manufactured by mixing. For example, after pre-blending with a mixer such as an omni mixer, a method of extruding and kneading the obtained mixture can be employed. In this case, the kneader used for extrusion kneading is not particularly limited. For example, a conventionally known kneader such as an extruder such as a single screw extruder or a twin screw extruder or a pressure kneader is used. Can do. The molding temperature is preferably 200 to 350 ° C, more preferably 250 to 320 ° C, still more preferably 255 ° C to 300 ° C, and particularly preferably 260 ° C to 300 ° C.
[位相差フィルム]
本発明の位相差フィルムは、下記条件(I)から(IV)を満たす熱可塑性樹脂組成物(C)からなり、フィルム面内における遅相軸の屈折率をnx、フィルム面内における進相軸の屈折率をny、フィルムの厚さ方向の屈折率をnz、フィルムの厚さをdとしたときに、Rth={(nx+ny)/2−nz}×dで表される厚さ方向の位相差Rthが−30nm以下である。
[Phase difference film]
The retardation film of the present invention comprises a thermoplastic resin composition (C) that satisfies the following conditions (I) to (IV), and the refractive index of the slow axis in the film plane is nx, and the fast axis in the film plane: Where Nth is the refractive index of the film, nz is the refractive index in the thickness direction of the film, and d is the thickness of the film, the thickness direction is represented by Rth = {(nx + ny) / 2−nz} × d. The phase difference Rth is −30 nm or less.
(I) ;下記一般式(1)で表される繰り返し単位(a)を含有する正の固有複屈折を有するアクリル系重合体(A)と芳香族ビニル単量体単位(b)を含む負の固有複屈折を有する重合体(B)を含む。 (I): negative containing an acrylic polymer (A) having a positive intrinsic birefringence containing a repeating unit (a) represented by the following general formula (1) and an aromatic vinyl monomer unit (b) A polymer (B) having an intrinsic birefringence of
(II) ;繰り返し単位(a)と芳香族ビニル単量体単位(b)との質量比(a/b)が0.5〜2である。 (II): The mass ratio (a / b) of the repeating unit (a) to the aromatic vinyl monomer unit (b) is 0.5-2.
(III);アクリル系重合体(A)と重合体(B)の総和に対する、繰り返し単位(a)の含有量が25質量%以上である。 (III): The content of the repeating unit (a) with respect to the sum of the acrylic polymer (A) and the polymer (B) is 25% by mass or more.
(IV) ;アクリル系重合体(A)と重合体(B)の総和に対する、芳香族ビニル単量体単位(b)の含有量が20質量%以上である。 (IV): The content of the aromatic vinyl monomer unit (b) with respect to the sum of the acrylic polymer (A) and the polymer (B) is 20% by mass or more.
本発明の位相差フィルムは、通常、延伸してなる一軸延伸性または二軸延伸性のフィルムである。延伸での配向による複屈折量Δnは、配向の度合いfによって支配され、高分子鎖が完全に配向したときの複屈折を固有複屈折Δn0と定義すれば、下記式の関係で表される。 The retardation film of the present invention is usually a uniaxially or biaxially stretchable film formed by stretching. The birefringence amount Δn due to orientation in stretching is governed by the degree of orientation f, and the birefringence when the polymer chain is completely oriented is defined as the intrinsic birefringence Δn0, and is expressed by the relationship of the following formula.
Δn=f×Δn0
熱可塑性樹脂組成物を構成する重合体の高分子鎖が延伸されることにより配向されると、単量体繰返し単位の屈折率の異方性が熱可塑性樹脂からなる材料全体に反映されることになり位相差が発現する。
Δn = f × Δn0
When the polymer polymer chain constituting the thermoplastic resin composition is oriented by stretching, the refractive index anisotropy of the monomer repeating unit is reflected in the entire material made of the thermoplastic resin. And phase difference appears.
負の固有複屈折を有する樹脂を延伸して得られたフィルム面内における遅相軸の屈折率をnx、フィルム面内における進相軸の屈折率をny、フィルムの厚さ方向の屈折率をnz、フィルムの厚さをdとしたときに、屈折率nx、ny、nzは、nz≧nx>ny、nz>nx≧nyまたはnx>nz>nyの関係にあり、式{(nx+ny)/2−nz}×dで定義される厚さ方向の位相差Rthは負となる。 The refractive index of the slow axis in the film plane obtained by stretching a resin having negative intrinsic birefringence is nx, the refractive index of the fast axis in the film plane is ny, and the refractive index in the thickness direction of the film is When the thickness of the film is d, the refractive indexes nx, ny, and nz are in the relationship of nz ≧ nx> ny, nz> nx ≧ ny, or nx> nz> ny, and the expression {(nx + ny) / The phase difference Rth in the thickness direction defined by 2-nz} × d is negative.
本願では、このような厚さ方向の位相差Rthが負であるフィルムを「負の位相差フィルム」と定義する。負の位相差フィルムでは、屈折率nx、ny、nzは、nz≧nx>ny、nz>nx≧nyまたはnx>nz>nyの関係にあり、nx、ny、nzが、nz=nx>nyの関係にあるとき、本発明の位相差フィルムはネガティブAプレートとなる。nx、ny、nzが、nz>nx=nyの関係にあるとき、本発明の位相差フィルムはポジティブCプレートとなる。nx、ny、nzは、nx>nz>nyかつnz>(nx+ny)/2の関係にあってもよい。 In the present application, such a film having a negative retardation Rth in the thickness direction is defined as a “negative retardation film”. In the negative retardation film, the refractive indexes nx, ny, and nz are in a relationship of nz ≧ nx> ny, nz> nx ≧ ny or nx> nz> ny, and nx, ny, and nz are nz = nx> ny. In this relationship, the retardation film of the present invention becomes a negative A plate. When nx, ny, and nz are in a relationship of nz> nx = ny, the retardation film of the present invention is a positive C plate. nx, ny, and nz may be in a relationship of nx> nz> ny and nz> (nx + ny) / 2.
即ち、本発明の位相差フィルムでは、フィルム面内における遅相軸および進相軸の方向の屈折率を、それぞれnxおよびnyとし、フィルムの厚さ方向の屈折率をnzとしたときに、nx、nyおよびnzが、以下の式(i)、(ii)または(iii)を満たしてもよい。 That is, in the retardation film of the present invention, when the refractive indexes in the slow axis direction and the fast axis direction in the film plane are nx and ny, respectively, and the refractive index in the thickness direction of the film is nz, nx , Ny and nz may satisfy the following formula (i), (ii) or (iii).
nz>nx=ny (i)
nz=nx>ny (ii)
nx>nz>nyかつnz>(nx+ny)/2 (iii)
本発明の位相差フィルムのガラス転移温度は110℃以上であることが好ましく、より好ましくは115℃以上、さらに好ましくは120℃以上であり、ガラス転移温度の上限は特に限定されないが、好ましくは200℃以下であり、より好ましくは180℃以下である。
nz> nx = ny (i)
nz = nx> ny (ii)
nx>nz> ny and nz> (nx + ny) / 2 (iii)
The glass transition temperature of the retardation film of the present invention is preferably 110 ° C. or higher, more preferably 115 ° C. or higher, and further preferably 120 ° C. or higher. The upper limit of the glass transition temperature is not particularly limited, but preferably 200 ° C. ° C or lower, more preferably 180 ° C or lower.
本発明の位相差フィルムは、厚さ方向の位相差Rthが−30nm以下である。好ましくは、−30nm以下−1000nm以上の範囲、より好ましくは−50nm以下−500nm以上であり、さらに好ましくは−70nm以下−200nm以上の範囲である。なお、位相差Rthは、フィルム面内における遅相軸の屈折率をnx、フィルム面内における進相軸の屈折率をny、フィルムの厚さ方向の屈折率をnz、フィルムの厚さをdとしたときに、式{(nx+ny)/2−nz}×dにより与えられる。なお、本明細書における屈折率nx、ny、nzは、波長589nmの光に対する屈折率である。 The retardation film of the present invention has a thickness direction retardation Rth of −30 nm or less. The range is preferably −30 nm or less and −1000 nm or more, more preferably −50 nm or less and −500 nm or more, and further preferably −70 nm or less and −200 nm or more. The phase difference Rth is defined as nx as the refractive index of the slow axis in the film plane, ny as the refractive index of the fast axis in the film plane, nz as the refractive index in the film thickness direction, and d as the film thickness. Is given by the expression {(nx + ny) / 2−nz} × d. Note that the refractive indexes nx, ny, and nz in this specification are refractive indexes with respect to light having a wavelength of 589 nm.
また、本発明の位相差フィルムは、面内位相差Reが、例えば、0nm以上1000nm以下の範囲である。好ましくは、20nm以下500nm以上の範囲、より好ましくは50nm以下300nm以上、の範囲である。なお、面内位相差Reは、式(nx−ny)×dにより与えられる。 In the retardation film of the present invention, the in-plane retardation Re is, for example, in the range of 0 nm to 1000 nm. Preferably, it is the range of 20 nm or less and 500 nm or more, more preferably 50 nm or less and 300 nm or more. The in-plane phase difference Re is given by the formula (nx−ny) × d.
本発明の位相差フィルムが示す位相差は、熱可塑性樹脂組成物(C)の延伸の程度の調整(例えば、延伸方法、延伸温度、延伸倍率などの調整)によっても制御できる。 The retardation exhibited by the retardation film of the present invention can also be controlled by adjusting the degree of stretching of the thermoplastic resin composition (C) (for example, adjusting the stretching method, stretching temperature, stretching ratio, etc.).
本発明の位相差フィルムの厚さは特に限定されないが、例えば10μm〜500μmであり、20μm〜300μmが好ましく、30μm〜150μmが特に好ましい。 Although the thickness of the retardation film of this invention is not specifically limited, For example, they are 10 micrometers-500 micrometers, 20 micrometers-300 micrometers are preferable, and 30 micrometers-150 micrometers are especially preferable.
本発明の位相差フィルムは、全光線透過率が85%以上であることが好ましい。より好ましくは90%以上、さらに好ましくは91%以上である。全光線透過率は、透明性の目安であり、85%未満であると透明性が低下し、光学フィルムとして適さない。本発明の位相差フィルムは、アクリル系重合体(A)と重合体(B)の相溶性が良好であるため、透明性の高い位相差フィルムが得られる。また、重合体(B)として前記グラフト鎖にスチレン系重合体有するゴム質重合体を用いる場合、グラフト鎖がアクリロニトリルに由来する構成単位を含むと、アクリル重合体(A)との相容性が向上するため、樹脂組成物中でゴム質重合体が均一に分散し、得られる位相差フィルムの全光線透過率が向上する。 The retardation film of the present invention preferably has a total light transmittance of 85% or more. More preferably, it is 90% or more, More preferably, it is 91% or more. The total light transmittance is a measure of transparency, and if it is less than 85%, the transparency is lowered and it is not suitable as an optical film. Since the retardation film of the present invention has good compatibility between the acrylic polymer (A) and the polymer (B), a highly transparent retardation film can be obtained. Moreover, when using the rubbery polymer which has a styrene-type polymer for the said graft chain as a polymer (B), if a graft chain contains the structural unit derived from acrylonitrile, compatibility with an acrylic polymer (A) will be sufficient. Therefore, the rubbery polymer is uniformly dispersed in the resin composition, and the total light transmittance of the resulting retardation film is improved.
厚さ方向の位相差Rthおよび面内位相差Reが上記範囲にある負の位相差フィルムをIPSモードのLCDに配置することにより、斜めから画面を見たときの光漏れを抑制できる。また、高コントラストおよび低い色ずれの画像表示を実現できる。 By disposing a negative retardation film having a thickness direction retardation Rth and an in-plane retardation Re in the above ranges on an IPS mode LCD, light leakage when the screen is viewed obliquely can be suppressed. In addition, it is possible to realize image display with high contrast and low color shift.
本発明の位相差フィルムにおける位相差Rthおよび位相差Reの値、ならびに屈折率nx、nyおよびnzの関係は、目的とする光学特性に応じて選択できる。 In the retardation film of the present invention, the values of the retardation Rth and retardation Re, and the relationship between the refractive indices nx, ny and nz can be selected according to the target optical characteristics.
本発明の位相差フィルムは、一軸延伸性であっても二軸延伸性であってもよい。位相差など、目的とする光学特性に応じて選択できる。 The retardation film of the present invention may be uniaxially stretchable or biaxially stretchable. It can be selected according to the desired optical characteristics such as phase difference.
本発明の位相差フィルムは、光学特性が同一または異なる2以上の層が積層された積層構造を有していてもよい。 The retardation film of the present invention may have a laminated structure in which two or more layers having the same or different optical properties are laminated.
本発明の位相差フィルムの用途は特に限定されず、従来の位相差フィルムと同様の用途への使用が可能である。より具体的には、本発明の位相差フィルムを、IPSモード、OCB(optically compensated birefringence)モードのLCDにおける光学補償フィルムとして使用できる。 The application of the retardation film of the present invention is not particularly limited, and can be used for the same applications as conventional retardation films. More specifically, the retardation film of the present invention can be used as an optical compensation film in an LCD in an IPS mode or an OCB (optically compensated birefringence) mode.
本発明の位相差フィルムは、その位相差および波長分散性の調整を目的として、他の光学部材(例えば位相差フィルム)と組み合わせることができる。 The retardation film of the present invention can be combined with other optical members (for example, a retardation film) for the purpose of adjusting the retardation and wavelength dispersion.
本発明の位相差フィルムは公知の手法により形成できる。例えば、熱可塑性樹脂組成物(C)をフィルム化し、得られた樹脂フィルムを所定の方向に一軸延伸または二軸延伸すればよい。 The retardation film of the present invention can be formed by a known method. For example, the thermoplastic resin composition (C) may be formed into a film, and the obtained resin film may be uniaxially or biaxially stretched in a predetermined direction.
熱可塑性樹脂組成物(C)をフィルム化する方法は特に限定されない。熱可塑性樹脂組成物(C)が溶液状である場合、例えばキャスト成形すればよい。熱可塑性樹脂組成物(C)が固形状である場合、溶融押出やプレス成形などの成形手法を用いればよい。 The method for forming the thermoplastic resin composition (C) into a film is not particularly limited. When the thermoplastic resin composition (C) is in the form of a solution, it may be cast, for example. When the thermoplastic resin composition (C) is solid, a molding technique such as melt extrusion or press molding may be used.
得られた樹脂フィルムを一軸または二軸延伸する方法は特に限定されず、公知の手法に従えばよい。一軸延伸は、典型的には、フィルムの幅方向の変化を自由とする自由端一軸延伸である。フィルムの幅方向の変化を固定とする固定端一軸延伸も可能である。二軸延伸は、典型的には逐次二軸延伸であるが、縦横延伸を同時に行う同時二軸延伸も好適に使用できる。更に、厚み方向の延伸やフィルムロールに対して斜め方向に延伸することも可能である。延伸方法、延伸温度および延伸倍率は、目的とする光学特性および機械的特性などに応じて、適宜選択すればよい。 The method of uniaxially or biaxially stretching the obtained resin film is not particularly limited, and a known method may be followed. Uniaxial stretching is typically free-end uniaxial stretching in which the change in the width direction of the film is free. Fixed-end uniaxial stretching is also possible in which the change in the width direction of the film is fixed. Biaxial stretching is typically sequential biaxial stretching, but simultaneous biaxial stretching in which longitudinal and transverse stretching are simultaneously performed can also be suitably used. Furthermore, it is also possible to stretch in the oblique direction with respect to stretching in the thickness direction or film roll. The stretching method, stretching temperature, and stretching ratio may be appropriately selected according to the target optical characteristics and mechanical characteristics.
[偏光板]
本発明の偏光板の構造は、上記本発明の位相差フィルムを備える限り、特に限定されない。本発明の偏光板は、例えば、偏光子の片面または両面に偏光子保護フィルムを接合させた構造を有する。このとき、少なくとも1つの偏光子保護フィルムが、本発明の位相差フィルムであってもよいし、偏光板が、偏光子および偏光子保護フィルム以外の層を有しており、当該層が本発明の位相差フィルムであってもよい。
[Polarizer]
The structure of the polarizing plate of the present invention is not particularly limited as long as it includes the retardation film of the present invention. The polarizing plate of the present invention has, for example, a structure in which a polarizer protective film is bonded to one side or both sides of a polarizer. At this time, at least one polarizer protective film may be the retardation film of the present invention, the polarizing plate has a layer other than the polarizer and the polarizer protective film, and the layer is the present invention. The retardation film may be used.
偏光子は特に限定されず、例えば、ポリビニルアルコールフィルムを染色、延伸して得た偏光子;脱水処理したポリビニルアルコールあるいは脱塩酸処理したポリ塩化ビニルなどのポリエン偏光子;多層積層体あるいはコレステリック液晶を用いた反射型偏光子;薄膜結晶フィルムからなる偏光子などの公知の偏光子である。なかでも、ポリビニルアルコールを染色、延伸して得た偏光子が好ましい。 The polarizer is not particularly limited. For example, a polarizer obtained by dyeing and stretching a polyvinyl alcohol film; a polyene polarizer such as dehydrated polyvinyl alcohol or dehydrochlorinated polyvinyl chloride; a multilayer laminate or a cholesteric liquid crystal Reflective polarizer used: a known polarizer such as a polarizer made of a thin film crystal film. Among these, a polarizer obtained by dyeing and stretching polyvinyl alcohol is preferable.
本発明の偏光板の構造の典型的な一例は、ポリビニルアルコールをヨウ素または二色性染料などの二色性物質により染色した後に一軸延伸して得た偏光子の片面または両面に、偏光子保護フィルムとして、本発明の位相差フィルムを接合させた構造である。 A typical example of the structure of the polarizing plate of the present invention is that the polarizer is protected on one or both sides of a polarizer obtained by uniaxially stretching after dying a polyvinyl alcohol with a dichroic substance such as iodine or a dichroic dye. The film has a structure in which the retardation film of the present invention is bonded.
[画像表示装置]
本発明の画像表示装置の構造は、上記本発明の位相差フィルムを備える限り、特に限定されない。本発明の画像表示装置は、例えば液晶表示装置(LCD)であり、当該LCD装置の画像表示部が、液晶セル、偏光板、バックライトなどの部材とともに、本発明の位相差フィルムを備える。本発明の画像表示装置は、典型的には、光学補償フィルムとして本発明の位相差フィルムを備える。偏光板の偏光子保護フィルムとして、本発明の位相差フィルムを備えていてもよい。
[Image display device]
The structure of the image display device of the present invention is not particularly limited as long as it includes the retardation film of the present invention. The image display device of the present invention is, for example, a liquid crystal display device (LCD), and the image display unit of the LCD device includes the retardation film of the present invention together with members such as a liquid crystal cell, a polarizing plate, and a backlight. The image display device of the present invention typically includes the retardation film of the present invention as an optical compensation film. The retardation film of the present invention may be provided as a polarizer protective film for a polarizing plate.
LCDの画像表示モードは特に限定されないが、本発明の位相差フィルムは負の位相差フィルムであるため、IPSモードまたはOCBモードが好適である。 The image display mode of the LCD is not particularly limited, but since the retardation film of the present invention is a negative retardation film, the IPS mode or the OCB mode is preferable.
<ガラス転移温度>
重合体のガラス転移温度(Tg)は、JIS K7121に準拠して求めた。具体的には、示差走査熱量計(リガク社製、DSC−8230)を用い、窒素ガス雰囲気下、約10mgのサンプルを常温から200℃まで昇温(昇温速度20℃/分)して得られたDSC曲線から、始点法により評価した。リファレンスには、α−アルミナを用いた。
<Glass transition temperature>
The glass transition temperature (Tg) of the polymer was determined according to JIS K7121. Specifically, a differential scanning calorimeter (manufactured by Rigaku Corporation, DSC-8230) is used to raise a temperature of about 10 mg from room temperature to 200 ° C. (temperature increase rate: 20 ° C./min) in a nitrogen gas atmosphere. From the obtained DSC curve, it was evaluated by the starting point method. Α-alumina was used as a reference.
<重量平均分子量>
重合体の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、ポリスチレン換算により求めた。測定に用いた装置および測定条件は以下の通りである。
<Weight average molecular weight>
The weight average molecular weight of the polymer was determined in terms of polystyrene using gel permeation chromatography (GPC). The apparatus and measurement conditions used for the measurement are as follows.
システム:東ソー製
カラム:TSK−GEL SuperHZM−M 6.0×150 2本直列
ガードカラム:TSK−GEL SuperHZ−L 4.6×35 1本
リファレンスカラム:TSK−GEL SuperH−RC 6.0×150 2本直列
溶離液:クロロホルム 流量0.6mL/分
カラム温度:40℃
<屈折率異方性>
波長589nmにおける、フィルムの面内位相差値Re、厚み方向位相差値Rthは、大塚電子社製RETS−100を用いて測定した。
System: manufactured by Tosoh Column: TSK-GEL SuperHZM-M 6.0 × 150 2 in series Guard column: TSK-GEL SuperHZ-L 4.6 × 35 1 Reference column: TSK-GEL SuperH-RC 6.0 × 150 Two in series Eluent: Chloroform Flow rate 0.6 mL / min Column temperature: 40 ° C
<Refractive index anisotropy>
The in-plane retardation value Re and thickness direction retardation value Rth of the film at a wavelength of 589 nm were measured using RETS-100 manufactured by Otsuka Electronics Co., Ltd.
位相差フィルムにおける面内位相差Reおよび厚さ方向の位相差Rthは、それぞれ、Re=(nx−ny)×dおよびRth=[(nx+ny)/2−nz]×dにより示される。ここで、nxは位相差フィルムの面内における遅相軸方向(フィルム面内において最大の屈折率を示す方向)の屈折率、nyは位相差フィルムの面内における進相軸方向(フィルム面内におけるnxと垂直な方向)の屈折率、nzは位相差フィルムの厚さ方向の屈折率、dは位相差フィルムの厚さを示す。
なお、フィルムの厚さdは、デジマチックマイクロメーター(ミツトヨ製)を用いて測定した。
The in-plane retardation Re and the thickness direction retardation Rth in the retardation film are represented by Re = (nx−ny) × d and Rth = [(nx + ny) / 2−nz] × d, respectively. Here, nx is the refractive index in the slow axis direction in the plane of the retardation film (direction showing the maximum refractive index in the film plane), ny is the fast axis direction in the plane of the retardation film (in the film plane) In the direction perpendicular to nx), nz is the refractive index in the thickness direction of the retardation film, and d is the thickness of the retardation film.
The thickness d of the film was measured using a Digimatic micrometer (manufactured by Mitutoyo).
<固有複屈折の正負>
位相差フィルムを構成する樹脂組成物の固有複屈折の正負は、全自動複屈折計(王子計測機器製、KOBRA−WR)を用いて当該フィルムの配向角を求め、その値に基づいて評価した。具体的には樹脂組成物からなるフィルムをガラス転移温度よりも5℃から10℃高い温度に加熱した状態で自由端一軸延伸を行い、測定された配向角が延伸方向に対して0°近傍の場合、位相差フィルムを構成する重合体の固有複屈折は正であり、測定された配向角が90°近傍の場合、位相差フィルムを構成する樹脂組成物の固有複屈折は負とした。
<Negative birefringence positive / negative>
The positive or negative of the intrinsic birefringence of the resin composition constituting the retardation film was evaluated based on the orientation angle of the film obtained using a fully automatic birefringence meter (manufactured by Oji Scientific Instruments, KOBRA-WR). . Specifically, free end uniaxial stretching is performed in a state where the film made of the resin composition is heated to a temperature 5 to 10 ° C. higher than the glass transition temperature, and the measured orientation angle is near 0 ° with respect to the stretching direction. In this case, the intrinsic birefringence of the polymer constituting the retardation film is positive, and when the measured orientation angle is around 90 °, the intrinsic birefringence of the resin composition constituting the retardation film is negative.
<繰り返し単位(a)の定量>
アクリル系重合体(A)樹脂ペレットを用いて、IRスペクトルを測定し、1670cm−1付近のイミドカルボニル基の吸収強度と1720cm−1付近のエステルカルボニル基の吸収強度、1760cm−1付近の酸無水物のカルボニル基の吸収強度の比より、繰り返し単位(a)の含有量を求めた。
<Quantification of repeating unit (a)>
Using an acrylic polymer (A) resin pellet, an IR spectrum was measured, the absorption strength of an imide carbonyl group near 1670 cm −1, the absorption strength of an ester carbonyl group near 1720 cm −1, and an acid anhydride near 1760 cm −1. The content of the repeating unit (a) was determined from the ratio of the absorption intensity of the carbonyl group of the product.
<芳香族ビニル単量体単位(b)の定量>
重合体(B)の樹脂ペレットを用いて、1H−NMRスペクトルを測定し、低磁場側の芳香環に由来する水素の面積と高磁場側のビニル基に由来する水素の面積の比から芳香族ビニル単量体単位(b)の含有量を求めた。
<Quantification of aromatic vinyl monomer unit (b)>
Using the resin pellet of the polymer (B), 1H-NMR spectrum was measured, and the aromatic from the ratio of the area of hydrogen derived from the aromatic ring on the low magnetic field side and the area of hydrogen derived from the vinyl group on the high magnetic field side. The content of the vinyl monomer unit (b) was determined.
(製造例1)
アクリル系重合体(A)として、繰り返し単位(a)が42質量%であるダイセル・エボニック製プレキシイミド8813(ガラス転移温度132℃、重量平均分子量95000)を70質量部、重合体(B)として旭化成製スタイラックAS783(スチレン73質量%、アクリロニトリル27質量%、ガラス転移温度108℃、重量平均分子量220,000)30質量部を二軸押出機を用いて混練し、繰り返し単位(a)と芳香族ビニル単量体単位(b)との質量比(a/b)が1.3である熱可塑性樹脂組成物(C−1)を得た。得られた熱可塑性樹脂組成物(C−1)のガラス転移温度は126℃、重量平均分子量は142,000であった。
(Production Example 1)
As an acrylic polymer (A), Asahi Kasei has 70 parts by mass of Pleximide 8813 (glass transition temperature 132 ° C., weight average molecular weight 95000) manufactured by Daicel-Evonik, whose repeating unit (a) is 42% by mass, and polymer (B). 30 parts by mass of Stylac AS783 (73% by mass of styrene, 27% by mass of acrylonitrile, glass transition temperature 108 ° C., weight average molecular weight 220,000) are kneaded using a twin screw extruder, and the repeating unit (a) and aromatic A thermoplastic resin composition (C-1) having a mass ratio (a / b) with the vinyl monomer unit (b) of 1.3 was obtained. The obtained thermoplastic resin composition (C-1) had a glass transition temperature of 126 ° C. and a weight average molecular weight of 142,000.
(製造例2)
製造例1と同様にして、アクリル系重合体(A)として、ダイセル・エボニック製プレキシイミド8813を65質量部、重合体(B)として旭化成製スタイラックAS783を35質量部用いて、質量比(a/b)が1.0である熱可塑性樹脂組成物(C−2)を得た。得られた熱可塑性樹脂組成物(C−2)のガラス転移温度は123℃、重量平均分子量は152,000であった。
(Production Example 2)
In the same manner as in Production Example 1, 65 parts by mass of Pleximide 8813 manufactured by Daicel Evonik as an acrylic polymer (A) and 35 parts by mass of Astykasei Stylac AS783 as a polymer (B) were used, and the mass ratio (a A thermoplastic resin composition (C-2) having a / b of 1.0 was obtained. The thermoplastic resin composition (C-2) obtained had a glass transition temperature of 123 ° C. and a weight average molecular weight of 152,000.
(製造例3)
製造例1と同様にして、アクリル系重合体(A)として、ダイセル・エボニック製プレキシイミド8813を60質量部、重合体(B)として旭化成製スタイラックAS783を40質量部用いて、質量比(a/b)が0.8である熱可塑性樹脂組成物(C−3)を得た。得られた熱可塑性樹脂組成物(C−3)のガラス転移温度は121℃、重量平均分子量は154,000であった。
(Production Example 3)
In the same manner as in Production Example 1, 60 parts by mass of Daicel-Evonik's Pleximide 8813 as an acrylic polymer (A) and 40 parts by mass of Asahi Kasei's Stylac AS783 as a polymer (B) were used. A thermoplastic resin composition (C-3) having a / b of 0.8 was obtained. The thermoplastic resin composition (C-3) obtained had a glass transition temperature of 121 ° C. and a weight average molecular weight of 154,000.
(製造例4)
製造例1と同様にして、アクリル系重合体(A)として、ダイセル・エボニック製プレキシイミド8813を90質量部、重合体(B)として旭化成製スタイラックAS783を10質量部用いて、質量比(a/b)が4.9である熱可塑性樹脂組成物(C−4)を得た。得られた熱可塑性樹脂組成物(C−4)のガラス転移温度は130℃、重量平均分子量は115,000であった。
(Production Example 4)
In the same manner as in Production Example 1, 90 parts by mass of Daicel-Evonik's pleximide 8813 was used as the acrylic polymer (A), and 10 parts by mass of Asahi Kasei Stylac AS783 was used as the polymer (B). A thermoplastic resin composition (C-4) having a / b of 4.9 was obtained. The thermoplastic resin composition (C-4) obtained had a glass transition temperature of 130 ° C. and a weight average molecular weight of 115,000.
(製造例5)
製造例1と同様にして、アクリル系重合体(A)として、ダイセル・エボニック製プレキシイミド8813を80質量部、重合体(B)として旭化成製スタイラックAS783を20質量部用いて、質量比(a/b)が2.2である熱可塑性樹脂組成物(C−5)を得た。得られた熱可塑性樹脂組成物(C−5)のガラス転移温度は128℃、重量平均分子量は128,000であった。
(Production Example 5)
In the same manner as in Production Example 1, 80 parts by mass of Daicel-Evonik Pleximimide 8813 was used as the acrylic polymer (A), and 20 parts by mass of Asahi Kasei Stylac AS783 was used as the polymer (B). A thermoplastic resin composition (C-5) having a / b of 2.2 was obtained. The thermoplastic resin composition (C-5) obtained had a glass transition temperature of 128 ° C. and a weight average molecular weight of 128,000.
(実施例1)
製造例1で作成した熱可塑性樹脂組成物(C−1)を単軸押出機(φ=20mm、L/D=25)を用いて、280℃でコートハンガータイプのTダイ(幅150mm)から溶融押出を行い、温度110℃の冷却ロール上に吐出して、厚さ140μmのフィルムを作製した。次に作成したフィルムを、インストロン万能試験機を用いて、MD方向の延伸倍率が2.0倍となるように、延伸温度131℃で自由端一軸延伸して、厚さ94μmの位相差フィルム(FC−1)を得た。位相差フィルム(FC−1)の物性を表1に示す。
Example 1
The thermoplastic resin composition (C-1) prepared in Production Example 1 was coated from a coat hanger type T die (width 150 mm) at 280 ° C. using a single screw extruder (φ = 20 mm, L / D = 25). The film was melt-extruded and discharged onto a cooling roll having a temperature of 110 ° C. to produce a film having a thickness of 140 μm. Next, using the Instron universal testing machine, the produced film was uniaxially stretched at a stretching temperature of 131 ° C. so that the stretching ratio in the MD direction was 2.0 times, and a retardation film having a thickness of 94 μm. (FC-1) was obtained. Table 1 shows the physical properties of the retardation film (FC-1).
(実施例2)
製造例2で作成した熱可塑性樹脂組成物(C−2)を用い、実施例1と同様にして厚さ135μmのフィルムを作成し、インストロン万能試験機を用いて、MD方向の延伸倍率が2.0倍となるように、延伸温度128℃で自由端一軸延伸して、厚さ97μmの位相差フィルム(FC−2)を得た。位相差フィルム(FC−2)の物性を表1に示す。
(Example 2)
Using the thermoplastic resin composition (C-2) prepared in Production Example 2, a film having a thickness of 135 μm was prepared in the same manner as in Example 1, and the draw ratio in the MD direction was determined using an Instron universal testing machine. Free end uniaxial stretching was performed at a stretching temperature of 128 ° C. so as to be 2.0 times to obtain a retardation film (FC-2) having a thickness of 97 μm. Table 1 shows the physical properties of the retardation film (FC-2).
(実施例3)
製造例3で作成した熱可塑性樹脂組成物(C−3)を用い、実施例1と同様にして厚さ132μmのフィルムを作成し、インストロン万能試験機を用いて、MD方向の延伸倍率が2.0倍となるように、延伸温度126℃で自由端一軸延伸して、厚さ94μmの位相差フィルム(FC−3)を得た。位相差フィルム(FC−3)の物性を表1に示す。
(Example 3)
Using the thermoplastic resin composition (C-3) prepared in Production Example 3, a film having a thickness of 132 μm was prepared in the same manner as in Example 1, and the draw ratio in the MD direction was determined using an Instron universal testing machine. Free end uniaxial stretching was performed at a stretching temperature of 126 ° C. so as to be 2.0 times to obtain a retardation film (FC-3) having a thickness of 94 μm. Table 1 shows the physical properties of the retardation film (FC-3).
(実施例4)
製造例2で作成した熱可塑性樹脂組成物(C−2)を用い、実施例1と同様にして厚さ140μmのフィルムを作成した。次に作成したフィルムを、逐次二軸延伸機(東洋精機製作所製 X−6S)を用いて、MD方向の延伸倍率が1.5倍、TD方向の延伸倍率が2.5倍となるように、延伸温度133℃で逐次二軸延伸して、厚さ37μmの位相差フィルム(DC−2)を得た。位相差フィルム(DC−2)の物性を表1に示す。
Example 4
Using the thermoplastic resin composition (C-2) prepared in Production Example 2, a film having a thickness of 140 μm was prepared in the same manner as in Example 1. Next, using the sequential biaxial stretching machine (X-6S manufactured by Toyo Seiki Seisakusho), the created film is stretched 1.5 times in the MD direction and 2.5 times in the TD direction. The film was sequentially biaxially stretched at a stretching temperature of 133 ° C. to obtain a retardation film (DC-2) having a thickness of 37 μm. Table 1 shows the physical properties of the retardation film (DC-2).
(実施例5)
製造例3で作成した熱可塑性樹脂組成物(C−3)を用い、実施例1と同様にして厚さ142μmのフィルムを作成した。次に作成したフィルムを、逐次二軸延伸機(東洋精機製作所製 X−6S)を用いて、MD方向の延伸倍率が1.5倍、TD方向の延伸倍率が2.5倍となるように、延伸温度131℃で逐次二軸延伸して、厚さ38μmの位相差フィルム(DC−3)を得た。位相差フィルム(DC−3)の物性を表1に示す。
(Example 5)
Using the thermoplastic resin composition (C-3) prepared in Production Example 3, a film having a thickness of 142 μm was prepared in the same manner as in Example 1. Next, using the sequential biaxial stretching machine (X-6S manufactured by Toyo Seiki Seisakusho), the created film is stretched 1.5 times in the MD direction and 2.5 times in the TD direction. The film was sequentially biaxially stretched at a stretching temperature of 131 ° C. to obtain a retardation film (DC-3) having a thickness of 38 μm. Table 1 shows the physical properties of the retardation film (DC-3).
(実施例6)
製造例3で作成した熱可塑性樹脂組成物(C−3)を用い、実施例1と同様にして厚さ142μmのフィルムを作成した。次に作成したフィルムを、逐次二軸延伸機(東洋精機製作所製 X−6S)を用いて、TD方向の延伸倍率が2.0倍となるように、延伸温度126℃で固定端1軸延伸して、厚さ67μmの位相差フィルム(EC−3)を得た。位相差フィルム(EC−3)の物性を表1に示す。
(Example 6)
Using the thermoplastic resin composition (C-3) prepared in Production Example 3, a film having a thickness of 142 μm was prepared in the same manner as in Example 1. Next, the prepared film is uniaxially stretched at a fixed end at a stretching temperature of 126 ° C. using a sequential biaxial stretching machine (X-6S manufactured by Toyo Seiki Seisakusho) so that the stretching ratio in the TD direction is 2.0 times. Thus, a retardation film (EC-3) having a thickness of 67 μm was obtained. Table 1 shows the physical properties of the retardation film (EC-3).
(比較例1)
製造例4で作成した熱可塑性樹脂(C−4)を用い、実施例1と同様にして厚さ140μmのフィルムを作成し、インストロン万能試験機を用いて、MD方向の延伸倍率が2.0倍となるように、延伸温度135℃で自由端一軸延伸して、厚さ70μmの位相差フィルム(FC−4)を得た。位相差フィルム(FC−4)の物性を表−1に示す。
(Comparative Example 1)
Using the thermoplastic resin (C-4) produced in Production Example 4, a film having a thickness of 140 μm was produced in the same manner as in Example 1, and using an Instron universal testing machine, the draw ratio in the MD direction was 2. A free end uniaxial stretching was performed at a stretching temperature of 135 ° C. so as to be 0 times to obtain a retardation film (FC-4) having a thickness of 70 μm. Table 1 shows the physical properties of the retardation film (FC-4).
(比較例2)
製造例5で作成した熱可塑性樹脂(C−5)を用い、実施例1と同様にして厚さ152μmのフィルムを作成し、インストロン万能試験機を用いて、MD方向の延伸倍率が2.0倍となるように、延伸温度135℃で自由端一軸延伸して、厚さ98μmの位相差フィルム(FC−5)を得た。位相差フィルム(FC−5)の物性を表−1に示す。
(Comparative Example 2)
Using the thermoplastic resin (C-5) produced in Production Example 5, a film having a thickness of 152 μm was produced in the same manner as in Example 1, and using an Instron universal testing machine, the draw ratio in the MD direction was 2. A free-end uniaxial stretching was performed at a stretching temperature of 135 ° C. so as to be 0 times to obtain a retardation film (FC-5) having a thickness of 98 μm. Table 1 shows the physical properties of the retardation film (FC-5).
(比較例3)
製造例5で作成した熱可塑性樹脂組成物(C−5)を用い、実施例1と同様にして厚さ135μmのフィルムを作成した。次に作成したフィルムを、逐次二軸延伸機(東洋精機製作所製 X−6S)を用いて、MD方向の延伸倍率が1.5倍、TD方向の延伸倍率が2.5倍となるように、延伸温度138℃で逐次二軸延伸して、厚さ35μmの位相差フィルム(DC−5)を得た。位相差フィルム(DC−5)の物性を表1に示す。
(Comparative Example 3)
Using the thermoplastic resin composition (C-5) prepared in Production Example 5, a film having a thickness of 135 μm was prepared in the same manner as in Example 1. Next, using the sequential biaxial stretching machine (X-6S manufactured by Toyo Seiki Seisakusho), the created film is stretched 1.5 times in the MD direction and 2.5 times in the TD direction. The film was sequentially biaxially stretched at a stretching temperature of 138 ° C. to obtain a retardation film (DC-5) having a thickness of 35 μm. Table 1 shows the physical properties of the retardation film (DC-5).
本発明の負の位相差フィルムは、従来の位相差フィルムと同様に、液晶表示装置(LCD)をはじめとする画像表示装置に幅広く使用できる。この位相差フィルムの使用により、画像表示装置における表示特性を改善できる。
The negative retardation film of the present invention can be widely used for image display devices such as a liquid crystal display device (LCD) as in the case of conventional retardation films. By using this retardation film, display characteristics in the image display device can be improved.
Claims (5)
(I) ;下記一般式(1)で表される繰り返し単位(a)を含有する正の固有複屈折を有するアクリル系重合体(A)と芳香族ビニル単量体単位(b)を含む負の固有複屈折を有する重合体(B)を含む。
(II) ;繰り返し単位(a)と芳香族ビニル単量体単位(b)との質量比(a/b)が0.5〜2である。
(III);アクリル系重合体(A)と重合体(B)の総和に対する、繰り返し単位(a)の含有量が25質量%以上である。
(IV) ;アクリル系重合体(A)と重合体(B)の総和に対する、芳香族ビニル単量体単位(b)の含有量が20質量%以上である。
[式中、R1、R2、R3はそれぞれ独立して水素原子または、炭素数1〜20の有機残基を表す。] It consists of a thermoplastic resin composition (C) satisfying the conditions (I) to (IV), the refractive index of the slow axis in the film plane is nx, the refractive index of the fast axis in the film plane is ny, and the film thickness The thickness direction retardation Rth represented by Rth = {(nx + ny) / 2−nz} × d, where nz is the refractive index in the vertical direction and d is the thickness of the film, is −30 nm or less. Phase difference film.
(I): negative containing an acrylic polymer (A) having a positive intrinsic birefringence containing a repeating unit (a) represented by the following general formula (1) and an aromatic vinyl monomer unit (b) A polymer (B) having an intrinsic birefringence of
(II): The mass ratio (a / b) of the repeating unit (a) to the aromatic vinyl monomer unit (b) is 0.5-2.
(III): The content of the repeating unit (a) with respect to the sum of the acrylic polymer (A) and the polymer (B) is 25% by mass or more.
(IV): The content of the aromatic vinyl monomer unit (b) with respect to the sum of the acrylic polymer (A) and the polymer (B) is 20% by mass or more.
[Wherein, R 1, R 2 and R 3 each independently represents a hydrogen atom or an organic residue having 1 to 20 carbon atoms. ]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010213132A JP2012068430A (en) | 2010-09-24 | 2010-09-24 | Retardation film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010213132A JP2012068430A (en) | 2010-09-24 | 2010-09-24 | Retardation film |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012068430A true JP2012068430A (en) | 2012-04-05 |
Family
ID=46165792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010213132A Pending JP2012068430A (en) | 2010-09-24 | 2010-09-24 | Retardation film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012068430A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013083956A (en) * | 2011-09-30 | 2013-05-09 | Nippon Shokubai Co Ltd | Phase difference film, polarizing plate, and image display device |
CN110058344A (en) * | 2013-08-09 | 2019-07-26 | 住友化学株式会社 | Optical film |
JP2020181204A (en) * | 2020-07-10 | 2020-11-05 | 三菱ケミカル株式会社 | A method for producing a film having a negative thickness retardation (Rth). |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06240017A (en) * | 1993-02-16 | 1994-08-30 | Ube Ind Ltd | High strength, heat resistant film or sheet |
JPH06256537A (en) * | 1992-02-26 | 1994-09-13 | Kuraray Co Ltd | Stretched film or sheet |
JPH06297558A (en) * | 1993-04-20 | 1994-10-25 | Ube Ind Ltd | High strength, heat resistant film or sheet |
JP2002338702A (en) * | 2001-05-11 | 2002-11-27 | Kanegafuchi Chem Ind Co Ltd | Transparent film |
WO2005054311A1 (en) * | 2003-12-02 | 2005-06-16 | Kaneka Corporation | Imide resin, and production method and use thereof |
WO2005108438A1 (en) * | 2004-05-10 | 2005-11-17 | Kaneka Corporation | Imide resin, method for producing same, and molded body using same |
WO2007026659A1 (en) * | 2005-08-30 | 2007-03-08 | Nitto Denko Corporation | Polarizer protective film, polarizing plate and image display |
WO2009139353A1 (en) * | 2008-05-12 | 2009-11-19 | 株式会社日本触媒 | Stretched optical film and polarizing plate and image display device using the same |
-
2010
- 2010-09-24 JP JP2010213132A patent/JP2012068430A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06256537A (en) * | 1992-02-26 | 1994-09-13 | Kuraray Co Ltd | Stretched film or sheet |
JPH06240017A (en) * | 1993-02-16 | 1994-08-30 | Ube Ind Ltd | High strength, heat resistant film or sheet |
JPH06297558A (en) * | 1993-04-20 | 1994-10-25 | Ube Ind Ltd | High strength, heat resistant film or sheet |
JP2002338702A (en) * | 2001-05-11 | 2002-11-27 | Kanegafuchi Chem Ind Co Ltd | Transparent film |
WO2005054311A1 (en) * | 2003-12-02 | 2005-06-16 | Kaneka Corporation | Imide resin, and production method and use thereof |
WO2005108438A1 (en) * | 2004-05-10 | 2005-11-17 | Kaneka Corporation | Imide resin, method for producing same, and molded body using same |
WO2007026659A1 (en) * | 2005-08-30 | 2007-03-08 | Nitto Denko Corporation | Polarizer protective film, polarizing plate and image display |
WO2009139353A1 (en) * | 2008-05-12 | 2009-11-19 | 株式会社日本触媒 | Stretched optical film and polarizing plate and image display device using the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013083956A (en) * | 2011-09-30 | 2013-05-09 | Nippon Shokubai Co Ltd | Phase difference film, polarizing plate, and image display device |
CN110058344A (en) * | 2013-08-09 | 2019-07-26 | 住友化学株式会社 | Optical film |
JP2020181204A (en) * | 2020-07-10 | 2020-11-05 | 三菱ケミカル株式会社 | A method for producing a film having a negative thickness retardation (Rth). |
JP7036159B2 (en) | 2020-07-10 | 2022-03-15 | 三菱ケミカル株式会社 | A method for producing a film having a negative thickness retardation (Rth). |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101594339B1 (en) | Optical compensation film retardation film and composite polarizer | |
CN102015793B (en) | Resin composition and an optical film formed through use of the same | |
JP5330502B2 (en) | Optical film and information electronic device including the same | |
JP5377242B2 (en) | Method for producing retardation film | |
WO2012005120A1 (en) | Fumarate diester resin for retardation film, and retardation film comprising same | |
CN101140334A (en) | Optical Compensation Film and Retardation Film | |
JP2008129465A (en) | Retardation film | |
KR101418755B1 (en) | Resin Compositions For Optical Film And Optical Compensation Films Formed By Using The Same | |
WO2016185722A1 (en) | Resin composition and film | |
KR101623218B1 (en) | Stretched optical film and polarizing plate and image display device using the same | |
KR101123007B1 (en) | Transparent resin composition | |
WO2015098980A1 (en) | Optical thermoplastic resin and formed body | |
KR101471228B1 (en) | Resin compositions for optical films and optical films formed by using the same | |
US9429682B2 (en) | Method for preparing acrylic copolymer resin for optical film and method for fabricating optical film using the same | |
WO2012091009A1 (en) | Resin composition, phase-contrast film, method for manufacturing phase-contrast film, and long circularly-polarizing plate | |
JP5433328B2 (en) | Retardation film | |
JP2011137910A (en) | Method for producing retardation film | |
KR101464826B1 (en) | Retardation film and liquid crystal display including the same | |
JP2009041007A (en) | Optically isotropic acrylic resin film and its manufacturing method | |
JPWO2005108438A1 (en) | IMIDE RESIN, ITS MANUFACTURING METHOD, AND MOLDED BODY USING SAME | |
JP2012068430A (en) | Retardation film | |
JP5412211B2 (en) | Polarizing plate and stretched image display device with optical stretched film | |
JP2008179813A (en) | Planar thermoplastic resin molded article | |
JP2018163291A (en) | Manufacturing method of optical film | |
JP6110184B2 (en) | Biaxially stretched film, polarizing plate, image display device, and method for producing biaxially stretched film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130510 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140121 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140527 |