JP2012067348A - Pretreatment method for sintering raw materials - Google Patents
Pretreatment method for sintering raw materials Download PDFInfo
- Publication number
- JP2012067348A JP2012067348A JP2010212521A JP2010212521A JP2012067348A JP 2012067348 A JP2012067348 A JP 2012067348A JP 2010212521 A JP2010212521 A JP 2010212521A JP 2010212521 A JP2010212521 A JP 2010212521A JP 2012067348 A JP2012067348 A JP 2012067348A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- less
- sintering
- granulated
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Glanulating (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Abstract
【課題】難造粒性微粉原料を、焼結機を用いて塊成化するに際し、生産性及び歩留を下げることなく焼結することができる焼結用原料の事前処理方法を提供する。
【解決手段】石灰石を30質量%以上含有し、かつ、直径0.25mm以下の粒度構成比率が50質量%以上である原料を、焼結機で塊成化する際、(i)前記原料を、高速撹拌型造粒機又は振動型造粒で、8mm以下の造粒物に造粒し、次いで、(ii)回転ドラム等を通過させて、圧潰強度30N未満の造粒物を破砕し、最後に、(iii)1mm以下の未造粒物を分級して除去することを特徴とする。
【選択図】図1The present invention provides a pretreatment method for a raw material for sintering, which can sinter a hardly granulated fine powder raw material without lowering productivity and yield when agglomerated using a sintering machine.
When a raw material containing 30% by mass or more of limestone and having a particle size constitution ratio of 50% by mass or more having a diameter of 0.25 mm or less is agglomerated with a sintering machine, (i) , Granulated into a granulated product of 8 mm or less with a high-speed agitation granulator or vibration type granulation, and then (ii) passed through a rotating drum or the like to crush the granulated product with a crushing strength of less than 30 N, Finally, (iii) it is characterized by classifying and removing ungranulated material of 1 mm or less.
[Selection] Figure 1
Description
本発明は、焼結機を用いて微粉原料を塊成化する際の、該微粉原料の事前処理方法に関する。 The present invention relates to a pretreatment method for a fine powder material when the fine powder material is agglomerated using a sintering machine.
焼結機を用いて原料を塊成化する際に、混入した固体燃料を円滑に燃焼させて、焼結反応を安定して進行させるためには、原料充填層の通気性を適切に確保する必要がある。このため、原料を焼結機に供給するに先立ち、原料を造粒する。即ち、造粒装置の中で原料を適量の水と攪拌することにより、原料中の粗粒粒子の周りに微粒原料を水で付着させて、原料を顆粒化する操作を行う(以下、この顆粒化した造粒物を疑似粒子と呼ぶ)。 When the raw material is agglomerated using a sintering machine, in order to smoothly burn the mixed solid fuel and allow the sintering reaction to proceed stably, ensure the air permeability of the raw material packed bed appropriately. There is a need. For this reason, before supplying a raw material to a sintering machine, a raw material is granulated. That is, by stirring the raw material with an appropriate amount of water in the granulator, the fine raw material is adhered with water around the coarse particles in the raw material, and the raw material is granulated (hereinafter referred to as this granule). The granulated product is called pseudo particle).
一般に、焼結機の生産性は通風速度に比例して増加するので、十分な造粒処理を行って原料充填層の通気性を適切に確保できるかどうかで、焼結の生産性が決まる。 In general, since the productivity of the sintering machine increases in proportion to the ventilation speed, the productivity of the sintering is determined by whether or not sufficient granulation treatment can be performed to ensure the air permeability of the raw material packed layer appropriately.
現在、製鉄業が採用する鉄鉱石の焼結法では、この造粒処理に、ドラム型転動造粒機が用いられている。これは、ドラム型転動造粒機が大量生産に適していること、かつ、ここでは、付着させるべき微粒子(0.25mm以下)の量は20〜30質量%程度であり、転動操作のみで、適正な粒度構成及び強度の疑似粒子が得られるからである。 Currently, in the iron ore sintering method adopted by the steel industry, a drum type rolling granulator is used for this granulation treatment. This is because the drum type rolling granulator is suitable for mass production, and here, the amount of fine particles (0.25 mm or less) to be adhered is about 20 to 30% by mass, and only the rolling operation is performed. This is because pseudo particles having an appropriate particle size configuration and strength can be obtained.
さらに微粒子含有量が多い原料を対象とする場合には、核粒子を取り巻く付着粉粒子の層が厚くなり、固体燃料がそれに埋没して、燃焼が阻害される。これを避けるために、固体燃料の外装が行われる。 Further, when a raw material with a high content of fine particles is targeted, the layer of adhering powder particles surrounding the core particles becomes thick, so that the solid fuel is buried therein and combustion is hindered. In order to avoid this, a solid fuel is packaged.
即ち、まず、固体燃料を含まない原料を造粒し、その後、その造粒物と固体燃料を混合することにより、固体燃料の埋没を防止する。転動造粒機に皿型を用い、これと固体燃料の外装法を組み合わせたHPS法と呼ばれる方法(非特許文献1、参照)は、この方法の典型である。 That is, first, a raw material not containing solid fuel is granulated, and then the granulated product and solid fuel are mixed to prevent the solid fuel from being buried. A method called a HPS method (see Non-Patent Document 1), which uses a dish mold for a rolling granulator and combines this with a solid fuel exterior method, is typical of this method.
ペレット用鉄鉱石(ペレットフィード)やダストを主体とした原料の場合、転動造粒法は、焼結法の事前処理に適用できなくなる。このような原料では、さらに微粒子の含有量が多くなり、転動造粒では、造粒物の粒子径が過大となり、焼結法における短時間の加熱処理では、造粒物の中心まで十分に温度が上昇せず、焼結が十分に進行しない。 In the case of raw materials mainly composed of iron ore for pellets (pellet feed) and dust, the rolling granulation method cannot be applied to the pretreatment of the sintering method. In such a raw material, the content of fine particles further increases, and in rolling granulation, the particle size of the granulated product becomes excessive, and in the short time heat treatment in the sintering method, the center of the granulated product is sufficiently obtained. The temperature does not rise and sintering does not proceed sufficiently.
ペレット法は、まさに、この粗大化を活用したもので、通常、その粒子径は10mmを超えるものとなる一方、加熱装置も、キルンなどの加熱時間が十分に確保できる装置が用いられることとなる。 The pellet method uses this coarsening, and the particle diameter usually exceeds 10 mm. On the other hand, the heating device uses a device that can sufficiently secure the heating time such as a kiln. .
これに対して、原料により強い衝撃力を作用させて、粗大な粒子を解砕する機能を持つ高速撹拌型(特許文献1、参照)、又は、振動型造粒機を転動造粒機に代えて使用し、疑似粒子径の肥大を防止することが考えられる。 On the other hand, a high-speed agitation type (see Patent Document 1) having a function of crushing coarse particles by applying a strong impact force to the raw material, or a vibration type granulator as a rolling granulator It is conceivable to use it instead to prevent enlargement of the pseudo particle size.
しかし、これらの造粒機は、衝撃力を制御して、造粒物の粒子径を転動造粒機より小さく制御し得るが、転動造粒機に比較して、造粒しない微粉の量も増加するという欠点がある。この欠点を解決する手段として、先行法(特許文献2、参照)では、高速撹拌型又は振動型造粒機の後に新たに篩を設けて、粗粒化を防止しつつ造粒し、かつ、造粒の不十分な原料を除去して、焼結法にとって好ましい粒度分布を得ている。 However, these granulators can control the impact force and control the particle size of the granulated product to be smaller than that of the rolling granulator. There is a disadvantage that the amount increases. As a means for solving this drawback, in the prior method (see Patent Document 2), a new sieve is provided after the high-speed agitation type or vibration type granulator, granulation while preventing coarsening, and The raw material with insufficient granulation is removed to obtain a preferable particle size distribution for the sintering method.
しかしながら、先行法においても、造粒が難しい原料では、次の課題があることが判明した。即ち、処理直後で適正な粒度構成が得られていても、造粒物の強度にバラツキが大きく、事前処理後の輸送過程で、強度の小さい疑似粒子が崩壊して、焼結機で使用する直前の原料では、再び微粉量が増加してしまう。 However, even in the prior method, it has been found that raw materials that are difficult to granulate have the following problems. That is, even if an appropriate particle size configuration is obtained immediately after processing, the strength of the granulated product varies greatly, and the pseudo particles having low strength collapse in the transport process after the pre-processing, and are used in the sintering machine. In the immediately preceding raw material, the amount of fine powder increases again.
ここで言う造粒が難しい原料とは、具体的には、ダストやペレットフィードなどの鉄含有原料に対して石灰石の配合量が増加した原料である。石灰石は、菱面体の劈開性が強く表面が平らなものが多いために付着し難く、強固な疑似粒子を形成させ難いと考えられている。 The raw material that is difficult to granulate is specifically a raw material in which the amount of limestone is increased with respect to the iron-containing raw material such as dust and pellet feed. Limestone is thought to be difficult to adhere because it has many rhombohedral cleavages and flat surfaces, and it is difficult to form strong pseudo particles.
本発明は、上記先行技術の現状を踏まえ、石灰石配合量の多い難造粒性の微粉原料に対しても、焼結機を用いて塊成化を円滑に行うために、適正な粒度構成を有し、かつ、輸送過程でも崩壊しない強度を有する造粒物疑似粒子を製造するための事前処理方法を提供することを目的とする。 Based on the present state of the prior art, the present invention has an appropriate particle size configuration in order to smoothly agglomerate a hardly granulated raw material with a large amount of limestone using a sintering machine. It is an object of the present invention to provide a pretreatment method for producing a granulated pseudo particle having strength that does not collapse even during transportation.
本発明は、先行技術の造粒方法に対して、新たに、強度の弱い造粒物を破壊する操作を加えたところに特徴があり、それによって、上記課題を解決するものである。 The present invention is characterized in that an operation for breaking a granulated material having a low strength is newly added to the prior art granulating method, thereby solving the above-mentioned problems.
本発明の要旨は、以下の通りである。 The gist of the present invention is as follows.
石灰石を30質量%以上含有し、かつ、直径0.25mm以下の粒度構成比率が50質量%以上である原料を、焼結機で塊成化する際、(i)前記原料を、高速撹拌型造粒機又は振動型造粒で、8mm以下の造粒物に造粒し、次いで、(ii)回転ドラム等を通過させて、圧潰強度30N未満の造粒物を破砕し、最後に、(iii)1mm以下の未造粒物を分級して除去することを特徴とする焼結用原料の事前処理方法。 When a raw material containing 30% by mass or more of limestone and having a particle size composition ratio of 50% by mass or less having a diameter of 0.25 mm or less is agglomerated with a sintering machine, (i) the raw material is a high-speed stirring type Granulate into a granulated product of 8 mm or less with a granulator or vibration granulation, then (ii) pass through a rotating drum or the like to crush the granulated product with a crushing strength of less than 30 N, and finally ( iii) A pretreatment method for a raw material for sintering, characterized by classifying and removing ungranulated material of 1 mm or less.
本発明によれば、石灰石配合量が多い難造粒性の微粉原料に対しても、焼結機を用いて塊成化を円滑に行うことができる。具体的には、石灰石を、通常の高炉用焼結鉱製造の範囲に比較して、多量に使用するカルシウムフェライト焼結(特開2007−169707号公報、特開昭51−133200号公報、参照)のような場合でも、生産性、歩留、強度などを下げることなく、焼結操業が可能となる。 According to the present invention, agglomeration can be smoothly performed using a sintering machine even for a hardly granulated fine powder material having a large amount of limestone. Specifically, calcium ferrite sintering is used in which limestone is used in a large amount in comparison with the range of production of ordinary blast furnace sinter (see Japanese Patent Application Laid-Open No. 2007-169707, Japanese Patent Application Laid-Open No. 51-133200). ), The sintering operation can be performed without reducing productivity, yield, strength, and the like.
まず、本発明の構成を、図1に従って詳細に説明する。 First, the configuration of the present invention will be described in detail with reference to FIG.
第1に、原料を、高速攪拌型造粒機又は振動型造粒機で、加水しつつ混合し、造粒する。この時、造粒後の疑似粒子の最大径は、高速攪拌型造粒機では、回転羽根の回転数を調整して制御することができ、振動型造粒機では、振動数を調整することで制御することができる。いずれの造粒機でも、原料への衝撃力が大きくなるほど、過大な造粒物は崩壊するので、疑似粒子の最大径を小さくすることができる。 First, the raw materials are mixed and granulated with water in a high-speed agitation granulator or a vibration granulator. At this time, the maximum diameter of the pseudo particles after granulation can be controlled by adjusting the rotation speed of the rotary blade in the high-speed agitation granulator, and the frequency can be adjusted in the vibration granulator. Can be controlled. In any of the granulators, the larger the impact force to the raw material, the larger the granulated material collapses, so that the maximum diameter of the pseudo particles can be reduced.
次に、造粒した原料を、リフターを有する回転ドラムに通す。当然ながら、回転ドラム内では散水は行わない。原料は、リフターで上方へ持ち上げられて、下方へ落下する運動を繰り返し受けながら回転ドラム内を通過する。この時の落下衝撃により、低強度の疑似粒子は崩壊し、高強度のもののみが残留する。 Next, the granulated raw material is passed through a rotating drum having a lifter. Of course, no water is sprayed in the rotating drum. The raw material is lifted upward by a lifter and passes through the rotating drum while repeatedly receiving a downward movement. Due to the drop impact at this time, the low-strength pseudo-particles collapse, and only the high-strength particles remain.
崩壊させる強度の上限は、落下高さや、落下回数で決まるので、ドラム直径やドラム長さで調整できる。この時、回転ドラムへ、固体燃料の全部又は一部を投入して、前記原料と混合することが好ましい。いわゆる、固体燃料の外装である。なお、この工程の目的は、強度の低い疑似粒子を破壊することであり、回転ドラム以外にも、同様の機能を有する装置であれば、本発明に適用することが可能である。 Since the upper limit of the strength to be collapsed is determined by the drop height and the number of drops, it can be adjusted by the drum diameter and the drum length. At this time, it is preferable that all or part of the solid fuel is introduced into the rotating drum and mixed with the raw material. This is a so-called solid fuel exterior. The purpose of this step is to destroy low-intensity pseudo particles, and any apparatus other than the rotating drum having the same function can be applied to the present invention.
最後に、上記処理を施した原料を篩にかけ、微粉を除去する。原料中に微粉が過剰に残留していると、焼結の際、原料充填層の通気性を阻害し、焼結機の生産性の低下や焼結進行の不均一化を助長して、歩留の低下を招くことになるので、篩上の造粒原料のみを焼結機に装入して焼結する。なお、微粉(篩下)は、造粒機に戻し、原料として再利用する。 Finally, the raw material subjected to the above treatment is sieved to remove fine powder. If excessively fine powder remains in the raw material, the air permeability of the raw material packed layer will be hindered during sintering, which will lead to a decrease in productivity of the sintering machine and non-uniformity in the progress of sintering. Therefore, only the granulated raw material on the sieve is charged into a sintering machine and sintered. The fine powder (under the sieve) is returned to the granulator and reused as a raw material.
続いて、本発明で規定する数値条件について説明する。 Subsequently, numerical conditions defined in the present invention will be described.
本発明は、製鋼用脱リン剤としてのカルシウムフェライトを、焼結機で製造することを第1に想定している。この原料は、製鋼ダストやペレットフィードなどの微粉の鉄原料と、焼結用の粉石灰石(通常3mm以下)からなり、石灰石の全原料に対する比率は、30〜60質量%である。 The present invention first assumes that calcium ferrite as a dephosphorizing agent for steel making is produced by a sintering machine. This raw material is composed of fine iron raw materials such as steelmaking dust and pellet feed and powdered limestone for sintering (usually 3 mm or less), and the ratio of limestone to all raw materials is 30 to 60% by mass.
さらに、この原料は、通常の高炉用焼結鉱の配合原料に比較して、粒径が小さく、0.25mm以下の構成比率が、通常の高炉用焼結鉱の配合原料では20〜30質量%であるのに対し、50質量%以上である。 Furthermore, this raw material has a particle size smaller than that of an ordinary blended raw material for blast furnace ore, and a composition ratio of 0.25 mm or less is 20 to 30 mass for an ordinary blended raw material for blast furnace ore. %, But 50% by mass or more.
高速攪拌型造粒機又は振動型造粒機で造粒する際の造粒物の上限粒径を8mmと規定した。これは、造粒物の粒径が8mmを超えると、焼結における短時間の加熱処理では、造粒物の中心まで十分に温度が上昇せず、焼結が十分に進行しないからである。 The upper limit particle size of the granulated product when granulated with a high-speed stirring granulator or a vibration granulator was defined as 8 mm. This is because, when the particle size of the granulated product exceeds 8 mm, the heat treatment for a short time in sintering does not sufficiently raise the temperature to the center of the granulated product, and the sintering does not proceed sufficiently.
回転ドラムで、残留させるべき疑似粒子の最低圧壊強度を30Nとした。強度が30N未満の疑似粒子は、輸送時のベルトコンベアーの乗り継ぎ時に、落下などで崩壊する危険がある。 With the rotating drum, the minimum crushing strength of the pseudo particles to be left was set to 30N. Pseudo particles having an intensity of less than 30 N have a risk of collapsing due to dropping or the like when transferring by a belt conveyor during transportation.
篩による未造粒物の除去に際し、篩目は1mmとした。本発明が対象とする湿潤原料では、1mm未満の篩目では目詰まりを起こして円滑な操業ができない。篩の篩効率を調整することにより、処理後の原料の微粉残留率を調整するが、焼結する点で、0.25mm%比率で、1〜10質量%が好ましい。 When removing the ungranulated material with a sieve, the sieve mesh was 1 mm. In the wet raw material which is the subject of the present invention, clogging with a mesh size of less than 1 mm causes clogging and smooth operation is not possible. By adjusting the sieve efficiency of the sieve, the fine powder residual ratio of the raw material after the treatment is adjusted. From the viewpoint of sintering, 1 to 10% by mass is preferable at a 0.25 mm% ratio.
本発明においては、難造粒性原料として石灰石を想定している。しかし、本発明は、石灰石多量配合の原料に留まらず、豪州マラマンバ系の鉄鉱石や、砂鉄などを多量に使用する場合にも適用できる。マラマンバでは、平滑な表面を有するマータイト小結晶が、砂鉄では、自形のマグネタイト結晶が、造粒性を低下させており、いずれも、難造粒性原料に分類される原料である。 In the present invention, limestone is assumed as the hardly granulated raw material. However, the present invention is not limited to raw materials containing a large amount of limestone, but can also be applied to the case of using a large amount of Australian maramba-based iron ore, iron sand, and the like. In Mara Mamba, a martin small crystal having a smooth surface, and in iron sand, a self-shaped magnetite crystal has reduced granulation properties, and both are raw materials classified as hardly granulated raw materials.
次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
(実施例)
カルシウムフェライト製造用の原料を、図1に示す製造プロセスに従って造粒処理した原料を用いて焼結を行った発明例と、図1に示す製造プロセスで、回転ドラムのない製造プロセスで造粒処理した原料を用いて焼結を行った比較例を比較した。
(Example)
The invention example in which the raw material for calcium ferrite production was sintered using the raw material granulated according to the manufacturing process shown in FIG. 1 and the manufacturing process shown in FIG. Comparative examples in which sintering was performed using the raw materials thus prepared were compared.
原料は、製鋼ダスト:43質量%、石灰石:50質量%、生石灰:2質量%、粉コークス:5質量%からなり、造粒処理前の0.25mm以下の割合は65%であった。振動型造粒機は、阿部鐵工所製VMPC200型(最大処理能力:毎時7t)を使用し、目標水分は10質量%とした。 The raw materials consisted of steelmaking dust: 43% by mass, limestone: 50% by mass, quick lime: 2% by mass, and powdered coke: 5% by mass, and the ratio of 0.25 mm or less before granulation treatment was 65%. As the vibration type granulator, VMPC200 type (maximum processing capacity: 7 tons per hour) manufactured by Abe Iron Works was used, and the target moisture was 10% by mass.
回転ドラムは、直径:1m、長さ:3mの円筒に、高さ:10cmのリフターを4枚取り付けたものを使用した。篩は、篩面積:1.5m2を有し、篩目:1mmのものを使用した。 As the rotating drum, a cylinder having a diameter of 1 m and a length of 3 m and four lifters having a height of 10 cm attached thereto was used. A sieve having a sieve area of 1.5 m 2 and a sieve mesh of 1 mm was used.
図2に、回転ドラム処理有り(発明例)と、回転ドラム処理無し(比較例)の場合における処理後疑似粒子の強度分布を比較して示す。回転ドラムによる処理により、30N未満の疑似粒子は消滅していることが解る。 FIG. 2 shows a comparison of the intensity distributions of the pseudo particles after treatment when the rotating drum process is performed (invention example) and without the rotating drum process (comparative example). It can be seen that the pseudo-particles of less than 30N have disappeared by the treatment with the rotating drum.
最後の篩分け処理後の原料において、0.25mm以下の割合は1〜10質量%であった。また、これら一連の設備による原料の処理速度は、1t/分であった。 In the raw material after the final sieving treatment, the ratio of 0.25 mm or less was 1 to 10% by mass. Moreover, the processing speed of the raw material by these series of facilities was 1 t / min.
前処理を経た原料を、一旦、ホッパーに貯留し、0.5m2の焼結面積を有する円形型焼結機で塊成化した。その時の生産率と成品歩留を測定した。 The pretreated raw material was once stored in a hopper and agglomerated by a circular sintering machine having a sintered area of 0.5 m 2 . The production rate and product yield at that time were measured.
表1に、発明例と比較例の焼結時の生産性と成品歩留を示す。発明例においては、焼結生産性と成品歩留が顕著に向上していることが解る。 Table 1 shows productivity and product yield at the time of sintering in the inventive examples and the comparative examples. In the inventive examples, it can be seen that the sintering productivity and the product yield are remarkably improved.
前述したように、本発明によれば、石灰石配合量が多い難造粒性の微粉原料に対しても、焼結機を用いて塊成化を円滑に行うことができる。具体的には、石灰石を、通常の高炉用焼結鉱製造の範囲に比較して、多量に使用するカルシウムフェライト焼結のような場合でも、生産性、歩留、強度などを下げることなく、焼結操業が可能となる。よって、本発明は、鉄鋼産業の原料処理技術において利用可能性が高いものである。 As described above, according to the present invention, agglomeration can be smoothly performed using a sintering machine even for a hardly granulated fine powder material having a large amount of limestone. Specifically, limestone, compared to the range of ordinary blast furnace sinter ore production, even in the case of calcium ferrite sintering used in large quantities, without reducing productivity, yield, strength, Sintering operation becomes possible. Therefore, the present invention has high applicability in the raw material processing technology of the steel industry.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010212521A JP5451568B2 (en) | 2010-09-22 | 2010-09-22 | Pretreatment method for sintering raw materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010212521A JP5451568B2 (en) | 2010-09-22 | 2010-09-22 | Pretreatment method for sintering raw materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012067348A true JP2012067348A (en) | 2012-04-05 |
JP5451568B2 JP5451568B2 (en) | 2014-03-26 |
Family
ID=46164953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010212521A Expired - Fee Related JP5451568B2 (en) | 2010-09-22 | 2010-09-22 | Pretreatment method for sintering raw materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5451568B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014018732A (en) * | 2012-07-18 | 2014-02-03 | Sugiyama Juko Kk | Vibration type granulation device |
JP2014227568A (en) * | 2013-05-22 | 2014-12-08 | Jfeスチール株式会社 | Method of producing granulation raw material for sintering |
WO2015005218A1 (en) * | 2013-07-11 | 2015-01-15 | Jfeスチール株式会社 | Method for producing granulated raw material for sintering applications |
JP2015014039A (en) * | 2013-07-08 | 2015-01-22 | Jfeスチール株式会社 | Method and apparatus for production of granulation raw material for sintering |
JP2015054980A (en) * | 2013-09-11 | 2015-03-23 | Jfeスチール株式会社 | Method of producing granulation raw material for sintering |
-
2010
- 2010-09-22 JP JP2010212521A patent/JP5451568B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014018732A (en) * | 2012-07-18 | 2014-02-03 | Sugiyama Juko Kk | Vibration type granulation device |
JP2014227568A (en) * | 2013-05-22 | 2014-12-08 | Jfeスチール株式会社 | Method of producing granulation raw material for sintering |
JP2015014039A (en) * | 2013-07-08 | 2015-01-22 | Jfeスチール株式会社 | Method and apparatus for production of granulation raw material for sintering |
WO2015005218A1 (en) * | 2013-07-11 | 2015-01-15 | Jfeスチール株式会社 | Method for producing granulated raw material for sintering applications |
JP2015054980A (en) * | 2013-09-11 | 2015-03-23 | Jfeスチール株式会社 | Method of producing granulation raw material for sintering |
Also Published As
Publication number | Publication date |
---|---|
JP5451568B2 (en) | 2014-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5451568B2 (en) | Pretreatment method for sintering raw materials | |
RU2675883C2 (en) | Method and device for producing granulates | |
JP2016191122A (en) | Method for producing sintered ore | |
JP2001348625A (en) | Manufacturing method of pellets for raw materials for steelmaking | |
JP5954546B2 (en) | Method for producing granulated raw material for sintering | |
CN106661667B (en) | The smelting process of nickel oxide ore, the charging method of particle | |
JP5058715B2 (en) | Pretreatment method for sintering raw materials | |
CA2719899C (en) | Method of production of cement bonded agglomerated ore | |
JP4261672B2 (en) | Granulation method of sintering raw material | |
JP5910831B2 (en) | Method for producing granulated raw material for sintering | |
WO2014129282A1 (en) | Method for manufacturing reduced iron | |
JP2014201763A (en) | Method for producing granulation raw material for sintering | |
JP2000290732A (en) | Granulation method of raw materials for sintering with excellent flammability | |
CN107674971B (en) | Raw material treatment method | |
JP3797184B2 (en) | Method for producing sintered ore | |
JP6926674B2 (en) | Oxidized ore smelting method | |
JP6805672B2 (en) | Manufacturing method of carbonaceous interior granulated particles and manufacturing method of carbonaceous interior agglomerate | |
JP6809377B2 (en) | Oxidized ore smelting method | |
JP6996485B2 (en) | Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore | |
JP6885386B2 (en) | Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore | |
JP6235439B2 (en) | Manufacturing method of granular metallic iron | |
JP7024649B2 (en) | Granulation method of raw material for sintering | |
JP6954236B2 (en) | Manufacturing method and manufacturing equipment for coal interior sintered ore | |
JP5983949B2 (en) | Method for producing granulated raw material for sintering | |
JP7047645B2 (en) | Sintered ore manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131226 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5451568 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |