[go: up one dir, main page]

WO2005108438A1 - Imide resin, method for producing same, and molded body using same - Google Patents

Imide resin, method for producing same, and molded body using same Download PDF

Info

Publication number
WO2005108438A1
WO2005108438A1 PCT/JP2005/008225 JP2005008225W WO2005108438A1 WO 2005108438 A1 WO2005108438 A1 WO 2005108438A1 JP 2005008225 W JP2005008225 W JP 2005008225W WO 2005108438 A1 WO2005108438 A1 WO 2005108438A1
Authority
WO
WIPO (PCT)
Prior art keywords
imide resin
resin
film
meth
carbon atoms
Prior art date
Application number
PCT/JP2005/008225
Other languages
French (fr)
Japanese (ja)
Inventor
Hirosuke Kawabata
Katsuyuki Tanaka
Etsuo Horii
Tomoki Hiiro
Yasuhiro Sekiguchi
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2006512985A priority Critical patent/JPWO2005108438A1/en
Publication of WO2005108438A1 publication Critical patent/WO2005108438A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines

Definitions

  • Imide resin method for producing the same, and molded article using the same
  • the present invention relates to an imide resin, a method for producing the same, and a molded article such as a polarizer protective film using the same. More specifically, an imide resin which has excellent transparency and heat resistance, and has good molding processability and low optical distortion, a method for producing the same, and a process for producing a polarizer protective film and the like using the same. About the body.
  • Transparent resins are required to have heat resistance in addition to transparency.
  • polymethyl methacrylate and polystyrene have good transparency and are relatively inexpensive, but their low heat resistance limits their application in such applications.
  • the glass transition temperature of these polymethyl methacrylate, polystyrene and the like measured by a differential scanning calorimeter (DSC) is about 100 ° C.
  • One method for improving the heat resistance of acrylic resins is to use methyl methacrylate and cyclopentane. There is a method of copolymerizing hexylmaleimide. However, according to this method, there is a problem that the use of cyclohexylmaleimide, which is an expensive monomer, increases the cost of the obtained copolymer as the heat resistance is improved.
  • Patent Document 1 As another method for improving the heat resistance of an acrylic resin, a technique of treating a primary amine with an acrylic resin is disclosed, for example, in Patent Document 1 and Patent Document 2. These relate to a stretched film comprising a dartalimide resin having a dartalimide ring structure of 20% by weight or more. Further, Patent Document 3 relates to a stretched film made of a dtaltarimide acrylic resin, and describes that a film having improved mechanical strength and excellent transparency and heat shrinkage was obtained by stretching. These publications do not mention orientation birefringence.
  • an extruder is used to improve the heat resistance of poly (methyl methacrylate) (see, for example, Patent Document 6) ⁇ methyl methacrylate-styrene copolymer (for example, see Patent Document 7, 8, 9, 10) to treat the primary amine to imidize the methyl ester group in methyl methacrylate to obtain an imide resin.
  • imide resins have a high glass transition temperature as measured by differential scanning calorimetry (DSC), and the resin has a high melt viscosity.
  • DSC differential scanning calorimetry
  • Patent Document 5 discloses a dartalimide acryl-based resin having a positive orientation birefringence and a negative orientation birefringence.
  • a film blended with a styrenic resin is disclosed.
  • Such resins are characterized in that a phase difference is unlikely to be developed due to environmental changes.However, since the resin is a blend, the manufacturing process becomes complicated, and the performance of the obtained film (for example, solvent resistance, etc.) Had a problem when it fell.
  • Non-Patent Document 1 discloses a polymer having a positive orientation birefringence and a polymer having a negative orientation birefringence in an appropriate ratio. A method of random copolymerization, a method of doping a polymer with a low molecular compound having polarizability anisotropy, and the like have been proposed.
  • Non-Patent Document 2 proposes a method of reducing the orientation birefringence of polycarbonate, such as a blend of polycarbonate and polystyrene, and a method of graft copolymerizing polystyrene with polycarbonate.
  • polycarbonate such as a blend of polycarbonate and polystyrene
  • graft copolymerizing polystyrene with polycarbonate the former lacks uniformity in optical properties, and the latter requires graft polymerization to actually complicate the process.
  • Examples of the use of these transparent resins for members for liquid crystal displays include polarizing plates.
  • the polarizing plate is a material having a function of transmitting only linearly polarized light having a specific vibration direction among light passing therethrough and blocking other linearly polarized light, and is formed by laminating a polarizer film and a polarizer protection film. The one having the above configuration is generally used.
  • the polarizer film is a film having a function of transmitting only linearly polarized light having a specific vibration direction.
  • a polybutyl alcohol (hereinafter, referred to as PVA) film or the like is stretched to obtain iodine or nitro- gen.
  • a film dyed with a color dye or the like is generally used.
  • the polarizer protective film is a film that holds the polarizer film and is practical for the entire polarizing plate. It has a function of imparting strength and the like, and for example, a triacetyl cellulose (hereinafter, PVAt) film is generally used.
  • PVAt triacetyl cellulose
  • the polarizer protective film it is generally considered that a film having an unnecessary retardation (in-plane retardation and thickness-direction retardation) is not preferable. This is because even if the polarizer film has a high-precision linear polarization function, the phase difference and the deviation of the optical axis of the polarizer protective film will cause the linearly polarized light passing through the polarizer film to have elliptically polarizing properties. It is also the power to give.
  • the aforementioned TAC film also basically has a small phase difference.
  • TAC film is a film that easily generates a phase difference due to the action of external stress, and its photoelastic coefficient is not sufficiently small. Further, the film has a relatively large thickness direction retardation. For this reason, especially in a large-sized liquid crystal display device, there is a problem that the contrast in the peripheral portion is lowered.
  • a cyclic olefin polymer generally requires a complicated route for synthesis, and thus has a problem that the price is high. Further, such a cyclic olefin polymer has a problem of low solubility in a solvent.
  • Patent Document 1 JP 06-240017 A
  • Patent Document 2 Japanese Patent Application Laid-Open No. 06-297558
  • Patent Document 3 Japanese Patent Application Laid-Open No. 06-256537
  • Patent Document 4 Japanese Patent Application Laid-Open No. 07-77608
  • Patent Document 5 WO01Z37007
  • Patent Document 6 U.S. Patent No. 4,246,374
  • Patent Document 7 U.S. Patent No. 4,727,117
  • Patent Document 8 U.S. Patent No. 4,954,574
  • Patent Document 9 U.S. Patent No. 5,004,777
  • Patent Document 10 U.S. Patent No. 5,264,483
  • Non-Patent Document 1 Forming Process, Vol. 15, No. 3, page 194
  • Non-Patent Document 2 Nikkei-U Material September 26, 1988, 56 pages
  • the present invention has been made in view of the above-mentioned problems of the prior art, and is easy to manufacture, excellent in transparency and heat resistance, and optically even under stress during molding and use.
  • An object of the present invention is to provide an imide resin excellent in molding processability, which hardly causes distortion (birefringence), and a molded article such as an optical resin composition and a polarizer protective film using the imide resin.
  • the present inventors have conducted intensive studies and as a result, have obtained a method for treating an acrylic resin with a primary amine, which has a specific imidization reaction rate or a melt viscosity.
  • the present inventors have found that fat is easy to produce, inexpensive, excellent in transparency and heat resistance, excellent in moldability with low orientation birefringence, and sufficiently small in photoelastic coefficient.
  • the present invention relates to an imide resin containing a repeating unit represented by the following general formulas (1) and (2). [0021] [Formula 1]
  • R and R each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 3 represents an alkyl group having 1 to 18 carbon atoms and cycloalkyl having 3 to 12 carbon atoms.
  • R 4 and R 5 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 6 represents hydrogen or an alkyl group having 1 to 18 carbon atoms, It represents 12 cycloalkyl groups or aryl groups having 6 to 10 carbon atoms.
  • the imide resin of the present invention preferably has an orientation birefringence of 0.0001 or less, and more preferably has an orientation birefringence of 0.0001 or less.
  • the imide resin of the present invention preferably has a melt viscosity at 260 ° C. and 122 seconds- 1 of 14000 Poise or less.
  • the imide resin of the present invention preferably contains a repeating unit represented by the following general formula (3). [0027] [Formula 3]
  • R 7 represents hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 8 represents an aryl group having 6 to 10 carbon atoms.
  • the imide resin of the present invention is preferably produced using a (meth) acrylate polymer, and the (meth) acrylate polymer is a methyl methacrylate polymer. Is more preferred,.
  • the imide resin of the present invention is preferably produced using a (meth) acrylate-aromatic vinyl copolymer.
  • Aromatic Bull copolymer power Methyl methacrylate-styrene copolymer is more preferable.
  • the melt viscosity of the (meth) acrylate polymer and the (meth) acrylate aromatic vinyl copolymer at 260 ° C. for 122 seconds- 1 is preferably 7000 Poise or less.
  • the imide resin of the present invention is preferably produced by a method of treating a primary amine with an acrylic resin in the absence or presence of a solvent.
  • the imide resin of the present invention preferably has a glass transition temperature of 110 ° C. or higher.
  • the present invention is characterized in that a (meth) acrylate polymer or a (meth) acrylate-aromatic vinyl copolymer is treated with a primary amine in the absence of a solvent.
  • the present invention relates to a method for producing an imide resin.
  • the present invention also relates to an optical resin composition containing the imide resin as a main component.
  • the present invention also relates to a molded article comprising the resin composition for optical use.
  • the present invention also relates to a polarizer protective film comprising the resin composition for optical use.
  • the present invention provides a polarizer protective film comprising the imide resin, wherein an in-plane retardation of the film is 10 nm or less and a thickness direction retardation is 20 nm or less. About.
  • the polarizer protective film of the present invention is preferably stretched.
  • the polarizer protective film of the present invention comprises 1 to 5 mol of the repeating unit represented by the general formula (1).
  • the polarizer protective film of the [0040] present invention it is preferable photoelastic coefficient of the imide ⁇ is less than 10 X 10- 12 m Seo N.
  • the glass transition temperature of the imide resin is preferably 100 ° C or higher.
  • the present invention also relates to a polarizing plate using the polarizer protective film.
  • an imide resin which is easy to manufacture, inexpensive, has excellent transparency and heat resistance, has low orientation birefringence, and has a sufficiently small photoelastic coefficient. Therefore, a molded article having excellent moldability and having no optical distortion even when stress is generated during molding or use can be obtained.
  • the imide resin of the present invention it can be applied to a molded product requiring transparency, heat resistance and light weight, and can be used as a substitute for glass.
  • the present invention relates to an imide resin characterized by containing a repeating unit represented by the following general formulas (1) and (2). [0045]
  • R 1 and R 2 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 3 represents an alkyl group having 1 to 18 carbon atoms and 3 to 12 carbon atoms. It represents a cycloalkyl group or an aryl group having 6 to 10 carbon atoms.
  • R 4 and R 5 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 6 represents hydrogen or an alkyl group having 1 to 18 carbon atoms, It represents 12 cycloalkyl groups or aryl groups having 6 to 10 carbon atoms.
  • the first structural unit that constitutes the imide resin of the present invention is represented by the following general formula (1), and is often referred to as a daltalimide unit (hereinafter, the general formula (1) It may be abbreviated as glutarimide unit.) O [0049]
  • R 1 and R 2 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 3 represents an alkyl group having 1 to 18 carbon atoms and 3 to 12 carbon atoms. It represents a cycloalkyl group or an aryl group having 6 to 10 carbon atoms.
  • Preferred dartalimide units are those in which R 2 is hydrogen or a methyl group, and R 3 is hydrogen, a methyl group, an n-butyl group, a cyclohexyl group, a benzyl group, from the viewpoint of availability of raw materials, cost, heat resistance, and the like.
  • R 1 is a methyl group
  • R 2 is hydrogen
  • R 3 is a methyl group, an n-butyl group, or a cyclohexyl group.
  • the dartalimide unit contained in the imide resin of the present invention may be of a single type, and the imide resin may contain a plurality of types of dartartimide units having different R 1 R 2 and R 3 .
  • the second structural unit constituting the imide resin of the present invention is represented by the following general formula (2) and is a (meth) acrylic ester or (meth) acrylic acid unit. Is often referred to as a (meth) acrylic ester unit (here, (meth) acrylic ester means acrylic ester, Z or methacrylic ester.
  • (meth) acrylic ester means acrylic ester, Z or methacrylic ester.
  • the general formula (2) It may be abbreviated as (meth) acrylate unit.
  • R 4 and R 5 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 6 represents hydrogen or an alkyl group having 1 to 18 carbon atoms, and 3 to 5 carbon atoms. It represents 12 cycloalkyl groups or aryl groups having 6 to 10 carbon atoms.
  • R 4 and R 5 are hydrogen or a methyl group
  • R 6 is a hydrogen or methyl group, n-butyl group, cyclohexyl group and benzyl group.
  • R 1 is a methyl group
  • R 2 is methylcarbamoyl group
  • force when it is R 3 forces a methyl group are especially preferred.
  • These second structural units may be of a single type.
  • R 5 and R 6 may include a plurality of different types.
  • the imide resin of the present invention preferably has an orientation birefringence of 0.0001 or less.
  • Such an imide resin has substantially no orientation birefringence.
  • the value of the orientation birefringence is more preferably 0.0001 or less.
  • the content of the daltarimide unit represented by the general formula (1) in the imide resin of the present invention depends on, for example, the structure of R 3 and the content of the general formula (3). 3-95% by weight is preferred.
  • the dartalimide unit represented by the general formula (1) is used. Is preferably from 1 to 40% by weight, particularly preferably from 3 to 30% by weight, particularly preferably from 5 to 20% by weight.
  • an aromatic vinyl unit represented by the general formula (3) is contained, a imide resin having substantially no orientation birefringence is obtained when the daltarimide unit represented by the general formula (1) is contained.
  • the amount is preferably increased in accordance with the amount of the aromatic unit represented by the general formula (3), particularly preferably at least 20% by weight, more preferably at least 40% by weight, particularly preferably at least 50% by weight. preferable. If the proportion of dartalimide units is less than this range, the resulting polyimide resin may have insufficient heat resistance or may have poor transparency. Exceeding this range may unnecessarily increase the heat resistance and melt viscosity, deteriorating the moldability, and may also cause the mechanical strength of the obtained molded article to become extremely brittle and impair the transparency. is there.
  • the imide resin of the present invention preferably has a melt viscosity at 260 ° C and 122 seconds- 1 of 14000 Poise or less.
  • the melt viscosity in the present invention is a flow characteristic when a thermoplastic resin (imide resin) is melted by heat, and refers to a ratio between a shear stress and a shear rate.
  • the unit is represented by Poise.
  • the moldability of the imide resin is good! , Means, when imide resin is processed into various molded products by various plastic processing methods such as injection molding, melt extrusion film molding, inflation molding, blow molding, compression molding, and spin molding. Defects such as poor transfer, silver, fisheye, die line, thickness unevenness, foaming, etc. are hardly generated, and it is a characteristic that precise molding is easy.
  • the third structural unit to be contained in the imide resin of the present invention as necessary is represented by the following general formula (3), and is often often referred to as an aromatic vinyl unit. (Hereinafter, the general formula (3) may be abbreviated as an aromatic vinyl unit.)
  • R 7 represents hydrogen or an alkyl group having 1 to 8 carbon atoms, and R. represents an aryl group having 6 to 10 carbon atoms.
  • Preferred aromatic vinyl units include styrene, -methylstyrene and the like. Of these, styrene is particularly preferred from the viewpoints of availability of raw materials and cost.
  • These third structural units may be of a single type.
  • R 8 may include a plurality of different types.
  • the content of the aromatic vinyl unit represented by the general formula (3) in the imide resin is preferably 10% by weight or more based on the total repeating units of the imide resin.
  • the preferred content of aromatic vinyl units is 10% by weight 40% by weight, more preferably 15 to 30% by weight, and even more preferably 15 to 25% by weight. When the aromatic unit power is larger than this range, the heat resistance of the obtained imide resin may be insufficient.
  • the proportions of the general formulas (1), (2) and (3) it is possible to adjust to various required physical properties.
  • the imide resin of the present invention is formed by first polymerizing a (meth) acrylate-aromatic vinyl copolymer such as a methyl methacrylate-styrene copolymer and then imidizing it, for example, )
  • the ratio of the general formula (3) is determined by adjusting the polymerization ratio of the acrylate ester and the aromatic vinyl (the ratio of the general formula (3) can be set to 0).
  • the proportion of the general formulas (1) and (2) can be further adjusted by adjusting the addition ratio of the amine.
  • the type containing the general formula (3) is methyl methacrylate-styrene.
  • the melt viscosity of the imide resin at 260 ° C and 122 seconds- 1 is 14000 Poise or less, and substantially It is also possible to provide a feature having no orientation birefringence.
  • the repeating unit represented by the general formula (1) and the repeating unit represented by the general formula (3) It is preferably in the range of 2.0: 1.0 to 4.0: 1.0 in weight ratio, and 2.5: 1.0 to 4.0: 1.0 in weight ratio. Force S is more preferable, and force S in the range of 3.0: 1.0 to 3.5: 1.0 is more preferable.
  • the fourth structural unit is copolymerized, it does not matter.
  • a copolymer of a tolyl monomer such as acrylonitrile / methacrylo-tolyl, and a maleimide monomer such as maleimide, N-methylmaleimide, N-phenylmaleimide, or N-cyclohexylmaleimide. Can be used. These may be directly copolymerized into the imide resin or by graft copolymerization.
  • imide ⁇ of the present invention it is favorable preferable having 1 X 10 4 to weight average molecular weight of 5 X 10 5.
  • the weight average molecular weight is less than 1 ⁇ 10 4 , the mechanical strength of the film is insufficient, and when the weight average molecular weight exceeds 5 ⁇ 10 5 , the viscosity at the time of melting is high and the productivity of the film is reduced.
  • the molecular weight between branch points means an average molecular weight from a branch to the next branch point in a polymer having a branched structure, and is defined using a Z-average molecular weight. Also, increasing the ratio (dispersion degree) between the weight average molecular weight and the number average molecular weight of the methacrylic resin used as the raw material is also useful for lowering the melt viscosity.
  • the weight average molecule is preferably at least 2.1 times the number average molecular weight, more preferably at least 2.5 times. If it is less than the above value, the resulting imide resin may have a high melt viscosity, and may cause poor kneading during molding.
  • the glass transition temperature of the imide resin of the present invention is preferably 100 ° C or higher, more preferably 110 ° C or lower. More preferably, it is more preferably 120 ° C. or more. If the glass transition temperature is lower than SlOO ° C, the application range is limited in applications requiring heat resistance.
  • thermoplastic resins can be added to the imide resin of the present invention.
  • the imide resin of the present invention has properties such as high tensile strength and bending strength, solvent resistance, thermal stability, good optical properties, and weather resistance.
  • the imide resin of the present invention can be produced by various known methods. For example, as described in US Pat. No. 4,246,374, in the absence of a solvent, an extruder is used to melt a molten acrylic resin ((meth) acrylate-aromatic vinyl copolymer). An imide resin can be obtained by adding a polymer imidizing agent. Further, for example, as described in Japanese Patent No. 2505970, an acrylic resin (such as a (meth) acrylic acid ester-aromatic vinyl copolymer) can be dissolved in the presence of a solvent to prevent the imidani reaction. It can also be obtained by adding an imidizing agent to a solution-based acrylic resin (such as a (meth) acrylate-aromatic vinyl copolymer) using a non-reactive solvent.
  • a solution-based acrylic resin such as a (meth) acrylate-aromatic vinyl copolymer
  • the acrylic resin used in the present invention is not particularly limited as long as it can react with an imidizing agent and become a darthalimide unit.
  • Acid anhydrides such as unsaturated carboxylic acids and maleic anhydride, or half esters of these with straight-chain or branched alcohols having 1 to 20 carbon atoms, etc., can be imidized.
  • a copolymer composed of other copolymer components can be imidized.
  • a copolymer composed of other copolymer components can be imidized.
  • polymethyl methacrylate cost, physical properties and the like are also preferable.
  • an extruder When the imide resin of the present invention is produced in the absence of a solvent, an extruder may be used, or a batch-type reaction vessel (pressure vessel) may be used!
  • extruders When using an extruder for producing the imide resin of the present invention, various types of extruders such as a single-screw extruder, a twin-screw extruder and a multi-screw extruder can be used.
  • a twin-screw extruder is preferred as an extruder capable of promoting the mixing of the imidizing agent with the polymer.
  • Biaxial Extruders include non-mating, co-rotating, mating, co-rotating, non-mating, counter-rotating, and mating, counter-rotating.
  • the twin-screw extruders the co-rotating and co-rotating type is preferable because high-speed rotation is possible and mixing of the imidizing agent with the raw material polymer can be promoted.
  • These extruders may be used alone or connected in series.
  • a high-viscosity reaction device such as a horizontal twin-screw reaction device such as Sumitomo Heavy Industries Co., Ltd. Biporak or a vertical twin-screw stirring tank such as Super Blend is also preferable. Can be used appropriately.
  • the batch type reaction vessel (pressure vessel) used for producing the imide resin of the present invention is particularly limited as long as it can heat and stir a solution in which the raw material polymer is dissolved and can add an imidizing agent.
  • a stirred tank max blend manufactured by Sumitomo Heavy Industries, Ltd. can be exemplified.
  • the imide resin of the present invention when the imide resin of the present invention is produced in the presence of a solvent, the imide resin can dissolve the acryl resin. It can be obtained by adding a dashi.
  • non-reactive solvent for the imidization reaction examples include aliphatic alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol, and isobutynol alcohol, benzene, toluene, xylene, benzene, and chlorotoluene. And ketones such as methylethylketone, tetrahydrofuran and dioxane, and ether compounds. These may be used alone or as a mixture of at least two types. Among them, toluene and a mixed solvent of toluene and methyl alcohol are preferred!
  • the concentration of the acrylic resin with respect to the non-reactive solvent is small, and from the viewpoint of production cost, the preferred solid content concentration is 10 to 80%, particularly preferably 20 to 70%.
  • the imidizing agent used in the present invention is not particularly limited as long as it can imidize an acrylic resin.
  • examples thereof include methinoleamine, ethynoleamine, n-propynoleamine, and i-propynylamine.
  • Amines containing aliphatic hydrocarbon groups such as luminamine, n-butylamine, i-butylamine, tert-butylamine, n-hexylamine, and aromatic hydrocarbon groups such as aromatic phosphorus, toluidine, and trichloroaline;
  • An alicyclic hydrocarbon group-containing amine such as hexylamine is exemplified.
  • urea-based compounds which generate these amines by heating such as urea, 1,3-dimethylurea, 1,3-diethylurea, and 1,3-dipropylurea can also be used.
  • urea 1,3-dimethylurea, 1,3-diethylurea, and 1,3-dipropylurea
  • imidizing agents methylamine is preferred in view of cost and physical properties.
  • the reaction temperature is set to 150 to 400 ° C in order to promote the imidizing and to suppress the decomposition and coloring of the resin due to excessive heat history. Perform within the range. It is preferably 180 to 320 ° C, and more preferably 200 to 280 ° C.
  • a (meth) acrylate polymer such as a methyl methacrylate polymer having a melt viscosity of 7000 Poise or less at 260 ° C and 122 seconds- 1 ; It is preferable to use a (meth) acrylate-aromatic vinyl copolymer such as methyl methacrylate-styrene copolymer in that the imide resin of the present invention can be easily produced.
  • a raw material that gives a (meth) acrylic acid ester unit as a residue is not particularly limited.
  • methyl methacrylate is particularly preferred.
  • copolymers are treated with a primary amine in the absence of a solvent to form the imide resin of the present invention.
  • a (meth) acrylate-aromatic vinyl copolymer such as a methyl methacrylate-styrene copolymer or a methyl methacrylate polymer
  • (Meth) acrylic acid ester-aromatic vinyl copolymer (meth) acrylic acid polymer which can be used when polymerizing (meth) acrylic acid ester polymer such as
  • the coalesce may be a linear (linear) polymer as long as an imidization reaction is possible, or may be a block polymer, a core-shell polymer, a branched polymer, a ladder polymer, or a cross-linked polymer.
  • the block polymer may be A-B type, A-B-C type, A-B-A type, or any other type of block polymer.
  • the core shell polymer may have only one core and only one shell, or may have a multilayer structure.
  • the imide resin of the present invention (which may be used alone or in a blend with another thermoplastic polymer) may be used in injection molding, melt extrusion film molding, inflation molding, blow molding, compression molding, spinning molding and the like. Various molded products can be produced by various plastic kamitsu methods. Alternatively, the imide resin of the present invention may be dissolved in a solvent such as methylene chloride or the like, and molded by a casting method or a spin coating method using a polymer solution obtained.
  • a solvent such as methylene chloride or the like
  • antioxidants At the time of molding, commonly used antioxidants, heat stabilizers, plasticizers, lubricants, ultraviolet absorbers, antistatic agents, coloring agents, anti-shrinkage agents, etc., impair the object of the present invention. It may be added in a range that is not within the range.
  • the molded article obtained from the imide resin of the present invention may be, for example, a camera, a VTR, an image field such as a photographic lens or finder for a projector, a filter, a prism, a Fresnel lens, a CD player, a DVD player, or an MD player.
  • the polarizer protective film of the present invention comprises the imide resin of the present invention, that is, the imide resin characterized by containing the repeating units represented by the following general formulas (1) and (2). It is characterized by that.
  • R and R each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 3 represents an alkyl group having 1 to 18 carbon atoms and a cycloalkyl having 3 to 12 carbon atoms.
  • R 4 and R 5 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 6 represents an alkyl group having 1 to 18 carbon atoms and 3 to 12 carbon atoms. It represents a cycloalkyl group or an aryl group having 6 to 10 carbon atoms.
  • the imide resin used in the polarizer protective film of the present invention may be any of the various forms described above as long as it is an imide resin of the present invention containing the repeating units represented by the general formulas (1) and (2). Those can be used, and it is a matter of course that the present invention is not particularly limited.
  • a repeating unit represented by the following general formula (3) may be contained in addition to the repeating units represented by the general formulas (1) and (2).
  • the polarizer protective film of the present invention is characterized by having small optical anisotropy.
  • the polarizer protective film is required to have not only small optical anisotropy in the thickness direction but also small optical anisotropy in the in-plane direction (length direction, width direction) of the film.
  • the direction in which the in-plane refractive index becomes the maximum is the X axis
  • the direction perpendicular to the X axis is the Y axis
  • the thickness direction of the film is the Z axis
  • the refractive indices in each axial direction are nx, ny, nz
  • the in-plane retardation Re (nx—ny) X d
  • the thickness direction retardation Rth
  • both the in-plane retardation Re and the thickness direction retardation Rth are 0.
  • the in-plane retardation of the film is preferably lOnm or less, and the thickness direction retardation is preferably 20 nm or less.
  • the in-plane retardation of the film is more preferably 5 nm or less.
  • the thickness direction retardation is more preferably lOnm or less.
  • the repeating unit power represented by the general formula (1) is preferably 1 to 10 mol% of the S imide resin, particularly preferably 1 to 5 mol%, and more preferably 3 to 4 mol%. Outside of this range, it is difficult to obtain a film having a small optical anisotropy.
  • the imide resin used in the polarizer protective film of the present invention preferably has a small photoelastic coefficient.
  • Photoelastic coefficient of the imide ⁇ used in the present invention 20 X 10_ 12 m 2 / N we are preferably less tool 10 X 10- 12 m 2 / and more preferably N or less tool 5 X more preferably not more than 10- 12 m 2 / N. If the absolute value of the photoelastic coefficient is larger than 20 X 10- 12 m 2 / N, the optical distortion is caused by stress, light leakage is likely to occur. This tendency is particularly remarkable under high temperature and high humidity environments.
  • the photoelastic coefficient is such that when an external force is applied to an isotropic solid to cause stress (AF), the solid temporarily exhibits optical anisotropy and exhibits birefringence (An).
  • the ratio between the stress and the birefringence is called the photoelastic coefficient (c).
  • any conventionally known method can be used.
  • a solution casting method, a melt extrusion method and the like can be mentioned. Any of them can be adopted.
  • the solution casting method is suitable for producing a film having a good surface property with less deterioration of resin, and the melt molding method can obtain a film with high productivity.
  • a solvent for the solution casting method methylene chloride or the like can be suitably used.
  • the melt molding method include a melt extrusion method, an inflation method, and the like.
  • the thickness of the polarizer protective film of the present invention is preferably from 20 Pm to 300 Pm, and more preferably from 30 Pm to 200 Pm. More preferably, the force is from 50 ⁇ m to 100 ⁇ m.
  • the thickness unevenness of the film is preferably 10% or less of the average thickness, more preferably 5% or less.
  • the light transmittance of the polarizer protective film of the present invention is preferably 85% or more, more preferably 88% or more, and further preferably 90% or more.
  • the turbidity of the film is preferably 2% or less, more preferably 1% or less, and further preferably 0.5% or less.
  • a film after the imide resin is formed into a film shape and before stretching is sometimes referred to as a "raw material film”.
  • the raw material film can be directly used as a polarizer protective film without being stretched.
  • a film having a predetermined thickness is produced by uniaxial stretching or biaxial stretching. Stretching further improves the mechanical properties of the film.
  • a film having a thickness of 40 ⁇ m can be produced by biaxial stretching.
  • Stretching of the film may be performed continuously immediately after forming the raw material film.
  • the state of the “raw material film” exists only momentarily.
  • the state from the moment the film is formed to the time it is stretched is called a raw material film.
  • the raw material film does not need to be in a perfect film state if it is formed into a film enough to be stretched thereafter, and of course, has the performance as a finished film. You don't have to.
  • the film may be stored or moved, and then the film may be stretched.
  • any conventionally known stretching method can be adopted.
  • transverse stretching using a tenter there are, for example, longitudinal stretching using a roll or a hot blast stove, transverse stretching using a tenter, and sequential biaxial stretching in which these are sequentially combined. Further, a simultaneous biaxial stretching method in which the film is stretched simultaneously in the machine and transverse directions can also be employed. After the longitudinal stretching of the roll, a transverse stretching by a tenter may be adopted.
  • the polarizer protective film of the present invention can be used as a final product in the state of a uniaxially stretched film.
  • a biaxially stretched film may be formed by performing a stretching process in combination.
  • the film can maintain its mechanical anisotropy even if the stretching conditions such as the temperature and magnification for longitudinal stretching and transverse stretching are the same. May be given.
  • the stretching temperature and the stretching ratio of the film can be appropriately adjusted using the mechanical strength, surface properties, and thickness accuracy of the obtained film as indices.
  • the range of the stretching temperature is preferably (Tg ⁇ 30 ° C.) to (Tg + 30 ° C.), where Tg is the glass transition temperature of the film determined by the DSC method. More preferably, it is in the range of (Tg-20 ° C) to (Tg + 20 ° C). More preferably, it is in the range of (in Tg) to (Tg + 20 ° C.). If the stretching temperature is too high, the thickness unevenness of the obtained film tends to increase, and the mechanical properties such as elongation, tear propagation strength, and fatigue resistance to massaging tend to be insufficient.
  • the preferred stretching ratio depends on the stretching temperature, but is selected in the range of 1.1 to 3 times. More preferably, it is 1.3 to 2.5 times. More preferably, it is 1.5 to 2.3 times.
  • a processability improver such as a heat stabilizer, an ultraviolet absorber, a lubricant, or a known additive such as a filler, or another polymer is contained as necessary. It doesn't matter.
  • a filler may be included for the purpose of improving the slipperiness of the film.
  • inorganic or organic fine particles can be used. Examples of the inorganic fine particles include metal oxide fine particles such as silicon dioxide, titanium dioxide, aluminum oxide and zirconium oxide, calcined calcium silicate, calcium silicate hydrate, aluminum silicate, magnesium silicate and the like.
  • Fine particles of silicate, calcium carbonate, talc, clay, calcined phosphorus, calcium phosphate and the like can be used.
  • fine resin particles such as a silicon resin, a fluorine resin, an acrylic resin, and a crosslinked styrene resin can be used.
  • the weather resistance of the polarizer protective film of the present invention is improved, and the durability of a liquid crystal display device using the polarizer protective film of the present invention is improved. It is also practically preferable because the property can be improved.
  • UV absorbers examples include benzotriazole UV absorbers such as 2- (2H-benzotriazono-1-yne) p-creso-nore, 2-benzotriazono-2-yl-4,6-di-t-butylphenol , 2- (4,6-diphenyl-1,3,5-triazine-2-yl) -5-[(hexyl) oxy] -triol UV absorber such as phenol, octabenzone
  • UV absorber such as phenol, octabenzone
  • examples include benzophenone ultraviolet absorbers, and benzoate light stabilizers such as 2,4-di-tert-butylphenyl 3,5 di-tert-butyl-4-hydroxybenzoate and bis (2,2,6,6- Light stabilizers such as hindered amine light stabilizers such as tetramethyl-4-piperidyl) sebacate can also be used.
  • the polarizer protective film of the present invention can be subjected to a surface treatment, if necessary, to improve the adhesion to other materials.
  • a surface treatment any conventionally known arbitrary A method is possible.
  • electrical treatment such as corona discharge treatment or spark treatment, plasma treatment at low or normal pressure, ultraviolet irradiation treatment in the presence or absence of ozone, acid treatment with chromic acid, etc., alkali saponification treatment, and flame treatment Treatment, and silane-based primer treatment or titanium-based primer treatment.
  • the surface tension of the film surface can be increased to 50dyneZcm or more.
  • an easy-adhesion layer can be provided on one side or both sides of the film.
  • Preferred adhesive layers include copolymerized polyesters, urethane-modified polyesters thereof, copolymerized polyesters having a carboxyl group and a sulfonic acid group, and a solution or aqueous dispersion of polyvinyl alcohol or the like. Cloth dried layers can be used. Alternatively, a method in which a cellulose ester resin or the like is provided as an easy-adhesion layer and this is subjected to an alkali saponification treatment to improve the affinity can be used.
  • the polarizer protective film of the present invention can be subjected to a coating treatment such as a hard coat, an anti-glare coat, an anti-reflection coat, and other functional coats, if necessary.
  • a test piece having a size of 50 mm ⁇ 50 mm was cut out from the film.
  • a turbidimeter NDH 300A manufactured by Nippon Denshoku Industries Co., Ltd. at a temperature of 23 ° C ⁇ 2 ° C and a humidity of 50% ⁇ 5%, according to the method described in 5.5 of JIS K7105-1981. It was measured.
  • a sample having a width of 50 mm and a length of 150 mm was cut out from the film, and a uniaxially stretched film was prepared at a draw ratio of 2 and a temperature 5 ° C higher than the glass transition temperature.
  • a 35 mm x 35 mm test piece was cut out from the center of the uniaxially stretched film in the TD direction.
  • the temperature of the test piece was 23 ⁇ 2 using an automatic birefringence meter (KOBRA-WR manufactured by Oji Scientific Instruments).
  • the phase difference was measured at a wavelength of 590 nm and an incident angle of 0 °.
  • the value obtained by dividing the phase difference by the thickness of the test piece measured using a digimatic indicator manufactured by Mitutoyo Corporation was defined as the orientation birefringence.
  • a 40 mm ⁇ 40 mm test piece was cut from the film. Using an automatic birefringence meter (KOBRA-WR manufactured by Oji Keisoku Co., Ltd.), the test piece was measured at a temperature of 23 ⁇ 2 ° C and a humidity of 50 ⁇ 5% at a wavelength of 590 nm and an incident angle of 0 °, and the in-plane phase difference Re was measured. Was measured.
  • KOBRA-WR automatic birefringence meter
  • a sample having a length of 300 mm in the TD direction and a length of 50 mm in the MD direction was cut out from the film, and the thickness of the entire width in the TD direction was measured using an Anritsu contact type continuous thickness gauge KB601B. From the measured thickness, the following formula was used to determine the thickness unevenness with respect to the target film thickness of 150 m.
  • dumbbell specimens The surface of 10 dumbbell specimens was visually observed, and the flow marks, fish eyes, and the presence or absence of foaming were evaluated.
  • an imidio dani resin was produced.
  • the extruder used was a twin-screw twin-screw extruder with a diameter of 15 mm. Set the temperature of each temperature control zone of the extruder to 230 ° C, screw rotation speed 150rpm, supply methacrylic resin at 1.Okg / hr, and supply monomethylamine to methacrylic resin. 3 parts by weight.
  • methacrylic resin was Ataripet VH manufactured by Mitsubishi Rayon Co., Ltd.
  • the supply amount of the resin was 2 kgZhr
  • n-butylamine was used instead of monomethylamine, and the supply amount was 20 parts by weight.
  • the methacrylic resin is Ataripet VH manufactured by Mitsubishi Rayon Co., Ltd., the supply amount of the resin is 2 kgZhr, and c-hexylamine (manufactured by Koei Chemical Co., Ltd.) is used instead of monomethylamine.
  • the same procedure was performed as in Resin Production Example 1 except that the amount was changed to parts by weight.
  • Table 1 shows the imidization ratio, the content of dartalimide units, and the glass transition temperature of the imide resins obtained in Resin Production Examples 1 to 7.
  • the imide resin obtained in Resin Production Example 1 was dissolved in methylene chloride (resin concentration 25 wt%), It was applied on a PET film and dried to form a cast film. From this film, a sample having a width of 50 mm and a length of 150 mm was cut out, and a uniaxially stretched film was prepared at a stretching ratio of 2 and at a temperature higher by 5 ° C than the glass transition temperature.
  • Table 2 shows the total light transmittance, turbidity, orientation birefringence, in-plane retardation, and retardation in the thickness direction of the uniaxially stretched film.
  • the measured photoelastic coefficient of the uniaxial axis oriented film was 3 X 10- 12 m 2 ZN.
  • a cast film prepared using the same imide resin as in Example 1 was stretched by a factor of 2 (vertical and horizontal) and simultaneously biaxially stretched at a temperature 20 ° C higher than the glass transition temperature (biaxial stretching manufactured by Toyo Seiki Co., Ltd.).
  • the device X4HD) was used to prepare a biaxially stretched film.
  • Table 2 shows the light transmittance, turbidity, in-plane retardation, and retardation in the thickness direction.
  • Table 2 shows the total light transmittance, turbidity, in-plane retardation, and retardation in the thickness direction of the biaxially stretched film prepared in the same manner as in Example 2 using the imide resin obtained in Resin Production Example 2. Shown in
  • Table 2 shows the total light transmittance, turbidity, in-plane retardation, and thickness direction retardation of a triacetyl cellulose (TAC) film manufactured by Fuji Photo Film Co., Ltd. Measurement of the photoelastic coefficient of the film was 15 X 10- 12 m 2 ZN.
  • TAC triacetyl cellulose
  • the glass transition temperature of Atgrass HT121 used in Resin Preparation Example 2 was 128 ° C.
  • Table 2 shows the total light transmittance, turbidity, orientation birefringence, in-plane retardation, and retardation in the thickness direction of a uniaxially stretched film prepared by using this resin in the same manner as in Example 1.
  • Table 1 shows the imidization ratio and glass transition temperature of the imidation dandelion obtained in Resin Production Example 6.
  • Table 2 shows the total light transmittance, turbidity, orientation birefringence, in-plane retardation, and retardation in the thickness direction of the uniaxially stretched film prepared in the same manner as in Example 1 using this resin.
  • Table 1 shows the imidation ratio and glass transition temperature of the imidation dandelion obtained in Resin Production Example 7.
  • Table 2 shows the total light transmittance, turbidity, orientation birefringence, in-plane retardation, and retardation in the thickness direction of the uniaxially stretched film prepared in the same manner as in Example 1 using this resin.
  • the imide resin of the present invention has good heat resistance and transparency, and is useful as a polarizer protective film with small optical anisotropy.
  • an imido ligand was produced.
  • the extruder used was a twin-screw twin-screw extruder with a diameter of 15 mm. Set the temperature of each temperature control zone of the extruder at 230 ° C, screw rotation speed 300 rpm, supply polymethyl methacrylate-styrene copolymer at lkgZhr, and supply monomethylamine with polymethyl methacrylate-styrene. It was 30 parts by weight based on the polymer.
  • the hopper cap was also charged with a polymethyl methacrylate-styrene copolymer, and the resin was melted and filled with a kneading block, followed by injection of monomethylamine with a nozzle force. A seal ring and a reverse flight were placed at the end of the reaction zone to fill the resin. The by-product after the reaction and excess methylamine were devolatilized by reducing the pressure at the vent port to 0.02 MPa. The resin that came out as a strand from the die provided at the extruder outlet was cooled in a water tank, And pelletized with a pelletizer.
  • Resin Production Example 8 except that the resin used was a polymethyl methacrylate-styrene copolymer having a melt viscosity of 4300 Poise at 260 ° C and 122 sec- 1 and a monomethylamine supply of 20 parts by weight. The same procedure was followed.
  • the procedure was the same as in Resin Production Example 8 except that the resin used was a polymethyl methacrylate-styrene copolymer having a melt viscosity of 8200 Poise at 260 ° C. and 122 seconds- 1 .
  • the procedure was performed in the same manner as in Resin Production Example 8 except that the resin used was a polymethyl methacrylate-styrene copolymer having a melt viscosity of 10500 Poise at 260 ° C. and 122 seconds- 1 .
  • Table 3 shows the melt viscosity, imidation ratio, and glass transition temperature of the imide resins obtained in Resin Production Examples 8 to 11.
  • a film having a thickness of about 150 m was obtained in the same manner as in Example 8, except that the imido-dani resin obtained in Resin Production Example 9 was used.
  • An ASTM No. 1 dumbbell test piece having a thickness of 3.2 mm (length: 127 mm, width: 12.7 mm) was prepared in the same manner as in Example 10 except that the imido danji resin obtained in Resin Production Example 9 was used. Obtained.
  • Table 4 shows the total light transmittance, turbidity, thickness unevenness, and results of the appearance inspection of the films obtained in Examples 8 and 9, and the results of the appearance inspection of the dumbbells obtained in Examples 10 and 11. Shown in
  • Example 9 Resin production example Film 92.2 0.4.1.2 No defect
  • a film having a thickness of about 150 ⁇ m was obtained in the same manner as in Example 8, except that the imido-dani resin obtained in Resin Production Example 10 was used.
  • Resin production Example 10 was used, except that the resin was extruded at 280 ° C. using a 40 mm ⁇ single screw extruder and a 400 mm width T-die, using the imido dani resin obtained in Example 10, except for a thickness of about 150 mm. m of film was obtained.
  • a film having a thickness of about 150 ⁇ m was obtained in the same manner as in Example 8, except that the imido-dani resin obtained in Resin Production Example 11 was used.
  • Example 8 The same procedure as in Example 8 was carried out except that the imidy dandelion resin obtained in Resin Production Example 11 was extruded at 280 ° C using a 40 mm ⁇ single screw extruder and a 400 mm width T die, and a thickness of about 150 mm was used. m of film was obtained.
  • An ASTM No. 1 dumbbell test piece having a thickness of 3.2 mm (length: 127 mm, width: 12.7 mm) was prepared in the same manner as in Example 10 except that the imido danji resin obtained in Resin Production Example 10 was used. Obtained.
  • a resin having a thickness of 3.2 mm (length: 127 mm, width: 12.7 mm) was produced in the same manner as in Example 10 except that the cylinder temperature was changed to 270 ° C. using the imido-dani resin obtained in Resin Production Example 10.
  • An ASTM No. 1 dumbbell specimen was obtained.
  • ASTM No. 1 dumbbell test piece was prepared in the same manner as in Example 10 except that the imido dani resin obtained in Resin Production Example 11 was used. Obtained.
  • a resin having a thickness of 3.2 mm (length: 127 mm, width: 12.7 mm) was produced in the same manner as in Example 10 except that the cylinder temperature was changed to 270 ° C. using the imido-dani resin obtained in Resin Production Example 11.
  • An ASTM No. 1 dumbbell specimen was obtained.
  • Table 5 shows the results of the total light transmittance, turbidity, thickness unevenness, and results of the appearance inspection of the films obtained in Comparative Examples 6 to 9, and the results of the appearance inspection of the dumbbells obtained in Comparative Examples 10 to 13. Shown in
  • imido dani resin was produced.
  • the extruder used was a twin-screw twin-screw extruder with a diameter of 15 mm.
  • the set temperature of each temperature control zone of the extruder is 230 ° C, screw rotation speed is 300 rpm, (meth) acrylate resin is supplied at lkgZhr, and the supply amount of monomethylamine is (meth) acrylate ester. It was 40 parts by weight based on the resin.
  • (meth) acrylate resin was injected from a hopper, and the resin was melted and filled with a kneading block, and then monomethylamine was injected from a nozzle cap.
  • a seal ring and a reverse flight were placed to fill the resin.
  • the by-products after the reaction and excess methylamine were devolatilized by reducing the pressure at the vent port to 1.0 MPa.
  • the resin that emerged as a strand from the die provided at the extruder outlet was cooled in a water bath and then pelletized with a pelletizer.
  • Resin production example 12 except that the resin used was a (meth) acrylate ester resin having a melt viscosity of 7100 Poise at 260 ° C and 122 seconds- 1 and the supply of monomethylamine was 20 parts by weight. Performed similarly.
  • a resin production example 12 was used except that the resin used was a (meth) acrylate resin having a melt viscosity of 8500 Poise at 260 ° C and 122 seconds- 1 and a monomethylamine supply of 30 parts by weight. Performed similarly.
  • Resin production example 12 except that the resin used was a (meth) acrylate ester resin with a melt viscosity of lOPoOOise at 260 ° C for 122 seconds- 1 and the supply amount of monomethylamine was 20 parts by weight. The same procedure was followed.
  • Table 6 shows the melt viscosity, imidation ratio, and glass transition temperature of the imide resins obtained in Production Examples 12 to 15.
  • the imidani resin obtained in Resin Production Example 12 was dried at 100 ° C for 5 hours, and then discharged at a cylinder and T-die temperature of 250 ° C using a 40mm ⁇ single screw extruder and a 400mm width T-die.
  • the resin was extruded at kgZhr, and the sheet-shaped molten resin was cooled by a cooling drum to obtain a film having a width of about 600 mm and a thickness of about 150 m.
  • a film having a thickness of about 150 ⁇ m was obtained in the same manner as in Example 12, except that the imido-dani resin obtained in Resin Production Example 13 was used.
  • ASTM No. 1 dumbbell test piece having a thickness of 3.2 mm (length: 127 mm, width: 12.7 mm) was prepared in the same manner as in Example 14 except for using the imido dani resin obtained in Resin Production Example 13. Obtained.
  • Table 7 shows the total light transmittance, turbidity, thickness unevenness, and the results of the appearance inspection of the films obtained in Examples 12 and 13, and the results of the appearance inspection of the dumbbells obtained in Examples 14 and 15. Show.
  • a film having a thickness of about 150 ⁇ m was obtained in the same manner as in Example 12, except that the imido-dani resin obtained in Resin Production Example 14 was used.
  • a film having a thickness of about 150 ⁇ m was obtained in the same manner as in Example 12, except that the imido dani resin obtained in Resin Production Example 15 was used.
  • Resin Production Example 15 The thickness of about 150 was obtained in the same manner as in Example 12, except that the resin was extruded at 280 ° C. using a 40 mm ⁇ single screw extruder and a 400 mm width T-die, using the imido dani resin obtained in Resin 15. m of film was obtained.
  • a ASTM No. 1 dumbbell test piece having a thickness of 3.2 mm (length: 127 mm, width: 12.7 mm) was prepared in the same manner as in Example 14 except that the imido dani resin obtained in Resin Production Example 14 was used. Obtained.
  • a resin having a thickness of 3.2 mm (length: 127 mm, width: 12.7 mm) was prepared in the same manner as in Example 14 except that the imidy resin obtained in Resin Production Example 14 was used and the cylinder temperature was changed to 270 ° C. An ASTM No. 1 dumbbell specimen was obtained.
  • a ASTM No. 1 dumbbell test piece having a thickness of 3.2 mm (length: 127 mm, width: 12.7 mm) was prepared in the same manner as in Example 14 except that the imido danji resin obtained in Resin Production Example 15 was used. Obtained.
  • a resin having a thickness of 3.2 mm (length: 127 mm, width: 12.7 mm) was prepared in the same manner as in Example 14 except that the cylinder temperature was changed to 270 ° C. using the imido-dani resin obtained in Resin Production Example 15.
  • An ASTM No. 1 dumbbell specimen was obtained.
  • Table 8 shows the total light transmittance, turbidity, thickness unevenness, and results of the appearance inspection of the films obtained in Comparative Examples 14 to 17, and the results of the appearance inspection of the dumbbells obtained in Comparative Examples 18 to 21. Show.
  • all of the imide resins of the present invention have good heat resistance and transparency, and also have good workability and are useful as polarizer protective films.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polarising Elements (AREA)

Abstract

An imide resin having excellent transparency, excellent heat resistance, low orientational birefringence and a sufficiently small optical elasticity coefficient is disclosed which can be easily produced at low cost. Such an imide resin is obtained through a reaction between various methacrylic resins and monomethylamine (or butylamine). Also disclosed is a method for producing an imide resin which is characterized in that a (meth)acrylate polymer or a (meth)acrylate-aromatic vinyl copolymer is treated with a primary amine. The imide resin has good heat resistance, transparency and processability, and thus is useful for a polarizer-protecting film.

Description

明 細 書  Specification
イミド樹脂とその製造方法、およびそれを用いた成形体  Imide resin, method for producing the same, and molded article using the same
技術分野  Technical field
[0001] 本発明は、イミド榭脂とその製造方法、およびそれを用いた偏光子保護フィルム等 の成形体に関する。さらに詳しくは、透明性 ·耐熱性に優れ、し力も成形加工性が良 好であり、光学的な歪みが生じにくいイミド榭脂とその製造方法、およびそれを用い た偏光子保護フィルム等の成形体に関する。  The present invention relates to an imide resin, a method for producing the same, and a molded article such as a polarizer protective film using the same. More specifically, an imide resin which has excellent transparency and heat resistance, and has good molding processability and low optical distortion, a method for producing the same, and a process for producing a polarizer protective film and the like using the same. About the body.
背景技術  Background art
[0002] 近年、電子機器はますます小型化し、ノートパソコン、携帯電話、携帯情報端末に 代表されるように、軽量'コンパクトという特長を生かし、多様な用途で用いられるよう になってきている。一方、液晶ディスプレイやプラズマディスプレイなどのフラットパネ ルディスプレイの分野では画面の大型化に伴う重量増を抑制することも要求されてい る。  [0002] In recent years, electronic devices have become increasingly smaller and have been used in a variety of applications, taking advantage of their light weight and compactness, as typified by notebook computers, mobile phones, and portable information terminals. On the other hand, in the field of flat panel displays such as liquid crystal displays and plasma displays, it is also required to suppress the increase in weight due to the increase in screen size.
[0003] 上述のような電子機器をはじめとする、透明性が要求される用途においては、従来 ガラスが使用されていた部材を透明性が良好な榭脂へ置き換える流れが進んでいる  [0003] In applications requiring transparency, such as the above-mentioned electronic devices, there has been a growing trend to replace conventional glass-made members with resins having good transparency.
[0004] ポリメタクリル酸メチルを代表とする種々のアクリル系榭脂は、ガラスと比較して成形 性、加工性が良好で、割れにくい、さらに軽量、安価という特徴などから、液晶ディス プレイや光ディスク、ピックアップレンズなどへの展開が検討され、一部実用化されて いる。 [0004] Various acrylic resins represented by polymethyl methacrylate have better moldability and workability than glass, are less likely to break, are lighter and cheaper, and are characterized by liquid crystal displays and optical disks. It has been studied for use in pickup lenses, etc., and some have been put into practical use.
[0005] 自動車用ヘッドランプカバーや液晶ディスプレイ用部材など、用途の展開に従って [0005] In accordance with the development of applications such as automotive headlamp covers and liquid crystal display components
、透明榭脂は透明性に加え、耐熱性も求められるようになつている。しかし、ポリメタク リル酸メチルやポリスチレン等は透明性が良好であり、価格も比較的安価である特徴 を有しているものの、耐熱性が低いため、このような用途においては適用範囲が制限 される。例えば、これらポリメタクリル酸メチルやポリスチレン等の示差走査熱量計 (D SC)によるガラス転移温度は 100°C程度である。 Transparent resins are required to have heat resistance in addition to transparency. However, polymethyl methacrylate and polystyrene have good transparency and are relatively inexpensive, but their low heat resistance limits their application in such applications. . For example, the glass transition temperature of these polymethyl methacrylate, polystyrene and the like measured by a differential scanning calorimeter (DSC) is about 100 ° C.
[0006] アクリル系榭脂の耐熱性を改善する一つの方法として、メタクリル酸メチルとシクロ へキシルマレイミドを共重合させる方法がある。ただし、当該方法によれば、高価なモ ノマーであるシクロへキシルマレイミドを用いるために、耐熱性を向上させようとするほ ど得られる共重合体が高価になるという課題がある。 [0006] One method for improving the heat resistance of acrylic resins is to use methyl methacrylate and cyclopentane. There is a method of copolymerizing hexylmaleimide. However, according to this method, there is a problem that the use of cyclohexylmaleimide, which is an expensive monomer, increases the cost of the obtained copolymer as the heat resistance is improved.
[0007] アクリル系榭脂の耐熱性を改善するその他の方法として、例えば、特許文献 1、特 許文献 2などのように、アクリル系榭脂に一級アミンを処理する技術が開示されている 。これらはダルタルイミド環構造が 20重量%以上のダルタルイミド榭脂からなる延伸 フィルムに関する。また、特許文献 3はダルタルイミドアクリル樹脂よりなる延伸フィル ムに関するものであり、延伸することにより機械強度が改善され、透明性、加熱収縮 率が良好なフィルムが得られたとの記載がある。これらの公報には配向複屈折に関し ては言及されていない。しかし、本発明者らの検討により、これらの公報にあるような ダルタルイミド環構造が多い組成の場合は、延伸時に配向複屈折が生じ、光学的な 歪みが生じやす 、と 、う課題があることが判って 、る。  [0007] As another method for improving the heat resistance of an acrylic resin, a technique of treating a primary amine with an acrylic resin is disclosed, for example, in Patent Document 1 and Patent Document 2. These relate to a stretched film comprising a dartalimide resin having a dartalimide ring structure of 20% by weight or more. Further, Patent Document 3 relates to a stretched film made of a dtaltarimide acrylic resin, and describes that a film having improved mechanical strength and excellent transparency and heat shrinkage was obtained by stretching. These publications do not mention orientation birefringence. However, according to the study of the present inventors, in the case of a composition having a large number of dartalimide ring structures as disclosed in these publications, there is a problem that orientation birefringence occurs during stretching and optical distortion is likely to occur. I understand.
[0008] また、ポリメタクリル酸メチルの耐熱性を改善する方法として、押出機を用いて、ポリ メタクリル酸メチル (例えば、特許文献 6参照)ゃメタクリル酸メチルースチレン共重合 体 (例えば、特許文献 7, 8, 9, 10参照)に一級アミンを処理することによりメタクリル 酸メチル中のメチルエステル基をイミド化させてイミド系榭脂を得ることが提案されて いる。し力しながら、このようなイミド系榭脂は、示差走査熱量計 (DSC)によるガラス 転移温度が高ぐそれに伴って榭脂の溶融粘度も高いため、複雑な形をした成形品 や、薄膜フィルムなどを射出成形や押出成形などで精密に成形する際などには適し ていないことが課題として挙げられる。本発明者らの検討によれば 260°C、 122秒—1 における溶融粘度が 20000Poiseのイミド系榭脂を溶融押し出し法により製膜した結 果、ダイラインが目立ち、厚み分布の悪いフィルムし力得られな力つた。そのため、加 ェ温度を 280°Cまで上昇し溶融粘度を 122秒—1 · lOOOOPoiseまで下げて同様の方 法で製膜したところ、榭脂の熱分解に伴って揮発ガスが発生し、発泡、ガス汚染など で良好なフィルムを得ることこができな力つた。このように透明かつ耐熱性を有するィ ミド系榭脂は、幅広い用途展開が期待されるものの、イミド系榭脂を用いて厚み分布 の良い薄膜フィルム等を、発泡、ガス汚染などを引き起こすことなく成形することは非 常に困難であり、成形加工性が悪いことが問題であった。 [0009] このようなダルタルイミドアクリル樹脂の配向複屈折を解消する手法として、特許文 献 5には、正の配向複屈折を有するダルタルイミドアクリル系榭脂と負の配向複屈折 を有するスチレン系榭脂をブレンドしたフィルムが開示されて 、る。このような榭脂は 、環境変化によって位相差が発現しにくいという特徴があるが、ブレンド体であるため に、製造工程が複雑となったり、得られたフィルムの性能 (例えば耐溶剤性等)が低 下するといつた問題があった。 [0008] As a method for improving the heat resistance of polymethyl methacrylate, an extruder is used to improve the heat resistance of poly (methyl methacrylate) (see, for example, Patent Document 6) ゃ methyl methacrylate-styrene copolymer (for example, see Patent Document 7, 8, 9, 10) to treat the primary amine to imidize the methyl ester group in methyl methacrylate to obtain an imide resin. However, such imide resins have a high glass transition temperature as measured by differential scanning calorimetry (DSC), and the resin has a high melt viscosity. One of the issues is that it is not suitable for precise molding of films and the like by injection molding or extrusion molding. According to the study by the present inventors, as a result of forming an imide resin having a melt viscosity of 20,000 Poise at 260 ° C. and 122 sec- 1 by a melt extrusion method, die lines are conspicuous and a film having poor thickness distribution is obtained. I was terrible. Therefore, when the heating temperature was increased to 280 ° C and the melt viscosity was reduced to 122 seconds- 1 lOOOOPoise, a film was formed in the same manner. A good film could not be obtained due to gas contamination. Such transparent and heat-resistant polyimide resins are expected to be used in a wide range of applications, but they can be used to form thin films with good thickness distribution using imide resins without causing foaming and gas contamination. It was very difficult to mold, and the problem was that the moldability was poor. [0009] As a technique for eliminating the orientation birefringence of the dartalimide acryl resin, Patent Document 5 discloses a dartalimide acryl-based resin having a positive orientation birefringence and a negative orientation birefringence. A film blended with a styrenic resin is disclosed. Such resins are characterized in that a phase difference is unlikely to be developed due to environmental changes.However, since the resin is a blend, the manufacturing process becomes complicated, and the performance of the obtained film (for example, solvent resistance, etc.) Had a problem when it fell.
[0010] 一方、透明樹脂の配向複屈折を解消するその他の手法として、非特許文献 1には 、正の配向複屈折を示すポリマーと負の配向複屈折を示すポリマーのモノマーを適 切な比率でランダム共重合する方法、分極率異方性を有する低分子化合物をポリマ 一中にドープする方法、などが提案されている。しかし、正の配向複屈折を示すポリ マーと負の配向複屈折を示すポリマーのモノマーを適切な比率でランダム共重合す る方法は、ベンジルメタタリレートとメタクリル酸メチルとの組み合わせや、 2, 2, 2—ト リフルォロェチルメタタリレートとメタクリル酸メチルとの組み合わせのように、高価なモ ノマーを使用することが多い。また、分極率異方性を有する低分子化合物をポリマー 中にドープする方法は低分子化合物の価格が高 、ことに加え、長期使用時にこれら の低分子化合物が成形品よりブリードアウトすることが多ぐ課題が多い。  [0010] On the other hand, as another method for eliminating the orientation birefringence of a transparent resin, Non-Patent Document 1 discloses a polymer having a positive orientation birefringence and a polymer having a negative orientation birefringence in an appropriate ratio. A method of random copolymerization, a method of doping a polymer with a low molecular compound having polarizability anisotropy, and the like have been proposed. However, the random copolymerization of a polymer having a positive orientation birefringence and a polymer having a negative orientation birefringence at an appropriate ratio has been performed by a combination of benzyl methacrylate and methyl methacrylate, Often, expensive monomers are used, such as the combination of 2,2-trifluoroethyl methacrylate and methyl methacrylate. In addition, the method of doping a polymer with a low-molecular compound having polarizability anisotropy is expensive in addition to the low-molecular compound, and in addition, these low-molecular compounds often bleed out from a molded article during long-term use. There are many issues to be solved.
[0011] また、非特許文献 2には、ポリカーボネートの配向複屈折を低減させる方法として、 ポリカーボネートとポリスチレンのブレンド、およびポリスチレンをポリカーボネートにグ ラフト共重合させる方法、などが提案されている。しかし、前者は光学特性上の均一 性に欠け、後者はグラフト重合を行うために実際上工程が複雑になる。  [0011] Non-Patent Document 2 proposes a method of reducing the orientation birefringence of polycarbonate, such as a blend of polycarbonate and polystyrene, and a method of graft copolymerizing polystyrene with polycarbonate. However, the former lacks uniformity in optical properties, and the latter requires graft polymerization to actually complicate the process.
[0012] これらの透明樹脂の液晶ディスプレイ用部材への利用例として、偏光板があげられ る。偏光板は、通過する光のうちで特定の振動方向をもつ直線偏光のみを透過させ 、その他の直線偏光を遮蔽する機能を有する材料であり、偏光子フィルムと偏光子保 護フィルムとが積層された構成をもつものが一般的に使用されている。  [0012] Examples of the use of these transparent resins for members for liquid crystal displays include polarizing plates. The polarizing plate is a material having a function of transmitting only linearly polarized light having a specific vibration direction among light passing therethrough and blocking other linearly polarized light, and is formed by laminating a polarizer film and a polarizer protection film. The one having the above configuration is generally used.
[0013] 前記偏光子フィルムとは、特定の振動方向をもつ直線偏光のみを透過する機能を 有するフィルムであり、例えばポリビュルアルコール(以下、 PVAという。)フィルム等 を延伸して、ヨウ素や二色性染料などで染色したフィルムが一般に使用されている。  [0013] The polarizer film is a film having a function of transmitting only linearly polarized light having a specific vibration direction. For example, a polybutyl alcohol (hereinafter, referred to as PVA) film or the like is stretched to obtain iodine or nitro- gen. A film dyed with a color dye or the like is generally used.
[0014] 前記偏光子保護フィルムとは、偏光子フィルムを保持して偏光板全体に実用的な 強度を付与するなどの機能を担うものであり、例えばトリァセチルセルロース(以下、 P VAt 、う。)フィルムなどが一般に使用されて 、る。 [0014] The polarizer protective film is a film that holds the polarizer film and is practical for the entire polarizing plate. It has a function of imparting strength and the like, and for example, a triacetyl cellulose (hereinafter, PVAt) film is generally used.
[0015] 偏光子保護フィルムにおいては、一般的に不要な位相差 (面内位相差および厚み 方向位相差)をもつフィルムは好ましくないとされている。これは、たとえ偏光子フィル ムが高精度の直線偏光機能を有するものであっても、偏光子保護フィルムの位相差 や光軸のズレは、偏光子フィルムを通過した直線偏光に楕円偏光性を与えてしまう 力もである。前述の TACフィルムも基本的には位相差が小さい。しかしながら、 TAC フィルムは、外部応力の作用によって位相差を生じやすいフィルムであり、光弾性係 数が十分に小さいとは言えない。また、厚み方向位相差も比較的大きなフィルムであ る。このため、特に、大型の液晶表示装置において、周辺部のコントラストが低下する などの問題を抱えている。  [0015] In the polarizer protective film, it is generally considered that a film having an unnecessary retardation (in-plane retardation and thickness-direction retardation) is not preferable. This is because even if the polarizer film has a high-precision linear polarization function, the phase difference and the deviation of the optical axis of the polarizer protective film will cause the linearly polarized light passing through the polarizer film to have elliptically polarizing properties. It is also the power to give. The aforementioned TAC film also basically has a small phase difference. However, TAC film is a film that easily generates a phase difference due to the action of external stress, and its photoelastic coefficient is not sufficiently small. Further, the film has a relatively large thickness direction retardation. For this reason, especially in a large-sized liquid crystal display device, there is a problem that the contrast in the peripheral portion is lowered.
[0016] そこで、 TACフィルムよりも光弾性係数の小さいフィルム素材を偏光子保護フィル ムとして用いる試みがなされている。一例を挙げると (例えば、特許文献 4)、 80°C、 9 0%RHの透湿率が 20g'mmZm2' 24hr以下で、かつ光弾性係数が 1 X 10— Ucm2 /N以下である保護フィルムが開示されている。しかし、この場合も、合成に複雑なル ートを必要とすることから価格が高 、と 、う問題があった。 [0016] Therefore, attempts have been made to use a film material having a smaller photoelastic coefficient than a TAC film as a polarizer protective film. As an example (for example, Patent Document 4), when the moisture permeability at 80 ° C and 90% RH is 20 g'mmZm 2 '24 hr or less, and the photoelastic coefficient is 1 X 10- U cm 2 / N or less. Certain protective films have been disclosed. However, also in this case, there was a problem that the price was high because the synthesis required a complicated route.
[0017] ところで近年、透明榭脂として、環状ォレフィンの単独重合体 (又はその水素添カロ 物)、環状ォレフィンを環状ォレフィン以外のォレフィンと共重合した環状ォレフィン系 共重合体 (又はその水素添加物)等が提案されている。これらの重合体は、低複屈折 性、低吸湿性、耐熱性などの特徴を有しており、光学材料として開発が進められてい る。これらの重合体は、光弾性係数が比較的小さいため、環境の変化に対しても光 学的特性が変化しにくいことが報告されている。ところが、一般にこのような環状ォレ フィン系の重合体は、合成に複雑なルートを必要とすることから、価格が高いという問 題があった。また、このような環状ォレフィン系重合体は、溶媒に対する溶解度が低 いという問題があった。  By the way, in recent years, as a transparent resin, a homopolymer of cyclic olefin (or a hydrogenated carohydrate thereof), a cyclic olefin copolymer obtained by copolymerizing cyclic olefin with other olefins (or hydrogenated product thereof) ) Etc. have been proposed. These polymers have characteristics such as low birefringence, low moisture absorption, and heat resistance, and are being developed as optical materials. It has been reported that these polymers have a relatively small photoelastic coefficient, so that their optical characteristics are hardly changed even when the environment changes. However, such a cyclic olefin polymer generally requires a complicated route for synthesis, and thus has a problem that the price is high. Further, such a cyclic olefin polymer has a problem of low solubility in a solvent.
特許文献 1:特開平 06— 240017号公報  Patent Document 1: JP 06-240017 A
特許文献 2:特開平 06 - 297558号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 06-297558
特許文献 3:特開平 06 - 256537号公報 特許文献 4:特開平 07 - 77608号公報 Patent Document 3: Japanese Patent Application Laid-Open No. 06-256537 Patent Document 4: Japanese Patent Application Laid-Open No. 07-77608
特許文献 5 :WO0lZ37007号公報  Patent Document 5: WO01Z37007
特許文献 6:米国特許 4、 246、 374号  Patent Document 6: U.S. Patent No. 4,246,374
特許文献 7:米国特許 4、 727、 117号  Patent Document 7: U.S. Patent No. 4,727,117
特許文献 8:米国特許 4、 954、 574号  Patent Document 8: U.S. Patent No. 4,954,574
特許文献 9:米国特許 5、 004、 777号  Patent Document 9: U.S. Patent No. 5,004,777
特許文献 10:米国特許 5、 264、 483号  Patent Document 10: U.S. Patent No. 5,264,483
非特許文献 1:成形加工第 15卷第 3号 194ページ  Non-Patent Document 1: Forming Process, Vol. 15, No. 3, page 194
非特許文献 2 :日経-ユーマテリアル 1988年 9月 26日号 56ページ  Non-Patent Document 2: Nikkei-U Material September 26, 1988, 56 pages
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0018] 本発明は、従来技術が有する上記課題に鑑みてなされたもので、製造が容易であ り、透明性、耐熱性に優れ、しかも成形加工時や使用時の応力下でも光学的な歪み (複屈折)が生じにくぐ成形加工性に優れたイミド榭脂、およびこれを用いた光学用 榭脂組成物、偏光子保護フィルム等の成型体を提供するものである。 [0018] The present invention has been made in view of the above-mentioned problems of the prior art, and is easy to manufacture, excellent in transparency and heat resistance, and optically even under stress during molding and use. An object of the present invention is to provide an imide resin excellent in molding processability, which hardly causes distortion (birefringence), and a molded article such as an optical resin composition and a polarizer protective film using the imide resin.
課題を解決するための手段  Means for solving the problem
[0019] 上記課題を解決するため、本発明者らは鋭意研究の結果、アクリル系榭脂に一級 アミンを処理する方法により得られる、特定のイミド化の反応率または溶融粘度を有 するイミド榭脂が、製造が容易で、安価であり、透明性や耐熱性に優れ、配向複屈折 が低ぐ成形加工性に優れ、かつ光弾性係数が十分に小さいことを見出し、本発明 に至った。 In order to solve the above problems, the present inventors have conducted intensive studies and as a result, have obtained a method for treating an acrylic resin with a primary amine, which has a specific imidization reaction rate or a melt viscosity. The present inventors have found that fat is easy to produce, inexpensive, excellent in transparency and heat resistance, excellent in moldability with low orientation birefringence, and sufficiently small in photoelastic coefficient.
[0020] すなわち、本発明は、下記一般式(1)、(2)で表される繰り返し単位を含有すること を特徴とするイミド榭脂に関する。 [0021] [化 1] That is, the present invention relates to an imide resin containing a repeating unit represented by the following general formulas (1) and (2). [0021] [Formula 1]
Figure imgf000007_0001
Figure imgf000007_0001
[0022] (ここで、 Rおよび Rは、それぞれ独立に、水素または炭素数 1〜8のアルキル基を 示し、 R3は、炭素数 1〜18のアルキル基、炭素数 3〜 12のシクロアルキル基、または 炭素数 6〜10のァリール基を示す。) (Wherein, R and R each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 3 represents an alkyl group having 1 to 18 carbon atoms and cycloalkyl having 3 to 12 carbon atoms. Group or aryl group having 6 to 10 carbon atoms.)
[0023] [化 2]  [0023]
Figure imgf000007_0002
Figure imgf000007_0002
[0024] (ここで、 R4および R5は、それぞれ独立に、水素または炭素数 1〜8のアルキル基を 示し、 R6は、水素または炭素数 1〜18のアルキル基、炭素数 3〜12のシクロアルキ ル基、または炭素数 6〜 10のァリール基を示す。 ) (Here, R 4 and R 5 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 6 represents hydrogen or an alkyl group having 1 to 18 carbon atoms, It represents 12 cycloalkyl groups or aryl groups having 6 to 10 carbon atoms.)
また、本発明のイミド榭脂は、配向複屈折が 0. 0001以下であることが好ましぐさら に、配向複屈折が 0. 00001以下であることがより好ましい。  The imide resin of the present invention preferably has an orientation birefringence of 0.0001 or less, and more preferably has an orientation birefringence of 0.0001 or less.
[0025] また、本発明のイミド榭脂は、 260°C、 122秒—1における溶融粘度が 14000Poise 以下であることが好ましい。 The imide resin of the present invention preferably has a melt viscosity at 260 ° C. and 122 seconds- 1 of 14000 Poise or less.
[0026] また、本発明のイミド榭脂は、下記一般式 (3)で表される繰り返し単位を含有するこ とが好ましい。 [0027] [化 3] [0026] The imide resin of the present invention preferably contains a repeating unit represented by the following general formula (3). [0027] [Formula 3]
Figure imgf000008_0001
Figure imgf000008_0001
[0028] (ここで、 R7は、水素または炭素数 1〜8のアルキル基を示し、 R8は、炭素数 6〜 10の ァリール基を示す。 ) (Here, R 7 represents hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 8 represents an aryl group having 6 to 10 carbon atoms.)
また、本発明のイミド榭脂は、(メタ)アクリル酸エステル重合体を用いて製造したも のであることが好ましぐさらに、前記 (メタ)アクリル酸エステル重合体力 メタクリル酸 メチル重合体であることがより好まし 、。  In addition, the imide resin of the present invention is preferably produced using a (meth) acrylate polymer, and the (meth) acrylate polymer is a methyl methacrylate polymer. Is more preferred,.
[0029] また、本発明のイミド榭脂は、(メタ)アクリル酸エステル—芳香族ビュル共重合体を 用いて製造したものであることが好ましぐさらに、前記 (メタ)アクリル酸エステル一芳 香族ビュル共重合体力 メタクリル酸メチル—スチレン共重合体であることがより好ま しい。 The imide resin of the present invention is preferably produced using a (meth) acrylate-aromatic vinyl copolymer. Aromatic Bull copolymer power Methyl methacrylate-styrene copolymer is more preferable.
[0030] また、前記 (メタ)アクリル酸エステル重合体、前記 (メタ)アクリル酸エステル 芳香 族ビュル共重合体の、 260°C、 122秒—1における溶融粘度が 7000Poise以下である ことが好ましい。 The melt viscosity of the (meth) acrylate polymer and the (meth) acrylate aromatic vinyl copolymer at 260 ° C. for 122 seconds- 1 is preferably 7000 Poise or less.
[0031] また、本発明のイミド榭脂は、溶剤不在下にて、または溶剤存在下にて、アクリル系 榭脂に一級アミンを処理する方法により製造することが好ましい。  The imide resin of the present invention is preferably produced by a method of treating a primary amine with an acrylic resin in the absence or presence of a solvent.
[0032] 本発明のイミド榭脂は、ガラス転移温度が 110°C以上であるが好ま 、。 The imide resin of the present invention preferably has a glass transition temperature of 110 ° C. or higher.
[0033] また、本発明は、溶剤不在下にて、(メタ)アクリル酸エステル重合体、または (メタ) アクリル酸エステル一芳香族ビニル共重合体に一級アミンを処理することを特徴とす るイミド榭脂を製造する方法に関する。 Further, the present invention is characterized in that a (meth) acrylate polymer or a (meth) acrylate-aromatic vinyl copolymer is treated with a primary amine in the absence of a solvent. The present invention relates to a method for producing an imide resin.
[0034] また、本発明は、前記イミド榭脂を主成分とする光学用榭脂組成物に関する。 [0034] The present invention also relates to an optical resin composition containing the imide resin as a main component.
[0035] また、本発明は、前記光学用榭脂組成物からなる成形体に関する。 [0035] The present invention also relates to a molded article comprising the resin composition for optical use.
[0036] また、本発明は、光学用榭脂組成物からなる偏光子保護フィルムに関する。 [0036] The present invention also relates to a polarizer protective film comprising the resin composition for optical use.
[0037] また、本発明は、前記イミド榭脂からなり、フィルムの面内位相差が lOnm以下であ り、かつ、厚み方向位相差が 20nm以下であることを特徴とする偏光子保護フィルム に関する。 Further, the present invention provides a polarizer protective film comprising the imide resin, wherein an in-plane retardation of the film is 10 nm or less and a thickness direction retardation is 20 nm or less. About.
[0038] 前記本発明の偏光子保護フィルムは、延伸されていることが好ましい。  [0038] The polarizer protective film of the present invention is preferably stretched.
[0039] 本発明の偏光子保護フィルムは、一般式(1)で表される繰り返し単位を 1〜5モル [0039] The polarizer protective film of the present invention comprises 1 to 5 mol of the repeating unit represented by the general formula (1).
%含有するイミド榭脂からなることが好まし 、。 % Of the imide resin contained.
[0040] 本発明の偏光子保護フィルムは、イミド榭脂の光弾性係数が 10 X 10— 12mソ N以下 であることが好ましい。 The polarizer protective film of the [0040] present invention, it is preferable photoelastic coefficient of the imide榭脂is less than 10 X 10- 12 m Seo N.
[0041] 本発明の偏光子保護フィルムは、イミド榭脂のガラス転移温度が 100°C以上である ことが好ましい。  [0041] In the polarizer protective film of the present invention, the glass transition temperature of the imide resin is preferably 100 ° C or higher.
[0042] また、本発明は、前記偏光子保護フィルムを用いた偏光板に関する。  [0042] The present invention also relates to a polarizing plate using the polarizer protective film.
発明の効果  The invention's effect
[0043] 以上にしてなる本発明によれば、製造が容易で、安価であり、透明性や耐熱性に 優れ、配向複屈折が低ぐかつ光弾性係数が十分に小さいイミド榭脂を提供できるた め、成形加工性に優れ、成形加工時や使用時において応力が生じても光学的な歪 みが生じない成形体が得られる。し力も本発明のイミド榭脂を用いることにより、透明 性、耐熱性と軽量ィ匕が求められる成形体への展開が可能であり、ガラス代替としても 使用できる。また、光学異方性が小さい偏光子保護フィルムを提供することが可能と なる。また、本発明の偏光子保護フィルムを用いることで、大型の液晶表示装置にお いても、周辺部のコントラストの低下を抑え、良好な表示を実現することが可能となる 発明を実施するための最良の形態  According to the present invention described above, it is possible to provide an imide resin which is easy to manufacture, inexpensive, has excellent transparency and heat resistance, has low orientation birefringence, and has a sufficiently small photoelastic coefficient. Therefore, a molded article having excellent moldability and having no optical distortion even when stress is generated during molding or use can be obtained. By using the imide resin of the present invention, it can be applied to a molded product requiring transparency, heat resistance and light weight, and can be used as a substitute for glass. In addition, it is possible to provide a polarizer protective film having small optical anisotropy. Further, by using the polarizer protective film of the present invention, even in a large-sized liquid crystal display device, it is possible to suppress a decrease in contrast in a peripheral portion and realize a good display. Best form
[0044] 本発明は、下記一般式(1)、(2)で表される繰り返し単位を含有することを特徴とす るイミド榭脂に関する。 [0045] [化 4] [0044] The present invention relates to an imide resin characterized by containing a repeating unit represented by the following general formulas (1) and (2). [0045]
Figure imgf000010_0001
Figure imgf000010_0001
[0046] (ここで、 R1および R2は、それぞれ独立に、水素または炭素数 1〜8のアルキル基を 示し、 R3は、炭素数 1〜18のアルキル基、炭素数 3〜 12のシクロアルキル基、または 炭素数 6〜10のァリール基を示す。) (Wherein, R 1 and R 2 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 3 represents an alkyl group having 1 to 18 carbon atoms and 3 to 12 carbon atoms. It represents a cycloalkyl group or an aryl group having 6 to 10 carbon atoms.)
[0047] [化 5]  [0047]
Figure imgf000010_0002
Figure imgf000010_0002
[0048] (ここで、 R4および R5は、それぞれ独立に、水素または炭素数 1〜8のアルキル基を 示し、 R6は、水素または炭素数 1〜18のアルキル基、炭素数 3〜12のシクロアルキ ル基、または炭素数 6〜 10のァリール基を示す。 ) (Here, R 4 and R 5 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 6 represents hydrogen or an alkyl group having 1 to 18 carbon atoms, It represents 12 cycloalkyl groups or aryl groups having 6 to 10 carbon atoms.)
本発明のイミド榭脂を構成する、第一の構成単位は、下記一般式(1)で表されるも のであり、一般的にダルタルイミド単位と呼ばれることが多い(以下、一般式(1)をグ ルタルイミド単位と省略して示すことがある。 ) o [0049] [化 6] The first structural unit that constitutes the imide resin of the present invention is represented by the following general formula (1), and is often referred to as a daltalimide unit (hereinafter, the general formula (1) It may be abbreviated as glutarimide unit.) O [0049]
Figure imgf000011_0001
Figure imgf000011_0001
[0050] (ここで、 R1および R2は、それぞれ独立に、水素または炭素数 1〜8のアルキル基を 示し、 R3は、炭素数 1〜18のアルキル基、炭素数 3〜 12のシクロアルキル基、または 炭素数 6〜10のァリール基を示す。) (Here, R 1 and R 2 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 3 represents an alkyl group having 1 to 18 carbon atoms and 3 to 12 carbon atoms. It represents a cycloalkyl group or an aryl group having 6 to 10 carbon atoms.)
好ましいダルタルイミド単位としては、原料の入手性、コスト、耐熱性などの点から、 R2が水素またはメチル基であり、 R3が水素、メチル基、 n—ブチル基、シクロへキ シル基、ベンジル基である。 R1がメチル基であり、 R2が水素であり、 R3がメチル基、 n —ブチル基、シクロへキシル基である場合力 特に好ましい。 Preferred dartalimide units are those in which R 2 is hydrogen or a methyl group, and R 3 is hydrogen, a methyl group, an n-butyl group, a cyclohexyl group, a benzyl group, from the viewpoint of availability of raw materials, cost, heat resistance, and the like. Group. It is particularly preferable that R 1 is a methyl group, R 2 is hydrogen, and R 3 is a methyl group, an n-butyl group, or a cyclohexyl group.
[0051] 本発明のイミド榭脂に含まれるダルタルイミド単位は、単一の種類でもよぐイミド榭 脂が R1 R2、 R3が異なる複数の種類のダルタルイミド単位を含んでいても構わない。 The dartalimide unit contained in the imide resin of the present invention may be of a single type, and the imide resin may contain a plurality of types of dartartimide units having different R 1 R 2 and R 3 .
[0052] 本発明のイミド榭脂を構成する、第二の構成単位は、下記一般式 (2)で表される、 ( メタ)アクリル酸エステルまたは (メタ)アクリル酸単位である力 一般的には (メタ)ァク リル酸エステル単位と呼ばれることが多い(ここで、(メタ)アクリル酸エステルとは、ァ クリル酸エステル、及び Z又はメタクリル酸エステルを示す。以下、一般式(2)を (メタ )アクリル酸エステル単位と省略して示すことがある。 )。 [0053] [化 7] [0052] The second structural unit constituting the imide resin of the present invention is represented by the following general formula (2) and is a (meth) acrylic ester or (meth) acrylic acid unit. Is often referred to as a (meth) acrylic ester unit (here, (meth) acrylic ester means acrylic ester, Z or methacrylic ester. Hereinafter, the general formula (2) It may be abbreviated as (meth) acrylate unit.) [0053] [Formula 7]
Figure imgf000012_0001
Figure imgf000012_0001
[0054] (ここで、 R4および R5は、それぞれ独立に、水素または炭素数 1〜8のアルキル基を 示し、 R6は、水素または炭素数 1〜18のアルキル基、炭素数 3〜12のシクロアルキ ル基、または炭素数 6〜 10のァリール基を示す。 ) (Here, R 4 and R 5 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 6 represents hydrogen or an alkyl group having 1 to 18 carbon atoms, and 3 to 5 carbon atoms. It represents 12 cycloalkyl groups or aryl groups having 6 to 10 carbon atoms.)
好ましい (メタ)アクリル酸エステルまたは、原料の入手性、コストなどの点から、(メタ )アクリル酸単位としては、 R4、 R5が水素またはメチル基であり、 R6が水素、メチル基、 n—ブチル基、シクロへキシル基、ベンジル基である。 R1がメチル基であり、 R2がメチ ル基であり、 R3力メチル基である場合力 特に好ましい。 From the viewpoints of the availability of the (meth) acrylic acid ester or the raw material and the cost, as the (meth) acrylic acid unit, R 4 and R 5 are hydrogen or a methyl group, R 6 is a hydrogen or methyl group, n-butyl group, cyclohexyl group and benzyl group. R 1 is a methyl group, R 2 is methylcarbamoyl group, force when it is R 3 forces a methyl group are especially preferred.
[0055] これら第二の構成単位は、単一の種類でもよぐ
Figure imgf000012_0002
R5、 R6が異なる複数の種類を 含んでいてもかまわない。
[0055] These second structural units may be of a single type.
Figure imgf000012_0002
R 5 and R 6 may include a plurality of different types.
[0056] 本発明のイミド榭脂は、配向複屈折が 0. 0001以下であることが好ましい。このよう なイミド榭脂は、実質的に配向複屈折を有さないものである。配向複屈折の値として は、 0. 00001以下がより好ましい。配向複屈折を 0. 0001以下とすることで、成形カロ ェ時ゃ使用時において応力が生じても実質的に複屈折が生じないものとなり、光学 的な歪みが生じな 、成形体が得られる。  [0056] The imide resin of the present invention preferably has an orientation birefringence of 0.0001 or less. Such an imide resin has substantially no orientation birefringence. The value of the orientation birefringence is more preferably 0.0001 or less. By setting the orientation birefringence to 0.0001 or less, substantially no birefringence occurs even when a stress is generated during molding and use, and a molded article without optical distortion can be obtained. .
[0057] ここで配向複屈折は、所定の温度、所定の延伸倍率で一軸延伸した場合に発現す る複屈折のことであり、ポリマー構造由来の固有複屈折と分子配向状態に由来する 配向分布関数の積である。本明細書中では屈折率最大方向の屈折率 (nx)と、それ と直交する軸方向の屈折率 (ny)の差として定義され、位相差計により測定される位 相差 Re (nm)を位相差測定時の試験片の厚み d ( μ m)で割った値であり、次式で表 される。 配向複屈折 Δη =nx-ny=Re/d Here, the orientation birefringence is a birefringence that occurs when the film is uniaxially stretched at a predetermined temperature and a predetermined stretching ratio, and includes an intrinsic birefringence derived from a polymer structure and an orientation distribution derived from a molecular alignment state. This is the product of the functions. In this specification, it is defined as the difference between the refractive index (nx) in the direction of maximum refractive index (nx) and the refractive index (ny) in the axial direction orthogonal thereto, and the phase difference Re (nm) measured by a phase difference meter is referred to as the difference. It is the value divided by the thickness d (μm) of the test piece at the time of phase difference measurement, and is expressed by the following equation. Orientation birefringence Δη = nx-ny = Re / d
or  or
尚、本明細書中では、特にことわりのない限り、イミド榭脂のガラス転移温度より 5°C 高い温度で、 100%延伸した場合 (延伸倍率 2倍)に発現する複屈折のことをいうも のとする。  In the present specification, unless otherwise specified, it refers to the birefringence that appears when the film is stretched 100% at a temperature 5 ° C higher than the glass transition temperature of the imide resin (drawing magnification is 2 times). And
[0058] 本発明のイミド榭脂中の、一般式(1)で表されるダルタルイミド単位の含有量は、例 えば R3の構造や、一般式(3)の含有量にも依存するが、 3〜95重量%が好ましい。 尚、一般式 (3)で表される芳香族ビニル単位を含まない場合、特に実質的に配向複 屈折を有さな ヽイミド榭脂を得る時には、一般式(1)で表されるダルタルイミド単位の 含有量は 1〜40重量%が好ましぐ 3〜30重量%が特に好ましぐ 5〜20重量%がさ らに好ましい。一方、一般式 (3)で表される芳香族ビニル単位を含む場合、実質的に 配向複屈折を有さな ヽイミド榭脂を得る時には、一般式(1)で表されるダルタルイミド 単位の含有量を、一般式(3)で表される芳香族ビュル単位の量に合わせて増加させ ることが好ましぐ特に 20重量%以上が好ましぐ更に 40重量%以上、特に 50重量 %以上が好ましい。ダルタルイミド単位の割合がこの範囲より小さい場合、得られるィ ミド榭脂の耐熱性が不足したり、透明性が損なわれることがある。また、この範囲を超 えると不必要に耐熱性、溶融粘度が上がり、成形加工性が悪くなる他、得られる成形 体の機械的強度は極端に脆くなり、また、透明性が損なわれることがある。 [0058] The content of the daltarimide unit represented by the general formula (1) in the imide resin of the present invention depends on, for example, the structure of R 3 and the content of the general formula (3). 3-95% by weight is preferred. When the aromatic vinyl unit represented by the general formula (3) is not contained, particularly when a imide resin having substantially no orientation birefringence is obtained, the dartalimide unit represented by the general formula (1) is used. Is preferably from 1 to 40% by weight, particularly preferably from 3 to 30% by weight, particularly preferably from 5 to 20% by weight. On the other hand, when an aromatic vinyl unit represented by the general formula (3) is contained, a imide resin having substantially no orientation birefringence is obtained when the daltarimide unit represented by the general formula (1) is contained. The amount is preferably increased in accordance with the amount of the aromatic unit represented by the general formula (3), particularly preferably at least 20% by weight, more preferably at least 40% by weight, particularly preferably at least 50% by weight. preferable. If the proportion of dartalimide units is less than this range, the resulting polyimide resin may have insufficient heat resistance or may have poor transparency. Exceeding this range may unnecessarily increase the heat resistance and melt viscosity, deteriorating the moldability, and may also cause the mechanical strength of the obtained molded article to become extremely brittle and impair the transparency. is there.
[0059] また、本発明のイミド榭脂は、 260°C、 122秒—1における溶融粘度が 14000Poise 以下であることが好ましい。本発明における溶融粘度とは、熱可塑性榭脂 (イミド榭脂 )が熱により溶融した時の流れ特性であり、せん断応力とせん断速度との比をいう。単 位は Poiseで表す。 260°C、 122秒—1における溶融粘度が 14000Poise以下とするこ とで、得られるイミド榭脂の成形加工性が良好なものとなり、精密な成形品を得ること ができる。 [0059] The imide resin of the present invention preferably has a melt viscosity at 260 ° C and 122 seconds- 1 of 14000 Poise or less. The melt viscosity in the present invention is a flow characteristic when a thermoplastic resin (imide resin) is melted by heat, and refers to a ratio between a shear stress and a shear rate. The unit is represented by Poise. By setting the melt viscosity at 260 ° C and 122 seconds- 1 to 14000 Poise or less, the moldability of the obtained imide resin is improved, and a precise molded product can be obtained.
[0060] 本発明にお 、てイミド榭脂の成形加工性が良!、とは、イミド榭脂を、例えば射出成 形、溶融押出フィルム成形、インフレーション成形、ブロー成形、圧縮成形、紡糸成 形などのような各種プラスチック加工法によって様々な成形品に加工する際に、転写 不良、シルバー、フィッシュアイ、ダイライン、厚みむら、発泡などの欠陥が発生し難く 、精密な成形が容易である特性のことをいう。 [0061] 本発明のイミド榭脂に必要に応じて含有させる第三の構成単位は、下記一般式 (3 )で表されるものであり、一般的には芳香族ビュル単位と呼ばれることが多い(以下、 一般式 (3)を芳香族ビニル単位と省略して示すことがある。 )。 [0060] In the present invention, the moldability of the imide resin is good! , Means, when imide resin is processed into various molded products by various plastic processing methods such as injection molding, melt extrusion film molding, inflation molding, blow molding, compression molding, and spin molding. Defects such as poor transfer, silver, fisheye, die line, thickness unevenness, foaming, etc. are hardly generated, and it is a characteristic that precise molding is easy. [0061] The third structural unit to be contained in the imide resin of the present invention as necessary is represented by the following general formula (3), and is often often referred to as an aromatic vinyl unit. (Hereinafter, the general formula (3) may be abbreviated as an aromatic vinyl unit.)
[0062] [化 8]  [0062] [Formula 8]
Figure imgf000014_0001
Figure imgf000014_0001
[0063] (ここで、 R7は、水素または炭素数 1〜8のアルキル基を示し、 R。は、炭素数 6〜 10の ァリール基を示す。 ) (Here, R 7 represents hydrogen or an alkyl group having 1 to 8 carbon atoms, and R. represents an aryl group having 6 to 10 carbon atoms.)
好ましい芳香族ビニル単位としては、スチレン、 —メチルスチレン等が挙げられる 。これらの中で原料の入手性、コストなどの点から、スチレンが特に好ましい。  Preferred aromatic vinyl units include styrene, -methylstyrene and the like. Of these, styrene is particularly preferred from the viewpoints of availability of raw materials and cost.
[0064] これら第三の構成単位は、単一の種類でもよぐ
Figure imgf000014_0002
R8が異なる複数の種類を含ん でいてもかまわない。
[0064] These third structural units may be of a single type.
Figure imgf000014_0002
R 8 may include a plurality of different types.
[0065] イミド榭脂の、一般式 (3)で表される芳香族ビュル単位の含有量は、イミド榭脂の総 繰り返し単位を基準として、 10重量%以上が好ましい。芳香族ビニル単位の、好まし い含有量は、 10重量%力 40重量%であり、より好ましくは 15〜30重量%、さらに 好ましくは、 15〜25重量%である。芳香族ビュル単位力この範囲より大きい場合、得 られるイミド榭脂の耐熱性が不足する場合がある。  [0065] The content of the aromatic vinyl unit represented by the general formula (3) in the imide resin is preferably 10% by weight or more based on the total repeating units of the imide resin. The preferred content of aromatic vinyl units is 10% by weight 40% by weight, more preferably 15 to 30% by weight, and even more preferably 15 to 25% by weight. When the aromatic unit power is larger than this range, the heat resistance of the obtained imide resin may be insufficient.
[0066] 一般式(1)、 (2)、 (3)の割合を調整することで、各種要求される物性に調整するこ とが可能である。例えば、本発明のイミド榭脂を、先ずメタクリル酸メチル—スチレン共 重合体等の (メタ)アクリル酸エステル一芳香族ビュル共重合体を重合した後に後イミ ド化して形成する場合、例えば (メタ)アクリル酸エステルと芳香族ビニルの重合割合 を調整することで一般式 (3)の割合を決め(一般式 (3)の割合を 0とすることも可)、更 に後イミド化時の一級ァミンの添加割合を調整することで、更に一般式(1)、 (2)の割 合を調整することができる。  [0066] By adjusting the proportions of the general formulas (1), (2) and (3), it is possible to adjust to various required physical properties. For example, when the imide resin of the present invention is formed by first polymerizing a (meth) acrylate-aromatic vinyl copolymer such as a methyl methacrylate-styrene copolymer and then imidizing it, for example, ) The ratio of the general formula (3) is determined by adjusting the polymerization ratio of the acrylate ester and the aromatic vinyl (the ratio of the general formula (3) can be set to 0). The proportion of the general formulas (1) and (2) can be further adjusted by adjusting the addition ratio of the amine.
[0067] 本発明のイミド榭脂中で、一般式 (3)を含有するタイプは、メタクリル酸メチル—スチ レン共重合体中の各構成単位量およびダルタルイミド単位の含有量を調節すること で、イミド榭脂の 260°C、 122秒—1〖こおける溶融粘度が 14000Poise以下であり、且 つ実質的に配向複屈折を有さない特徴を付与することも可能である。 260°C、 122秒 — 1における溶融粘度が 14000Poise以下であり、且つ実質的に配向複屈折を有さな いイミド榭脂を得るためには、メタクリル酸メチル一スチレン共重合体等の (メタ)アタリ ル酸エステル 芳香族ビニル共重合体中の各構成単位量を調節し、更にイミドィ匕の 程度を調整する必要があり、一般式(1)で示される繰り返し単位と、一般式 (3)で示 される繰り返し単位力 重量比で 2. 0 : 1. 0〜4. 0 : 1. 0の範囲にあることが好ましく 、 2. 5 : 1. 0〜4. 0 : 1. 0の範囲力 Sより好ましく、 3. 0 : 1. 0〜3. 5 : 1. 0の範囲力 S更 に好ましい。 [0067] In the imide resin of the present invention, the type containing the general formula (3) is methyl methacrylate-styrene. By adjusting the amount of each constituent unit and the content of dartalimide units in the ren copolymer, the melt viscosity of the imide resin at 260 ° C and 122 seconds- 1 is 14000 Poise or less, and substantially It is also possible to provide a feature having no orientation birefringence. In order to obtain an imide resin having a melt viscosity at 260 ° C and 122 sec- 1 of 14000 Poise or less and having substantially no orientation birefringence, it is necessary to use (meth) methacrylate such as methyl methacrylate-styrene copolymer. ) Atharyl acid ester It is necessary to adjust the amount of each structural unit in the aromatic vinyl copolymer, and further to adjust the degree of imididani. The repeating unit represented by the general formula (1) and the repeating unit represented by the general formula (3) It is preferably in the range of 2.0: 1.0 to 4.0: 1.0 in weight ratio, and 2.5: 1.0 to 4.0: 1.0 in weight ratio. Force S is more preferable, and force S in the range of 3.0: 1.0 to 3.5: 1.0 is more preferable.
[0068] 本発明のイミド榭脂には、必要に応じ、更に、第四の構成単位が共重合されていて も力まわない。第四の構成単位として、アクリロニトリルゃメタクリロ-トリル等の-トリル 系単量体、マレイミド、 N—メチルマレイミド、 N フエ-ルマレイミド、 N シクロへキ シルマレイミドなどのマレイミド系単量体を共重合してなる構成単位を用いることがで きる。これらはイミド榭脂中に、直接共重合してあっても良ぐグラフト共重合してあつ てもかまわない。  [0068] In the imide resin of the present invention, if necessary, even if the fourth structural unit is copolymerized, it does not matter. As a fourth structural unit, a copolymer of a tolyl monomer such as acrylonitrile / methacrylo-tolyl, and a maleimide monomer such as maleimide, N-methylmaleimide, N-phenylmaleimide, or N-cyclohexylmaleimide. Can be used. These may be directly copolymerized into the imide resin or by graft copolymerization.
[0069] 本発明のイミド榭脂は、 1 X 104ないし 5 X 105の重量平均分子量を有することが好 ましい。重量平均分子量が 1 X 104未満の場合には、フィルムにした場合の機械的強 度が不足し、 5 X 105を超える場合には、溶融時の粘度が高ぐフィルムの生産性が 低下することがある。イミド榭脂の溶融粘度を低くするには、分岐点間分子量が小さ い分岐状メタクリル系榭脂を原料に用いることが有用である。分岐点間分子量とは、 分岐構造を有するポリマーにお 、て分岐から次の分岐点までの分子量の平均値を 意味し、 Z平均分子量を用いて規定される。また、用いる原料のメタクリル系樹脂の重 量平均分子量と数平均分子量の比 (分散度)を高くすることも溶融粘度を低くするの に有用である。数平均分子量に対し重量平均分子は 2. 1倍以上が好ましぐ 2. 5倍 以上がより好ましい。上記の値以下の場合には、得られるイミド榭脂の溶融粘度が高 く成形カ卩ェ時にカ卩ェ不良が生じることがある。 [0069] imide榭脂of the present invention, it is favorable preferable having 1 X 10 4 to weight average molecular weight of 5 X 10 5. When the weight average molecular weight is less than 1 × 10 4 , the mechanical strength of the film is insufficient, and when the weight average molecular weight exceeds 5 × 10 5 , the viscosity at the time of melting is high and the productivity of the film is reduced. Sometimes. In order to lower the melt viscosity of the imide resin, it is useful to use a branched methacrylic resin having a small molecular weight between branch points as a raw material. The molecular weight between branch points means an average molecular weight from a branch to the next branch point in a polymer having a branched structure, and is defined using a Z-average molecular weight. Also, increasing the ratio (dispersion degree) between the weight average molecular weight and the number average molecular weight of the methacrylic resin used as the raw material is also useful for lowering the melt viscosity. The weight average molecule is preferably at least 2.1 times the number average molecular weight, more preferably at least 2.5 times. If it is less than the above value, the resulting imide resin may have a high melt viscosity, and may cause poor kneading during molding.
[0070] 本発明のイミド榭脂のガラス転移温度は 100°C以上であることが好ましぐ 110°C以 上であることがより好ましぐ 120°C以上であることがさらに好ましい。ガラス転移温度 力 SlOO°Cを下回ると、耐熱性が要求される用途においては適用範囲が制限される。 [0070] The glass transition temperature of the imide resin of the present invention is preferably 100 ° C or higher, more preferably 110 ° C or lower. More preferably, it is more preferably 120 ° C. or more. If the glass transition temperature is lower than SlOO ° C, the application range is limited in applications requiring heat resistance.
[0071] 本発明のイミド榭脂には、必要に応じて、他の熱可塑性榭脂を添加することができ る。 [0071] If necessary, other thermoplastic resins can be added to the imide resin of the present invention.
[0072] 本発明のイミド榭脂は、高い引張強度および曲げ強度、耐溶剤性、熱安定性、良 好な光学特性、耐候性などの特性を有している。  [0072] The imide resin of the present invention has properties such as high tensile strength and bending strength, solvent resistance, thermal stability, good optical properties, and weather resistance.
[0073] 本発明のイミド榭脂は、公知の各種方法で製造することができる。例えば、米国特 許 4, 246, 374号に記載されているように、溶剤不在下にて、押出機を用いて、溶融 状態のアクリル系榭脂 ( (メタ)アクリル酸エステル—芳香族ビュル共重合体等)〖こイミ ド化剤を添加することにより、イミド榭脂を得ることができる。また、例えば、特許 2505 970号に記載されているように、溶剤存在下にて、アクリル系榭脂((メタ)アクリル酸 エステル一芳香族ビュル共重合体等)を溶解できイミドィ匕反応に対して非反応性溶 媒を用いて、溶液状態のアクリル系榭脂( (メタ)アクリル酸エステル—芳香族ビニル 共重合体等)にイミド化剤を添加することによつても得られる。  [0073] The imide resin of the present invention can be produced by various known methods. For example, as described in US Pat. No. 4,246,374, in the absence of a solvent, an extruder is used to melt a molten acrylic resin ((meth) acrylate-aromatic vinyl copolymer). An imide resin can be obtained by adding a polymer imidizing agent. Further, for example, as described in Japanese Patent No. 2505970, an acrylic resin (such as a (meth) acrylic acid ester-aromatic vinyl copolymer) can be dissolved in the presence of a solvent to prevent the imidani reaction. It can also be obtained by adding an imidizing agent to a solution-based acrylic resin (such as a (meth) acrylate-aromatic vinyl copolymer) using a non-reactive solvent.
[0074] 本発明で使用されるアクリル系榭脂は、イミド化剤と反応し、ダルタルイミド単位とな ることができれば特に限定がなぐ例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸 ェチル、(メタ)アクリル酸ブチルなどの(メタ)アクリル酸エステル、アクリル酸、メタタリ ル酸などの(メタ)アクリル酸、マレイン酸、ィタコン酸、クロトン酸、フマル酸、シトラコン 酸等の α , β エチレン性不飽和カルボン酸、無水マレイン酸等の酸無水物または それらと炭素数 1〜20の直鎖または分岐のアルコールとのハーフエステル、などがィ ミド化可能であり、これら力 なる単独重合体、これらの共重合体、もしくは他の共重 合成分からなる共重合体を例示できる。これらの中で、ポリメタクリル酸メチルカ コス ト、物性などの点力も好ましい。  [0074] The acrylic resin used in the present invention is not particularly limited as long as it can react with an imidizing agent and become a darthalimide unit. For example, methyl (meth) acrylate, ethyl (meth) acrylate, (Meth) acrylates such as butyl (meth) acrylate, (meth) acrylic acid such as acrylic acid and methacrylic acid, maleic acid, itaconic acid, crotonic acid, fumaric acid, α, β ethylenic acid such as citraconic acid Acid anhydrides such as unsaturated carboxylic acids and maleic anhydride, or half esters of these with straight-chain or branched alcohols having 1 to 20 carbon atoms, etc., can be imidized. Or a copolymer composed of other copolymer components. Among them, polymethyl methacrylate cost, physical properties and the like are also preferable.
[0075] 本発明のイミド榭脂は、溶剤不在下で製造する場合、押出機などを用いてもよぐ バッチ式反応槽 (圧力容器)などを用いてもよ!ヽ。  When the imide resin of the present invention is produced in the absence of a solvent, an extruder may be used, or a batch-type reaction vessel (pressure vessel) may be used!
[0076] 本発明のイミド榭脂を製造する為に特に押出機を用いる際には、単軸押出機、二 軸押出機あるいは多軸押出機等の各種タイプの押出機が使用できるが、原料ポリマ 一に対するイミド化剤の混合を促進できる押出機として二軸押出機が好ましい。二軸 押出機には非嚙合い型同方向回転式、嚙合い型同方向回転式、非嚙合い型異方 向回転式、嚙合い型異方向回転式が含まれる。二軸押出機の中では嚙合い型同方 向回転式が高速回転が可能であり、原料ポリマーに対するイミド化剤の混合を促進 できるので好ましい。これらの押出機は単独で用いても、直列につないでも構わない 。また、押出機には未反応のイミド化剤や副生物を除去するために大気圧以下に減 圧可能なベント口を装着することが好ま 、。 When using an extruder for producing the imide resin of the present invention, various types of extruders such as a single-screw extruder, a twin-screw extruder and a multi-screw extruder can be used. A twin-screw extruder is preferred as an extruder capable of promoting the mixing of the imidizing agent with the polymer. Biaxial Extruders include non-mating, co-rotating, mating, co-rotating, non-mating, counter-rotating, and mating, counter-rotating. Among the twin-screw extruders, the co-rotating and co-rotating type is preferable because high-speed rotation is possible and mixing of the imidizing agent with the raw material polymer can be promoted. These extruders may be used alone or connected in series. In addition, it is preferable to equip the extruder with a vent capable of reducing the pressure below atmospheric pressure in order to remove unreacted imidizing agent and by-products.
[0077] 押出機の代わりに、例えば住友重機械 (株)製のバイポラックのような横型二軸反応 装置やスーパーブレンドのような竪型ニ軸攪拌槽などの高粘度対応の反応装置も好 適に使用できる。 [0077] Instead of an extruder, a high-viscosity reaction device such as a horizontal twin-screw reaction device such as Sumitomo Heavy Industries Co., Ltd. Biporak or a vertical twin-screw stirring tank such as Super Blend is also preferable. Can be used appropriately.
[0078] 本発明のイミド榭脂を製造する際に用いるバッチ式反応槽 (圧力容器)は原料ポリ マーを溶解した溶液を加熱、攪拌でき、イミド化剤を添加できる構造であれば特に制 限ないが、反応の進行によりポリマー溶液の粘度が上昇することもあり、攪拌効率が 良好なものがよい。例えば、住友重機械 (株)製の攪拌槽マックスブレンドなどを例示 することができる。  [0078] The batch type reaction vessel (pressure vessel) used for producing the imide resin of the present invention is particularly limited as long as it can heat and stir a solution in which the raw material polymer is dissolved and can add an imidizing agent. However, since the viscosity of the polymer solution may increase due to the progress of the reaction, those having good stirring efficiency are preferred. For example, a stirred tank max blend manufactured by Sumitomo Heavy Industries, Ltd. can be exemplified.
[0079] 本発明のイミド榭脂は、溶剤存在下で製造する場合、アクリル系榭脂を溶解できる 、イミドィ匕反応に対して非反応性溶媒を用いて、溶液状態のアクリル系榭脂にイミド ィ匕剤を添加することによって得られる。  [0079] When the imide resin of the present invention is produced in the presence of a solvent, the imide resin can dissolve the acryl resin. It can be obtained by adding a dashi.
[0080] イミド化反応に対する非反応性溶媒としては、メチルアルコール、ェチルアルコー ル、プロピルアルコール、イソプロピルアルコール、ブチルアルコール、イソブチノレア ルコール等の脂肪族アルコール類、ベンゼン、トルエン、キシレン、クロ口ベンゼン、ク ロロトルエン等の芳香族炭化水素、メチルェチルケトン、テトラヒドロフラン、ジォキサ ン等のケトン、エーテル系化合物等が挙げられる。これらは単独で用いてもよぐまた 少なくとも 2種を混合したものであってもよい。これらの中で、トルエン、およびトルエン とメチルアルコールとの混合溶媒が好まし!/、。  [0080] Examples of the non-reactive solvent for the imidization reaction include aliphatic alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol, and isobutynol alcohol, benzene, toluene, xylene, benzene, and chlorotoluene. And ketones such as methylethylketone, tetrahydrofuran and dioxane, and ether compounds. These may be used alone or as a mixture of at least two types. Among them, toluene and a mixed solvent of toluene and methyl alcohol are preferred!
[0081] アクリル系榭脂の非反応性溶媒に対する濃度は少な!、方が製造コストの面からは 好ましぐ固形分濃度として 10〜80%、特に 20〜70%が好ましい。  [0081] The concentration of the acrylic resin with respect to the non-reactive solvent is small, and from the viewpoint of production cost, the preferred solid content concentration is 10 to 80%, particularly preferably 20 to 70%.
[0082] 本発明で使用されるイミド化剤はアクリル系榭脂をイミドィ匕することができれば特に 制限されないが、例えば、メチノレアミン、ェチノレアミン、 n—プロピノレアミン、 i—プロピ ルァミン、 n—ブチルァミン、 iーブチルァミン、 tert—ブチルァミン、 n—へキシルアミ ン等の脂肪族炭化水素基含有ァミン、ァ-リン、トルイジン、トリクロロア-リン等の芳 香族炭化水素基含有ァミン、シクロへキシルァミン等などの脂環式炭化水素基含有 ァミンが挙げられる。また、尿素、 1, 3—ジメチル尿素、 1, 3—ジェチル尿素、 1, 3— ジプロピル尿素などの加熱によりこれらのアミンを発生する尿素系化合物を用いるこ ともできる。これらのイミド化剤のうち、コスト、物性の面からメチルァミンが好ましい。 [0082] The imidizing agent used in the present invention is not particularly limited as long as it can imidize an acrylic resin. Examples thereof include methinoleamine, ethynoleamine, n-propynoleamine, and i-propynylamine. Amines containing aliphatic hydrocarbon groups such as luminamine, n-butylamine, i-butylamine, tert-butylamine, n-hexylamine, and aromatic hydrocarbon groups such as aromatic phosphorus, toluidine, and trichloroaline; An alicyclic hydrocarbon group-containing amine such as hexylamine is exemplified. Further, urea-based compounds which generate these amines by heating such as urea, 1,3-dimethylurea, 1,3-diethylurea, and 1,3-dipropylurea can also be used. Of these imidizing agents, methylamine is preferred in view of cost and physical properties.
[0083] アクリル系榭脂をイミド化剤によりイミドィ匕する際にはイミドィ匕を進行させ、かつ過剰 な熱履歴による樹脂の分解、着色などを抑制するために、反応温度は 150〜400°C の範囲で行う。 180〜320でカ 子ましく、さらには 200〜280°Cが好ましい。  [0083] When imidizing an acrylic resin with an imidizing agent, the reaction temperature is set to 150 to 400 ° C in order to promote the imidizing and to suppress the decomposition and coloring of the resin due to excessive heat history. Perform within the range. It is preferably 180 to 320 ° C, and more preferably 200 to 280 ° C.
[0084] アクリル系榭脂をイミド化剤によりイミドィ匕する際には、一般に用いられる触媒、酸ィ匕 防止剤、熱安定剤、可塑剤、滑剤、紫外線吸収剤、帯電防止剤、着色剤、収縮防止 剤などを本発明の目的が損なわれない範囲で添加してもよい。  [0084] When imidizing an acrylic resin with an imidizing agent, generally used catalysts, antioxidants, heat stabilizers, plasticizers, lubricants, ultraviolet absorbers, antistatic agents, coloring agents, An anti-shrinkage agent and the like may be added as long as the object of the present invention is not impaired.
[0085] 本発明のイミド榭脂を製造する際に、 260°C、 122秒—1における溶融粘度が 7000P oise以下である、メタクリル酸メチル重合体等の (メタ)アクリル酸エステル重合体、又 はメタクリル酸メチル—スチレン共重合体等の (メタ)アクリル酸エステル—芳香族ビ- ル共重合体を用いることが、本発明のイミド榭脂を容易に製造できる点で好適である [0085] In producing the imide resin of the present invention, a (meth) acrylate polymer such as a methyl methacrylate polymer having a melt viscosity of 7000 Poise or less at 260 ° C and 122 seconds- 1 ; It is preferable to use a (meth) acrylate-aromatic vinyl copolymer such as methyl methacrylate-styrene copolymer in that the imide resin of the present invention can be easily produced.
[0086] 本発明のイミド榭脂を製造する際に、先ず (メタ)アクリル酸エステル重合体、または [0086] In producing the imide resin of the present invention, first, a (meth) acrylate polymer or
(メタ)アクリル酸エステル一芳香族ビニル共重合体を重合し、これを後イミドィ匕して形 成する場合、具体的に (メタ)アクリル酸エステル単位を残基として与える原料として は、特に限定するものではないが、例えば、メチル (メタ)アタリレート、ェチル (メタ)ァ タリレート、ブチル (メタ)アタリレート、イソブチル (メタ)アタリレート、 t—ブチル (メタ) アタリレート、ベンジル (メタ)アタリレート、シクロへキシル (メタ)アタリレート等が挙げら れる。これらの中で、メタクリル酸メチルが特に好ましい。  When a (meth) acrylic acid ester-aromatic vinyl copolymer is polymerized and then imidized to form, specifically, a raw material that gives a (meth) acrylic acid ester unit as a residue is not particularly limited. Although not required, for example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, benzyl (meth) ataly And cyclohexyl (meth) acrylate. Of these, methyl methacrylate is particularly preferred.
[0087] また、これらの共重合体に、溶剤不在下で一級アミンを処理して本発明のイミド榭 脂を形成することが更に好適である。  [0087] It is further preferable that these copolymers are treated with a primary amine in the absence of a solvent to form the imide resin of the present invention.
[0088] 本発明のイミド榭脂を製造する際に、先ずメタクリル酸メチル—スチレン共重合体等 の (メタ)アクリル酸エステル一芳香族ビュル共重合体、またはメタクリル酸メチル重合 体等の (メタ)アクリル酸エステル重合体を重合し、これをイミド榭脂化する場合に用い ることができる (メタ)アクリル酸エステル—芳香族ビニル共重合体、(メタ)アクリル酸 エステル重合体は、イミド化反応が可能であれば、リニア一 (線状)ポリマーであって も、またブロックポリマー、コアシェルポリマー、分岐ポリマー、ラダーポリマー、架橋ポ リマーであっても構わない。ブロックポリマーは A—B型、 A—B— C型、 A—B—A型 、またはこれら以外のいずれのタイプのブロックポリマーであっても構わない。コアシ エルポリマーはただ一層のコアおよびただ一層のシェルのみ力もなるものであっても 、それぞれが多層になっていても構わない。 In producing the imide resin of the present invention, first, a (meth) acrylate-aromatic vinyl copolymer such as a methyl methacrylate-styrene copolymer or a methyl methacrylate polymer (Meth) acrylic acid ester-aromatic vinyl copolymer, (meth) acrylic acid polymer which can be used when polymerizing (meth) acrylic acid ester polymer such as The coalesce may be a linear (linear) polymer as long as an imidization reaction is possible, or may be a block polymer, a core-shell polymer, a branched polymer, a ladder polymer, or a cross-linked polymer. The block polymer may be A-B type, A-B-C type, A-B-A type, or any other type of block polymer. The core shell polymer may have only one core and only one shell, or may have a multilayer structure.
[0089] 本発明のイミド榭脂(単独または他の熱可塑性ポリマーとのブレンド品でも良 、)は 、射出成形、溶融押出フィルム成形、インフレーション成形、ブロー成形、圧縮成形、 紡糸成形などのような各種プラスチックカ卩工法によって様々な成形品にカ卩ェできる。 また、本発明のイミド榭脂を溶解する塩化メチレンなどの溶剤に溶解させ、得られるポ リマー溶液を用いる流延法ゃスピンコート法によっても成形可能である。  [0089] The imide resin of the present invention (which may be used alone or in a blend with another thermoplastic polymer) may be used in injection molding, melt extrusion film molding, inflation molding, blow molding, compression molding, spinning molding and the like. Various molded products can be produced by various plastic kamitsu methods. Alternatively, the imide resin of the present invention may be dissolved in a solvent such as methylene chloride or the like, and molded by a casting method or a spin coating method using a polymer solution obtained.
[0090] 成形加工の際には、一般に用いられる酸化防止剤、熱安定剤、可塑剤、滑剤、紫 外線吸収剤、帯電防止剤、着色剤、収縮防止剤などを本発明の目的が損なわれな い範囲で添カ卩してもよい。  [0090] At the time of molding, commonly used antioxidants, heat stabilizers, plasticizers, lubricants, ultraviolet absorbers, antistatic agents, coloring agents, anti-shrinkage agents, etc., impair the object of the present invention. It may be added in a range that is not within the range.
[0091] 本発明のイミド榭脂から得られる成形体は、例えば、カメラや VTR、プロジェクター 用の撮影レンズやファインダー、フィルター、プリズム、フレネルレンズなどの映像分 野、 CDプレイヤーや DVDプレイヤー、 MDプレイヤーなどの光ディスク用ピックアツ プレンズなどのレンズ分野、 CDプレイヤーや DVDプレイヤー、 MDプレイヤーなど の光ディスク用の光記録分野、液晶用導光板、偏光子保護フィルムや位相差フィル ムなどの液晶ディスプレイ用フィルム、表面保護フィルムなどの情報機器分野、光ファ イノく、光スィッチ、光コネクターなどの光通信分野、 自動車ヘッドライトやテールラン プレンズ、インナーレンズ、計器カバー、サンルーフなどの車両分野、眼鏡ゃコンタク トレンズ、内視境用レンズ、滅菌処理の必要な医療用品などの医療機器分野、道路 透光板、ペアガラス用レンズ、採光窓やカーポート、照明用レンズや照明カバー、建 材用サイジングなどの建築'建材分野、電子レンジ調理容器 (食器)、家電製品のハ ウジング、玩具、サングラス、文房具、などに使用可能である。 [0092] 本発明の偏光子保護フィルムは、本発明のイミド榭脂、すなわち、下記一般式(1) 、 (2)で表される繰り返し単位を含有することを特徴とするイミド榭脂からなることを特 徴とするちのである。 [0091] The molded article obtained from the imide resin of the present invention may be, for example, a camera, a VTR, an image field such as a photographic lens or finder for a projector, a filter, a prism, a Fresnel lens, a CD player, a DVD player, or an MD player. Lens field such as pick-up lens for optical discs, optical recording field for optical discs such as CD players, DVD players and MD players, light guide plate for liquid crystal, film for liquid crystal display such as polarizer protective film and retardation film, surface Information devices such as protective films, optical communication such as optical fins, optical switches, and optical connectors; vehicle fields such as automotive headlights, tail lamps, inner lenses, instrument covers, and sunroofs; and glasses, contact lenses, and endoscopes Environmental lenses, medical supplies that require sterilization Medical equipment field, road translucent plate, double-glazing lens, daylighting window and carport, lighting lens and lighting cover, building material sizing and other construction materials, microwave oven containers (tableware), home appliances It can be used for housings, toys, sunglasses, stationery, etc. [0092] The polarizer protective film of the present invention comprises the imide resin of the present invention, that is, the imide resin characterized by containing the repeating units represented by the following general formulas (1) and (2). It is characterized by that.
[0093] [化 9]  [0093] [Formula 9]
Figure imgf000020_0001
Figure imgf000020_0001
[0094] (ここで、 Rおよび Rは、それぞれ独立に、水素または炭素数 1〜8のアルキル基を 示し、 R3は、炭素数 1〜18のアルキル基、炭素数 3〜 12のシクロアルキル基、または 炭素数 6〜10のァリール基を示す。) (Where R and R each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 3 represents an alkyl group having 1 to 18 carbon atoms and a cycloalkyl having 3 to 12 carbon atoms. Group or aryl group having 6 to 10 carbon atoms.)
[0095] [化 10]  [0095] [Formula 10]
Figure imgf000020_0002
Figure imgf000020_0002
[0096] (ここで、 R4および R5は、それぞれ独立に、水素または炭素数 1〜8のアルキル基を 示し、 R6は、炭素数 1〜18のアルキル基、炭素数 3〜 12のシクロアルキル基、または 炭素数 6〜10のァリール基を示す。) (Wherein, R 4 and R 5 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 6 represents an alkyl group having 1 to 18 carbon atoms and 3 to 12 carbon atoms. It represents a cycloalkyl group or an aryl group having 6 to 10 carbon atoms.)
本発明の偏光子保護フィルムに用いられるイミド榭脂は、前記一般式(1)、(2)で 表される繰り返し単位を含有する本発明のイミド榭脂であれば、前述した様々な形態 のものを用いることができ、特に限定されるものではないことは勿論である。例えば、 前記一般式(1)、 (2)で表される繰り返し単位以外にも、下記一般式(3)で表される 繰り返し単位を含有してもよ ヽ。 The imide resin used in the polarizer protective film of the present invention may be any of the various forms described above as long as it is an imide resin of the present invention containing the repeating units represented by the general formulas (1) and (2). Those can be used, and it is a matter of course that the present invention is not particularly limited. For example, A repeating unit represented by the following general formula (3) may be contained in addition to the repeating units represented by the general formulas (1) and (2).
[0097] [化 11] [0097] [Formula 11]
Figure imgf000021_0001
Figure imgf000021_0001
[0098] 本発明の偏光子保護フィルムは、光学異方性が小さいことを特徴としている。偏光 子保護フィルムは、フィルムの面内方向(長さ方向、幅方向)の光学異方性だけでな ぐ厚み方向の光学異方性についても小さいことが要求されることがある。すなわち、 面内屈折率が最大となる方向を X軸、 X軸に垂直な方向を Y軸、フィルムの厚さ方向 を Z軸とし、それぞれの軸方向の屈折率を nx、 ny、 nz、フィルムの厚さを dとすると、 面内位相差 Re= (nx— ny) X d および厚み方向位相差 Rth= | (nx+ny) /2 -nz I X d ( I Iは絶対値を表す)がともに小さいことを意味している (理想となる、 3次元方向について完全光学等方であるフィルムでは、面内位相差 Re、厚み方向位 相差 Rthともに 0となる。 ) o [0098] The polarizer protective film of the present invention is characterized by having small optical anisotropy. In some cases, the polarizer protective film is required to have not only small optical anisotropy in the thickness direction but also small optical anisotropy in the in-plane direction (length direction, width direction) of the film. In other words, the direction in which the in-plane refractive index becomes the maximum is the X axis, the direction perpendicular to the X axis is the Y axis, the thickness direction of the film is the Z axis, and the refractive indices in each axial direction are nx, ny, nz, and the film Is the thickness of d, the in-plane retardation Re = (nx—ny) X d and the thickness direction retardation Rth = | (nx + ny) / 2 -nz IX d (II represents the absolute value) It means that it is small. (In an ideal film that is perfectly optically isotropic in the three-dimensional direction, both the in-plane retardation Re and the thickness direction retardation Rth are 0.) o
[0099] 本発明の偏光子保護フィルムは、フィルムの面内位相差が lOnm以下であり、かつ 、厚み方向位相差が 20nm以下であることが好ましい。フィルムの面内位相差は、より 好ましくは 5nm以下である。厚み方向位相差は、より好ましくは lOnm以下である。フ イルムの面内位相差が lOnmを超えたり、或いは厚み方向位相差が 20nmを超える 偏光子保護フィルムを偏光板として使用した場合、液晶表示装置においてコントラス トが低下するなどの問題が発生する場合がある。  [0099] In the polarizer protective film of the present invention, the in-plane retardation of the film is preferably lOnm or less, and the thickness direction retardation is preferably 20 nm or less. The in-plane retardation of the film is more preferably 5 nm or less. The thickness direction retardation is more preferably lOnm or less. When the in-plane retardation of the film exceeds lOnm, or when a polarizer protective film with a thickness direction retardation of more than 20 nm is used as a polarizing plate, problems such as reduced contrast in liquid crystal display devices occur. There is.
[0100] 本発明の光学異方性が小さい偏光子保護フィルムを得るためには、イミド榭脂中の 各構成単位量を調整する必要がある。一般式(1)で示される繰り返し単位力 Sイミド榭 脂の 1〜10モル%が好ましぐ 1〜5モル%が特に好ましぐ 3〜4モル%がさらに好 ましい。この範囲を外れた場合、光学異方性が小さいフィルムを得ることが困難となる  [0100] In order to obtain the polarizer protective film having a small optical anisotropy of the present invention, it is necessary to adjust the amount of each structural unit in the imide resin. The repeating unit power represented by the general formula (1) is preferably 1 to 10 mol% of the S imide resin, particularly preferably 1 to 5 mol%, and more preferably 3 to 4 mol%. Outside of this range, it is difficult to obtain a film having a small optical anisotropy.
[0101] 本発明の偏光子保護フィルムに使用するイミド榭脂は光弾性係数が小さいことが好 ましい。本発明で使用するイミド榭脂の光弾性係数は、 20 X 10_12m2/N以下である ことが好ましぐ 10 X 10— 12m2/N以下であることがより好ましぐ 5 X 10— 12m2/N以下 であることが更に好ましい。光弾性係数の絶対値が 20 X 10— 12m2/Nより大きい場合 は、応力により光学歪が生じ、光漏れが起きやすくなる。特に高温高湿度環境下に おいて、その傾向が著しくなる。 [0101] The imide resin used in the polarizer protective film of the present invention preferably has a small photoelastic coefficient. Good. Photoelastic coefficient of the imide榭脂used in the present invention, 20 X 10_ 12 m 2 / N we are preferably less tool 10 X 10- 12 m 2 / and more preferably N or less tool 5 X more preferably not more than 10- 12 m 2 / N. If the absolute value of the photoelastic coefficient is larger than 20 X 10- 12 m 2 / N, the optical distortion is caused by stress, light leakage is likely to occur. This tendency is particularly remarkable under high temperature and high humidity environments.
[0102] 光弾性係数とは、等方性の固体に外力を加えて応力(AF)を起こさせると、一時的 に光学異方性を呈し、複屈折 (An)を示すようになるが、その応力と複屈折の比を光 弾性係数 (c)と呼び、次式 [0102] The photoelastic coefficient is such that when an external force is applied to an isotropic solid to cause stress (AF), the solid temporarily exhibits optical anisotropy and exhibits birefringence (An). The ratio between the stress and the birefringence is called the photoelastic coefficient (c).
c = An/AF  c = An / AF
で示される。  Indicated by
[0103] 上記イミド榭脂を本発明の偏光子保護フィルムの形態に成形する方法としては、従 来公知の任意の方法が可能である。例えば、溶液流延法および溶融押出法等など が挙げられる。そのいずれをも採用することができる。溶液流延法は、榭脂の劣化が 少なぐ表面性の良好なフィルムの作成に適しており、溶融成形法は生産性良くフィ ルムを得ることができる。溶液流延法の溶剤としては、塩化メチレン等が好適に使用 できる。溶融成形法の例としては、溶融押出法、インフレーション法などが挙げられる  [0103] As a method of forming the imide resin into the form of the polarizer protective film of the present invention, any conventionally known method can be used. For example, a solution casting method, a melt extrusion method and the like can be mentioned. Any of them can be adopted. The solution casting method is suitable for producing a film having a good surface property with less deterioration of resin, and the melt molding method can obtain a film with high productivity. As a solvent for the solution casting method, methylene chloride or the like can be suitably used. Examples of the melt molding method include a melt extrusion method, an inflation method, and the like.
[0104] 本発明の偏光子保護フィルムの厚みは、好ましくは、 20 μ m力 300 μ mであり、よ り好ましくは、 30 μ m力ら 200 μ mである。さらに好ましくは、 50 μ m力ら 100 μ mで ある。また、フィルムの厚みムラは、好ましくは平均厚みの 10%以下、より好ましくは 5 %以下である。 [0104] The thickness of the polarizer protective film of the present invention is preferably from 20 Pm to 300 Pm, and more preferably from 30 Pm to 200 Pm. More preferably, the force is from 50 μm to 100 μm. The thickness unevenness of the film is preferably 10% or less of the average thickness, more preferably 5% or less.
[0105] 本発明の偏光子保護フィルムの光線透過率は、好ましくは 85%以上、より好ましく は 88%以上であり、さらに好ましくは 90%以上である。また、フィルムの濁度は、好ま しくは 2%以下、より好ましくは 1%以下、更に好ましくは 0. 5%以下である。  [0105] The light transmittance of the polarizer protective film of the present invention is preferably 85% or more, more preferably 88% or more, and further preferably 90% or more. The turbidity of the film is preferably 2% or less, more preferably 1% or less, and further preferably 0.5% or less.
[0106] 本明細書中では、説明の便宜上、上記イミド榭脂をフィルム状に成形した後、延伸 を施す前のフィルムを「原料フィルム」と呼ぶことがある。  [0106] In the present specification, for the sake of convenience of description, a film after the imide resin is formed into a film shape and before stretching is sometimes referred to as a "raw material film".
[0107] 原料フィルムは、延伸を施さずにそのままで偏光子保護フィルムとなり得るが、本発 明の偏光子保護フィルムの製造においては、上述の方法で、フィルムを成形した後、 一軸延伸あるいは二軸延伸して所定の厚みのフィルムを製造することが好ま 、。延 伸を行うことで、フィルムの機械的特性が更に向上する。実施態様の一例を挙げれば[0107] The raw material film can be directly used as a polarizer protective film without being stretched. In the production of the polarizer protective film of the present invention, after the film is formed by the above-described method, Preferably, a film having a predetermined thickness is produced by uniaxial stretching or biaxial stretching. Stretching further improves the mechanical properties of the film. To give an example of the embodiment,
、このような溶融押出成形で厚み 150 mの原料フィルムを製造した後、縦横ニ軸延 伸により、厚み 40 μ mのフィルムを製造することができる。 After a raw material film having a thickness of 150 m is produced by such melt extrusion molding, a film having a thickness of 40 μm can be produced by biaxial stretching.
[0108] フィルムの延伸は、原料フィルムを成形した後、すぐに連続的に行っても良い。ここ で、上記「原料フィルム」の状態が瞬間的にしか存在しない場合があり得る。瞬間的 にしか存在しない場合には、その瞬間的な、フィルムが形成された後、延伸されるま での状態を原料フィルムという。また、原料フィルムとは、その後、延伸されるのに十 分な程度にフィルム状になって 、れば良ぐ完全なフィルムの状態である必要はなく 、もちろん、完成したフィルムとしての性能を有さなくても良い。また、必要に応じて、 原料フィルムを成形した後、ー且フィルムを保管もしくは移動し,その後フィルムの延 伸を行っても良い。原料フィルムを延伸する方法としては、従来公知の任意の延伸方 法が採用され得る。具体的には、例えば、ロールや熱風炉を用いた縦延伸、テンタ 一を用いた横延伸、およびこれらを逐次組み合わせた逐次二軸延伸等がある。また 、縦と横を同時に延伸する同時二軸延伸方法も採用可能である。ロール縦延伸を行 つた後、テンターによる横延伸を行う方法を採用しても良 、。  [0108] Stretching of the film may be performed continuously immediately after forming the raw material film. Here, there is a case where the state of the “raw material film” exists only momentarily. In the case where the film exists only momentarily, the state from the moment the film is formed to the time it is stretched is called a raw material film. In addition, the raw material film does not need to be in a perfect film state if it is formed into a film enough to be stretched thereafter, and of course, has the performance as a finished film. You don't have to. If necessary, after forming the raw material film, the film may be stored or moved, and then the film may be stretched. As a method for stretching the raw material film, any conventionally known stretching method can be adopted. Specifically, there are, for example, longitudinal stretching using a roll or a hot blast stove, transverse stretching using a tenter, and sequential biaxial stretching in which these are sequentially combined. Further, a simultaneous biaxial stretching method in which the film is stretched simultaneously in the machine and transverse directions can also be employed. After the longitudinal stretching of the roll, a transverse stretching by a tenter may be adopted.
[0109] 本発明の偏光子保護フィルムは、一軸延伸フィルムの状態で最終製品とすることが できる。さらに、延伸工程を組み合わせて行って二軸延伸フィルムとしても良い。二軸 延伸を行う場合、必要に応じ、縦延伸と横延伸の温度や倍率などの延伸条件が同等 であっても力まわなぐまた、意図的に変えることにより、フィルムに機械的な異方性を 付与してもかまわない。  [0109] The polarizer protective film of the present invention can be used as a final product in the state of a uniaxially stretched film. Furthermore, a biaxially stretched film may be formed by performing a stretching process in combination. In the case of biaxial stretching, if necessary, the film can maintain its mechanical anisotropy even if the stretching conditions such as the temperature and magnification for longitudinal stretching and transverse stretching are the same. May be given.
[0110] フィルムの延伸温度および延伸倍率は、得られたフィルムの機械的強度および表 面性、厚み精度を指標として適宜調整することができる。延伸温度の範囲は、 DSC 法によって求めたフィルムのガラス転移温度を Tgとしたときに、好ましくは、(Tg— 30 °C)〜(Tg + 30°C)の範囲である。より好ましくは、(Tg— 20°C)〜(Tg + 20°C)の範 囲である。さらに好ましくは、(Tgで)〜 (Tg + 20°C)の範囲である。延伸温度が高す ぎる場合、得られたフィルムの厚みむらが大きくなりやすい上に、伸び率や引裂伝播 強度、耐揉疲労等の力学的性質の改善も不十分になりやすい。また、フィルムがロー ルに粘着するトラブルが起こりやすい。逆に、延伸温度が低すぎる場合、延伸フィル ムの濁度が高くなりやすぐまた、極端な場合には、フィルムが裂ける、割れる等のェ 程上の問題を引き起こしやすい。好ましい延伸倍率は、延伸温度にも依存するが、 1 . 1倍から 3倍の範囲で選択される。より好ましくは、 1. 3倍〜 2. 5倍である。さらに好 ましくは、 1. 5倍〜 2. 3倍である。 [0110] The stretching temperature and the stretching ratio of the film can be appropriately adjusted using the mechanical strength, surface properties, and thickness accuracy of the obtained film as indices. The range of the stretching temperature is preferably (Tg−30 ° C.) to (Tg + 30 ° C.), where Tg is the glass transition temperature of the film determined by the DSC method. More preferably, it is in the range of (Tg-20 ° C) to (Tg + 20 ° C). More preferably, it is in the range of (in Tg) to (Tg + 20 ° C.). If the stretching temperature is too high, the thickness unevenness of the obtained film tends to increase, and the mechanical properties such as elongation, tear propagation strength, and fatigue resistance to massaging tend to be insufficient. Also, if the film is low The problem of sticking to the file is likely to occur. Conversely, if the stretching temperature is too low, the turbidity of the stretched film increases, and in extreme cases, problems such as tearing and breaking of the film are likely to occur. The preferred stretching ratio depends on the stretching temperature, but is selected in the range of 1.1 to 3 times. More preferably, it is 1.3 to 2.5 times. More preferably, it is 1.5 to 2.3 times.
[0111] また、フィルム化の際に、必要に応じて熱安定剤、紫外線吸収剤、滑剤等の加工性 改良剤、あるいは、フィラーなどの公知の添加剤やその他の重合体を含有していても かまわない。特に、フィルムの滑り性を改善する目的でフィラーを含有させても良い。 フィラーとして、無機または有機の微粒子を用いることができる。無機微粒子の例とし ては、二酸化珪素、二酸化チタン、酸ィ匕アルミニウム、酸ィ匕ジルコニウムなどの金属 酸化物微粒子、焼成ケィ酸カルシウム、水和ケィ酸カルシウム、ケィ酸アルミニウム、 ケィ酸マグネシウムなどのケィ酸塩微粒子、炭酸カルシウム、タルク、クレイ、焼成力 ォリン、およびリン酸カルシウムなどを用いることが出来る。有機微粒子としては、シリ コン系榭脂、フッ素系榭脂、アクリル系榭脂、架橋スチレン系榭脂などの榭脂微粒子 を用いることができる。 [0111] Further, at the time of film formation, a processability improver such as a heat stabilizer, an ultraviolet absorber, a lubricant, or a known additive such as a filler, or another polymer is contained as necessary. It doesn't matter. In particular, a filler may be included for the purpose of improving the slipperiness of the film. As the filler, inorganic or organic fine particles can be used. Examples of the inorganic fine particles include metal oxide fine particles such as silicon dioxide, titanium dioxide, aluminum oxide and zirconium oxide, calcined calcium silicate, calcium silicate hydrate, aluminum silicate, magnesium silicate and the like. Fine particles of silicate, calcium carbonate, talc, clay, calcined phosphorus, calcium phosphate and the like can be used. As the organic fine particles, fine resin particles such as a silicon resin, a fluorine resin, an acrylic resin, and a crosslinked styrene resin can be used.
[0112] 本発明の偏光子保護フィルムに紫外線吸収剤を含有させることにより、本発明の偏 光子保護フィルムの耐候性が向上する他、本発明の偏光子保護フィルムを用いる液 晶表示装置の耐久性も改善することができ実用上好ましい。紫外線吸収剤としては、 2- (2H—ベンゾトリァゾーノレ一 2—ィノレ) p クレゾ一ノレ、 2—ベンゾトリァゾーノレ 2—ィルー 4, 6 ジー t—ブチルフエノール等のベンゾトリアゾール系紫外線吸収 剤、 2— (4, 6 ジフエ-ル— 1, 3, 5 トリァジン— 2—ィル)—5— [ (へキシル)ォキ シ]—フエノールなどのトリアジン系紫外線吸収剤、ォクタべンゾン等のベンゾフエノン 系紫外線吸収剤等が挙げられ、また、 2, 4 ジー t—ブチルフエ二ルー 3, 5 ジ—t ーブチルー 4ーヒドロキシベンゾエート等のベンゾエート系光安定剤やビス(2, 2, 6, 6—テトラメチルー 4ーピペリジル)セバケート等のヒンダードアミン系光安定剤等の光 安定剤も使用できる。  [0112] By adding an ultraviolet absorber to the polarizer protective film of the present invention, the weather resistance of the polarizer protective film of the present invention is improved, and the durability of a liquid crystal display device using the polarizer protective film of the present invention is improved. It is also practically preferable because the property can be improved. Examples of UV absorbers include benzotriazole UV absorbers such as 2- (2H-benzotriazono-1-yne) p-creso-nore, 2-benzotriazono-2-yl-4,6-di-t-butylphenol , 2- (4,6-diphenyl-1,3,5-triazine-2-yl) -5-[(hexyl) oxy] -triol UV absorber such as phenol, octabenzone Examples include benzophenone ultraviolet absorbers, and benzoate light stabilizers such as 2,4-di-tert-butylphenyl 3,5 di-tert-butyl-4-hydroxybenzoate and bis (2,2,6,6- Light stabilizers such as hindered amine light stabilizers such as tetramethyl-4-piperidyl) sebacate can also be used.
[0113] 本発明の偏光子保護フィルムには、必要に応じて表面処理を施し、他の材料との 接着性を改善することも可能である。表面処理の方法としては、従来公知の任意の 方法が可能である。例えば、コロナ放電処理や火花処理などの電気的処理、低圧ま たは常圧下でのプラズマ処理、オゾン存在下または非存在下での紫外線照射処理、 クロム酸等による酸処理、アルカリけん化処理、火焰処理、およびシラン系プライマー 処理もしくはチタン系プライマー処理などが挙げられる。これらの方法により、フィルム 表面の表面張力を 50dyneZcm以上にすることが可能である。 [0113] The polarizer protective film of the present invention can be subjected to a surface treatment, if necessary, to improve the adhesion to other materials. As a method of surface treatment, any conventionally known arbitrary A method is possible. For example, electrical treatment such as corona discharge treatment or spark treatment, plasma treatment at low or normal pressure, ultraviolet irradiation treatment in the presence or absence of ozone, acid treatment with chromic acid, etc., alkali saponification treatment, and flame treatment Treatment, and silane-based primer treatment or titanium-based primer treatment. By these methods, the surface tension of the film surface can be increased to 50dyneZcm or more.
[0114] また、接着剤や粘着剤との親和性を改善するために、フィルムの片面あるいは両面 に、易接着層を設けることができる。好ましい易接着層としては、共重合ポリエステル や、それらのウレタン変性したもの、更には、カルボキシル基ゃスルフォン酸基を有す る共重合ポリエステルなどの他、ポリビニルアルコールなどの溶液又は水分散液を塗 布乾燥した層を用いることができる。また、セルロースエステル榭脂などを易接着層と して設け、これをアルカリけん化処理を施し親和性を改善する方法も用いることがで きる。 [0114] In order to improve the affinity with an adhesive or a pressure-sensitive adhesive, an easy-adhesion layer can be provided on one side or both sides of the film. Preferred adhesive layers include copolymerized polyesters, urethane-modified polyesters thereof, copolymerized polyesters having a carboxyl group and a sulfonic acid group, and a solution or aqueous dispersion of polyvinyl alcohol or the like. Cloth dried layers can be used. Alternatively, a method in which a cellulose ester resin or the like is provided as an easy-adhesion layer and this is subjected to an alkali saponification treatment to improve the affinity can be used.
[0115] 本発明の偏光子保護フィルムには、必要に応じてハードコート、アンチグレアコート 、無反射コート、その他の機能性コートなどのコーティング処理を施すことも可能であ る。  [0115] The polarizer protective film of the present invention can be subjected to a coating treatment such as a hard coat, an anti-glare coat, an anti-reflection coat, and other functional coats, if necessary.
実施例  Example
[0116] 本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらの実施例のみ に限定されるものではない。なお、以下の実施例および比較例で測定した物性の各 測定方法は次のとおりである。  [0116] The present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In addition, each measuring method of the physical property measured in the following Examples and Comparative Examples is as follows.
[0117] (1)赤外分光光度計 (IR)によるイミド化率の定量  [0117] (1) Determination of imidation ratio by infrared spectrophotometer (IR)
生成物のペレットをそのまま用いて、 SensIR Tecnologies社製 TravellRを用い て、室温にて IRスペクトルを測定した。得られたスペクトルより、 1720cm 1のエステル カルボ-ル基に帰属される吸収強度 (Abs )と、 1660cm 1のイミドカルボ-ル基に Using the product pellet as it was, the IR spectrum was measured at room temperature using TravellR manufactured by SensIR Technologies. From the obtained spectrum, esters carbonitrile of 1720 cm 1 - the absorption intensity assignable to Le group (Abs), the 1660 cm 1 Imidokarubo - Le group
ester  ester
帰属される吸収強度 (Abs )の比から、以下の数 1によりイミドィ匕率 (Im% (IR) )を  From the ratio of the assigned absorption intensities (Abs), the imidani ratio (Im% (IR))
lmiae  lmiae
求めた。  I asked.
[0118] [数 1] Im %(IR) =—— imide x 100 [0118] [Number 1] Im% (IR) = —— imide x 100
Abs esier + Absimide Abs esier + Abs imide
[0119] (2) — NMRによるイミド化率の定量 [0119] (2) — Determination of imidation ratio by NMR
メチルァミンを用いて得られた生成物 lOmgを CDC1 lgに溶解し、 Varian社製 N  The product lOmg obtained using methylamine was dissolved in CDC1 lg, and Varian N
3  Three
MR測定装置 Gemini— 300を用いて、室温にて1 H— NMRを測定した。得られたス ベクトルより、メチルエステル部分のメチル基に帰属される積分強度 (CH )と N— 1 H-NMR was measured at room temperature using an MR measurement device Gemini-300. From the obtained vector, the integrated intensity (CH) attributed to the methyl group in the methyl ester portion and N—
3(,ester) メチルイミド環構造のメチル基に帰属される積分強度 (CH )の比から、以下の数  3 (, ester) From the ratio of the integrated intensity (CH) attributed to the methyl group of the methylimide ring structure,
3(inude)  3 (inude)
2によりイミドィ匕率 (Im% (NMR) )を求めた。  According to 2, the imidani ratio (Im% (NMR)) was determined.
[0120] [数 2] [0120] [Number 2]
Im %(NMR) =—— CH^→—— χ 100 Im% (NMR) = —— CH ^ → —— χ 100
し H este + H 3(imide) H este + H 3 ( imide )
[0121] なお、メチルァミン以外のアミンを用いて得られた生成物については、帰属が困難 であることから、 Im% (NMR)は求められていない。 [0121] Note that Im% (NMR) has not been determined for the product obtained using an amine other than methylamine, because it is difficult to make an assignment.
[0122] (3)ダルタルイミド単位の含有量 (Im%) [0122] (3) Content of Daltarimide Unit (Im%)
上記の1 H— NMRによるイミド化率が求められた榭脂につ!/、て、この値をグルタルイ ミド単位の含有量 (Im%)とした。 — NMRによるイミド化率が求められなかった榭 脂については、メチルァミンを用いて得られた生成物について測定された Im% (IR) と Im% (NMR)の相関を求め、 Im% (IR)の測定値力も換算した値をダルタルイミド 単位の含有量 (Im%)とした。 With respect to the resin for which the imidation ratio by 1 H-NMR was determined, this value was taken as the glutarimide unit content (Im%). — For the resin for which the imidation ratio was not determined by NMR, the correlation between Im% (IR) and Im% (NMR) measured for the product obtained using methylamine was determined, and the im% (IR) was determined. The value obtained by converting the measured force of the above was taken as the content (Im%) of dartalimide units.
[0123] (4)ガラス転移温度 (Tg) [0123] (4) Glass transition temperature (Tg)
生成物 lOmgを用いて、示差走査熱量計 (DSC、株式会社島津製作所製 DSC— Using the product lOmg, a differential scanning calorimeter (DSC, Shimadzu DSC-
50型)を用いて、窒素雰囲気下、昇温速度 20°CZminで測定し、中点法により決定 した。 (Model 50) under a nitrogen atmosphere at a heating rate of 20 ° CZmin and determined by the midpoint method.
[0124] (5)榭脂の溶融粘度  [0124] (5) Melt viscosity of resin
榭脂 40gを用いて、東洋精機製作所製キヤピログラフおよび直径 lmm長さ 10mm のキヤピラリーを用いて、 JIS K7199に準じ、せん断速度 122秒—1、温度 260°Cにお ける溶融粘度を測定した。 Using 40 g of fat, a capillagraph manufactured by Toyo Seiki Seisakusho and a diameter of lmm, length of 10 mm The melt viscosity at a shear rate of 122 seconds- 1 and a temperature of 260 ° C was measured in accordance with JIS K7199 using a capillary.
[0125] (6)全光線透過率  (6) Total light transmittance
フィルムから 50mm X 50mmのサイズの試験片を切り出した。この試験片を、日本 電色工業株式会社製濁度計 NDH 300Aを用いて、温度 23°C± 2°C、湿度 50% ± 5%において、 JIS K7105— 1981の 5. 5記載の方法により測定した。  A test piece having a size of 50 mm × 50 mm was cut out from the film. Using a turbidimeter NDH 300A manufactured by Nippon Denshoku Industries Co., Ltd., at a temperature of 23 ° C ± 2 ° C and a humidity of 50% ± 5%, according to the method described in 5.5 of JIS K7105-1981. It was measured.
[0126] (7)濁度 (ヘイズ)  [7] Turbidity (haze)
(8)で得た試験片を、日本電色工業株式会社製濁度計 NDH 300Aを用いて、温 度 23°C± 2°C、湿度 50% ± 5%において、 JIS K7136に準じて測定した。  Measure the test piece obtained in (8) using a turbidimeter NDH 300A manufactured by Nippon Denshoku Industries Co., Ltd. at a temperature of 23 ° C ± 2 ° C and a humidity of 50% ± 5% according to JIS K7136. did.
[0127] (9)配向複屈折  (9) Orientation birefringence
フィルムから、幅 50mm X長さ 150mmのサンプルを切り出し、延伸倍率 2倍で、ガ ラス転移温度より 5°C高い温度で、一軸延伸フィルムを作成した。この一軸延伸フィル ムの TD方向の中央部から 35mm X 35mmの試験片を切り出した。この試験片を、 自動複屈折計 (王子計測機器株式会社製 KOBRA— WR)を用いて、温度 23± 2 。C、湿度 50± 5%において、波長 590nm、入射角 0°で位相差を測定した。この位 相差を、デジマティックインジケーター (株式会社ミツトヨ製)を用いて測定した試験片 の厚みで割った値を配向複屈折とした。  A sample having a width of 50 mm and a length of 150 mm was cut out from the film, and a uniaxially stretched film was prepared at a draw ratio of 2 and a temperature 5 ° C higher than the glass transition temperature. A 35 mm x 35 mm test piece was cut out from the center of the uniaxially stretched film in the TD direction. The temperature of the test piece was 23 ± 2 using an automatic birefringence meter (KOBRA-WR manufactured by Oji Scientific Instruments). At C and a humidity of 50 ± 5%, the phase difference was measured at a wavelength of 590 nm and an incident angle of 0 °. The value obtained by dividing the phase difference by the thickness of the test piece measured using a digimatic indicator (manufactured by Mitutoyo Corporation) was defined as the orientation birefringence.
[0128] (10)面内位相差 Reおよび厚み方向位相差 Rth  (10) In-plane retardation Re and thickness direction retardation Rth
フィルムから、 40mm X 40mmの試験片を切り出した。この試験片を、自動複屈折 計(王子計測株式会社製 KOBRA— WR)を用いて、温度 23± 2°C、湿度 50± 5 %において、波長 590nm、入射角 0°で面内位相差 Reを測定した。デジマテイツクイ ンジケ一ター (株式会社ミツトヨ製)を用いて測定した試験片の厚み d、および、アッベ 屈折計 (株式会社ァタゴ製 3T)で測定した屈折率 n、自動複屈折計で測定した波 長 590nm、面内位相差 Reおよび 40° 傾斜方向の位相差値から 3次元屈折率 nx、 ny、 nz、を求め、厚み方向位相差 Rth= | (nx+ny) /2-nz | X d ( | |は絶 対値を表す)を計算した。  A 40 mm × 40 mm test piece was cut from the film. Using an automatic birefringence meter (KOBRA-WR manufactured by Oji Keisoku Co., Ltd.), the test piece was measured at a temperature of 23 ± 2 ° C and a humidity of 50 ± 5% at a wavelength of 590 nm and an incident angle of 0 °, and the in-plane phase difference Re was measured. Was measured. The thickness d of the test piece measured using a Digimatic Indicator (Mitutoyo Co., Ltd.), the refractive index n measured with an Abbe refractometer (3T manufactured by Atago Co., Ltd.), and the wavelength 590 nm measured with an automatic birefringence meter The three-dimensional refractive index nx, ny, nz is obtained from the in-plane retardation Re and the retardation value in the 40 ° tilt direction, and the thickness direction retardation Rth = | (nx + ny) / 2-nz | X d (| | Represents an absolute value).
[0129] (11)光弾性係数  (11) Photoelastic coefficient
フィルムから、幅 15mm X長さ 60mmの短冊状に試験片を切り出し、自動複屈折 計 (王子計測株式会社製 KOBRA— WR)を用いて、温度23± 2で湿度50± 5% において、波長 590nmにて測定した。フィルムの一方を固定し、他方は無荷重から 1 OOOgfまで lOOgfごとに順次荷重をかけた状態で複屈折を測定し、得られた結果か ら単位応力による複屈折の変化量を算出した。 From the film, cut out a test piece into a strip of 15mm width x 60mm length and automatically birefringent Measurement was performed at a wavelength of 590 nm at a temperature of 23 ± 2 and a humidity of 50 ± 5% using a total meter (KOBRA-WR manufactured by Oji Keisoku Co., Ltd.). The birefringence was measured while one of the films was fixed and the other was loaded sequentially from no load to 1 OOOgf for each 100gf, and the amount of change in birefringence due to unit stress was calculated from the obtained results.
[0130] (12)フィルム厚みむら (12) Uneven film thickness
フィルムから、 TD方向に長さ 300mm、 MD方向に長さ 50mmのサンプルを切り出 し、アンリツ製接触式連続厚み計 KB601Bを用いて、 TD方向全幅の厚みを測定し た。測定した厚みより下記式を用いて、 目標とするフィルム厚み 150 mに対しする 厚みむらを求めた。  A sample having a length of 300 mm in the TD direction and a length of 50 mm in the MD direction was cut out from the film, and the thickness of the entire width in the TD direction was measured using an Anritsu contact type continuous thickness gauge KB601B. From the measured thickness, the following formula was used to determine the thickness unevenness with respect to the target film thickness of 150 m.
(厚みむら) = I最大厚み 最小厚み I /2  (Thickness unevenness) = I Maximum thickness Minimum thickness I / 2
(13)フィルム外観検査  (13) Film appearance inspection
フィルムから、 TD方向に長さ 500mm、 MD方向に長さ 500mmのサンプルを 2枚 切り出し、暗室にてデスクスタンド (ナショナル製 SQ948H、蛍光灯 27W)の光を照 射し、フィルムのダイライン、発泡、フィッシュアイの有無を目視により評価した。  Two samples of 500 mm length in the TD direction and 500 mm length in the MD direction are cut out from the film, and the light of a desk stand (SQ948H made by National, fluorescent lamp 27W) is illuminated in a dark room. The presence or absence of fish eyes was visually evaluated.
[0131] (14)ASTM1号ダンベル試験片外観検査 (14) ASTM No. 1 dumbbell test piece appearance inspection
ダンベル試験片 10本の表面を目視で観察し、フローマーク、フィッシュアイ、発泡 の有無を評価した。  The surface of 10 dumbbell specimens was visually observed, and the flow marks, fish eyes, and the presence or absence of foaming were evaluated.
[0132] (樹脂製造例 1) [0132] (Resin Production Example 1)
メタクリル系榭脂 (住友ィ匕学株式会社製スミペックス MH)、イミド化剤としてモノメチ ルァミン (三菱ガス化学株式会社製)を用いて、イミドィ匕榭脂を製造した。使用した押 出機は口径 15mmの嚙合い型同方向回転式二軸押出機である。押出機の各温調ゾ ーンの設定温度を 230°C、スクリュー回転数 150rpm、メタクリル系榭脂を 1. Okg/h rで供給し、モノメチルァミンの供給量はメタクリル系榭脂に対して 3重量部とした。ホ ツバ一力もメタクリル系榭脂を投入し、ニーデイングブロックによって榭脂を溶融、充 満させた後、ノズルカゝらモノメチルァミンを注入した。反応ゾーンの末端にはシールリ ングを入れて榭脂を充満させた。反応後の副生成物および過剰のメチルァミンをべ ントロの圧力を一 0. 08MPaに減圧して脱揮した。押出機出口に設けられたダイスか らストランドとして出てきた榭脂は、水槽で冷却した後、ペレタイザでペレツトイ匕した。 [0133] (樹脂製造例 2) Using a methacrylic resin (SUMIPEX MH, manufactured by Sumitomo Danigaku Co., Ltd.) and monomethylamine (manufactured by Mitsubishi Gas Chemical Co., Ltd.) as an imidizing agent, an imidio dani resin was produced. The extruder used was a twin-screw twin-screw extruder with a diameter of 15 mm. Set the temperature of each temperature control zone of the extruder to 230 ° C, screw rotation speed 150rpm, supply methacrylic resin at 1.Okg / hr, and supply monomethylamine to methacrylic resin. 3 parts by weight. A hot methacrylic resin was also added, and the resin was melted and filled with a kneading block, and then monomethylamine was injected with a nozzle cap. A sealing ring was placed at the end of the reaction zone and filled with resin. The by-products after the reaction and excess methylamine were devolatilized by reducing the pressure of the reactor to 1.0 MPa. The resin that emerged as a strand from the die provided at the extruder outlet was cooled in a water tank and then pelletized with a pelletizer. (Resin Production Example 2)
メタクリル系榭脂をァトフイナ製アトグラス HT121とした以外は、榭脂製造例 1と同 様に行つ 7こ。  Except that the methacrylic resin was changed to Atfina HT121 made by Atofina, the same procedure was followed as in Resin Production Example 1.
[0134] (樹脂製造例 3) (Resin Production Example 3)
メタクリル系榭脂を三菱レイヨン株式会社製アタリペット VHとし、榭脂の供給量を 2k gZhrとし、モノメチルァミンの代わりに n—ブチルァミンとして、その供給量を 20重量 部とした以外は、榭脂製造例 1と同様に行った。  Except that the methacrylic resin was Ataripet VH manufactured by Mitsubishi Rayon Co., Ltd., the supply amount of the resin was 2 kgZhr, n-butylamine was used instead of monomethylamine, and the supply amount was 20 parts by weight. Performed in the same manner as in Production Example 1.
[0135] (榭脂製造例 4) [0135] (Resin Production Example 4)
メタクリル系榭脂を三菱レイヨン株式会社製アタリペット VHとし、榭脂の供給量を 2k gZhrとし、モノメチルァミンの代わりに c -へキシルァミン (広栄化学株式会社製)を 用い、その供給量を 30重量部とした以外は、榭脂製造例 1と同様に行った。  The methacrylic resin is Ataripet VH manufactured by Mitsubishi Rayon Co., Ltd., the supply amount of the resin is 2 kgZhr, and c-hexylamine (manufactured by Koei Chemical Co., Ltd.) is used instead of monomethylamine. The same procedure was performed as in Resin Production Example 1 except that the amount was changed to parts by weight.
[0136] (榭脂製造例 5) [0136] (Resin manufacturing example 5)
耐圧硝子工業株式会社製 TEM— VIOOON (200mL耐圧容器)を用いて、トルェ ン 100重量部 Zメチルアルコール 10重量部にメタクリル系榭脂 (住友ィ匕学株式会社 製スミペックス LG) 100重量部を溶解させた。ドライアイス一メタノール混合溶液に反 応容器を浸し、冷却した状態でモノメチルァミン 5重量部を添加し、その後 230°Cで 2 . 5時間反応させた。放冷後、反応混合物を塩化メチレンに溶解させ、メタノールを用 V、て沈殿させて生成物を回収した。  Dissolve 100 parts by weight of methacrylic resin (SUMIPEX LG, manufactured by Sumitomo Iridaku Co., Ltd.) in 100 parts by weight of toluene and 10 parts by weight of Z-methyl alcohol using TEM-VIOOON (200 mL pressure vessel) manufactured by Pressure-Resistant Glass Industry Co., Ltd. I let it. The reaction vessel was immersed in a mixed solution of dry ice and methanol, and after cooling, 5 parts by weight of monomethylamine was added, followed by a reaction at 230 ° C for 2.5 hours. After allowing to cool, the reaction mixture was dissolved in methylene chloride, and precipitated with methanol to recover the product.
[0137] (樹脂製造例 6) [0137] (Resin Production Example 6)
榭脂の供給量を lkgZhrとし、モノメチルァミンの供給量を 10重量部とした以外は 、榭脂製造例 1と同様に行った。  The same procedure as in Resin Production Example 1 was carried out except that the supply amount of the resin was 1 kgZhr and the supply amount of monomethylamine was 10 parts by weight.
[0138] (樹脂製造例 7) (Resin Production Example 7)
榭脂の供給量を 1. 5kgZhrとし、 n—プチルァミンの供給量を 45重量部とした以 外は、榭脂製造例 3と同様に行った。  The procedure was the same as in Resin Production Example 3, except that the supply amount of the resin was 1.5 kgZhr and the supply amount of n-butylamine was 45 parts by weight.
[0139] 榭脂製造例 1〜7で得られたイミド榭脂のイミドィ匕率、ダルタルイミド単位の含有量、 及びガラス転移温度を表 1に示す。 [0139] Table 1 shows the imidization ratio, the content of dartalimide units, and the glass transition temperature of the imide resins obtained in Resin Production Examples 1 to 7.
[0140] (実施例 1) [0140] (Example 1)
榭脂製造例 1で得られたイミド榭脂を塩化メチレンに溶解して (榭脂濃度 25wt%)、 PETフィルム上に塗布し、乾燥してキャストフィルムを作成した。このフィルムから、幅 50mm X長さ 150mmのサンプルを切り出し、延伸倍率 2倍で、ガラス転移温度より 5 °C高い温度で、一軸延伸フィルムを作成した。この一軸延伸フィルムの全光線透過 率、濁度、配向複屈折、面内位相差、厚み方向位相差を表 2に示す。また、この一軸 軸延伸フィルムの光弾性係数を測定したところ、 3 X 10— 12m2ZNであった。 The imide resin obtained in Resin Production Example 1 was dissolved in methylene chloride (resin concentration 25 wt%), It was applied on a PET film and dried to form a cast film. From this film, a sample having a width of 50 mm and a length of 150 mm was cut out, and a uniaxially stretched film was prepared at a stretching ratio of 2 and at a temperature higher by 5 ° C than the glass transition temperature. Table 2 shows the total light transmittance, turbidity, orientation birefringence, in-plane retardation, and retardation in the thickness direction of the uniaxially stretched film. The measured photoelastic coefficient of the uniaxial axis oriented film was 3 X 10- 12 m 2 ZN.
[0141] [表 1] [0141] [Table 1]
Figure imgf000030_0001
Figure imgf000030_0001
[0142] [表 2] [0142] [Table 2]
Figure imgf000030_0002
Figure imgf000030_0002
(実施例 2) (Example 2)
実施例 1と同じイミド樹脂を用 、て作成したキャストフィルムを延伸倍率 2倍 (縦 ·横) 、ガラス転移温度より 20°C高い温度で同時二軸延伸 (株式会社東洋精機製 ニ軸延 伸装置 X4HD)を行ない二軸延伸フィルムを作成した。この二軸延伸フィルムの全 光線透過率、濁度、面内位相差、厚み方向位相差を表 2に示す。 A cast film prepared using the same imide resin as in Example 1 was stretched by a factor of 2 (vertical and horizontal) and simultaneously biaxially stretched at a temperature 20 ° C higher than the glass transition temperature (biaxial stretching manufactured by Toyo Seiki Co., Ltd.). The device X4HD) was used to prepare a biaxially stretched film. The whole of this biaxially stretched film Table 2 shows the light transmittance, turbidity, in-plane retardation, and retardation in the thickness direction.
[0144] (実施例 3) (Example 3)
榭脂製造例 2で得られたイミド榭脂を用いて実施例 1と同様の方法で作成した一軸 延伸フィルムの全光線透過率、濁度、配向複屈折、面内位相差、厚み方向位相差を 表 2に示す。  Total light transmittance, turbidity, orientation birefringence, in-plane retardation, thickness retardation of a uniaxially stretched film prepared in the same manner as in Example 1 using the imide resin obtained in Resin Production Example 2. Are shown in Table 2.
[0145] (実施例 4) (Example 4)
榭脂製造例 2で得られたイミド榭脂を用いて実施例 2と同様の方法で作成した二軸 延伸フィルムの全光線透過率、濁度、面内位相差、厚み方向位相差を表 2に示す。  Table 2 shows the total light transmittance, turbidity, in-plane retardation, and retardation in the thickness direction of the biaxially stretched film prepared in the same manner as in Example 2 using the imide resin obtained in Resin Production Example 2. Shown in
[0146] (実施例 5) (Example 5)
榭脂製造例 3で得られたイミド榭脂を用いて実施例 1と同様の方法で作成した一軸 延伸フィルムの全光線透過率、濁度、配向複屈折、面内位相差、厚み方向位相差を 表 2に示す。  Total light transmittance, turbidity, orientation birefringence, in-plane retardation, thickness retardation of a uniaxially stretched film prepared in the same manner as in Example 1 using the imide resin obtained in Resin Production Example 3. Are shown in Table 2.
[0147] (実施例 6) (Example 6)
榭脂製造例 4で得られたイミド榭脂を用いて実施例 1と同様の方法で作成した一軸 延伸フィルムの全光線透過率、濁度、配向複屈折、面内位相差、厚み方向位相差を 表 2に示す。  Total light transmittance, turbidity, orientation birefringence, in-plane retardation, thickness retardation of a uniaxially stretched film prepared in the same manner as in Example 1 using the imide resin obtained in Resin Production Example 4. Are shown in Table 2.
[0148] (実施例 7) (Example 7)
榭脂製造例 5で得られたイミド榭脂を用いて実施例 1と同様の方法で作成した一軸 延伸フィルムの全光線透過率、濁度、配向複屈折、面内位相差、厚み方向位相差を 表 2に示す。  Total light transmittance, turbidity, orientation birefringence, in-plane retardation, thickness retardation of a uniaxially stretched film prepared in the same manner as in Example 1 using the imide resin obtained in Resin Production Example 5 Are shown in Table 2.
[0149] (比較例 1) (Comparative Example 1)
富士写真フィルム株式会社製トリアセチルセルロース (TAC)フィルムの全光線透 過率、濁度、面内位相差、厚み方向位相差を表 2に示す。このフィルムの光弾性係 数を測定したところ、 15 X 10— 12m2ZNであった。 Table 2 shows the total light transmittance, turbidity, in-plane retardation, and thickness direction retardation of a triacetyl cellulose (TAC) film manufactured by Fuji Photo Film Co., Ltd. Measurement of the photoelastic coefficient of the film was 15 X 10- 12 m 2 ZN.
[0150] (比較例 2) [0150] (Comparative Example 2)
榭脂製造例 1で使用したスミペックス MHのガラス転移温度は 118°Cであった。この 榭脂を用いて実施例 1と同様の方法で作成した一軸延伸フィルムの全光線透過率、 濁度、配向複屈折、面内位相差、厚み方向位相差を表 2に示す。 [0151] (比較例 3) The glass transition temperature of Sumipex MH used in Resin Production Example 1 was 118 ° C. Table 2 shows the total light transmittance, turbidity, orientation birefringence, in-plane retardation, and retardation in the thickness direction of a uniaxially stretched film prepared using the resin in the same manner as in Example 1. [0151] (Comparative Example 3)
榭脂製造例 2で使用したアトグラス HT121のガラス転移温度は 128°Cであった。こ の榭脂を用いて実施例 1と同様の方法で作成した一軸延伸フィルムの全光線透過率 、濁度、配向複屈折、面内位相差、厚み方向位相差を表 2に示す。  The glass transition temperature of Atgrass HT121 used in Resin Preparation Example 2 was 128 ° C. Table 2 shows the total light transmittance, turbidity, orientation birefringence, in-plane retardation, and retardation in the thickness direction of a uniaxially stretched film prepared by using this resin in the same manner as in Example 1.
[0152] (比較例 4)  [0152] (Comparative Example 4)
榭脂製造例 6で得られたイミドィ匕榭脂のイミドィ匕率、ガラス転移温度を表 1に示す。 この榭脂を用いて実施例 1と同様の方法で作成した一軸延伸フィルムの全光線透過 率、濁度、配向複屈折、面内位相差、厚み方向位相差を表 2に示す。  Table 1 shows the imidization ratio and glass transition temperature of the imidation dandelion obtained in Resin Production Example 6. Table 2 shows the total light transmittance, turbidity, orientation birefringence, in-plane retardation, and retardation in the thickness direction of the uniaxially stretched film prepared in the same manner as in Example 1 using this resin.
[0153] (比較例 5)  (Comparative Example 5)
榭脂製造例 7で得られたイミドィ匕榭脂のイミドィ匕率、ガラス転移温度を表 1に示す。 この榭脂を用いて実施例 1と同様の方法で作成した一軸延伸フィルムの全光線透過 率、濁度、配向複屈折、面内位相差、厚み方向位相差を表 2に示す。  Table 1 shows the imidation ratio and glass transition temperature of the imidation dandelion obtained in Resin Production Example 7. Table 2 shows the total light transmittance, turbidity, orientation birefringence, in-plane retardation, and retardation in the thickness direction of the uniaxially stretched film prepared in the same manner as in Example 1 using this resin.
[0154] 以上力も本発明のイミド榭脂は、いずれも良好な耐熱性、透明性を有しており、また 、光学異方性が小さぐ偏光子保護フィルムとして有用なことがわ力る。  As described above, the imide resin of the present invention has good heat resistance and transparency, and is useful as a polarizer protective film with small optical anisotropy.
[0155] 次に、(メタ)アクリル酸エステル—芳香族ビュル共重合体を用いて製造する例につ いて示す。  Next, an example of production using a (meth) acrylic acid ester-aromatic butyl copolymer will be described.
[0156] (榭脂製造例 8)  [0156] (Resin Production Example 8)
260°C、 122秒—1における溶融粘度が 5100Poiseのポリメタクリル酸メチルースチレ ン共重合体、イミド化剤としてモノメチルァミンを用いて、イミドィ匕榭脂を製造した。使 用した押出機は口径 15mmの嚙合い型同方向回転式二軸押出機である。押出機の 各温調ゾーンの設定温度を 230°C、スクリュー回転数 300rpm、ポリメタクリル酸メチ ル—スチレン共重合体を lkgZhrで供給し、モノメチルァミンの供給量はポリメタタリ ル酸メチル一スチレン共重合体に対して 30重量部とした。この時、ホッパーカもポリメ タクリル酸メチル—スチレン共重合体を投入し、ニーデイングブロックによって榭脂を 溶融、充満させた後、ノズル力 モノメチルァミンを注入した。反応ゾーンの末端には シールリングおよびリバースフライトを入れて榭脂を充満させた。反応後の副生成物 および過剰のメチルァミンをベント口の圧力を 0. 02MPaに減圧して脱揮した。押 出機出口に設けられたダイスからストランドとして出てきた榭脂は、水槽で冷却した後 、ペレタイザでペレット化した。 Using a polymethylstyrene methacrylate copolymer having a melt viscosity of 5100 Poise at 260 ° C. and 122 sec- 1 and monomethylamine as an imidizing agent, an imido ligand was produced. The extruder used was a twin-screw twin-screw extruder with a diameter of 15 mm. Set the temperature of each temperature control zone of the extruder at 230 ° C, screw rotation speed 300 rpm, supply polymethyl methacrylate-styrene copolymer at lkgZhr, and supply monomethylamine with polymethyl methacrylate-styrene. It was 30 parts by weight based on the polymer. At this time, the hopper cap was also charged with a polymethyl methacrylate-styrene copolymer, and the resin was melted and filled with a kneading block, followed by injection of monomethylamine with a nozzle force. A seal ring and a reverse flight were placed at the end of the reaction zone to fill the resin. The by-product after the reaction and excess methylamine were devolatilized by reducing the pressure at the vent port to 0.02 MPa. The resin that came out as a strand from the die provided at the extruder outlet was cooled in a water tank, And pelletized with a pelletizer.
[0157] (榭脂製造例 9) [0157] (Resin manufacturing example 9)
用いる榭脂を 260°C、 122秒—1における溶融粘度が 4300Poiseのポリメタクリル酸メ チル—スチレン共重合体とし、モノメチルァミンの供給量を 20重量部とした以外は、 榭脂製造例 8と同様に行った。 Resin Production Example 8 except that the resin used was a polymethyl methacrylate-styrene copolymer having a melt viscosity of 4300 Poise at 260 ° C and 122 sec- 1 and a monomethylamine supply of 20 parts by weight. The same procedure was followed.
[0158] (榭脂製造例 10) [0158] (Resin Production Example 10)
用いる榭脂を 260°C、 122秒—1における溶融粘度が 8200Poiseのポリメタクリル酸メ チル—スチレン共重合体とした以外は、榭脂製造例 8と同様に行った。 The procedure was the same as in Resin Production Example 8 except that the resin used was a polymethyl methacrylate-styrene copolymer having a melt viscosity of 8200 Poise at 260 ° C. and 122 seconds- 1 .
[0159] (榭脂製造例 11) [0159] (Resin manufacturing example 11)
用いる榭脂を 260°C、 122秒—1における溶融粘度が 10500Poiseのポリメタクリル酸 メチル—スチレン共重合体とした以外は、榭脂製造例 8と同様に行った。 The procedure was performed in the same manner as in Resin Production Example 8 except that the resin used was a polymethyl methacrylate-styrene copolymer having a melt viscosity of 10500 Poise at 260 ° C. and 122 seconds- 1 .
[0160] 榭脂製造例 8〜11で得られたイミド榭脂の溶融粘度、イミド化率、ガラス転移温度を 表 3に記載する。 [0160] Table 3 shows the melt viscosity, imidation ratio, and glass transition temperature of the imide resins obtained in Resin Production Examples 8 to 11.
[0161] [表 3] [0161] [Table 3]
Figure imgf000034_0001
Figure imgf000034_0001
(実施例 8) (Example 8)
榭脂製造例 8で得られたイミドィ匕榭脂を、 100°Cで 5時間乾燥後、 40mm φ単軸押 出機と 400mm幅の Tダイを用いてシリンダーおよび Tダイ温度 250°Cで吐出量 20k gZhrで押出し、シート状の溶融榭脂を冷却ドラムで冷却して幅約 600mm、厚み約After drying imido-dani resin obtained in Resin Production Example 8 at 100 ° C for 5 hours, it was discharged at a cylinder and T-die temperature of 250 ° C using a 40mm φ single screw extruder and a 400mm width T-die. 20k Extruded with gZhr, the molten resin in sheet form is cooled with a cooling drum and the width is about 600 mm and the thickness is about
150 ^ mのフィルムを得た。 A 150 ^ m film was obtained.
[0163] (実施例 9) (Example 9)
榭脂製造例 9で得られたイミドィ匕榭脂を用いた以外は、実施例 8と同様方法で厚み 約 150 mのフィルムを得た。  A film having a thickness of about 150 m was obtained in the same manner as in Example 8, except that the imido-dani resin obtained in Resin Production Example 9 was used.
[0164] (実施例 10) (Example 10)
榭脂製造例 8で得られたイミド化榭脂を、 100°Cで 5時間乾燥後、射出成形機 (型 締め圧: 80トン)を用いて、シリンダー温度 250°C、金型温度は 50°Cにて厚み 3. 2m m (長さ: 127mm、幅: 12. 7mm)の ASTM1号ダンベル試験片を得た。  After drying the imidized resin obtained in Resin Production Example 8 at 100 ° C for 5 hours, the cylinder temperature was 250 ° C and the mold temperature was 50 using an injection molding machine (clamping pressure: 80 tons). An ASTM No. 1 dumbbell specimen having a thickness of 3.2 mm (length: 127 mm, width: 12.7 mm) was obtained at ° C.
[0165] (実施例 11) (Example 11)
榭脂製造例 9で得られたイミドィ匕榭脂を用いた以外は、実施例 10と同様方法で厚 み 3. 2mm (長さ: 127mm、幅: 12. 7mm)の ASTM1号ダンベル試験片を得た。  An ASTM No. 1 dumbbell test piece having a thickness of 3.2 mm (length: 127 mm, width: 12.7 mm) was prepared in the same manner as in Example 10 except that the imido danji resin obtained in Resin Production Example 9 was used. Obtained.
[0166] 実施例 8、 9で得られたフィルムの全光線透過率、濁度、厚みむら、外観検査の結 果、および実施例 10、 11で得られたダンベルの外観検査の結果を表 4に示す。 Table 4 shows the total light transmittance, turbidity, thickness unevenness, and results of the appearance inspection of the films obtained in Examples 8 and 9, and the results of the appearance inspection of the dumbbells obtained in Examples 10 and 11. Shown in
[0167] [表 4] [0167] [Table 4]
ィミ ド樹脂 成形品 全光線透過率 濁度 フィルム厚み フィ /レム ダンべノレ Imido resin Molded product Total light transmittance Turbidity Film thickness Fi / rem
(%) (%) むら (μπι) 外観検査 外観検査 実施例 8 樹脂製造例 フィルム 92. 1 0. 3 1. 4 欠陥なし  (%) (%) Unevenness (μπι) Appearance Inspection Appearance Inspection Example 8 Example of Resin Production Film 92.1 0.
8  8
実施例 9 樹脂製造例 フィルム 92. 2 0. 4 1. 2 欠陥なし  Example 9 Resin production example Film 92.2 0.4.1.2 No defect
9  9
実施例 10 樹脂製造例 ダンベル 欠陥なし Example 10 Resin production example Dumbbell No defect
8  8
実施例 11 樹脂製造例 ダンべノレ 欠陥なし Example 11 Resin production example Dampenhole No defect
9 9
[0168] (比較例 6) [0168] (Comparative Example 6)
榭脂製造例 10で得られたイミドィ匕榭脂を用いた以外は、実施例 8と同様方法で厚 み約 150 μ mのフィルムを得た。  A film having a thickness of about 150 μm was obtained in the same manner as in Example 8, except that the imido-dani resin obtained in Resin Production Example 10 was used.
[0169] (比較例 7) [0169] (Comparative Example 7)
榭脂製造例 10で得られたイミドィ匕榭脂を用い、 40mm φ単軸押出機と 400mm幅 の Tダイを用いて 280°Cで押出した以外は、実施例 8と同様方法で厚み約 150 m のフィルムを得た。  Resin production Example 10 was used, except that the resin was extruded at 280 ° C. using a 40 mm φ single screw extruder and a 400 mm width T-die, using the imido dani resin obtained in Example 10, except for a thickness of about 150 mm. m of film was obtained.
[0170] (比較例 8)  (Comparative Example 8)
榭脂製造例 11で得られたイミドィ匕榭脂を用いた以外は、実施例 8と同様方法で厚 み約 150 μ mのフィルムを得た。  A film having a thickness of about 150 μm was obtained in the same manner as in Example 8, except that the imido-dani resin obtained in Resin Production Example 11 was used.
[0171] (比較例 9) [0171] (Comparative Example 9)
榭脂製造例 11で得られたイミドィ匕榭脂を用い、 40mm φ単軸押出機と 400mm幅 の Tダイを用いて 280°Cで押出した以外は、実施例 8と同様方法で厚み約 150 m のフィルムを得た。  The same procedure as in Example 8 was carried out except that the imidy dandelion resin obtained in Resin Production Example 11 was extruded at 280 ° C using a 40 mm φ single screw extruder and a 400 mm width T die, and a thickness of about 150 mm was used. m of film was obtained.
[0172] (比較例 10)  [0172] (Comparative Example 10)
榭脂製造例 10で得られたイミドィ匕榭脂を用いた以外は、実施例 10と同様方法で厚 み 3. 2mm (長さ: 127mm、幅: 12. 7mm)の ASTM1号ダンベル試験片を得た。  An ASTM No. 1 dumbbell test piece having a thickness of 3.2 mm (length: 127 mm, width: 12.7 mm) was prepared in the same manner as in Example 10 except that the imido danji resin obtained in Resin Production Example 10 was used. Obtained.
[0173] (比較例 11) [0173] (Comparative Example 11)
榭脂製造例 10で得られたイミドィ匕榭脂を用い、シリンダー温度 270°Cとした以外は 、実施例 10と同様方法で厚み 3. 2mm (長さ: 127mm、幅: 12. 7mm)の ASTM1 号ダンベル試験片を得た。  A resin having a thickness of 3.2 mm (length: 127 mm, width: 12.7 mm) was produced in the same manner as in Example 10 except that the cylinder temperature was changed to 270 ° C. using the imido-dani resin obtained in Resin Production Example 10. An ASTM No. 1 dumbbell specimen was obtained.
[0174] (比較例 12) (Comparative Example 12)
榭脂製造例 11で得られたイミドィ匕榭脂を用いた以外は、実施例 10と同様方法で厚 み 3. 2mm (長さ: 127mm、幅: 12. 7mm)の ASTM1号ダンベル試験片を得た。  A 3.2 mm thick (127 mm long, 12.7 mm wide) ASTM No. 1 dumbbell test piece was prepared in the same manner as in Example 10 except that the imido dani resin obtained in Resin Production Example 11 was used. Obtained.
[0175] (比較例 13) (Comparative Example 13)
榭脂製造例 11で得られたイミドィ匕榭脂を用い、シリンダー温度 270°Cとした以外は 、実施例 10と同様方法で厚み 3. 2mm (長さ: 127mm、幅: 12. 7mm)の ASTM1 号ダンベル試験片を得た。 [0176] 比較例 6〜9で得られたフィルムの全光線透過率、濁度、厚みむら、外観検査の結 果、および比較例 10〜 13で得られたダンベルの外観検査の結果を表 5に示す。 A resin having a thickness of 3.2 mm (length: 127 mm, width: 12.7 mm) was produced in the same manner as in Example 10 except that the cylinder temperature was changed to 270 ° C. using the imido-dani resin obtained in Resin Production Example 11. An ASTM No. 1 dumbbell specimen was obtained. Table 5 shows the results of the total light transmittance, turbidity, thickness unevenness, and results of the appearance inspection of the films obtained in Comparative Examples 6 to 9, and the results of the appearance inspection of the dumbbells obtained in Comparative Examples 10 to 13. Shown in
[0177] [表 5] [0177] [Table 5]
ィミ ド樹脂 成 品 全光線透過率 濁度 フィルム厚み フィルム ダンベル Imido resin product Total light transmittance Turbidity Film thickness Film dumbbell
(%) (%) むら (wm) 外観検査 外観検査 比較例 6 樹脂製造例 フイノレム 92. 1 0. 3 3. 2 ダイライン有、  (%) (%) Unevenness (wm) Appearance Inspection Appearance Inspection Comparative Example 6 Resin Production Example Finolem 92.10.3.
10 フィッシュアィ有 比較例 7 樹脂製造例 フィルム 92. 2 0. 4 1. 8 ダイライン有、  10 Fish-yes Comparative example 7 Resin production example Film 92. 2 0.4.
10 発泡有  10 with foam
比較例 8 樹脂製造例 フィルム 92. 1 0. 3 4. 6 ダイライン有、  Comparative Example 8 Resin Production Example Film 92.1 0.3.
11 フィッシュアイ有 比較例 9 樹脂製造例 フィルム 92. 2 0. 4 2. 7 ダイライン有、  11 With fisheye Comparative example 9 Resin production example Film 92.2 0.4.2.7 With die line
11 発泡有  11 with foam
比較例 10 樹脂製造例 ダンべノレ フィッシュアィ有 Comparative example 10 Resin production example Dambenore fish
10  Ten
比較例 11 樹脂製造例 タンベ/レ 発泡有 Comparative Example 11 Example of resin production
10  Ten
比較例 12 樹脂製造例 ダンベル フローマーク有、 Comparative Example 12 Resin Production Example Dumbbell With flow mark,
11 フイツシュアィ有 比較例 13 樹脂製造例 ダンべノレ 発泡有  11 Fits comparative example 13 Resin production example Dambenore Foaming
11 11
[0178] 次に (メタ)アクリル酸エステル重合体を用いて製造する例にっ 、て示す。 Next, an example of production using a (meth) acrylate polymer will be described.
[0179] (榭脂製造例 12)  [0179] (Resin Production Example 12)
260°C、 122秒—1における溶融粘度が 4200Poiseの(メタ)アクリル酸エステル系榭 脂、イミド化剤としてモノメチルァミンを用いて、イミドィ匕榭脂を製造した。使用した押 出機は口径 15mmの嚙合い型同方向回転式二軸押出機である。押出機の各温調ゾ ーンの設定温度を 230°C、スクリュー回転数 300rpm、 (メタ)アクリル酸エステル系榭 脂を lkgZhrで供給し、モノメチルァミンの供給量は (メタ)アクリル酸エステル系榭脂 に対して 40重量部とした。この時、ホッパーから (メタ)アクリル酸エステル系榭脂を投 入し、ニーデイングブロックによって榭脂を溶融、充満させた後、ノズルカゝらモノメチル アミンを注入した。反応ゾーンの末端にはシールリングおよびリバースフライトを入れ て榭脂を充満させた。反応後の副生成物および過剰のメチルァミンをベント口の圧 力を一 0. 08MPaに減圧して脱揮した。押出機出口に設けられたダイスからストラン ドとして出てきた榭脂は、水槽で冷却した後、ペレタイザでペレット化した。 Using a (meth) acrylate resin having a melt viscosity of 4200 Poise at 260 ° C. and 122 sec- 1 for 4200 Poise, and using monomethylamine as an imidizing agent, imido dani resin was produced. The extruder used was a twin-screw twin-screw extruder with a diameter of 15 mm. The set temperature of each temperature control zone of the extruder is 230 ° C, screw rotation speed is 300 rpm, (meth) acrylate resin is supplied at lkgZhr, and the supply amount of monomethylamine is (meth) acrylate ester. It was 40 parts by weight based on the resin. At this time, (meth) acrylate resin was injected from a hopper, and the resin was melted and filled with a kneading block, and then monomethylamine was injected from a nozzle cap. At the end of the reaction zone, a seal ring and a reverse flight were placed to fill the resin. The by-products after the reaction and excess methylamine were devolatilized by reducing the pressure at the vent port to 1.0 MPa. The resin that emerged as a strand from the die provided at the extruder outlet was cooled in a water bath and then pelletized with a pelletizer.
[0180] (榭脂製造例 13)  [0180] (Resin manufacturing example 13)
用いる榭脂を 260°C、 122秒—1における溶融粘度が 7100Poiseの (メタ)アクリル酸 エステル系榭脂とし、モノメチルァミンの供給量を 20重量部とした以外は、榭脂製造 例 12と同様に行った。 Resin production example 12 except that the resin used was a (meth) acrylate ester resin having a melt viscosity of 7100 Poise at 260 ° C and 122 seconds- 1 and the supply of monomethylamine was 20 parts by weight. Performed similarly.
[0181] (榭脂製造例 14)  [0181] (Resin manufacturing example 14)
用いる榭脂を 260°C、 122秒—1における溶融粘度が 8500Poiseの (メタ)アクリル酸 エステル系榭脂とし、モノメチルァミンの供給量を 30重量部とした以外は、榭脂製造 例 12と同様に行った。 A resin production example 12 was used except that the resin used was a (meth) acrylate resin having a melt viscosity of 8500 Poise at 260 ° C and 122 seconds- 1 and a monomethylamine supply of 30 parts by weight. Performed similarly.
[0182] (榭脂製造例 15)  [0182] (Resin manufacturing example 15)
用いる榭脂を 260°C、 122秒—1における溶融粘度が lOlOOPoiseの (メタ)アクリル 酸エステル系榭脂とし、モノメチルァミンの供給量を 20重量部とした以外は、榭脂製 造例 12と同様に行った。 Resin production example 12 except that the resin used was a (meth) acrylate ester resin with a melt viscosity of lOPoOOise at 260 ° C for 122 seconds- 1 and the supply amount of monomethylamine was 20 parts by weight. The same procedure was followed.
[0183] 製造例 12〜 15で得られたイミド榭脂の溶融粘度、イミド化率、ガラス転移温度を表 6に記載する。  [0183] Table 6 shows the melt viscosity, imidation ratio, and glass transition temperature of the imide resins obtained in Production Examples 12 to 15.
[0184] [表 6] 0) O o o [0184] [Table 6] 0) O oo
溶樹融率脂供給原料樹脂ガ転移度量溶ド化ィラィミ脂樹温アドミミスン i 〇  Molten melt rate Fat feedstock Resin gas transfer degree Desolated irami oil temperature Admisun i 〇
〇 o o  〇 o o
 〇
融度粘 〇 〇  Melting viscosity 〇 〇
00 o  00 o
t - ト  t-g
樹製造脂例 21  Tree manufacturing fat example 21
製脂造例樹 13  Fat manufacturing tree 13
樹脂製造例 14  Resin production example 14
CD < 製造樹脂例 15  CD <Production resin example 15
00 00
cr- cr-
ID ID
〇 〇 〇 〇 〇 〇
44 寸  44 inches
o o o o
w O 〇 〇  w O 〇 〇
〇 〇 〇 o  〇 〇 〇 o
t  t
o LTD  o LTD
oo o  oo o
(実施例 12) (Example 12)
樹脂製造例 12で得られたイミドィ匕樹脂を、 100°Cで 5時間乾燥後、 40mm φ単軸 押出機と 400mm幅の Tダイを用いてシリンダーおよび Tダイ温度 250°Cで吐出量 20 kgZhrで押出し、シート状の溶融榭脂を冷却ドラムで冷却して幅約 600mm、厚み 約 150 mのフィルムを得た。 The imidani resin obtained in Resin Production Example 12 was dried at 100 ° C for 5 hours, and then discharged at a cylinder and T-die temperature of 250 ° C using a 40mm φ single screw extruder and a 400mm width T-die. The resin was extruded at kgZhr, and the sheet-shaped molten resin was cooled by a cooling drum to obtain a film having a width of about 600 mm and a thickness of about 150 m.
[0186] (実施例 13) (Example 13)
榭脂製造例 13で得られたイミドィ匕榭脂を用 ヽた以外は、実施例 12と同様方法で厚 み約 150 μ mのフィルムを得た。  A film having a thickness of about 150 μm was obtained in the same manner as in Example 12, except that the imido-dani resin obtained in Resin Production Example 13 was used.
[0187] (実施例 14) (Example 14)
榭脂製造例 12で得られたイミドィ匕榭脂を、 100°Cで 5時間乾燥後、射出成形機 (型 締め圧: 80トン)を用いて、シリンダー温度 250°C、金型温度は 50°Cにて厚み 3. 2m m (長さ: 127mm、幅: 12. 7mm)の ASTM1号ダンベル試験片を得た。  After drying the imido dani resin obtained in Resin Production Example 12 at 100 ° C for 5 hours, using an injection molding machine (clamping pressure: 80 tons), the cylinder temperature was 250 ° C and the mold temperature was 50 ° C. An ASTM No. 1 dumbbell specimen having a thickness of 3.2 mm (length: 127 mm, width: 12.7 mm) was obtained at ° C.
[0188] (実施例 15) (Example 15)
榭脂製造例 13で得られたイミドィ匕榭脂を用いた以外は、実施例 14と同様方法で厚 み 3. 2mm (長さ: 127mm、幅: 12. 7mm)の ASTM1号ダンベル試験片を得た。  ASTM No. 1 dumbbell test piece having a thickness of 3.2 mm (length: 127 mm, width: 12.7 mm) was prepared in the same manner as in Example 14 except for using the imido dani resin obtained in Resin Production Example 13. Obtained.
[0189] 実施例 12、 13で得られたフィルムの全光線透過率、濁度、厚みむら、外観検査の 結果、および実施例 14、 15で得られたダンベルの外観検査の結果を表 7に示す。 [0189] Table 7 shows the total light transmittance, turbidity, thickness unevenness, and the results of the appearance inspection of the films obtained in Examples 12 and 13, and the results of the appearance inspection of the dumbbells obtained in Examples 14 and 15. Show.
[0190] [表 7] [0190] [Table 7]
ィミ ド樹脂 成形品 全光線透過率 濁度 フィルム厚み フイノレム タンべル Imido resin Molded product Total light transmittance Turbidity Film thickness Finolene tumble
(%) (%) むら 、 m) 外観検査 外観検査 実施例 1 2 樹脂製造例 フィルム 92, 1 0. 3 1. 6 欠陥なし  (%) (%) Unevenness, m) Appearance inspection Appearance inspection Example 1 2 Resin production example Film 92, 1 0.3. 1.6 No defect
1 2  1 2
実施例 13 樹脂製造例 フィルム 92. 2 0. 2 1. 2 欠陥なし Example 13 Resin Production Example Film 92.2.0.2.1.2 No defects
13  13
実施例 14 樹脂製造例 ダンべノレ 欠陥なし Example 14 Resin production example No damage
12  12
実施例 15 樹脂製造例 グンべノレ 欠陥なし Example 15 Resin production example Gunbenore No defect
13 13
[0191] (比較例 14) [0191] (Comparative Example 14)
榭脂製造例 14で得られたイミドィ匕榭脂を用 ヽた以外は、実施例 12と同様方法で厚 み約 150 μ mのフィルムを得た。  A film having a thickness of about 150 μm was obtained in the same manner as in Example 12, except that the imido-dani resin obtained in Resin Production Example 14 was used.
[0192] (比較例 15) [0192] (Comparative Example 15)
榭脂製造例 14で得られたイミドィ匕榭脂を用い、 40mm φ単軸押出機と 400mm幅 の Tダイを用いて 280°Cで押出した以外は、実施例 12と同様方法で厚み約 150 m のフィルムを得た。  Using the imido tan resin obtained in Resin Production Example 14 and extruding at 280 ° C using a 40 mm φ single screw extruder and a 400 mm wide T-die, a thickness of about 150 m of film was obtained.
[0193] (比較例 16)  [0193] (Comparative Example 16)
榭脂製造例 15で得られたイミドィ匕榭脂を用 ヽた以外は、実施例 12と同様方法で厚 み約 150 μ mのフィルムを得た。  A film having a thickness of about 150 μm was obtained in the same manner as in Example 12, except that the imido dani resin obtained in Resin Production Example 15 was used.
[0194] (比較例 17) (Comparative Example 17)
榭脂製造例 15で得られたイミドィ匕榭脂を用い、 40mm φ単軸押出機と 400mm幅 の Tダイを用いて 280°Cで押出した以外は、実施例 12と同様方法で厚み約 150 m のフィルムを得た。  Resin Production Example 15 The thickness of about 150 was obtained in the same manner as in Example 12, except that the resin was extruded at 280 ° C. using a 40 mm φ single screw extruder and a 400 mm width T-die, using the imido dani resin obtained in Resin 15. m of film was obtained.
[0195] (比較例 18)  (Comparative Example 18)
榭脂製造例 14で得られたイミドィ匕榭脂を用いた以外は、実施例 14と同様方法で厚 み 3. 2mm (長さ: 127mm、幅: 12. 7mm)の ASTM1号ダンベル試験片を得た。  A ASTM No. 1 dumbbell test piece having a thickness of 3.2 mm (length: 127 mm, width: 12.7 mm) was prepared in the same manner as in Example 14 except that the imido dani resin obtained in Resin Production Example 14 was used. Obtained.
[0196] (比較例 19) [0196] (Comparative Example 19)
榭脂製造例 14で得られたイミドィ匕榭脂を用い、シリンダー温度 270°Cとした以外は 、実施例 14と同様方法で厚み 3. 2mm (長さ: 127mm、幅: 12. 7mm)の ASTM1 号ダンベル試験片を得た。  A resin having a thickness of 3.2 mm (length: 127 mm, width: 12.7 mm) was prepared in the same manner as in Example 14 except that the imidy resin obtained in Resin Production Example 14 was used and the cylinder temperature was changed to 270 ° C. An ASTM No. 1 dumbbell specimen was obtained.
[0197] (比較例 20) (Comparative Example 20)
榭脂製造例 15で得られたイミドィ匕榭脂を用いた以外は、実施例 14と同様方法で厚 み 3. 2mm (長さ: 127mm、幅: 12. 7mm)の ASTM1号ダンベル試験片を得た。  A ASTM No. 1 dumbbell test piece having a thickness of 3.2 mm (length: 127 mm, width: 12.7 mm) was prepared in the same manner as in Example 14 except that the imido danji resin obtained in Resin Production Example 15 was used. Obtained.
[0198] (比較例 21) (Comparative Example 21)
榭脂製造例 15で得られたイミドィ匕榭脂を用い、シリンダー温度 270°Cとした以外は 、実施例 14と同様方法で厚み 3. 2mm (長さ: 127mm、幅: 12. 7mm)の ASTM1 号ダンベル試験片を得た。 [0199] 比較例 14〜 17で得られたフィルムの全光線透過率、濁度、厚みむら、外観検査の 結果、および比較例 18〜21で得られたダンベルの外観検査の結果を表 8に示す。 A resin having a thickness of 3.2 mm (length: 127 mm, width: 12.7 mm) was prepared in the same manner as in Example 14 except that the cylinder temperature was changed to 270 ° C. using the imido-dani resin obtained in Resin Production Example 15. An ASTM No. 1 dumbbell specimen was obtained. [0199] Table 8 shows the total light transmittance, turbidity, thickness unevenness, and results of the appearance inspection of the films obtained in Comparative Examples 14 to 17, and the results of the appearance inspection of the dumbbells obtained in Comparative Examples 18 to 21. Show.
[0200] [表 8] [0200] [Table 8]
ィミ ド樹脂 成形品 全光線透過率 濁度 フィ /レム厚み フイノレム タンべノレ Imido Resin Molded Product Total Light Transmittance Turbidity Fi / REM Thickness
(%) (%) むら ( μ m) 外観検査 外観検査 比較例 14 樹脂製造例 フィルム 92. 1 0. 3 4. 4 ダイライン有、  (%) (%) Unevenness (μm) Appearance inspection Appearance inspection Comparative example 14 Resin production example Film 92.10.3.
14 フィッシュアィ有 一 比較例 15 樹脂製造例 フイノレム 92. 2 0. 3 1. 4 ダイライン有、  14 Fish-A Yuichi Comparative Example 15 Resin production example Finnolem 92.2 0.3.1.4 Die line available
14 発泡有  14 with foam
比較例 16 樹脂製造例 フィルム 92. 1 0. 4 3. 1 ダイライン有、 Comparative Example 16 Resin Production Example Film 92.1 0.4.
15 フィッシュアィ有 比較例 17 樹脂製造例 フィルム 92. 2 0. 3 2. 1 ダイライン有、  15 Fish-yes Comparative example 17 Resin production example Film 92.2 0.32 Die-line available
15 発泡有  15 with foam
比較例 18 榭脂製造例 タンべノレ フィッシュアィ有 Comparative Example 18 Example of resin production
14  14
比較例 19 樹脂製造例 ダンべノレ 発泡有 Comparative Example 19 Resin Production Example
14  14
比較例 20 樹脂製造例 タンベル フローマーク有、 Comparative Example 20 Example of resin production
15 ― ブイッシュアィ有 比較例 21 榭脂製造例 ダンべノレ 発泡有  15 ― with bush comparative example 21 resin production example
15 15
以上力 本発明のイミド榭脂は、いずれも良好な耐熱性、透明性を有しており、また 、加工性が良好であり、偏光子保護フィルムとして有用なことがわかる。 As described above, all of the imide resins of the present invention have good heat resistance and transparency, and also have good workability and are useful as polarizer protective films.

Claims

請求の範囲 The scope of the claims
[1] 下記一般式(1)、(2)で表される繰り返し単位を含有することを特徴とするイミド榭 脂。  [1] An imide resin comprising a repeating unit represented by the following general formulas (1) and (2).
[化 12]  [Formula 12]
Figure imgf000048_0001
Figure imgf000048_0001
(ここで、 R1および R2は、それぞれ独立に、水素または炭素数 1〜8のアルキル基を 示し、 R3は、炭素数 1〜18のアルキル基、炭素数 3〜 12のシクロアルキル基、または 炭素数 6〜10のァリール基を示す。) (Where R 1 and R 2 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 3 represents an alkyl group having 1 to 18 carbon atoms and a cycloalkyl group having 3 to 12 carbon atoms. Or an aryl group having 6 to 10 carbon atoms.)
[化 13]  [Formula 13]
Figure imgf000048_0002
Figure imgf000048_0002
(ここで、 R4および R5は、それぞれ独立に、水素または炭素数 1〜8のアルキル基を 示し、 R6は、水素または炭素数 1〜18のアルキル基、炭素数 3〜12のシクロアルキ ル基、または炭素数 6〜 10のァリール基を示す。 ) (Where R 4 and R 5 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 6 represents hydrogen or an alkyl group having 1 to 18 carbon atoms, and a cycloalkyl having 3 to 12 carbon atoms. Represents a aryl group or an aryl group having 6 to 10 carbon atoms.)
[2] 配向複屈折が 0. 0001以下であることを特徴とする請求項 1記載のイミド榭脂。 [2] The imide resin according to claim 1, wherein the orientation birefringence is 0.0001 or less.
[3] 配向複屈折が 0. 00001以下であることを特徴とする請求項 1記載のイミド榭脂。 [3] The imide resin according to claim 1, wherein the orientation birefringence is 0.00001 or less.
[4] 260°C、 122秒—1における溶融粘度が 14000Poise以下であることを特徴とする請 求項 1記載のイミド榭脂。 [4] The melt viscosity at 260 ° C and 122 seconds- 1 is 14000 Poise or less. The imide resin according to claim 1.
[5] 更に一般式 (3)で表される繰り返し単位を含有することを特徴とする請求項 4記載 のイミド榭脂。 [5] The imide resin according to claim 4, further comprising a repeating unit represented by the general formula (3).
[化 14]  [Formula 14]
Figure imgf000049_0001
Figure imgf000049_0001
(ここで、 R7は、水素または炭素数 1〜8のアルキル基を示し、 R。は、炭素数 6〜 10の ァリール基を示す。 ) (Here, R 7 represents hydrogen or an alkyl group having 1 to 8 carbon atoms, and R. represents an aryl group having 6 to 10 carbon atoms.)
[6] (メタ)アクリル酸エステル重合体を用いて製造したことを特徴とする請求項 4記載の イミド榭脂。  6. The imide resin according to claim 4, wherein the imide resin is produced using a (meth) acrylate polymer.
[7] 前記 (メタ)アクリル酸エステル重合体力 メタクリル酸メチル重合体であることを特徴 とする請求項 6記載のイミド榭脂。  [7] The imide resin according to claim 6, wherein the (meth) acrylate polymer is a methyl methacrylate polymer.
[8] (メタ)アクリル酸エステル—芳香族ビニル共重合体を用いて製造したことを特徴と する請求項 5記載のイミド榭脂。 [8] The imide resin according to claim 5, produced using a (meth) acrylic ester-aromatic vinyl copolymer.
[9] 前記 (メタ)アクリル酸エステル—芳香族ビニル共重合体力 メタクリル酸メチル—ス チレン共重合体であることを特徴とする請求項 8記載のイミド榭脂。 [9] The imide resin according to claim 8, wherein the (meth) acrylate-aromatic vinyl copolymer is a methyl methacrylate-styrene copolymer.
[10] 前記 (メタ)アクリル酸エステル重合体の、 260°C、 122秒—1における溶融粘度が 70[10] The melt viscosity of the (meth) acrylate polymer at 260 ° C and 122 seconds- 1 is 70.
OOPoise以下であることを特徴とする請求項 6記載のイミド榭脂。 7. The imide resin according to claim 6, which is not more than OOPoise.
[11] 前記 (メタ)アクリル酸エステル—芳香族ビニル共重合体の、 260°C、 122秒—1にお ける溶融粘度が 7000Poise以下であることを特徴とする請求項 8記載のイミド榭脂。 11. The imide resin according to claim 8, wherein the melt viscosity of the (meth) acrylate-aromatic vinyl copolymer at 260 ° C. and 122 seconds- 1 is 7000 Poise or less. .
[12] 溶剤不在下にて、アクリル系榭脂に一級アミンを処理する方法により製造することを 特徴とする請求項 1〜11の 、ずれか 1項に記載のイミド榭脂。 [12] The imide resin according to any one of claims 1 to 11, wherein the imide resin is produced by treating an acrylic resin with a primary amine in the absence of a solvent.
[13] 溶剤存在下にて、アクリル系榭脂に一級アミンを処理する方法により製造することを 特徴とする請求項 1〜11の 、ずれか 1項に記載のイミド榭脂。 [13] The imide resin according to any one of claims 1 to 11, wherein the imide resin is produced by treating an acrylic resin with a primary amine in the presence of a solvent.
[14] ガラス転移温度が 110°C以上であることを特徴とする請求項 1〜: L 1のいずれ力 1項 に記載のイミド榭脂。 [14] The imide resin according to claim 1, wherein the glass transition temperature is 110 ° C or higher.
[15] 溶剤不在下にて、(メタ)アクリル酸エステル重合体、または (メタ)アクリル酸エステ ルー芳香族ビニル共重合体に一級アミンを処理することを特徴とする請求項 1〜: L 1 の 、ずれか 1項に記載のイミド榭脂を製造する方法。 [15] The method according to claim 1, wherein the (meth) acrylate polymer or the (meth) acrylate aromatic vinyl copolymer is treated with a primary amine in the absence of a solvent. 2. The method for producing the imide resin according to claim 1.
[16] 請求項 2〜11の 、ずれか一項に記載のイミド榭脂を主成分とする光学用榭脂組成 物。  [16] An optical resin composition comprising the imide resin according to any one of claims 2 to 11 as a main component.
[17] 請求項 16記載の光学用榭脂組成物からなる成形体。  [17] A molded article comprising the optical resin composition according to claim 16.
[18] 請求項 16記載の光学用榭脂組成物力もなる偏光子保護フィルム。  [18] A polarizer protective film which also has the optical resin composition power according to claim 16.
[19] 請求項 2〜: L 1のいずれか 1項に記載のイミド榭脂からなり、フィルムの面内位相差 力 SlOnm以下であり、かつ、厚み方向位相差が 20nm以下であることを特徴とする偏 光子保護フィルム。  [19] Claim 2-: It is made of the imide resin according to any one of L1, characterized in that the in-plane retardation force of the film is SlOnm or less and the thickness direction retardation is 20 nm or less. Polarizer protection film.
[20] 延伸されていることを特徴とする請求項 19記載の偏光子保護フィルム。  [20] The polarizer protective film according to claim 19, which is stretched.
[21] 一般式(1)で表される繰り返し単位を 1〜5モル%含有するイミド榭脂からなる請求 項 19記載の偏光子保護フィルム。  [21] The polarizer protective film according to claim 19, comprising an imide resin containing 1 to 5 mol% of the repeating unit represented by the general formula (1).
[22] イミド榭脂の光弾性係数が 10 X 10— 12m2ZN以下であることを特徴とする請求項 19 記載の偏光子保護フィルム。 22. The polarizer protective film according to claim 19, wherein the imide resin has a photoelastic coefficient of 10 × 10 to 12 m 2 ZN or less.
[23] イミド榭脂のガラス転移温度が 110°C以上であることを特徴とする請求項 19記載の 偏光子保護フィルム。 23. The polarizer protective film according to claim 19, wherein the glass transition temperature of the imide resin is 110 ° C. or higher.
[24] 請求項 19記載の偏光子保護フィルムを用いた偏光板。 [24] A polarizing plate using the polarizer protective film according to claim 19.
PCT/JP2005/008225 2004-05-10 2005-04-28 Imide resin, method for producing same, and molded body using same WO2005108438A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006512985A JPWO2005108438A1 (en) 2004-05-10 2005-04-28 IMIDE RESIN, ITS MANUFACTURING METHOD, AND MOLDED BODY USING SAME

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2004140497 2004-05-10
JP2004-140497 2004-05-10
JP2004-181911 2004-06-18
JP2004181911 2004-06-18
JP2004251104 2004-08-30
JP2004-251104 2004-08-30
JP2005049819 2005-02-24
JP2005049818 2005-02-24
JP2005-049819 2005-02-24
JP2005-049818 2005-02-24

Publications (1)

Publication Number Publication Date
WO2005108438A1 true WO2005108438A1 (en) 2005-11-17

Family

ID=35320184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008225 WO2005108438A1 (en) 2004-05-10 2005-04-28 Imide resin, method for producing same, and molded body using same

Country Status (3)

Country Link
JP (1) JPWO2005108438A1 (en)
TW (1) TW200615289A (en)
WO (1) WO2005108438A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328329A (en) * 2005-05-30 2006-12-07 Kaneka Corp Base material for surface-protective film and surface-protective film
JP2007176965A (en) * 2005-12-26 2007-07-12 Kaneka Corp Imidized methacrylic resin composition and molded product and film using the same
JP2010261025A (en) * 2009-04-09 2010-11-18 Kaneka Corp Resin composition and production method thereof, molded product, film, optical film, polarizer protective film, polarizing plate
JP2012068430A (en) * 2010-09-24 2012-04-05 Nippon Shokubai Co Ltd Retardation film
JP2014219429A (en) * 2013-03-08 2014-11-20 富士フイルム株式会社 Optical film, polarizing plate, and liquid crystal display
WO2015098980A1 (en) * 2013-12-27 2015-07-02 株式会社カネカ Optical thermoplastic resin and formed body
KR20160049506A (en) * 2013-08-30 2016-05-09 가부시키가이샤 닛폰 쇼쿠바이 (meth)acrylic resin
WO2020138315A1 (en) * 2018-12-26 2020-07-02 株式会社クラレ Acrylic resin composition, molded body, film and multilayer body
JP2021143284A (en) * 2020-03-12 2021-09-24 株式会社カネカ Acrylic thermoplastic resin and method for producing the same, resin composition, and film
WO2021235393A1 (en) * 2020-05-19 2021-11-25 株式会社クラレ Methacrylic copolymer for reverse wavelength dispersive retardation film, composition, film, method for manufacturing film, and laminate
JP7646326B2 (en) 2020-10-29 2025-03-17 株式会社クラレ Methacrylic polymer, its production method, and molded body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017191334A (en) * 2013-03-08 2017-10-19 富士フイルム株式会社 Liquid crystal display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233106A (en) * 1984-05-07 1985-11-19 Toray Ind Inc Optical disk material
JPS6241203A (en) * 1985-08-16 1987-02-23 Mitsubishi Rayon Co Ltd Production of methacrylimide-containing polymer excellent in transparency and heat resistance
JPS63163301A (en) * 1986-12-25 1988-07-06 Asahi Chem Ind Co Ltd Optical disk substrate
JPH06256537A (en) * 1992-02-26 1994-09-13 Kuraray Co Ltd Stretched film or sheet
JP2002293956A (en) * 2001-03-29 2002-10-09 Kanegafuchi Chem Ind Co Ltd Transparent film
JP2004126355A (en) * 2002-10-04 2004-04-22 Nitto Denko Corp Polarizing plate, optical film, and picture display apparatus
JP2005189623A (en) * 2003-12-26 2005-07-14 Kaneka Corp Protective film for polarizer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233106A (en) * 1984-05-07 1985-11-19 Toray Ind Inc Optical disk material
JPS6241203A (en) * 1985-08-16 1987-02-23 Mitsubishi Rayon Co Ltd Production of methacrylimide-containing polymer excellent in transparency and heat resistance
JPS63163301A (en) * 1986-12-25 1988-07-06 Asahi Chem Ind Co Ltd Optical disk substrate
JPH06256537A (en) * 1992-02-26 1994-09-13 Kuraray Co Ltd Stretched film or sheet
JP2002293956A (en) * 2001-03-29 2002-10-09 Kanegafuchi Chem Ind Co Ltd Transparent film
JP2004126355A (en) * 2002-10-04 2004-04-22 Nitto Denko Corp Polarizing plate, optical film, and picture display apparatus
JP2005189623A (en) * 2003-12-26 2005-07-14 Kaneka Corp Protective film for polarizer

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328329A (en) * 2005-05-30 2006-12-07 Kaneka Corp Base material for surface-protective film and surface-protective film
JP2007176965A (en) * 2005-12-26 2007-07-12 Kaneka Corp Imidized methacrylic resin composition and molded product and film using the same
JP2010261025A (en) * 2009-04-09 2010-11-18 Kaneka Corp Resin composition and production method thereof, molded product, film, optical film, polarizer protective film, polarizing plate
JP2012068430A (en) * 2010-09-24 2012-04-05 Nippon Shokubai Co Ltd Retardation film
JP2014219429A (en) * 2013-03-08 2014-11-20 富士フイルム株式会社 Optical film, polarizing plate, and liquid crystal display
KR102179714B1 (en) 2013-08-30 2021-03-25 가부시키가이샤 닛폰 쇼쿠바이 (meth)acrylic resin
KR20160049506A (en) * 2013-08-30 2016-05-09 가부시키가이샤 닛폰 쇼쿠바이 (meth)acrylic resin
US10184019B2 (en) 2013-12-27 2019-01-22 Kaneka Corporation Optical thermoplastic resin and formed body
JPWO2015098980A1 (en) * 2013-12-27 2017-03-23 株式会社カネカ Optical thermoplastic resin and molded body
WO2015098980A1 (en) * 2013-12-27 2015-07-02 株式会社カネカ Optical thermoplastic resin and formed body
WO2020138315A1 (en) * 2018-12-26 2020-07-02 株式会社クラレ Acrylic resin composition, molded body, film and multilayer body
JPWO2020138315A1 (en) * 2018-12-26 2021-11-18 株式会社クラレ Acrylic resin compositions, moldings, films and laminates
JP7460547B2 (en) 2018-12-26 2024-04-02 株式会社クラレ Acrylic resin composition, molded article, film and laminate
JP2021143284A (en) * 2020-03-12 2021-09-24 株式会社カネカ Acrylic thermoplastic resin and method for producing the same, resin composition, and film
WO2021235393A1 (en) * 2020-05-19 2021-11-25 株式会社クラレ Methacrylic copolymer for reverse wavelength dispersive retardation film, composition, film, method for manufacturing film, and laminate
JP7646326B2 (en) 2020-10-29 2025-03-17 株式会社クラレ Methacrylic polymer, its production method, and molded body

Also Published As

Publication number Publication date
JPWO2005108438A1 (en) 2008-03-21
TW200615289A (en) 2006-05-16

Similar Documents

Publication Publication Date Title
KR100887486B1 (en) Imide resin, and production method and use thereof
KR102059714B1 (en) Resin composition and film thereof
JP2009161744A (en) Thermoplastic resin composition, optical film and polarizer protection film
JP2010284840A (en) Film attached with coating layer, polarizer protecting film and polarization plate using polarizer protecting film
JP2007009182A (en) Resin composition, formed body, film and method for producing the same
JP2006328334A (en) Resin composition, optical film and polarizer protection film using the same
JP2010254742A (en) Optical film
KR20150140327A (en) Optical resin material and optical film
JP2006317560A (en) Polarizer protective film, and polarizing plate using the same
JP4686261B2 (en) Polarizer protective film, method for producing the same, and polarizing plate using the same
JP4961164B2 (en) Imide resin and method for producing the same, optical resin composition using the same, and molded article
WO2005108438A1 (en) Imide resin, method for producing same, and molded body using same
JP2010265396A (en) Acrylic resin film and method for manufacturing the same
JP2010054750A (en) Method for manufacturing retardation film
JP2010261025A (en) Resin composition and production method thereof, molded product, film, optical film, polarizer protective film, polarizing plate
JP6591151B2 (en) Optical film
JP2011138119A (en) Optical film
WO2022114194A1 (en) Glutarimide resin
WO2022114193A1 (en) Glutarimide resin
JP5400296B2 (en) Resin composition
JP2006328331A (en) Resin composition, molded body, film and method for producing the same
JP2006249202A (en) Imide resin and resin composition for optical use using the same
JP2009227905A (en) Biaxial orientation acrylic resin film
JP4768981B2 (en) Heat-resistant imide resin or manufacturing method thereof
WO2022168936A1 (en) Method for producing imide structure-containing acrylic resin

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512985

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase