[go: up one dir, main page]

JP2014201763A - Method for producing granulation raw material for sintering - Google Patents

Method for producing granulation raw material for sintering Download PDF

Info

Publication number
JP2014201763A
JP2014201763A JP2013076790A JP2013076790A JP2014201763A JP 2014201763 A JP2014201763 A JP 2014201763A JP 2013076790 A JP2013076790 A JP 2013076790A JP 2013076790 A JP2013076790 A JP 2013076790A JP 2014201763 A JP2014201763 A JP 2014201763A
Authority
JP
Japan
Prior art keywords
raw material
sintering
particles
granulation
crushing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013076790A
Other languages
Japanese (ja)
Inventor
隆英 樋口
Takahide Higuchi
隆英 樋口
直幸 竹内
Naoyuki Takeuchi
直幸 竹内
主代 晃一
Koichi Nushishiro
晃一 主代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013076790A priority Critical patent/JP2014201763A/en
Publication of JP2014201763A publication Critical patent/JP2014201763A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Glanulating (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

【課題】難造粒性の微粉鉄鉱石を使用する場合において、焼結用造粒原料中に、粒径の不揃いな結合強度の弱い粗大な擬似粒子が発生するのを阻止し、均一な大きさを有する擬似粒子を造粒する技術を提供する。【解決手段】配合原料に水分を添加してドラムミキサー4で混合する混合工程と、混合後の配合原料をパンペレタイザー3にて造粒する造粒工程とを経て焼結用造粒原料を製造する方法において、前記混合工程と造粒工程との間に解砕機7を配し、粗大粒子を含む混合後の配合原料を粒径に基づき、粗大粒子を選択的に圧壊して、解砕すること。【選択図】図4[PROBLEMS] To prevent the generation of coarse pseudo particles with uneven grain size and weak bond strength in a granulated raw material for sintering when using difficultly granulated fine iron ore. Provided is a technique for granulating pseudo particles having a thickness. SOLUTION: A granulated raw material for sintering is manufactured through a mixing process in which water is added to a mixed raw material and mixed by a drum mixer 4 and a granulated process in which the mixed mixed raw material is granulated by a pan pelletizer 3. In this method, a pulverizer 7 is arranged between the mixing step and the granulating step, and the mixed raw material containing the coarse particles is selectively crushed by crushing the coarse particles based on the particle size. about. [Selection] Figure 4

Description

本発明は、ドワイトロイド式焼結機に供給するための焼結用造粒原料の製造方法に関する。   The present invention relates to a method for producing a granulation raw material for sintering to be supplied to a Dwytroid type sintering machine.

焼結鉱は、複数銘柄の粉状の鉄鉱石(以下、単に「鉱石」とも言う)に、石灰石、珪石、蛇紋岩等の副原料粉と、ダスト、スケール、返鉱等の雑原料と、粉コークス等の固体燃料とを適量づつ配合した焼結用配合原料に、水分を添加して混合・造粒し、造粒原料を焼結機に装入して焼成することによって得られる。造粒時、配合原料は、水分を含むことで互いに凝集して擬似粒子となる。この擬似粒子化した焼結用造粒原料を焼結機に装入することにより焼結機上では良好な通気を確保することが可能となって焼結が円滑に進むことが知られている。
なお、焼結用鉄鉱石は、近年、高品質鉄鉱石の枯渇による低品位化、例えばスラグ成分の増加や微粉化の傾向が顕著であり、アルミナ含有量の増大、微粉比率の増大による造粒性の悪いものが多くなっている。その一方で、高炉で使用する焼結鉱としては、高炉での溶銑製造コストの低減やCO発生量の低減という観点から低スラグ比、高被還元性、高強度のものが求められている。
Sintered ore consists of multiple brands of powdered iron ore (hereinafter also referred to simply as “ores”), auxiliary raw material powders such as limestone, quartzite, and serpentine, and miscellaneous raw materials such as dust, scale, and return minerals, It is obtained by adding moisture to a blended raw material for sintering in which an appropriate amount of solid fuel such as powder coke is blended, mixing and granulating, and charging the granulated raw material into a sintering machine and firing. At the time of granulation, the blended raw materials aggregate with each other and become pseudo particles by containing moisture. It is known that by introducing the pseudo granulated raw material for sintering into a sintering machine, it is possible to ensure good ventilation on the sintering machine and the sintering proceeds smoothly. .
In recent years, iron ore for sintering has been prone to lower grades due to depletion of high-quality iron ore, for example, an increase in slag components and pulverization. There are a lot of bad things. On the other hand, sintered ore used in the blast furnace is required to have a low slag ratio, high reducibility, and high strength from the viewpoint of reducing hot metal production cost in the blast furnace and reducing CO 2 generation amount. .

焼結用鉄鉱石を取り巻くこのような環境の下で、ペレットフィードと呼ばれるペレット用高品位鉄鉱石である難造粒性の微粉鉄鉱石を使って、高品質の焼結鉱を製造するための技術が提案されている。例えば、こうした従来技術の1つに、Hybrid Pelletized Sinter法(以下、「HPS法」という)がある。この技術は、ペレットフィードのような微粉鉄鉱石を多量に含む配合原料をドラムミキサーとペレタイザーとを使って造粒することにより、低スラグ比・高被還元性の焼結鉱を製造しようというものである(特許文献1、特許文献2、特許文献3、特許文献4、特許文献5)。   In such an environment surrounding the iron ore for sintering, a high-quality iron ore for pellets called the pellet feed is used to produce high-quality sintered ore using the hardly granulated fine iron ore. Technology has been proposed. For example, one such conventional technique is the Hybrid Pelletized Sinter method (hereinafter referred to as “HPS method”). This technology is intended to produce sintered ore with low slag ratio and high reducibility by granulating a raw material containing a large amount of fine iron ore such as pellet feed using a drum mixer and pelletizer. (Patent Literature 1, Patent Literature 2, Patent Literature 3, Patent Literature 4, Patent Literature 5).

特許文献1:特公平2−4658号公報
特許文献2:特公平6−21297号公報
特許文献3:特公平6−21298号公報
特許文献4:特公平6−21299号公報
特許文献5:特公平6−60358号公報
Patent Literature 1: Japanese Patent Publication No. 2-4658 Patent Literature 2: Japanese Patent Publication No. 6-21297 Patent Literature 3: Japanese Patent Publication No. 6-21298 Patent Literature 4: Japanese Patent Publication No. 6-21299 Patent Literature 5: Japan Patent Publication No. 6-60358

しかしながら、ペレットフィードである微粉鉄鉱石を多量に含む配合原料を造粒すると、個々の微粉鉄鉱石が水分を優先的に吸収するため、微粉同士が単に凝集しただけにすぎないものや、核粒子のまわりに微粉が付着した形態の粒径の不揃いな粗大な擬似粒子が生成するという問題があった。その原因は、ペレットフィードのような微粉鉄鉱石は、濡れ性が同じであれば、比表面積の大きい細粒ほど水分を吸収しやすく、かつ粉体間に多くの水分を保持しやすいためと考えられている。   However, when a raw material containing a large amount of fine iron ore, which is pellet feed, is granulated, each fine iron ore absorbs moisture preferentially, so that the fine particles are merely agglomerated with each other, or core particles There is a problem that coarse pseudo-particles having irregular particle sizes in a form in which fine powders are attached around are generated. The reason for this is that fine iron ore such as pellet feed is more likely to absorb moisture and retain more moisture between powders as long as it has the same wettability, as long as the wettability is the same. It has been.

このような粒径が不揃いで、結合強度の弱い粗大な擬似粒子が生成すると、粒度分布が広くなるため、これを焼結機のパレット上へ充填すると、図1(a)、(b)に示すように密な充填構造となり、かさ密度が大きくなる。しかも、このような粗大な擬似粒子は、焼結機のパレット上に一定の層厚で堆積させると、該擬似粒子に荷重(圧縮力)が加わり圧壊されやすいため、空隙率が下がり、ひいては通気性の悪化を招いて焼結機操業の阻害要因になり、焼結時間が長くなったり焼結鉱の製造歩留まりが低下して生産性が低下するおそれがある。
さらには、造粒に用いられるバインダーである生石灰の使用量を増加せざるを得なくなり、焼結鉱製造コストの増大を招くことや、後工程において粉コークス等の固体燃料を被覆する際に、焼結原料全体としての粉コークス等の賦存状態が不均一となり、燃焼や着熱が不均一となって焼成速度が低下するという点に問題があった。
When coarse quasi-particles with such irregular particle sizes and weak bond strength are generated, the particle size distribution becomes wide. When this is filled on a pallet of a sintering machine, the results shown in FIGS. As shown, the structure is densely packed and the bulk density is increased. Moreover, if such coarse pseudo-particles are deposited on the pallet of the sintering machine with a certain layer thickness, a load (compressive force) is applied to the pseudo-particles and is easily crushed. As a result, the sintering process becomes a hindrance to the operation of the sintering machine, and there is a possibility that the sintering time becomes longer or the production yield of the sintered ore is lowered and the productivity is lowered.
Furthermore, it is unavoidable to increase the amount of quicklime used as a binder used for granulation, leading to an increase in the production cost of sintered ore, and when coating solid fuel such as powdered coke in the subsequent process, There was a problem in that the existing state of the powdered coke as a whole of the sintered raw material became non-uniform, combustion and heat receiving became non-uniform, and the firing rate was reduced.

そこで、発明者らは、従来のHPS法において粗大な擬似粒子が発生する要因について検討してみた。その結果、ペレットフィードのような微粉鉄鉱石を多量に含む配合原料を使用すると、それをドラムミキサーで混合した時点で既に、核粒子となる大きめの粒子に微粉や細粒が付着したり、微粉や細粒同士が凝集して、粒径の不揃いな粗大な擬似粒子が形成されること、そして、このような粗大な擬似粒子は、ペレタイザー内部において、その転動運動による衝撃によって一部は破壊されるものの、大部分は造粒の進行によってさらに粒子径が増加(肥大化)していくことがわかった。   Therefore, the inventors examined the factors that cause coarse pseudo particles in the conventional HPS method. As a result, when a blended raw material containing a large amount of fine iron ore such as pellet feed is used, fine particles or fine particles are already attached to the larger particles that become core particles when mixed with a drum mixer. And coarse particles are aggregated to form coarse pseudo-particles with irregular particle sizes, and such coarse pseudo-particles are partially broken by impact due to rolling motion inside the pelletizer. However, for the most part, it was found that the particle diameter further increased (enlarged) with the progress of granulation.

本発明は、従来技術の抱える上記問題を解決するため、難造粒性の微粉鉄鉱石を使用する場合において、焼結用造粒原料中に、粒径の不揃いな結合強度の弱い粗大な擬似粒子が発生するのを阻止し、均一な大きさを有する擬似粒子を造粒する技術を提案するものである。   In order to solve the above-mentioned problems of the prior art, the present invention provides a coarse pseudo-powder having a weak bond strength with irregular particle sizes in a granulation raw material for sintering in the case of using hardly granulated fine iron ore. The present invention proposes a technique for preventing generation of particles and granulating pseudo particles having a uniform size.

即ち、本発明は、図1(c)で示すように、微粉や細粒同士が凝集または、核粒子のまわりに微粉が付着した構造の、粒径が比較的揃うと共に粒度分布の狭い擬似粒子からなる焼結用造粒原料の製造方法を提案するものであり、これによって焼結用造粒原料を焼結機のパレット上に装入したときに形成される原料充填層の充填密度の低減と、通気性の向上に伴う焼成時間の短縮を実現し、焼結生産性を向上させることを目的とするものである。   That is, as shown in FIG. 1 (c), the present invention has a structure in which fine particles and fine particles are aggregated or fine particles are adhered around the core particles, and the pseudo particles have a relatively uniform particle size and a narrow particle size distribution. A method for producing a granulated raw material for sintering is proposed, which reduces the packing density of the raw material packed bed formed when the granulated raw material for sintering is loaded on the pallet of the sintering machine. The aim is to realize a reduction in the firing time accompanying the improvement in air permeability and to improve the sintering productivity.

上記目的を達成するため、本発明では、パンペレタイザーによる造粒処理に先立ち、まず混合原料(配合原料)、とくに粒径の大きな粒子を選択的に解砕することにより、焼結用造粒原料中に結合強度の弱い粗大な擬似粒子が生成するのを阻止し、粒径が比較的揃った粒度分布の小さい擬似粒子からなる焼結用造粒原料を製造する方法を開発することに成功した。即ち、本発明は、配合原料に水分を添加してドラムミキサーで混合する混合工程と、混合後の配合原料をパンペレタイザーにて造粒する造粒工程とを経て焼結用造粒原料を製造する方法において、前記混合工程と造粒工程との間で、粗大粒子を含む混合後の配合原料を解砕することを特徴とする焼結用造粒原料の製造方法を提案する。   In order to achieve the above object, in the present invention, prior to granulation by a pan pelletizer, first, a mixed raw material (mixed raw material), particularly a granulated raw material for sintering, is selectively crushed to obtain a granulated raw material for sintering. Succeeded in developing a method for producing a granulated raw material for sintering that consists of pseudo particles with a relatively small particle size distribution, preventing the formation of coarse pseudo particles with low bonding strength. . That is, the present invention produces a granulated raw material for sintering through a mixing step of adding water to the mixed raw material and mixing with a drum mixer and a granulating step of granulating the mixed raw material after mixing with a pan pelletizer. In this method, a method for producing a granulated raw material for sintering is proposed, wherein the mixed raw material after mixing containing coarse particles is crushed between the mixing step and the granulating step.

本発明のより好ましい解決手段は、
(1)前記粗大粒子は、前記粗大粒子は、核粒子に微粉および/または細粒が付着した擬似粒子、または微粉および/または細粒が凝集した擬似粒子であること、
(2)前記粗大粒子は、粒径10mm以上の粒子であること、
(3)前記解砕工程後の配合原料の平均粒径は、8mm以下であること、
(4)前記解砕は、ドラムミキサーからパンペレタイザーへ配合原料を供給するための移送用ベルトコンベア排出端直下に配設されている解砕機を用いて行うこと、
(5)前記解砕は、解砕機によって粗大粒子を粒径に基づき選択的に圧壊することにより行うこと、
(6)前記解砕機は、連結する2以上のベルトコンベア排出端のそれぞれに配設されていること、
(7)前記解砕機は、複数の解砕歯が突設されたロール対を相互に逆方向に回転させて、前記粗大粒子を解砕する機構を有すること、
(8)前記造粒工程の後に、この工程を経て製造された擬似粒子にコークス粉を付着させる工程を有すること、
である。
A more preferable solution of the present invention is as follows:
(1) The coarse particles are pseudo particles in which fine particles and / or fine particles are attached to core particles, or pseudo particles in which fine particles and / or fine particles are aggregated,
(2) The coarse particles are particles having a particle size of 10 mm or more,
(3) The average particle size of the blended raw material after the crushing step is 8 mm or less,
(4) The pulverization is performed using a pulverizer disposed immediately below the discharge end of the transfer belt conveyor for supplying the blended raw material from the drum mixer to the pan pelletizer.
(5) The crushing is performed by selectively crushing coarse particles based on the particle size by a crusher,
(6) The crusher is disposed at each of the two or more belt conveyor discharge ends to be connected,
(7) The crusher has a mechanism for crushing the coarse particles by rotating a pair of rolls provided with a plurality of crushing teeth in opposite directions.
(8) having a step of attaching coke powder to the pseudo particles produced through this step after the granulation step;
It is.

(1)本発明に係る焼結用造粒原料の製造方法によれば、ペレットフィードのような高品位であるが難造粒性の微粉鉄鉱石をも焼結鉱製造用原料として使用することができるようになり、低スラグ比で高被還元性、高強度の鉄鉱石を有利に製造することができる。そして、このような焼結用造粒原料を、高炉用原料とすることにより、高炉内に装入する塊コークスの使用量を低減させることができるようになり、高炉からのCO2発生量の大幅な削減と、生産性の向上が期待できる。しかも、高炉でのスラグ発生量が低減するため、環境への負荷を軽減させることができる。
(2)また、本発明に係る製造方法によれば、焼結用造粒原料の粒径がほぼ均一になり、焼結機のパレット上への装入密度が小さくなって、原料充填層(焼結ベット)の通気性の改善を図れると共に、焼結原料全体としての粉コークス等の固体燃料の賦存状態が均一となり、燃焼速度の向上によって焼成時間が短縮し、歩留まりおよび焼結生産性を向上させることができる。
(3)さらに、本発明に係る製造方法よれば、粉コークスの使用量の低減が可能となり、焼結鉱製造時のCO発生量の低減が可能になると共に、造粒時に使用される生石灰(バインダー)の使用量を削減することができるため、焼結鉱の製造コストを低減させることができる。
(1) According to the method for producing a granulated raw material for sintering according to the present invention, high-grade but difficult-to-granulate fine iron ore such as pellet feed is used as a raw material for producing sintered ore. As a result, it is possible to advantageously produce iron ore with a low slag ratio and high reducibility and high strength. And by using such a granulation raw material for sintering as a raw material for a blast furnace, it becomes possible to reduce the amount of lump coke charged into the blast furnace, and to reduce the amount of CO 2 generated from the blast furnace. Significant reductions and productivity improvements can be expected. Moreover, since the amount of slag generated in the blast furnace is reduced, the load on the environment can be reduced.
(2) Moreover, according to the manufacturing method which concerns on this invention, the particle size of the granulation raw material for sintering becomes substantially uniform, the charging density on the pallet of a sintering machine becomes small, and a raw material packed bed ( This improves the air permeability of the sintering bed), makes the existing state of solid fuel such as coke breeze as a whole of the sintering raw material uniform, improves the burning speed, shortens the firing time, yield and sintering productivity. Can be improved.
(3) Further, according to the production method of the present invention, the amount of powder coke used can be reduced, the amount of CO 2 generated during the production of sintered ore can be reduced, and quick lime used during granulation. Since the usage-amount of (binder) can be reduced, the manufacturing cost of a sintered ore can be reduced.

従来の原料充填層(a)、(b)と本発明の原料充填層(c)の模式図である。It is a schematic diagram of the conventional raw material filling layer (a), (b) and the raw material filling layer (c) of this invention. 擬似粒子の構造(a)、(b)と従来の焼結用造粒原料の製造プロセス(c)の模式図である。It is a schematic diagram of the manufacturing process (c) of the structure (a) and (b) of a pseudo particle, and the conventional granulation raw material for sintering. 本発明の焼結用造粒原料製造プロセスの一例を示す模式図である。It is a schematic diagram which shows an example of the granulation raw material manufacturing process for sintering of this invention. 粗粒の解砕工程の一例を示す略線図である。It is a basic diagram which shows an example of the crushing process of a coarse grain. 粗粒の解砕工程の他の例を示す略線図であるIt is a basic diagram which shows the other example of the crushing process of a coarse grain. 解砕機の構造例を示す説明図である。It is explanatory drawing which shows the structural example of a crusher. 従来法と本発明方法により造粒した粒子の粒度分布図である。It is a particle size distribution figure of the particle granulated by the conventional method and the method of the present invention. 従来法と本発明法(ペレットフィード40mass%配合時)との焼結試験での操業結果を示す比較グラフである。It is a comparison graph which shows the operation result in the sintering test with the conventional method and this invention method (at the time of pellet feed 40mass% mixing | blending).

図2は、代表的な擬似粒子の構造を示すものである。図2(a)は、ペレットフィード使用時に形成される擬似粒子のうち、鉄鉱石の細粒あるいは微粉同士が水分を介して凝集した、微粉鉄鉱石を多く含む結合強度の弱い粗大な擬似粒子の例(凝集粒子)を示すものであり、これに対し、図2(b)は、核粒子のまわりに微粉や細粒が付着した構造の擬似粒子の例であり、一般的に図2(b)の擬似粒子の方が強度が大きく粒径が揃ったものになる。なお、微粉鉄鉱石としては、通常の配合原料をそのまま用いても微粉としての挙動は同じであり、またペレットフィードを製造する過程で発生する残渣であるテーリング鉱を使用することも可能である。   FIG. 2 shows the structure of a typical pseudo particle. FIG. 2 (a) is a diagram of pseudo-particles of coarse pseudo-particles formed by using pellet feed, in which fine or fine particles of iron ore are agglomerated with each other through moisture, and which contain a large amount of fine iron ore and have low bonding strength. An example (aggregated particle) is shown, whereas FIG. 2 (b) is an example of a pseudo particle having a structure in which fine particles or fine particles are attached around a core particle. ) Pseudo particles are stronger and have a uniform particle size. In addition, as a fine iron ore, even if it uses a normal compounding raw material as it is, the behavior as a fine powder is the same, and it is also possible to use tailing ore which is a residue generated in the process of producing a pellet feed.

一般的な焼結用造粒原料の製造プロセスフローは、図2(c)に示すように、配合槽1から切り出された配合原料である鉄鉱石粉および副原料粉をまず、ドラムミキサー2にて混合した後(混合工程)、パンペレタイザー3に送給して造粒処理し(造粒工程)、さらに別のドラムミキサー4により粉コークス等の固体燃料や必要に応じて用いられる副原料をコーティングして焼結鉱製造用の原料である焼結用造粒原料が製造される。なお、混合工程および造粒工程ではそれぞれ水分を添加して所定の造粒水分になるように調整することで、所定の擬似粒子が得られる。   As shown in FIG. 2 (c), a general manufacturing process flow of a granulation raw material for sintering is performed by first mixing iron ore powder and auxiliary raw material powder, which are mixed raw materials cut out from the mixing tank 1, with a drum mixer 2. After mixing (mixing process), it is fed to the pan pelletizer 3 and granulated (granulation process), and further coated with a solid fuel such as coke breeze and other auxiliary materials as needed. Thus, a granulating raw material for sintering, which is a raw material for manufacturing sintered ore, is manufactured. In the mixing step and the granulating step, predetermined pseudo particles can be obtained by adding water and adjusting to obtain predetermined granulated moisture.

本発明では、上記製造プロセスにおいて、図3に示したようにドラムミキサー2による混合工程と、パンペレタイザー3による造粒工程との間に、解砕工程5を設け、混合工程を経た配合原料に含まれる粗大な粒子、即ち、核粒子に微粉および/または細粒が付着した擬似粒子、または微粉および/または細粒が凝集した擬似粒子のうち、一定の大きさ以上の粒径をもつものを、造粒工程に先立って解砕することを特徴としている。例えば、ドラムミキサー2出口において粒径が10mm以上、好ましくは8mm以上の粗大な粒子を、後述する解砕機を使って選択的に解砕して、平均粒径が8mm以下、好ましくは5mm以下になるように整粒化した後、パンペレタイザー3へと投入するのである。   In the present invention, in the above manufacturing process, as shown in FIG. 3, a crushing step 5 is provided between the mixing step by the drum mixer 2 and the granulation step by the pan pelletizer 3, and the blended raw material after the mixing step is used. Coarse particles, that is, pseudo particles in which fine particles and / or fine particles are attached to core particles, or pseudo particles in which fine particles and / or fine particles are aggregated, those having a particle size of a certain size or more. It is characterized by crushing prior to the granulation process. For example, coarse particles having a particle size of 10 mm or more, preferably 8 mm or more at the outlet of the drum mixer 2 are selectively crushed using a crusher described later, so that the average particle size is 8 mm or less, preferably 5 mm or less. Then, the particles are sized so that they are put into the pan pelletizer 3.

即ち、本発明では、配合原料中に含まれている粗大な粒子をパンペレタイザー3による造粒工程に先立って、解砕工程5において一定の粒径以下に整粒化することで、粗大な粒子内部に局在化していた微粉および水分が解放された状態でペレタイザー内部へと投入されることになり、たとえ、パンペレタイザー3内部において、該微粉や細粒が凝集して造粒されたとしても粒径が10mmを超えるような肥大化した結合強度の弱い粗大な擬似粒子が発生することがなく、粒度分布が小さく比較的粒径の揃った擬似粒子からなる焼結機用の造粒原料を製造することができる。   That is, in the present invention, coarse particles contained in the blended raw material are sized to a predetermined particle size or less in the crushing step 5 prior to the granulation step by the pan pelletizer 3, so that the coarse particles Even if the fine powder and fine particles that have been localized inside are released into the pelletizer in a released state, even if the fine powder and fine particles are aggregated and granulated inside the pan pelletizer 3 A granulated raw material for a sintering machine made of pseudo particles having a large particle size exceeding 10 mm and not having coarse pseudo particles having a weak bond strength and having a small particle size distribution and a relatively uniform particle size. Can be manufactured.

なお、造粒工程において、装入された配合原料は、パンペレタイザー3の回転運動にともない、該パンペレタイザー3内の上方位置に持ち上げられ、やがて自重により下方に向かって落下する運動を繰り返しながら次第に大きな粒子に成長していく。この際、装入された配合原料の均粒径が8mmを超えると、粒径10mmを超えるような肥大化した結合強度の弱い擬似粒子が発生するおそれがある。 In addition, in the granulation process, the charged raw material is gradually raised while being repeatedly moved downward by its own weight as it is lifted to an upper position in the pan pelletizer 3 as the pan pelletizer 3 rotates. Grows into large particles. At this time, there is a possibility that the flat Hitoshitsubu diameter of mixed material which is charged is more than 8 mm, weak pseudo particles bloated bond strength, such as a particle diameter exceeding 10mm may occur.

なお、本発明においては、上記解砕は、図4に示すように、ドラムミキサー2からパンペレタイザー3へ配合原料を送給するためのベルトコンベア6の排出端直下に、後述する解砕機構を備える解砕機7を配設し、その解砕機7によって、一定の粒径以上の粗大な粒子を選別しながら圧壊することにより行うことが好ましい。なお、解砕機7による解砕によって発生した細粒や微粉は、パンペレタイザー3内部において互いに凝集したり、核粒子に付着して擬似粒子に造粒されることになる。
ところで、粗大な粒子とは、前記したように粒径が10mmを超えるような、核粒子に細粒や微粉が付着した擬似粒子、あるいは細粒や微粉が水分を介して凝集して粗粒化した擬似粒子であり、とくに細粒や微粉が凝集してなる擬似粒子は、核粒子を持たないことから強度が小さく、解砕機7によって比較的容易に解砕(圧壊)することができる。
In the present invention, as shown in FIG. 4, the above crushing is performed by a crushing mechanism, which will be described later, immediately below the discharge end of the belt conveyor 6 for feeding the blended raw material from the drum mixer 2 to the pan pelletizer 3. It is preferable to dispose the crusher 7 provided and to crush the coarse crusher 7 while selecting coarse particles having a certain particle diameter or more. The fine particles and fine powder generated by crushing by the crusher 7 are aggregated with each other in the pan pelletizer 3 or attached to the core particles and granulated into pseudo particles.
By the way, a coarse particle is a coarse particle that has a particle size exceeding 10 mm as described above, in which fine particles or fine particles adhered to the core particles, or fine particles or fine particles aggregate through moisture. In particular, the pseudo particles formed by agglomeration of fine particles and fine powders do not have core particles and thus have low strength and can be crushed (collapsed) relatively easily by the crusher 7.

また、本発明では、図5に示すように解砕機7を、ドラムミキサー2からパンペレタイザー3との間の、連結する2以上のベルトコンベア6a、6bのそれぞれの排出端、すなわちベルトコンベア乗継部に設けることが好ましく、これによれば、図4の解砕機7を1台設けた場合に比べて、配合原料中に含まれる粗大粒子をより確実に選別して解砕し、整粒化した後にパンペレタイザー3内に投入することができるため、該パンペレタイザー3内での粗大な擬似粒子の生成(肥大化)を効果的に阻止することができ、粒子強度が大きい、粒度分布が小さく粒径の揃った擬似粒子を製造することができる。   Further, in the present invention, as shown in FIG. 5, the crusher 7 is connected to the discharge ends of the two or more belt conveyors 6a and 6b to be connected between the drum mixer 2 and the pan pelletizer 3, that is, the belt conveyor connection. According to this, compared with the case where one crusher 7 of FIG. 4 is provided, coarse particles contained in the blended raw material are more reliably selected and crushed, and sized. After that, since it can be put into the pan pelletizer 3, it is possible to effectively prevent the formation of coarse pseudo particles (enlargement) in the pan pelletizer 3, and the particle strength is large and the particle size distribution is small. Pseudo particles having a uniform particle size can be produced.

このようにして生成した擬似粒子は、パンペレタイザー3から溢流してベルトコンベア上に排出された後、その表面に、さらに別のドラムミキサーを用いてコークス粉等の固体燃料や必要に応じて用いられる副原料をコーティングすることにより、焼結鉱製造用の原料である焼結用造粒原料となる。   The pseudo particles generated in this manner overflow from the pan pelletizer 3 and are discharged onto the belt conveyor, and then, on the surface thereof, a solid fuel such as coke powder or the like is used as necessary using another drum mixer. By coating the auxiliary material to be produced, it becomes a granulated raw material for sintering which is a raw material for producing sintered ore.

本発明において用いられる解砕機7は、図6の説明図に示すように、複数の解砕歯8a、8bが突設された二本の相互に逆方向に回転する解砕ロール9a、9b(ダブルロール)を備えてなり、回転する解砕ロール9a、9b間に配合原料を通過させることで、配合原料中に含まれる粗大な粒子は、一定のクリアランスをもって噛合う解砕歯8a、8bによって選別されると共に、次第に圧壊され、一定の粒径以下の粒子となって排出されることになる。
なお、各解砕ロール9a、9bに突設された解砕歯8a、8bは、擬似粒子を適正な粒径(例えば、5mm以下)とするため、歯先と対向ロール面との隙間Aは、5mm以下に設定し、解砕歯8a、8bの高さBは、解砕歯8a、8bが互いに噛合するように5〜10mm程度とする。また、噛合する解砕歯8a、8b同士の間隔Cおよび解砕歯8a、8bのピッチDも5mm以下とすることが好ましい。
As shown in the explanatory view of FIG. 6, the crusher 7 used in the present invention includes two crushing rolls 9 a and 9 b (in which a plurality of crushing teeth 8 a and 8 b project in opposite directions and rotate in opposite directions. The coarse particles contained in the blended raw material are passed by the crushing teeth 8a and 8b meshed with a certain clearance by passing the blended raw material between the rotating crushing rolls 9a and 9b. While being sorted, it is gradually crushed and discharged as particles of a certain particle size or less.
In addition, since the crushing teeth 8a and 8b projecting from the crushing rolls 9a and 9b have pseudo particles having an appropriate particle size (for example, 5 mm or less), the gap A between the tooth tip and the opposing roll surface is The height B is set to 5 mm or less, and the height B of the crushing teeth 8a and 8b is set to about 5 to 10 mm so that the crushing teeth 8a and 8b mesh with each other. Moreover, it is preferable that the space | interval C between the crushing teeth 8a and 8b to mesh and the pitch D of the crushing teeth 8a and 8b shall also be 5 mm or less.

また、前記解砕歯8a、8bの前記クリアランスや歯形状、ロール9a、9bの回転数は、配合原料の粒度分布や含有水分量、強度、一定量の焼結鉱製造に必要な送給速度などの各種の条件に合わせて適切に調整することが好ましく、これによれば、配合原料を過剰に解砕することなく、粗粒をより選択的に解砕することができる。   Further, the clearance and tooth shape of the crushed teeth 8a and 8b, and the rotational speed of the rolls 9a and 9b are the particle size distribution of the blended raw material, the water content, strength, and the feed rate required for producing a certain amount of sintered ore. It is preferable to adjust appropriately according to various conditions, such as, and according to this, a coarse grain can be disintegrated more selectively, without excessively crushing a mixing | blending raw material.

図7は、従来法と本発明の方法により製造した焼結用造粒原料(擬似粒子)の粒度分布を比較して示すものである。本発明では、従来法に多く見られた粗粒粒子(10mm以上)の生成割合が減少している。即ち、本発明の方法では、1.0mm〜4.75mmの中間粒子の比率が増加し、粒径が均一化していることがわかる。また、平均粒径については、0.8mm減少しており、本発明の方法の採用が有効であることが確かめられた。   FIG. 7 shows a comparison of the particle size distribution of the granulation raw material for sintering (pseudo particles) produced by the conventional method and the method of the present invention. In the present invention, the generation ratio of coarse particles (10 mm or more) often observed in the conventional method is reduced. That is, in the method of the present invention, it can be seen that the ratio of intermediate particles of 1.0 mm to 4.75 mm is increased and the particle size is uniform. Further, the average particle diameter was reduced by 0.8 mm, and it was confirmed that the use of the method of the present invention was effective.

図8は、鉄鉱石中の40mass%についてペレットフィードを配合するという条件において、従来法と本発明の方法により焼結用造粒原料を製造し、これを用いて焼結鉱を製造した際の焼結生産率を示したものである。本発明の方法により製造した焼結用造粒原料によれば、焼結機のパレット上に装入したときに形成される原料充填層(焼結ベット)への装入嵩密度が小さく、焼成時間の短縮により焼結生産性の向上の効果が得られることがわかった。   FIG. 8 shows a granulated raw material for sintering produced by the conventional method and the method of the present invention under the condition that the pellet feed is blended for 40 mass% in the iron ore, and the sintered ore is produced using this. It shows the sintering production rate. According to the granulated raw material for sintering produced by the method of the present invention, the bulk density charged into the raw material packed layer (sintered bed) formed when charged on the pallet of the sintering machine is small, and firing is performed. It was found that the effect of improving the sintering productivity can be obtained by shortening the time.

したがって、本発明の方法に基づいて製造した焼結用造粒原料を用いて焼結鉱を製造すると、焼結鉱製造歩留まりや焼結鉱の強度の向上も期待できる。また、本発明の適用により製造された焼結用造粒原料では、比較的均一な粒度となるため、固体燃料としてコーティングされる粉コークスの賦存状態も適正化されることになる。なお、粉コークスの外装造粒を実施しない場合には、粉コークスや石灰石の均一混合を図るためには造粒前の均一混合が必要となるが、本発明の場合、このような負担も軽減される。   Therefore, when a sintered ore is manufactured using the granulation raw material for sintering manufactured based on the method of the present invention, an improvement in the yield of sintered ore and the strength of the sintered ore can be expected. Moreover, since the granulation raw material for sintering manufactured by application of this invention becomes a comparatively uniform particle size, the existence state of the powder coke coated as a solid fuel will also be optimized. In addition, when not implementing external granulation of powder coke, uniform mixing before granulation is required to achieve uniform mixing of powder coke and limestone. Is done.

また、本発明に係る方法は、解砕のための別ラインの増設が不要であり、ドラムミキサーからパンペレタイザーへ配合原料を送給するための、既設のベルトコンベアの排出端直下に解砕機を配設するだけの、シンプルな設備構成となる。   Further, the method according to the present invention does not require an additional line for crushing, and a crusher is provided just below the discharge end of the existing belt conveyor for feeding the blended raw material from the drum mixer to the pan pelletizer. It is a simple equipment configuration that is simply installed.

本発明に係る方法は、焼結用造粒原料の製造のみならず、高炉用焼結鉱の製造技術としても適用が可能である。   The method according to the present invention can be applied not only to the production of a granulated raw material for sintering, but also to the production technique of sintered ore for blast furnace.

1 配合槽
2 ドラムミキサー
3 パンペレタイザー
4 ドラムミキサー
6、6a、6b ベルトコンベア
7 解砕機
8a、8b 解砕歯
9a、9b ロール
DESCRIPTION OF SYMBOLS 1 Mixing tank 2 Drum mixer 3 Pan pelletizer 4 Drum mixer 6, 6a, 6b Belt conveyor 7 Crusher 8a, 8b Crushing teeth 9a, 9b Roll

Claims (9)

配合原料に水分を添加してドラムミキサーで混合する混合工程と、混合後の配合原料をパンペレタイザーにて造粒する造粒工程とを経て焼結用造粒原料を製造する方法において、前記混合工程と造粒工程との間で、粗大粒子を含む混合後の配合原料を解砕することを特徴とする焼結用造粒原料の製造方法。 In the method of producing a granulated raw material for sintering through a mixing step of adding water to the mixed raw material and mixing with a drum mixer, and a granulating step of granulating the mixed raw material after mixing with a pan pelletizer, the mixing A method for producing a granulated raw material for sintering, characterized by crushing a mixed raw material containing coarse particles between a step and a granulating step. 前記粗大粒子は、核粒子に微粉および/または細粒が付着した擬似粒子、または微粉および/または細粒が凝集した擬似粒子であることを特徴とする請求項1に記載の焼結用造粒原料の製造方法。 The granulation for sintering according to claim 1, wherein the coarse particles are pseudo particles in which fine particles and / or fine particles are attached to the core particles, or pseudo particles in which fine particles and / or fine particles are aggregated. Raw material manufacturing method. 前記粗大粒子は、粒径10mm以上の粒子であることを特徴とする請求項1または2に記載の焼結用造粒原料の製造方法。 The said coarse particle is a particle | grain with a particle size of 10 mm or more, The manufacturing method of the granulation raw material for sintering of Claim 1 or 2 characterized by the above-mentioned. 前記解砕工程後の配合原料の平均粒径は、8mm以下であることを特徴とする請求項1〜3のいずれか1項に記載の焼結用造粒原料の製造方法。 The method for producing a granulated raw material for sintering according to any one of claims 1 to 3, wherein an average particle diameter of the blended raw material after the crushing step is 8 mm or less. 前記解砕は、ドラムミキサーからパンペレタイザーへ配合原料を供給するための移送用ベルトコンベア排出端直下に配設されている解砕機を用いて行うことを特徴とする請求項1〜4のいずれか1項に記載の焼結用造粒原料の製造方法。 The said crushing is performed using the crusher arrange | positioned just under the belt conveyor discharge end for a transfer for supplying a compounding raw material from a drum mixer to a pan pelletizer. The manufacturing method of the granulation raw material for sintering of 1 item | term. 前記解砕は、解砕機によって粗大粒子を粒径に基づき選択的に圧壊することにより行うことを特徴とする請求項5に記載の焼結用造粒原料の製造方法。 The said crushing is performed by selectively crushing coarse particles based on a particle size with a crusher, The manufacturing method of the granulation raw material for sintering of Claim 5 characterized by the above-mentioned. 前記解砕機は、連結する2以上のベルトコンベア排出端のそれぞれに配設されていることを特徴とする請求項5または6に記載の焼結用造粒原料の製造方法。 The said crusher is arrange | positioned at each of the 2 or more belt conveyor discharge ends to connect, The manufacturing method of the granulation raw material for sintering of Claim 5 or 6 characterized by the above-mentioned. 前記解砕機は、複数の解砕歯が突設されたロール対を相互に逆方向に回転させて、前記粗大粒子を解砕する機構を有することを特徴とする請求項5〜7のいずれか1項に記載の焼結用造粒原料の製造方法。 The said crusher has a mechanism which crushes the said coarse particle by rotating the roll pair by which several crushing teeth were projected in the opposite direction mutually. The manufacturing method of the granulation raw material for sintering of 1 item | term. 前記造粒工程の後に、この工程を経て製造された擬似粒子にコークス粉を付着させる工程を有することを特徴とする請求項1〜8のいずれか1項に記載の焼結用造粒原料の製造方法。 The granulation raw material for sintering according to any one of claims 1 to 8, further comprising a step of adhering coke powder to pseudo particles produced through this step after the granulation step. Production method.
JP2013076790A 2013-04-02 2013-04-02 Method for producing granulation raw material for sintering Pending JP2014201763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013076790A JP2014201763A (en) 2013-04-02 2013-04-02 Method for producing granulation raw material for sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013076790A JP2014201763A (en) 2013-04-02 2013-04-02 Method for producing granulation raw material for sintering

Publications (1)

Publication Number Publication Date
JP2014201763A true JP2014201763A (en) 2014-10-27

Family

ID=52352494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013076790A Pending JP2014201763A (en) 2013-04-02 2013-04-02 Method for producing granulation raw material for sintering

Country Status (1)

Country Link
JP (1) JP2014201763A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110070918A (en) * 2019-04-02 2019-07-30 重庆邮电大学 Coarse granulation method based on intermolecular interaction
CN110616313A (en) * 2019-07-10 2019-12-27 李秀琴 Method for preparing raw materials for producing sintered ore and pellet ore and crushing and mixing machine
CN111298713A (en) * 2019-12-17 2020-06-19 湖南大学 Pellet mixing device and mixing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110070918A (en) * 2019-04-02 2019-07-30 重庆邮电大学 Coarse granulation method based on intermolecular interaction
CN110070918B (en) * 2019-04-02 2022-12-27 重庆邮电大学 Coarse graining method based on intermolecular interaction
CN110616313A (en) * 2019-07-10 2019-12-27 李秀琴 Method for preparing raw materials for producing sintered ore and pellet ore and crushing and mixing machine
CN111298713A (en) * 2019-12-17 2020-06-19 湖南大学 Pellet mixing device and mixing method
CN111298713B (en) * 2019-12-17 2024-05-10 湖南大学 Pellet ore mixing device and mixing method

Similar Documents

Publication Publication Date Title
JP5569658B2 (en) Method for producing granulated raw material for sintering, apparatus for producing the same, and method for producing sintered ore for blast furnace
TWI509081B (en) Method for producing granulation material for sintering
JP5954546B2 (en) Method for producing granulated raw material for sintering
CN107614710B (en) The manufacturing method of reduced iron
JP2016191122A (en) Method for producing sintered ore
JP2014201763A (en) Method for producing granulation raw material for sintering
CN103052724B (en) The manufacture method of raw material for sintering
JP5910831B2 (en) Method for producing granulated raw material for sintering
JP5146572B1 (en) Method for manufacturing raw materials for sintering
WO1994005817A1 (en) Method for producing sintered ore
JP5224917B6 (en) Manufacturing method of sintered raw material
CN103038369B (en) Method for producing starting material for sintering
JP4087982B2 (en) Granulation method for raw materials for sintering with excellent flammability
JP5983949B2 (en) Method for producing granulated raw material for sintering
JP4228678B2 (en) Method for manufacturing raw materials for sintering
JP5928731B2 (en) Manufacturing method and apparatus for granulating raw material for sintering
JP3797184B2 (en) Method for producing sintered ore
JP2000290734A (en) Pre-processing method for sintering raw materials
JP6020823B2 (en) Method for producing granulated raw material for sintering
JP2006312786A (en) Pretreatment method of sintering raw material
JP5979382B2 (en) Manufacturing method and apparatus for granulating raw material for sintering
JP2014181369A (en) Method of producing reduced iron
TWI468522B (en) Method for producing granulation material for sintering, producing apparatus thereof, and method for producing sinter ore for blast furnace
JP7124601B2 (en) Method for smelting oxide ore
JP2014167164A (en) Method for manufacturing reduced iron