JP5983949B2 - Method for producing granulated raw material for sintering - Google Patents
Method for producing granulated raw material for sintering Download PDFInfo
- Publication number
- JP5983949B2 JP5983949B2 JP2013107724A JP2013107724A JP5983949B2 JP 5983949 B2 JP5983949 B2 JP 5983949B2 JP 2013107724 A JP2013107724 A JP 2013107724A JP 2013107724 A JP2013107724 A JP 2013107724A JP 5983949 B2 JP5983949 B2 JP 5983949B2
- Authority
- JP
- Japan
- Prior art keywords
- particles
- raw material
- granulated
- sintering
- granulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002994 raw material Substances 0.000 title claims description 68
- 238000005245 sintering Methods 0.000 title claims description 59
- 238000004519 manufacturing process Methods 0.000 title claims description 27
- 239000002245 particle Substances 0.000 claims description 93
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 50
- 238000005469 granulation Methods 0.000 claims description 46
- 230000003179 granulation Effects 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 31
- 229910052742 iron Inorganic materials 0.000 claims description 25
- 239000011361 granulated particle Substances 0.000 claims description 23
- 238000002156 mixing Methods 0.000 claims description 11
- 239000008187 granular material Substances 0.000 claims description 9
- 238000010298 pulverizing process Methods 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 230000007246 mechanism Effects 0.000 claims description 3
- 239000008188 pellet Substances 0.000 description 22
- 239000000843 powder Substances 0.000 description 19
- 238000009826 distribution Methods 0.000 description 15
- 239000010419 fine particle Substances 0.000 description 15
- 230000008569 process Effects 0.000 description 11
- 239000000571 coke Substances 0.000 description 10
- 238000007796 conventional method Methods 0.000 description 7
- 239000011362 coarse particle Substances 0.000 description 6
- 239000007771 core particle Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000004449 solid propellant Substances 0.000 description 6
- 238000010304 firing Methods 0.000 description 5
- 239000002893 slag Substances 0.000 description 5
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 4
- 230000001788 irregular Effects 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000011049 filling Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 235000019738 Limestone Nutrition 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- 235000012255 calcium oxide Nutrition 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000012256 powdered iron Substances 0.000 description 1
- 238000009817 primary granulation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011044 quartzite Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
本発明は、DL式焼結機に供給するための焼結用造粒原料の製造方法に関する。 The present invention relates to a method for producing a granulating raw material for sintering to be supplied to a DL type sintering machine.
焼結鉱は、複数銘柄の粉状の鉄鉱石(以下、単に「鉱石」とも言う)に、石灰石、珪石、蛇紋岩等の副原料粉と、ダスト、スケール、返鉱等の雑原料と、粉コークス等の固体燃料とを適量づつ配合した焼結用配合原料に、水分を添加して混合・造粒し、造粒原料を焼結機に装入して焼成することによって得られる。造粒時、配合原料は、水分を含むことで互いに凝集して擬似粒子となる。この擬似粒子化した焼結用造粒原料を焼結機に装入することにより焼結機上では良好な通気を確保することが可能となって焼結が円滑に進むことが知られている。
なお、焼結用鉄鉱石は、近年、高品質鉄鉱石の枯渇による低品位化、例えばスラグ成分の増加や微粉化の傾向が顕著であり、アルミナ含有量の増大、微粉比率の増大による造粒性の悪いものが多くなっている。その一方で、高炉で使用する焼結鉱としては、高炉での溶銑製造コストの低減やCO2発生量の低減という観点から低スラグ比、高被還元性、高強度のものが求められている。
Sintered ore consists of multiple brands of powdered iron ore (hereinafter also referred to simply as “ores”), auxiliary raw material powders such as limestone, quartzite, and serpentine, and miscellaneous raw materials such as dust, scale, and return minerals, It is obtained by adding moisture to a blended raw material for sintering in which an appropriate amount of solid fuel such as powder coke is blended, mixing and granulating, and charging the granulated raw material into a sintering machine and firing. At the time of granulation, the blended raw materials aggregate with each other and become pseudo particles by containing moisture. It is known that by introducing the pseudo granulated raw material for sintering into a sintering machine, it is possible to ensure good ventilation on the sintering machine and the sintering proceeds smoothly. .
In recent years, iron ore for sintering has been prone to lower grades due to depletion of high-quality iron ore, for example, an increase in slag components and pulverization, and granulation due to an increase in alumina content and an increase in the fine powder ratio. There are a lot of bad things. On the other hand, sintered ore used in the blast furnace is required to have a low slag ratio, high reducibility, and high strength from the viewpoint of reducing hot metal production cost in the blast furnace and reducing CO 2 generation amount. .
焼結用鉄鉱石を取り巻くこのような環境の下で、ペレットフィードと呼ばれるペレット用高品位鉄鉱石である難造粒性の微粉鉄鉱石を使って、高品質の焼結鉱を製造するための技術が提案されている。例えば、こうした従来技術の1つに、Hybrid Pelletized Sinter法(以下、「HPS法」という)がある。この技術は、ペレットフィードのような微粉鉄鉱石を多量に含む配合原料をドラムミキサーとペレタイザーとを使って造粒することにより、低スラグ比・高被還元性の焼結鉱を製造しようというものである(特許文献1、特許文献2、特許文献3、特許文献4、特許文献5)。
In such an environment surrounding the iron ore for sintering, a high-quality iron ore for pellets called the pellet feed is used to produce high-quality sintered ore using the hardly granulated fine iron ore. Technology has been proposed. For example, one such conventional technique is the Hybrid Pelletized Sinter method (hereinafter referred to as “HPS method”). This technology is intended to produce sintered ore with low slag ratio and high reducibility by granulating a raw material containing a large amount of fine iron ore such as pellet feed using a drum mixer and pelletizer. (
特許文献1:特公平2−4658号公報
特許文献2:特公平6−21297号公報
特許文献3:特公平6−21298号公報
特許文献4:特公平6−21299号公報
特許文献5:特公平6−60358号公報
Patent Literature 1: Japanese Patent Publication No. 2-4658 Patent Literature 2: Japanese Patent Publication No. 6-21297 Patent Literature 3: Japanese Patent Publication No. 6-21298 Patent Literature 4: Japanese Patent Publication No. 6-21299 Patent Literature 5: Japan Patent Publication No. 6-60358
しかしながら、従来のHPS法を用いてペレットフィードである微粉鉄鉱石を多量に含む配合原料を造粒した場合、図1に示すように、擬似粒子の細粒(0.5mm未満)のみならず、粗粒(10mm超)が増加することがわかった。これは、ペレットフィードのような微粉鉄鉱石は、濡れ性が同じであれば、比表面積の大きい細粒ほど水分を吸収しやすく、かつ粉体間に多くの水分を保持しやすいため、これによって、個々の微粉鉄鉱石が水分を優先的に吸収し、微粉同士が単に凝集しただけにすぎないものや、核粒子のまわりに微粉が付着した形態の粒径の不揃いな粗大な擬似粒子が多く生成したものと考えられる。 However, when granulating a blended raw material containing a large amount of fine iron ore that is pellet feed using the conventional HPS method, as shown in FIG. 1, not only fine particles of fine particles (less than 0.5 mm), Coarse grains (> 10 mm) were found to increase. This is because fine iron ore such as pellet feed is more likely to absorb moisture and retain more moisture between powders if the wettability is the same. Many fine iron ores absorb moisture preferentially, and the fine powders are simply agglomerated with each other, and there are many coarse pseudo particles with irregular particle sizes in the form of fine particles adhering around the core particles. It is thought that it was generated.
この点については、発明者らの行った下記の実験からも明らかである。
まず、ペレットフィードなどの難造粒性の微粉鉄鉱石として、バナジウムを多く含む(40mass%)配合原料を使用して造粒を行った後、生成した擬似粒子の粒度分布とペレットフィードの粒度分布を計測した。その結果から、図2(a)に示すように配合原料中にペレットフィードを多量に含むと、ペレットフィードを含まない場合に比べて細粒(0.25mm未満)と粗粒(8mm超)の重量割合が高くなり、とくに粗粒の重量割合は75wt%程度と非常に高くなることがわかった。また、ペレットフィードの粒度分布(図2(b))も、擬似粒子の粒度分布と同様の傾向を示し、粗粒領域でのペレットフィードの重量割合が80wt%程度とかなり高く、ペレットフィードの殆どが粗粒の部分に偏在し、ペレットフィードが凝集することで粗大な擬似粒子が形成されていることが確認できた。
さらに、生成した擬似粒子に対し、水分量を測定したところ(図2(c))、粗粒領域における水分量が高く、ペレットフィードが水分を吸収することで凝集し、粗大な擬似粒子を形成していることがわかった。
This point is also apparent from the following experiments conducted by the inventors.
First, granulation is performed using a raw material containing a large amount of vanadium (40 mass%) as a difficult-to-granulate fine iron ore such as pellet feed, and then the particle size distribution of the generated pseudo particles and the particle size distribution of the pellet feed Was measured. From the results, when a large amount of pellet feed is included in the blended raw material as shown in FIG. 2 (a), fine grains (less than 0.25 mm) and coarse grains (greater than 8 mm) compared to the case where the pellet feed is not included. It turned out that the weight ratio becomes high, and especially the weight ratio of the coarse particles becomes very high at about 75 wt%. Also, the particle size distribution of the pellet feed (FIG. 2 (b)) shows the same tendency as the particle size distribution of the pseudo particles, and the weight ratio of the pellet feed in the coarse particle region is as high as about 80 wt%, It was confirmed that coarse pseudo particles were formed due to the uneven distribution of the coarse particles and the aggregation of the pellet feed.
Furthermore, when the moisture content was measured for the generated pseudo particles (FIG. 2 (c)), the moisture content in the coarse grain region was high, and the pellet feed aggregated by absorbing moisture to form coarse pseudo particles. I found out.
このようにペレットフィード等の微粉鉄鉱石を多く含む配合原料を造粒することで粒径が不揃いで、結合強度の弱い粗大な擬似粒子が多数生成すると、粒度分布も大きくなり、そのため、これを焼結機のパレット上へ充填すると、図3(a)、(b)に示すように密な充填構造となり、かさ密度が大きくなる。しかも、このような粗大な擬似粒子は、図3(b)に示すように焼結機のパレット上に一定の層厚で堆積させると、該擬似粒子に荷重(圧縮力)が加わり圧壊されやすいため、空隙率が下がり、ひいては通気性の悪化を招いて焼結機操業の阻害要因になり、焼結時間が長くなったり焼結鉱の製造歩留まりが低下して生産性が低下するおそれがある。
さらには、造粒に用いられるバインダーである生石灰の使用量を増加せざるを得なくなり、焼結鉱製造コストの増大を招くことや、後工程において粉コークス等の固体燃料を被覆する際に、焼結原料全体としての粉コークス等の賦存状態が不均一となり、燃焼や着熱が不均一となって焼成速度が低下するという点に問題がある。
In this way, by granulating a blended raw material containing a large amount of fine iron ore such as pellet feed, when a large number of coarse pseudo-particles with irregular particle sizes and weak bond strength are generated, the particle size distribution also increases. When the pallet of the sintering machine is filled, a dense filling structure is formed as shown in FIGS. 3A and 3B, and the bulk density is increased. Moreover, when such coarse pseudo-particles are deposited on the pallet of the sintering machine with a certain layer thickness as shown in FIG. 3B, a load (compressive force) is applied to the pseudo-particles and is easily collapsed. For this reason, the porosity is lowered, which leads to deterioration of air permeability and hinders the operation of the sintering machine, and there is a possibility that the sintering time becomes longer or the production yield of the sintered ore is lowered and the productivity is lowered. .
Furthermore, it is unavoidable to increase the amount of quicklime used as a binder used for granulation, leading to an increase in the production cost of sintered ore, and when coating solid fuel such as powdered coke in the subsequent process, There is a problem in that the existing state of the powdered coke or the like as the entire sintered raw material becomes non-uniform, combustion and heat receiving become non-uniform, and the firing rate is reduced.
そこで、本発明は、難造粒性の微粉鉄鉱石を使用する場合において、焼結用造粒原料中に、粒径の不揃いな結合強度の弱い粗大な擬似粒子が発生するのを阻止し、均一な大きさを有する擬似粒子を造粒する技術を提案するものである。 Therefore, the present invention prevents the generation of coarse pseudo-particles having a weak bond strength with irregular particle sizes in the granulation raw material for sintering when using the hardly granulated fine iron ore, A technique for granulating pseudo particles having a uniform size is proposed.
即ち、本発明は、図3(c)に示すように、微粉や細粒同士が互いに凝集または、核粒子のまわりに微粉が付着した構造の、粒径が比較的揃うと共に粒度分布の狭い擬似粒子からなる焼結用造粒原料の製造方法を提案するものであり、これによって焼結用造粒原料を焼結機のパレット上に装入したときに形成される原料充填層の充填密度の低減と、通気性の向上に伴う焼成時間の短縮を実現し、焼結生産性を向上させることを目的とするものである。 That is, as shown in FIG. 3C, the present invention has a structure in which fine particles and fine particles are aggregated with each other or fine particles are adhered around the core particles, and the particle size is relatively uniform and the particle size distribution is narrow. A method for producing a granulated raw material for sintering consisting of particles is proposed, whereby the packing density of the raw material packed bed formed when the granulated raw material for sintering is charged on the pallet of the sintering machine. The purpose is to realize reduction and shortening of the firing time associated with improvement in air permeability, and to improve sintering productivity.
上記目的を達成するため、本発明では、パンペレタイザーやドラムミキサー等の1次造粒機による予備的な造粒処理によって製造された1次造粒粒子に含まれる粒径の大きな擬似粒子を選択的に解砕した後、さらに2次造粒機によって再造粒処理を行うことにより、焼結用造粒原料中に結合強度の弱い粗大な擬似粒子からなる焼結用造粒原料を製造する方法を開発することに成功した。
即ち、本発明は、難造粒性鉄鉱石を含む配合原料を混合する混合工程と、混合原料を1次造粒機を使って造粒する造粒工程と、該造粒工程において生成した1次造粒粒子をさらに2次造粒機によって造粒する再造粒工程と、を経て焼結用造粒原料を製造する方法において、
前記造粒工程と再造粒工程との間に、粒径10mm以上の1次造粒粒子を選別しながら粉砕するように設定した解砕機を用いた解砕工程を設けると共に、その解砕機を、前記1次造粒機の排出端直下、もしくは1次造粒粒子を前記1次造粒機から2次造粒機に移送するためのベルトコンベア乗継ぎ部に配設して、該1次造粒粒子の粉砕を行うことを特徴とする焼結用造粒原料の製造方法を提案する。
In order to achieve the above object, in the present invention, pseudo particles having a large particle size included in primary granulated particles produced by preliminary granulation processing by a primary granulator such as a pan pelletizer or a drum mixer are selected. And then re-granulating with a secondary granulator to produce a granulated raw material for sintering consisting of coarse pseudo-particles with weak bond strength in the raw material for sintering Succeeded in developing the method.
That is, the present invention includes a mixing step of mixing a blended raw material containing hardly granulated iron ore, a granulating step of granulating the mixed raw material using a primary granulator, and 1 generated in the granulating step. In a method of producing a granulated raw material for sintering through a re-granulation step of further granulating the next granulated particles with a secondary granulator,
Between the granulation step and the re-granulation step, a pulverization step using a pulverizer set to pulverize while selecting primary granulated particles having a particle size of 10 mm or more is provided, and the pulverizer is , Disposed immediately below the discharge end of the primary granulator, or on a belt conveyor connecting portion for transferring primary granulated particles from the primary granulator to the secondary granulator , A method for producing a granulated raw material for sintering, characterized by pulverizing the granulated particles , is proposed.
本発明のより好ましい解決手段は、
(1)前記1次造粒粒子は、核粒子に微粉および/または細粒が付着した擬似粒子、または微粉および/または細粒が互いに凝集して粒状化した擬似粒子であること、
(2)前記解砕機は、複数の解砕歯が突設されたロール対を相互に逆方向に回転させて、前記1次造粒粒子を解砕する機構を有すること、
(3)前記再造粒工程の後に、再造粒後の2次造粒粒子にコークス粉を付着させる工程を、さらに有すること、
である。
A more preferable solution of the present invention is as follows:
(1) Before
(2) the disintegrator, it has a mechanism in which a plurality of hammer is rotated in the reverse direction to each other roles pair projecting, it disintegrated
(3) After the re-granulation step, further comprising a step of attaching coke powder to the secondary granulated particles after re-granulation,
It is.
(1)本発明に係る焼結用造粒原料の製造方法によれば、ペレットフィードのような高品位であるが難造粒性の微粉鉄鉱石をも焼結鉱製造用原料として使用することができるようになり、低スラグ比で高被還元性、高強度の鉄鉱石を有利に製造することができる。そして、このような焼結用造粒原料を、高炉用原料とすることにより、高炉内に装入する塊コークスの使用量を低減させることができるようになり、高炉からのCO2発生量の大幅な削減と、生産性の向上が期待できる。しかも、高炉でのスラグ発生量が低減するため、環境への負荷を軽減させることができる。
(2)また、本発明に係る製造方法によれば、焼結用造粒原料の粒径がほぼ均一になり、焼結機のパレット上への装入密度が小さくなって、原料充填層(焼結ベット)の通気性の改善を図れると共に、焼結原料全体としての粉コークス等の固体燃料の賦存状態が均一となり、燃焼速度の向上によって焼成時間が短縮し、焼結生産性を向上させることができる。
(3)さらに、本発明に係る製造方法よれば、粉コークスの使用量の低減が可能となり、焼結鉱製造時のCO2発生量の低減が可能になると共に、造粒時に使用される生石灰(バインダー)の使用量を削減することができるため、焼結鉱の製造コストを低減させることができる。
(1) According to the method for producing a granulated raw material for sintering according to the present invention, high-grade but difficult-to-granulate fine iron ore such as pellet feed is used as a raw material for producing sintered ore. As a result, it is possible to advantageously produce iron ore with a low slag ratio and high reducibility and high strength. And by using such a granulation raw material for sintering as a raw material for a blast furnace, it becomes possible to reduce the amount of lump coke charged into the blast furnace, and to reduce the amount of CO 2 generated from the blast furnace. Significant reductions and productivity improvements can be expected. Moreover, since the amount of slag generated in the blast furnace is reduced, the load on the environment can be reduced.
(2) Moreover, according to the manufacturing method which concerns on this invention, the particle size of the granulation raw material for sintering becomes substantially uniform, the charging density on the pallet of a sintering machine becomes small, and a raw material packed bed ( In addition to improving the air permeability of the sintering bed), the existing state of solid fuel such as powdered coke as the entire sintering raw material becomes uniform, and the firing time is shortened by improving the burning rate, thereby improving the sintering productivity. Can be made.
(3) Further, according to the production method of the present invention, the amount of powder coke used can be reduced, the amount of CO 2 generated during the production of sintered ore can be reduced, and quick lime used during granulation. Since the usage-amount of (binder) can be reduced, the manufacturing cost of a sintered ore can be reduced.
図4は、代表的な擬似粒子の構造を示すものである。図4(a)は、ペレットフィード等の難造粒性の微粉鉄鉱石を使用して造粒した時に形成される擬似粒子のうち、細粒や微粉鉄鉱石同士が水分を介して単に凝集して粒状化した結合強度の弱い粗大な擬似粒子(凝集粒子)の例を示すものである。これに対し、図4(b)は、核粒子のまわりに微粉や細粒が付着した構造の擬似粒子の例であり、一般的に図4(b)の擬似粒子の方が結合強度が大きく粒径が揃ったもの(均等粒子)になる。なお、微粉鉄鉱石としては、ペレットフィードを製造する過程で発生する残渣であるテーリング鉱石も含み、本発明では、これらを単に難造粒性鉄鉱石という。 FIG. 4 shows the structure of a typical pseudo particle. FIG. 4 (a) shows that among the pseudo particles formed when granulated using a difficult-to-granulate fine iron ore such as pellet feed, fine particles and fine iron ore are simply aggregated through moisture. An example of coarse quasi-particles (aggregated particles) having a low bonding strength and granulated is shown. On the other hand, FIG. 4B is an example of a pseudo particle having a structure in which fine particles or fine particles are attached around the core particle. Generally, the pseudo particle of FIG. 4B has a higher binding strength. The particle size is uniform (uniform particles). The fine iron ore includes tailing ore that is a residue generated in the process of producing the pellet feed. In the present invention, these are simply referred to as hardly granulated iron ore.
図5(a)は、一般的な焼結用造粒原料の製造プロセスのフローを示す。この製造プロセスは、配合槽から切り出された配合原料である鉄鉱石粉を、5〜8mass%程度の水分を加えてミキサー1で混合し、必要に応じて副原料粉を加えた上でミキサー2にてさらに混合し(混合工程)、次いで、ドラムミキサーやパンペレタイザーなどの1次造粒機3に送給して水分(3mass%程度)を加えながら造粒処理(造粒工程)する場合の他、さらに必要に応じて2次造粒機4を用いて水分を加えながら再造粒処理し(再造粒工程)、さらに必要に応じて粉コークス等の固体燃料や副原料をコーティングして焼結鉱製造用の原料である焼結用造粒原料を製造する方法である。ここで、混合工程、造粒工程および再造粒工程において添加される水分量は、所定の擬似粒子が得られるように、すなわち所定の造粒水分になるように調整される。
なお、図5では、1次造粒機3および2次造粒機4として1台のドラムミキサーが記載されているが、それぞれ、複数台のドラムミキサーやパンペレタイザーなどを組み合わせて構成してもよい。
Fig.5 (a) shows the flow of the manufacturing process of the general granulation raw material for sintering. In this manufacturing process, iron ore powder, which is a blended raw material cut out from the blending tank, is mixed with
In FIG. 5, one drum mixer is described as the
本発明では、難造粒性鉄鉱石を含む配合原料を用いて焼結用造粒原料を製造する方法において、図5(b)に例示したように1次造粒機3による予備的な造粒工程と、2次造粒機4による再造粒工程との間に、解砕工程5を介在させ、造粒工程を経た1次造粒粒子のうち粗大に成長した粒子、とくに、微粉および/または細粒が単に凝集して粒状化した図4(a)に示すような擬似粒子のうちの、一定の大きさ以上の粒径をもつ1次造粒粒子を解砕することを特徴としている。これにより、例えば、1次造粒機3の出口において粒径が10mm以上、好ましくは8mm以上の大きさの粗大な1次造粒粒子を対象に、これを後述する解砕機を使って解砕して、例えば、粒径:1〜8mm程度になるように整粒化した後に、2次造粒機4に供給して再造粒することで中間粒子(粒径1.0〜4.75mm)の多い焼結用造粒原料にする。
In the present invention, in the method for producing a granulation raw material for sintering using a blended raw material containing hardly granulated iron ore, preliminary granulation by the
即ち、難造粒性鉄鉱石は、上記したように水分を吸収しやすく、かつ粉体間に多くの水分を保持しやすいため、造粒に際して、微粉同士が単に凝集しただけにすぎないものや、核粒子のまわりに微粉が付着した形態の粒径の不揃いな粗大な擬似粒子が形成されやすい。そのため、本発明では、1次造粒機3によって予備的な造粒を行った後、その1次造粒粒子中に含まれている粗大な粒子を、2次造粒機4での再造粒工程に先立って、解砕工程5において一定の粒径以下に解砕し、粗大な1次造粒粒子の内部に局在化していた微粉および水分が解放して造粒原料全体に均一に分散させることで、2次造粒機4内での再造粒過程において、粒径が10mmを超えるような肥大化した結合強度の弱い粗大な擬似粒子が発生するようなことがなくなり、粒度分布が小さく比較的粒径の揃った、均等化した擬似粒子からなる焼結機用の造粒原料を製造することができるのである。
In other words, difficult-to-granulate iron ore easily absorbs moisture as described above and easily retains a large amount of moisture between the powders. In addition, coarse pseudo particles having irregular particle sizes in a form in which fine powder is attached around the core particles are easily formed. Therefore, in the present invention, after preliminary granulation is performed by the
なお、本発明においては、上記解砕工程5は、図6に示すように、パンペレタイザー3aあるいはドラムミキサー3bからなる1次造粒機3からの1次造粒粒子の排出端直下位置、もしくは第1造粒機3から第2造粒機4へ造粒粒子を搬送するためのベルトコンベア6の乗り継ぎ部(図示せず)に、後述する解砕機構を備える解砕機7を配設し、該解砕機7によって、一定の粒径以上の粗大な1次造粒粒子を選別しながら圧壊(粉砕)することにより行う。
なお、解砕機7による解砕によって発生した細粒や微粉は、解砕後の造粒粒子と共にベルトコンベア6で搬送されて2次造粒機4へと装入され、該2次造粒機4内部において互いに凝集したり、核粒子に付着して擬似粒子に再造粒されることになる。
In the present invention, the crushing
The fine particles and fine powder generated by crushing by the
ところで、粗大な1次造粒粒子とは、前記したように粒径が10mmを超えるような、核粒子に細粒や微粉が付着した擬似粒子の他、細粒や微粉が水分を介して単に凝集して粗大化した擬似粒子のことであり、とくに難造粒性鉄鉱石であるペレットフィードやテーリング鉱を多量に含む配合原料の場合、細粒や微粉が凝集してなる擬似粒子は、核粒子を持たないことから強度が小さく、しかも解砕機7によって比較的容易に解砕(圧壊)することができる。
なお、再造粒工程後の2次造粒粒子には、必要に応じて表面にコークス粉等の固体燃料や副原料がコーティングされ、焼結鉱製造用の原料である焼結用造粒原料となる。
By the way, coarse primary granulated particles are not only pseudo particles in which fine particles or fine particles are attached to the core particles, but also fine particles or fine particles are simply passed through moisture as described above. Pseudoparticles that are agglomerated and coarsened, especially in the case of compound raw materials that contain a large amount of pellet feed and tailing ore, which are difficult to granulate iron ores, Since it does not have particles, the strength is low, and it can be crushed (collapsed) by the
The secondary granulated particles after the re-granulation step are coated with a solid fuel such as coke powder or auxiliary materials on the surface as necessary, and the granulated raw material for sintering, which is a raw material for producing sintered ore It becomes.
本発明において用いられる解砕機7は、図7の説明図に例示すように、複数の解砕歯8a、8bが突設された二本の相互に逆方向に回転する解砕ロール9a、9b(ダブルロール)を備えてなり、回転する解砕ロール9a、9b間に造粒工程後の1次造粒粒子を通過させることで、該1次造粒粒子中に含まれる粗大な粒子は、一定のクリアランスをもって噛合う解砕歯8a、8bによって選別されると共に、次第に圧壊され、一定の粒径以下の粒子となって排出されることになる。
なお、各解砕ロール9a、9bに突設された解砕歯8a、8bは、擬似粒子を適正な粒径(例えば、5mm以下)とするため、歯先と対向ロール面との隙間Aは、5mm以下に設定し、解砕歯8a、8bの高さBは、解砕歯8a、8bが互いに噛合するように5〜10mm程度とする。また、噛合する解砕歯8a、8b同士の間隔Cおよび解砕歯8a、8bのピッチDも5mm以下とすることが好ましい。
As shown in the explanatory diagram of FIG. 7, the
In addition, since the crushing
また、前記解砕歯8a、8bの前記クリアランスや歯形状、ロール9a、9bの回転数は、配合原料の粒度分布や含有水分量、強度、一定量の焼結鉱製造に必要な送給速度などの各種の条件に合わせて適切に調整することが好ましく、これによれば、配合原料を過剰に解砕することなく、粗粒をより選択的に解砕することができる。
Further, the clearance and tooth shape of the crushed
図8は、鉄鉱石中に難造粒性のペレットフィードを20mass%(ワスコペレットフィード16mass%、チョーグルテーリング4mass%)含む配合原料を用いて本発明法と従来のHPS法によって製造した焼結用造粒原料(擬似粒子)の平均粒子径と粒度分布を比較して示すものである。
これによれば、本発明法では、従来法に多く見られた粗粒粒子(10mm以上)の生成割合が減少し、1.0〜4.75mmの中間粒子の比率が増加して粒径が均一化し、高強度の焼結用造粒原料を製造することができたことがわかる。また、本発明法では、解砕工程を経ているにも関わらず、焼結用造粒原料の平均粒径が0.08mm増大(1.62→1.70mm)している。これは、第1造粒機による造粒後、解砕工程を経ることで、粗大な1次造粒粒子(擬似粒子)中に内在する微粉と水分が均一に分散されることになり、この状態で第2造粒機に投入されたことで、微粉および細粒の再造粒が促進され、従来法に比べて平均粒子径の大きい焼結用造粒原料が製造されたものと思われる。
FIG. 8 is a diagram showing a method for producing a sintered product manufactured by the present invention method and the conventional HPS method using a blended raw material containing 20 mass% of a hard-to-granulate pellet feed in iron ore (16 mass% for Wasco pellet feed, 4 mass% for choggle tailing). The average particle diameter and particle size distribution of the granulation raw material (pseudo particle) are compared and shown.
According to this, in the method of the present invention, the generation ratio of coarse particles (10 mm or more) often found in the conventional method is decreased, the ratio of intermediate particles of 1.0 to 4.75 mm is increased, and the particle size is increased. It can be seen that a uniform granulated raw material for sintering could be produced. Further, in the method of the present invention, the average particle size of the granulated raw material for sintering is increased by 0.08 mm (1.62 → 1.70 mm) despite being subjected to the crushing step. This is because fine powder and moisture inherent in coarse primary granulated particles (pseudo particles) are uniformly dispersed by passing through a crushing step after granulation by the first granulator. It is considered that the re-granulation of fine powder and fine particles was promoted by being put into the second granulator in a state, and a granulation raw material for sintering having a larger average particle diameter than that of the conventional method was produced. .
図9および図10は、図8の焼結用造粒原料(擬似粒子)を用いて焼結鉱を製造した際の焼結試験結果を示すものである。本発明法では、解砕工程を設けることで従来のHPS法に比べて焼結鉱製造歩留まりが若干低下するものの、焼結用造粒原料が整粒化されて粒度分布が狭くなったことで焼結用造粒原料充填層(焼結ベット)の通気性が改善され、焼成時間が大幅に短縮し、これによって焼結生産率の向上の効果が得られることがわかった。 9 and 10 show the results of a sintering test when a sintered ore was produced using the granulating raw material for sintering (pseudoparticles) shown in FIG. In the method of the present invention, by providing a crushing step, the yield of sintered ore production is slightly reduced compared to the conventional HPS method, but the granulation raw material for sintering is sized to narrow the particle size distribution. It has been found that the air permeability of the granulated raw material packed layer (sintered bed) for sintering is improved and the firing time is greatly shortened, thereby obtaining the effect of improving the sintering production rate.
したがって、本発明の方法に基づいて製造した焼結用造粒原料を用いて焼結鉱を製造すると、焼結生産性および焼結鉱の強度の向上を期待することができる。また、本発明の適用により製造された焼結用造粒原料では、比較的均一な粒度となるため、固体燃料としてコーティングされる粉コークスの賦存状態も適正化されることになる。なお、粉コークスの外装造粒を実施しない場合には、粉コークスや石灰石の均一混合を図るためには造粒前の均一混合が必要となるが、本発明の場合、このような負担も軽減される。 Therefore, when a sintered ore is manufactured using the granulation raw material for sintering manufactured based on the method of this invention, the improvement of sintering productivity and the intensity | strength of a sintered ore can be anticipated. Moreover, since the granulation raw material for sintering manufactured by application of this invention becomes a comparatively uniform particle size, the existence state of the powder coke coated as a solid fuel will also be optimized. In addition, when not implementing external granulation of powder coke, uniform mixing before granulation is required to achieve uniform mixing of powder coke and limestone. Is done.
また、本発明に係る方法は、解砕のための別ラインの増設が不要であり、ドラムミキサーやパンペレタイザーなどの第1造粒機の排出端直下や、既設のベルトコンベアの乗り継ぎ部に解砕機を配設するだけの、シンプルな設備構成となる。 In addition, the method according to the present invention does not require an additional line for crushing, and can be applied directly below the discharge end of the first granulator such as a drum mixer or a pan pelletizer, or at a connecting portion of an existing belt conveyor. A simple equipment configuration with only a crusher.
本発明に係る方法は、焼結用造粒原料の製造のみならず、高炉用焼結鉱の製造技術としても適用が可能である。 The method according to the present invention can be applied not only to the production of a granulated raw material for sintering, but also to the production technique of sintered ore for blast furnace.
1、2 ミキサー
3 1次造粒機
3a パンペレタイザー
3b ドラムミキサー
4 2次造粒機
5 解砕工程
6 ベルトコンベア
7 解砕機
8a、8b 解砕歯
9a、9b ロール
DESCRIPTION OF
Claims (4)
前記造粒工程と再造粒工程との間に、粒径10mm以上の1次造粒粒子を選別しながら粉砕するように設定した解砕機を用いた解砕工程を設けると共に、その解砕機を、前記1次造粒機の排出端直下、もしくは1次造粒粒子を前記1次造粒機から2次造粒機に移送するためのベルトコンベア乗継ぎ部に配設して、該1次造粒粒子の粉砕を行うことを特徴とする焼結用造粒原料の製造方法。 A mixing step of mixing a blended raw material containing hardly granulated iron ore, a granulating step of granulating the mixed raw material using a primary granulator, and primary granulated particles generated in the granulating step In a method of producing a granulation raw material for sintering via a re-granulation step of granulating with a secondary granulator,
Between the granulation step and the re-granulation step, a pulverization step using a pulverizer set to pulverize while selecting primary granulated particles having a particle size of 10 mm or more is provided, and the pulverizer is , Disposed immediately below the discharge end of the primary granulator, or on a belt conveyor connecting portion for transferring primary granulated particles from the primary granulator to the secondary granulator , A method for producing a granulating raw material for sintering , comprising pulverizing granulated particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013107724A JP5983949B2 (en) | 2013-05-22 | 2013-05-22 | Method for producing granulated raw material for sintering |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013107724A JP5983949B2 (en) | 2013-05-22 | 2013-05-22 | Method for producing granulated raw material for sintering |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014227569A JP2014227569A (en) | 2014-12-08 |
JP5983949B2 true JP5983949B2 (en) | 2016-09-06 |
Family
ID=52127728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013107724A Active JP5983949B2 (en) | 2013-05-22 | 2013-05-22 | Method for producing granulated raw material for sintering |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5983949B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3902629B2 (en) * | 2004-05-13 | 2007-04-11 | 新日本製鐵株式会社 | Pretreatment method of sintering raw materials |
DE602005024184D1 (en) * | 2005-05-10 | 2010-11-25 | Nippon Steel Corp | METHOD FOR PRE-TREATING OUTPUTS FOR SINTERING |
JP5459655B2 (en) * | 2008-07-18 | 2014-04-02 | Jfeスチール株式会社 | How to treat tailings |
-
2013
- 2013-05-22 JP JP2013107724A patent/JP5983949B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014227569A (en) | 2014-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008214715A (en) | Method for manufacturing nonfired agglomerated ore for iron manufacture | |
JP3902629B2 (en) | Pretreatment method of sintering raw materials | |
JP5315659B2 (en) | Method for producing sintered ore | |
TWI509081B (en) | Method for producing granulation material for sintering | |
CN107614710B (en) | The manufacturing method of reduced iron | |
JP2016191122A (en) | Method for producing sintered ore | |
JP5954546B2 (en) | Method for producing granulated raw material for sintering | |
JP2015193930A (en) | Method for producing sintered ore | |
TWI655983B (en) | Method and device for manufacturing granulates | |
JP4786508B2 (en) | Pretreatment method of sintering raw material | |
JP5451568B2 (en) | Pretreatment method for sintering raw materials | |
JP2014201763A (en) | Method for producing granulation raw material for sintering | |
JP5910831B2 (en) | Method for producing granulated raw material for sintering | |
JP5224917B6 (en) | Manufacturing method of sintered raw material | |
JP6380762B2 (en) | Method for producing sintered ore | |
WO2013145332A1 (en) | Method for manufacturing pseudo-particles for sintered ore manufacture, and method for manufacturing sintered ore | |
JP5983949B2 (en) | Method for producing granulated raw material for sintering | |
WO2014129282A1 (en) | Method for manufacturing reduced iron | |
JP6020823B2 (en) | Method for producing granulated raw material for sintering | |
JP6623629B2 (en) | Manufacturing method of coke for blast furnace | |
WO2012015066A1 (en) | Method for producing starting material for sintering | |
JP6235439B2 (en) | Manufacturing method of granular metallic iron | |
JP3797184B2 (en) | Method for producing sintered ore | |
JP2000290732A (en) | Granulation method of raw materials for sintering with excellent flammability | |
JP5928731B2 (en) | Manufacturing method and apparatus for granulating raw material for sintering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160217 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160411 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160427 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160617 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160706 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160719 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5983949 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |